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Abstract

While many long noncoding RNAs (IncRNAs) have been identified in human and other
mammalian genomes, there has been limited systematic functional characterization. In particular,
the contribution of INcCRNASs to organ development remains largely unexplored. Here we analyze
the expression patterns of InNcRNAs across developmental timepoints in seven major organs, from
early organogenesis to adulthood, across seven species (human, macaque, mouse, rat, rabbit,
opossum, and chicken). Our analyses identified ~15,000-35,000 candidate INcCRNAs in each
species, most of which show species specificity. We characterized expression patterns of InNcRNAs
across developmental stages, and found many with dynamic expression patterns across time that
show signatures of enrichment for functionality. During development, there is a transition from
broadly expressed and conserved IncRNASs towards an increasing number of lineage- and organ-
specific INcRNAs. Our study provides a resource of candidate IncRNAs and their patterns of
expression and evolutionary conservation across mammalian organ development.

Previous studies identified numerous long noncoding RNAs (IncRNAs) in humanl-4 and
other mammals5-8. However, molecularly characterized cases are limited9 and the
functionality of most loci remains uncertain10. Cross-species genomic comparisons provide
a powerful framework for the large-scale identification of putatively functional INcCRNAs, as
these should carry signatures of evolutionary constraint11,12. Although the physical
proximity13,14 and co-expression of IncRNAs with developmental regulators6, together
with individual paradigms15-17, have long suggested a contribution of INCRNAs to
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mammalian development, data limitations confined previous evolutionary studies of
IncRNASs to adult organs6-8. Here, we utilize a dataset of bulk transcriptomes in seven
major organs across developmental stages, from early organogenesis to adulthood, across
seven species (reported in an accompanying publication, 18) to examine the contribution of
IncRNASs to developmental expression programs.

Developmental IncRNA atlases

To assess the relevance of IncRNAs for mammalian organ development we analyzed an
RNA-seq dataset18 covering the development of seven major organs (forebrain/cerebrum —
hereinafter referred to as “brain”, cerebellum, heart, kidney, liver, ovary, and testis) from
early organogenesis to adulthood in seven species (human, macaque, mouse, rat, rabbit,
opossum, and chicken; Fig. 1a). Using this dataset we annotated candidate INCRNAs as
spliced and long transcripts (>200 nucleotides) with no detectable protein-coding potential
and reconstructed homologous IncRNA families based on sequence similarities between
species (Methods; Fig. 1b; Extended Data Fig. 1a-b; Supplementary Data 1; Supplementary
Tables 1-8).

We identified ~15,000-35,000 candidate IncRNAs of various genomic classes in each
species (Extended Data Fig. 2a). We recovered ~50% of the human and murine IncRNA and
antisense transcripts from Ensembl19, and detected 24,951 and 21,263 novel IncRNAs,
respectively (Fig. 1c). The distribution of genomic classes and spatial expression patterns is
indistinguishable between the newly identified and the previously annotated IncRNAs,
suggesting our repertoire extensions are unbiased (Extended Data Fig. 2b). While most of
our INcRNASs are species-specific6-8, we identified 8,953 conserved human IncRNAs (Fig.
1b). The sensitivity of our INcCRNA family detection was similar to previous studies8 and
synteny conservation was comparable to that of protein-coding genes (Extended Data Fig.
2c-¢e). The IncRNA expression profiles and gene models can be explored interactively:
Incrnas.kaessmannlab.org.

Depending on the species, 35-60% of robustly expressed INcCRNAs (i.e., RPKM > 1 in at
least one sample) show maximal expression in the testis (Extended Data Fig. 2f), confirming
the disproportional contribution of this organ to INcRNA repertoires1,6-8. However, this
peculiarity is limited to the adult organ; the number of IncRNAs expressed in the developing
testis is indistinguishable from the remaining organs (Extended Data Fig. 2g).

Features of developmentally dynamic IncRNAs

We identified IncRNAs with significant differential expression through time (termed
“developmentally dynamic™) using a regression approach (maSigPro; Methods)20. The
ability to detect dynamic expression depends on multiple factors, some of which have been
associated with increased functional relevance of IncRNAs. These include robust expression
levels21, transcript stability22, reproducibility between biological replicates, and consistent
changes in expression across developmental stages10 (Extended Data Fig. 3a). While
dynamic expression is not sufficient to claim functionality, we reasoned that it would allow
us to enrich for functionally relevant INcCRNAs. As the disproportionate INcRNA expression
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of the adult testis6,12,23 is associated with a pervasive chromatin environment that also
allows the transcription of putatively non-functional elements23, we excluded post-puberty
testis samples from this estimation.

Most protein-coding genes (73-90% depending on the species) but only a fraction of
IncRNASs (16-38%) show developmentally dynamic expression (Extended Data Fig. 3b).
Contrary to the highly variable total number of IncRNAS, the numbers of developmentally
dynamic IncRNAs are similar across species (Fig. 2a). Notably, large proportions of
dynamic IncRNAs in human (2,998, 51%) and mouse (4,188, 74%) are not annotated in
Ensembl19. While most dynamic IncRNAs (51-63%) are differentially expressed in a single
organ they show broader and higher expression than non-dynamic IncRNAs (Extended Data
Fig. 3c-f).

Developmentally dynamic IncRNAs show an overrepresentation of divergent, downstream
sense and antisense transcripts, which results in a closer proximity to protein-coding genes
(Extended Data Fig. 4a-b). However, all genomic classes substantially contribute to the total
number of dynamic IncRNAs (Extended Data Fig. 4a) and the differences between classes
mostly disappear after controlling for maximum expression (Extended Data Fig. 4c).
Dynamic IncRNA transcripts are also longer (Fig. 2b) and contain more exons (Extended
Data Fig. 4d), suggesting selection for splice sites and against premature polyadenylation
signals, as well as a higher capacity to accommodate modular RNA domains that facilitate
interactions with proteins or other nucleic acids24.

Evolutionary conservation provides a strong line of evidence for IncRNA functionality6,11—
13. We observed a significant increase in the fraction of developmentally dynamic genes for
older IncRNA groups (Fig. 2c; < 0.01, two-sided Fisher’s exact test). As the overlap with
protein-coding genes and regulatory elements can lead to the overestimation of IncRNA
evolutionary age, we repeated this analysis excluding antisense and divergent transcripts,
and IncRNAs that overlap transcribed enhancers25, with similar results (Extended Data Fig.
4e; P<0.05, two-sided Fisher’s exact test). The enrichment of dynamic transcripts amongst
older IncRNAs also remained significant after controlling for maximum expression, even for
lowly expressed INcRNAs (Extended Data Fig. 4f-g; £< 0.05, two-sided Fisher’s exact test).
Overall, our analyses suggest a clear association between developmentally dynamic
expression and evolutionary conservation.

Next, we assessed the extent of spatiotemporal expression similarity between species.
Human IncRNAs with a dynamic mouse ortholog are more likely to also be dynamic
(Extended Data Fig. 4h), and IncRNAs that are dynamic in both species show almost as high
expression similarity as protein-coding genes, even after excluding antisense and divergent
IncRNAs (Fig. 2d; Extended Data Fig. 4i). To assess the effect of evolutionary age on the
conservation of IncRNA spatiotemporal profiles across a wider phyletic range, we analyzed
IncRNAs dynamic in mouse and rat. We observed an increase in expression similarity with
IncRNA age (Extended Data Fig. 4j), in agreement with the slow turnover of transcription
and tissue-specificity of conserved INCRNAs7,26.
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Finally, we sought to more directly examine the functional relevance of dynamic IncRNAs.
In a set of molecularly characterized, functional IncRNAs from IncRNAdb27, the fraction of
dynamic genes is 76%, four times higher than among all human IncRNAs and close to the
fraction of dynamic protein-coding genes (86%, Fig. 2c). This enrichment remained
significant after controlling for maximum expression (Extended Data Fig. 4f; A= 0.037,
two-sided Fisher’s exact test). To account for ascertainment biases, like the preferred
experimental characterization of broadly expressed and conserved INcCRNAS, we also
examined a set of InNcRNAs associated with cell proliferation phenotypes based on an
unbiased CRISPRI screen in human cell lines21. Despite the different physiological context
and high cell line specificity of the reported results, we found that INcCRNAs in the screen
libraries that were also present in our annotation had an increased likelihood of exhibiting a
cell proliferation phenotype (“hit”, Extended Data Fig. 4k; £= 2.2 x 10-16, two-sided
Fisher’s exact test). Moreover, we observed a significant, albeit small, enrichment of hits
among dynamic IncRNAs (Fig. 2e; Extended Data Fig. 4k; P=0.02, two-sided Fisher’s
exact test) further supporting their enrichment for functional loci.

Regulatory landscape of dynamic IncRNAs

We next investigated whether the developmentally dynamic expression of INCRNAS is also
reflected in more complex transcriptional regulation (Methods). As expected6,28 the
promoters of protein-coding genes contain the most transcription factor (TF) binding sites29
(Fig. 2f). However, the promoters of dynamic intergenic IncCRNAs are bound by more TFs
than those of non-dynamic IncRNAs, suggesting a stronger and more complex
transcriptional regulation (Fig. 2f; Extended Data Fig. 5a).

To assess the relevance of this increased transcriptional regulation during development, we
estimated the fraction of dynamic IncRNA promoters bound by each TF (termed “binding
frequency”). We identified three major classes: TFs with high binding frequencies for
IncRNAs dynamic in the nervous tissues, heart or liver (Fig. 2g; Extended Data Fig. 5b). For
tissue-specific TFs, we observed a high concordance between the organ where the TFs are
maximally expressed and the binding frequency for IncRNAs dynamic in that organ (Fig. 2g;
Extended Data Fig. 5¢). Despite their ubiquitous expression, well-established regulators of
cardiac development30, such as Nkx2-5, Mef2d and Gata4, also predominantly bind to
promoters of IncRNAs dynamic in the heart (Fig. 2g). Overall, these results show that the
increased transcriptional regulation of dynamic IncRNAs matches the organ in which they
are expressed.

Expression patterns during organ development

Organ development is punctuated by periods when large numbers of protein-coding genes
change their expression levels18. These periods are associated with the establishment of
organ identity early in development and with the transition to mature organ-specific
functions around birth18. Strikingly, the stages where dynamic IncRNAs show the greatest
differential expression coincide with these periods of greater transcriptional change, even
when only considering IncRNAs located more than 100 kb away from the closest protein-
coding gene (Fig. 3a; Extended Data Fig. 6a-b). Although we cannot exclude a contribution
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from proximal developmental enhancers31, the enrichment of dynamic IncRNAs for
functionally relevant features (Fig. 2) argues against the prevalence of non-autonomous
expression for most loci.

Motivated by the similar temporal dynamics between protein-coding genes and INcCRNAs,
we assigned putative functions to dynamic InNcRNAs based on their co-expression with
protein-coding genes, i.e. through "guilt by association"6,13. Across organs, the co-
expression clusters with the highest fraction of IncRNAs consistently showed similar
developmental trajectories and were associated with developmental functions and adult
organ physiology (Extended Data Fig. 7; Supplementary Tables 9-10). By contrast, INCRNAs
contributed the least to clusters associated with housekeeping genes, in agreement with the
hypothesis that few IncRNAs are involved in essential cellular functions10.

Early vs. late development

In the developmental period studied here, the transcriptomes of different organs share strong
commonalities at the earliest stages and then gradually diverge into distinct, organ-specific
developmental programs18. In parallel with this divergence of gene expression programs,
the number of dynamic INcRNAs expressed in each organ steadily increases (Fig. 3b). In
contrast, the fraction of INCRNAs showing selective preservation (i.e., those with an age > 80
million years) decreases with time (Fig. 3c). Consistently, the expression similarity between
IncRNAs dynamic in both human and mouse, also declines during development (Extended
Data Fig. 8a). Thus, although the absolute number of INCRNAs expressed during early organ
development is lower than in postnatal stages, these genes have been under stronger selective
constraints. Notably, levels of INCRNA sequence and expression conservation are
particularly high in nervous tissues and lower in liver and gonads (Extended Data Fig. 8b-c),
as observed for protein-coding genes18.

Early-expressed protein-coding genes also show higher sequence and expression
conservation, which was suggested to result from the higher pleiotropy (broader
spatiotemporal expression) of early-expressed genes and associated increased functional
constraints18. Consistently, we found that INcRNAs expressed early in development are
more broadly expressed across organs than INCRNAs expressed late (Fig. 3d; Extended Data
Fig. 8d). We also found that IncRNAs expressed earlier in development are more likely to be
characterized as functional by IncRNAdb27 and to result in a cell proliferation phenotype in
the CRISPRIi screen21 (Fig. 3e-f; Extended Data Fig. 8e-f). This enrichment is consistent
with our “guilt-by-association’ analysis, which associated early-expressed IncRNAs with
broad cellular functions (Extended Data Fig. 7). On the other hand, late-expressed dynamic
IncRNAs still retain signatures of functional enrichment when compared to non-dynamic
IncRNAs (Extended Data Fig. 8g). Their organ-specific expression (Fig. 3d; Extended Data
Fig. 8d) suggests they may be involved in more specialized functions and thus under weaker
functional constraints than early-expressed INCRNAs.

Collectively, our analyses revealed a distinction between INcRNAs expressed early and late
in organ development. While fewer IncRNAs are expressed during early stages, these genes
are more pleiotropic and are under stronger evolutionary constraint at the sequence and
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expression levels, consistent with broader functions. By contrast, most IncRNAs are
expressed in later stages and are characterized by higher organ- and lineage-specificity,
suggesting milder effects on developmental programs and phenotypes.

Co-expression with adjacent protein-coding genes

Several well-characterized IncRNAs, such as X/S7and AiJrn, are known to act in cis,
regulating the expression of their immediate neighbors9. However, the extent of such effects
at the genomic scale remains unresolved1,2,26,32. We examined this question within the
context of organ development using our set of dynamic IncRNAs. We observed a
significantly higher expression correlation between dynamic INcRNAs and their adjacent
protein-coding genes compared to mMRNA-mRNA controls (Fig. 4a; A= 2.2 x 1016, two-
sided Wilcoxon’s signed-rank test; Methods; Extended Data Fig. 9a-b). Although the
distance between genes impacts the degree of their correlation, we found an excess of
positive correlations for INCRNA-mRNA pairs for distances up to 100 kb (Extended Data
Fig. 9c-d). We obtained similar results excluding bidirectional and antisense IncRNAs, as
few protein-coding genes are transcribed in such orientations (Extended Data Fig. 9e; P=
2.2 x 10716, two-sided Wilcoxon’s signed-rank test). Protein-coding genes significantly
correlated with their neighboring INcRNA were enriched for developmental genes (Fig. 4b;
Extended Data Fig. 9f), supporting the biological significance of the enrichment of INcRNAs
near developmental regulators13. Consistently, our set of co-expressed INcRNAs is enriched
for a set of “positionally conserved” IncRNAS that are linked to chromatin organization
structures and are co-expressed with their adjacent developmental protein-coding genes in
adult primary tissues and cancer samples33 (Fig. 4c; P< 10-11, two-sided Fisher’s exact
test).

We identified 77 protein-coding genes co-expressed with an adjacent IncRNA in both human
and mouse (Fig. 4d), a significant enrichment relative to the fraction of 1:1 orthologous
protein-coding genes co-expressed with a InNcRNA in each species (P= 2.2 x 10716,
hypergeometric test; Supplementary Tables 11-12). Compared to all co-expressed pairs,
those detected in both species show an even stronger association with organ development
(38% involved in the development of at least one organ; 2= 0.0002, hypergeometric test;
Methods). Thus, co-expression between developmental regulators and their adjacent
IncRNAs is a feature shared between species.

We note that the observed correlations are not sufficient to infer regulatory functions for
IncRNAS, which requires experimental scrutiny9. Nonetheless, our results are consistent
with studies suggesting that some mammalian IncRNAs act by influencing the expression of
their adjacent genes9,33,34, having identified several INCRNAs (i.e., GAS6-AS235,
DEANR133,36, SSTR5-AS137, EMX20S538 and D/x1as39) previously implicated in the
regulation of their neighboring protein-coding genes. The co-expressed INCRNA-MRNA
pairs represent a reference set to facilitate future efforts for the experimental characterization
of the cis-regulatory potential of INCRNAs.
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Discussion

We utilized a dataset of transcriptomes across seven major organs and developmental stages
to provide uniformly processed annotations and expression profiles for thousands of
candidate IncRNAs. This extensive resource will facilitate future investigations of IncRNA
biology (Incrnas.kaessmannlab.org). We also identified a set of developmentally dynamic
IncRNASs that show multiple signatures of functional enrichment. We cannot exclude that
some of our observations for dynamic IncRNAs might be explained by proximal or
overlapping regulatory sequences, although these are typically transcribed into short-lived,
unspliced and non-polyadenylated transcripts40, which are not included in our annotations.
Furthermore, the enrichment of dynamic IncRNAs for longer and more complex transcripts
argues against them being transcriptional or splicing by-products of regulatory sequences.
Our analyses identified important differences in the contribution of IncRNAs to different
stages of organ development and associated dynamic IncRNAs with putative functions.
Future studies utilizing emerging technologies, such as single-cell41 or long-read RNA
sequencing42, will further refine the annotations and expression profiles of mammalian
developmentally dynamic IncRNAs.

Online Methods

Annotation of transcribed regions and identification of IncRNAs

We used a transcriptomic dataset covering the development of seven major organs
(forebrain/cerebrum, hindbrain/cerebellum, heart, kidney, liver, ovary and testis) across
seven amniote species (human, rhesus macaque, mouse, rat, rabbit, opossum, chicken),
comprising a total of 1,993 (strand-specific) RNA-seq libraries18. Data for ovary
development in rhesus macaque were not available. Genomic read alignments (BAM files)18
were filtered from reads partially mapping outside a contig or chromosome, mapping to
more than 50 locations or having more than 50 nt with a phred score below 20 using
samtools (0.1.18)43. The processed BAM files from the same species, organ and
developmental stage (i.e., replicates) were merged to increase coverage and detection power.
The merged BAM files were then used to identify transcribed regions for each sample
(species, organ and developmental stage) with stringtie (1.2.3)44 using the following
parameters:

stringtie <sanple.banm -0 <sanple.gtf>-p 2 -f 0.50 -m200 -a 10 -j 3 -¢c 0.1
-g 10

The multiexonic transcripts from each sample were combined into a single assembly for
each species using the tool cuffmerge from the Cufflinks package (2.2.1)45:

cufflinks -o <outprefix> -F 0.0 -g --overhang-tol erance 200 --library-
type=transfrags -A 0.0 --min-frags-per-transfrag 0 --no-5-extend --overl ap-
radius 1 -p 20 <assenbly list.txt>

We first removed from each species’ annotation the genes that overlap with Ensembl
protein-coding genes in the same strand or that are shorter than 200 nts (Extended Data Fig.
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1a). We then removed all genes with evidence for coding potential. The coding potential of
our IncRNA candidates was estimated in three ways: using CPAT (1.2)46, RNAcode (0.3)47
and similarity with known proteins. CPAT uses an alignment-independent logistic regression
model to detect INcRNAs based on sequence features46. To select a cutoff for the
classification, we used a training set of randomly selected 10,000 protein-coding genes and
10,000 intronic regions. We selected the cutoff of 0.8 for mouse, rat and rabbit; 0.75 for
human; and 0.70 for macaque, opossum and chicken. RNAcode uses multiple-species
alignments to infer coding probability based on the rate of synonymous to non-synonymous
mutations47. We generated customized whole genome alignments for each species in our
dataset against seven other species (Supplementary Table 13), which we used to estimate
coding potential. Transcripts with an open reading frame in the same strand, < 10 and
alignment length > 10 aminoacids were considered to be putatively coding (termed ‘new
putative-coding’). Finally, we used blastx (2.4.0)48 to translate each IncRNA in all possible
six frames, which we then compared to known proteins in the databases UniProt
(2016_04)49 and PFAM (v29)50. Transcripts with E < 10-3, alignment length > 10
aminoacids and identity = 95% were considered ‘new putative-coding’. Only genes that
successfully passed all three filters for all their isoforms were included in our INCcRNA
annotation (Supplementary Data 1).

Gene expression quantification, specificity indexes and dynamic expression

For each species, we merged our IncRNA annotation with Ensembl’s (v75 for human and
v77 for all other species), after removing from the latter all genes overlapping INCRNAS in
the same strand. We generated read counts using HTSeq (0.6.1)51, only allowing for
uniquely mapped reads and only for the alignments of the 1,893 libraries that had a
Spearman’s correlation with its biological replicates = 0.918. Since the samples used to
quantify gene expression are a subset of the dataset used for the annotation of InNcCRNAs (see
above), we removed IncRNAs showing no detectable expression in this smaller dataset. We
calculated expression levels as cpm (counts per million) or RPKM (reads per kilobase of
exon model per million mapped reads) (Supplementary Data 2) after normalizing the count
data using the method TMM from the package edgeR (3.14.0)52. We also generated
variance stabilized counts, using the respective transformation (VST) implemented in the
package DESeq?2 (1.12.4)53.

We estimated time- and tissue-specificity indexes using the Tau metric of tissue-
specificity54. Tissue-Tau was calculated as previously described54, using for each organ the
maximum expression observed during development. For time-specificity, we applied the
same metric to the expression across developmental stages of the same organ. Time-
specificity indexes were only calculated for the organs in which a gene is robustly expressed
(i.e., RPKM > 1). Because time-specificity is highly correlated between organs18, we used
the median time-specificity in our analyses unless otherwise noted. The median time-
specificity only takes into consideration the organs where INcCRNAs are expressed. Both
time- and tissue-specificity indexes range from 0 (broad expression) to 1 (restricted
expression).
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Developmentally dynamic gene expression (i.e., significant temporal changes during organ
development) was detected using masigPro20, an R package designed for the analysis of
transcriptomics time-courses, as previously described18. Briefly, expression values in cpm
were given as input to calculate a goodness-of-fit (R4) metric for each organ. Genes with an
RZ> 0.3 in an organ were classified as developmentally dynamic in that organ.
Consequently, developmentally dynamic genes in our dataset reach an /2> 0.3 in at least
one organ. Due to the extensive transcription associated with the permissive chromatin
environment of the sexually mature testis23, we excluded these samples from the calculation
of the RZ index for the testis. Differences between species in the number of identified
developmentally dynamic genes can most likely be attributed to technical aspects, such as
the number of assayed developmental stages and the similarity between biological replicates.
The latter is influenced by the amount of genetic diversity across sampled individuals and
the developmental interval spanned by replicates (e.g., hours for rodents, days-years for
humans)18.

Orthology assignment and IncRNA age estimation

We used a Markov clustering algorithm to reconstruct homologous IncRNA families based
on sequence similarity55 (Extended Data Fig. 1b). For each species, we merged all exonic
regions for each INcRNA or ‘new putative-coding’ locus (newly identified transcribed
regions that failed one of the coding potential filters, see above). ‘New putative-coding’ loci
were included in this analysis because some IncRNAs have been shown to originate from
protein-coding genes through pseudogenization56,57. We used blastn to search for similarity
with exonic sequences of the same or different species, following soft-masking for repeats
from RepeatMasker (4.0.6)58 (within and between species blastn (2.4.0)48). We filtered our
alignments for identity = 10% or a minimum length = 50 nts and additionally required an E-
value < 10-3, We then used reciprocal best hits between pairs of species and significant self-
hits to cluster genes into homologous families with OrthoMCL (2.0)55, a method allowing
for recent paralogs (duplicate genes arising after speciation) to be incorporated into
families55. We allowed up to one member of each IncRNA family to be classified as ‘new
putative-coding’ and required at least one INcRNA member of each family to show evidence
of detectable transcription (> 1 RPKM in at least one sample). Finally, we removed all 1,324
multimember IncRNA families (families with recent paralogs, Supplementary Table 14)
because manual inspection revealed that many of the identified paralogous relations were
driven by repeats, low complexity regions or the split of a single INCRNA into two genes
during annotation. For example, the INCRNA Xi/st is detected in all eutherian mammals in
our dataset (marsupials and birds have different dosage compensation systems) but appears
as two separate INCRNAS, Rab XLOC 042762and Rab_XLOC 042763, in rabbit. The two
IncRNAs are directly adjacent to each other, transcribed from the same strand and show
similar female-specific spatiotemporal expression. Both align to the human X/S7 but not to
each other, thus clearly representing a case where our genome annotation pipeline artificially
split one IncRNA into two loci. To avoid incorrectly estimating the evolutionary age of these
ambiguous multimember families, we only used our 18,459 high-confidence 1:1 orthologous
IncRNA families (Supplementary Table 8) to infer the minimum evolutionary age for each
IncRNA with parsimony, based on the phylogenetic relationships of the species where each
IncRNA was transcribed, as previously described6. To account for the asymmetric
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distribution of species in our dataset, we classified the age of IncRNAs shared between
chicken and no more than two other species as “ambiguous”.

Evaluation of the IncRNA orthology assignment

We used the identity of neighboring protein-coding genes to assess the specificity of our
IncRNA family definitions, as orthologous loci are often found in conserved synteny across
vertebrates8,11,14,59. For each human IncRNA we identified the closest upstream and
downstream protein-coding gene using bedtools (2.25.0) closest with the options —id and —
iu, respectively60. We calculated distances based on gene bodies and allowed for assignment
to an overlapping transcript. We repeated the procedure for IncRNAs in three more species
in our dataset representing various evolutionary distances (macaque - 25 million years ago,
Mya, mouse - 90 Mya, opossum - 180 Mya). We then estimated the fraction of InNcRNA
orthologs in each species pair that had at least one conserved neighbor (in the same
orientation)8. Protein-coding gene orthologs were retrieved from Ensembl v75. As a control,
we used protein-coding genes to estimate the expected degree of synteny conservation across
these evolutionary distances. As the presence of antisense INCRNAs, which are expected to
overlap the same gene across species, can lead to an overestimation of the extent of synteny
conservation, we repeated the analysis considering only intergenic INCRNAs.

To benchmark the sensitivity of our INcCRNA family determinations, we compared them to a
study that used sequence similarity between INCRNA exons to identify IncRNA orthology8.
We extracted families that contained a human IncRNA and were termed “Mammalian-only”
and “Amniote-only” and compared them to our 180 Mya and 300 Mya IncRNA families,
respectively. As the number of mammalian and amniote species used for the IncRNA family
reconstruction differs between the two studies, we calculated the fraction of available
species that were found in each family and rounded to the first digit (e.g., 10%, 20%) to
summarize the data into bins. We then compared the distribution of species fractions across
matched IncRNA ages between the two studies (Extended Data Fig. 2d).

Comparison with Ensembl, genomic classification and integration with other datasets

We intersected the exons of our IncRNA annotations with all noncoding exons from the
Ensembl annotation of the respective species in a strand specific manner using bedtools
(2.25.0) intersect60. To estimate the number of newly identified transcripts we used a more
recent Ensembl release, v9219. Since the genome assemblies for human, rhesus macaque,
rat and chicken have been updated during the transition from v77 to v92, we used liftover
chains61 to map the v92 Ensembl annotations to the old genome assemblies before
intersecting. For all other analyses we used the Ensembl annotations matching our genome
annotations, i.e., v75 for human and v77 for all other species.

For the genomic classification of our INcRNAs we used the sliding-window based classifier
module of the tool FEELnc (1.0)62, classifying our INcCRNA annotations against protein-
coding genes from Ensembl (v75 for human and v77 for all other species). We used a
maximum window extension of 100,000 bp and otherwise default settings. The results were
filtered for the best hits according to the default criteria, which prioritize assignment to the
closest genes and exonic over intronic interactions62. To simplify our analysis, we collapsed
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the classification to the position (overlapping, upstream, downstream) and strand (sense or
antisense, Extended Data Fig. 2a). LncRNAs transcribed in upstream antisense orientation
and located up to 2 kb from their assigned coding gene were classified as divergent. Finally,
IncRNASs located more than 100 Kb apart from their nearest coding gene were classified as
“isolated intergenic”.

We used the Reference Database for Functional LncRNAs (IncRNAdb, v2.0)27 to identify
functionally validated human IncRNAs. To integrate with our annotation, we parsed the
content of InNcRNAdb for Ensembl IDs and then used the intersection to Ensembl as
described above. For the CRISPRI screen library21, we used the primary transcription start
site (TSS) provided by the authors to intersect with the first exon of our INcRNA annotations
in a strand-specific manner. Since the precise TSS definition may differ between the two
datasets, we extended the reported primary TSS (often provided at a single nucleotide
resolution) by 500 bp in each direction (Extended Data Fig. 4k). To identify INCRNAs
overlapping enhancers, we intersected our INcRNA exons with a set of human transcribed
enhancers identified based on distinct bidirectional CAGE (Cap Analysis of Gene
Expression) patterns from a total of 432 primary cell, 135 tissue and 241 cell line human
samples25. For the positionally-conserved INcCRNAs (pcRNASs)33, we downloaded transcript
coordinates in bed12 format, lifted over from hg38 to hg19 and intersected the exonic
regions with our annotation in a strand specific manner.

Controlling for maximum expression levels

Developmentally dynamic IncRNAs show significantly higher maximum expression
compared to non-dynamic InNcRNAs (Extended Data Fig. 3f; 2= 2.2 x 10"16, two-sided
Mann-Whitney U'test). To control for the effect of maximum expression on the association
of developmentally dynamic IncRNAs with conservation and functionally characterized
transcripts, we generated sets of expression-matched human IncRNAs. First, we identified
the non-dynamic IncRNAs that showed the closest maximum expression to each human
dynamic IncRNA. Sampling without replacement failed to equalize the expression levels, so
we sampled with replacement obtaining 3,098 non-dynamic IncRNAs. We then selected the
dynamic IncRNAs that were closest in maximum expression to each of those non-dynamic
IncRNAs (2,906 dynamic IncRNAs). Using this procedure we obtained similar numbers and
almost identical distributions of maximum expression values for developmentally dynamic
and non-dynamic IncRNAs (Extended Data Fig. 4c).

As this set of expression-matched IncRNAs was shifted towards expression levels more
representative of the dynamic IncRNA population, we repeated the procedure with a second
set of INcRNAs with maximum expression levels ranging from 0.25 to 0.75 RPKM to
evaluate whether our observations also hold true for lowly expressed dynamic IncRNAs. 798
human dynamic IncRNAs fall within this range (as opposed to 7,100 non-dynamic
IncRNAS). We then identified the 717 non-dynamic IncRNAs that showed the closest
expression values to the dynamic IncRNAs (sampling with replacement), obtaining similar
expression distributions (Extended Data Fig. 49).
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Spatiotemporal expression similarity of 1:1 orthologs

To estimate the expression similarity between human and mouse 1:1 orthologs we calculated
the Spearman correlation for 1,663 IncRNA and 16,078 protein-coding gene pairs across the
entire dataset, i.e., 67 organs/developmental stages between human and mouse
(Supplementary Table 15). We then compared the distribution of Spearman correlation
coefficients for INCRNA pairs that are non-dynamic, dynamic in only one species or dynamic
in both species, and for protein-coding genes. As a control, we used the set of IncRNASs
developmentally dynamic in both species, and calculated their expression correlation after
shuffling their orthology relationships (sampling without replacement).

We used a set of 924 IncRNAs, identified as 1:1 orthologs between mouse and rat and
developmentally dynamic in both species, to estimate the effect of evolutionary age
constraint on IncRNA expression evolution. We divided our set of 1:1 orthologs based on the
estimated age of the IncRNA family (families with 80 and 90 million years were combined).
For each age group, we estimated expression similarity by calculating the Spearman
correlation coefficient for the INcRNA pairs across 82 organs/developmental stages in mouse
and rat (Supplementary Table 16)18.

Estimation of TF binding on promoters

Promoter regions were defined as regions 2,000 bp upstream to 1,000 bp downstream of a
gene’s TSS. For protein-coding genes, TSS coordinates were retrieved from Ensembl’s
BioMart19. For IncRNAs, the TSS was defined as the starting coordinate of the first exon of
the longest isoform. We excluded antisense and divergently transcribed IncRNAs to avoid
biases created by the overlap of IncRNA and protein-coding gene promoters. Randomly
generated, non-repetitive, intergenic regions of matched length (3,000 bp) were generated as
negative controls. We retrieved mouse TF binding sites from GTRD, a publicly available set
of more than 5,000 uniformly processed ChlIP-seq experiments for 432 mouse TFs29. The
data have been summarized into meta-clusters corresponding to non-redundant binding
positions of each TF to the mouse genome. We used bedtools (2.25.0) intersect60 to
determine the overlap of TF binding sites with our regions of interest. Transcriptional
regulation and complexity was calculated based on the number of distinct TFs bound to each
region. As a complementary metric, we defined TF binding frequency for each TF as the
fraction of promoters of each gene class that is bound by the respective TF.

The TF binding frequency was also used to determine tissue-specific transcriptional
regulation. For each TF, we calculated the fraction of INcRNAs dynamic in each tissue with
promoters bound by that TF. To identify the TFs with the highest binding variability, we
normalized each binding frequency as a fraction of the maximum binding frequency of each
TF and determined the standard deviation of the normalized frequencies. We removed TFs
with a maximum frequency lower than 5% (less than 5% of the promoters of the INCRNAs
dynamic in the organ with the highest frequency are bound by this TF), as these cases
showed artificially high variability due to noise (Extended Data Fig. 5b). We then identified
the 50 TFs with the highest normalized binding frequency variability across the organs. We
used the normalized binding frequency to perform hierarchical clustering based on
Euclidean distances in both dimensions (INcRNAs dynamic in each organ and TFs) using the
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R package pheatmap (1.0.10)63. To examine the functional relevance of these TFs for the
development of the organs where they show the maximum binding frequency on IncRNA
promoters, we identified tissue-specific TFs as those with tissue-specificity greater than 0.6
and determined the tissue where they show maximum expression.

Classification and co-expression based on developmental trajectories

We identified the most common developmental trajectories in each organ using GPClust, a
method to cluster time-series based on Gaussian process18,64—66. We combined INCRNAS
and protein-coding genes dynamic in each organ and species and used the median variance-
stabilized counts across replicates as input. We set the noise variance (k2.variance.fix) to 1.0
for mouse and 1.5 for human. We then classified clusters (and associated genes) as early, late
or other based on their developmental trajectories (Fig. 3; Extended Data Fig. 8c).
Representative functions were assigned to each cluster based on a gene ontology (GO)
enrichment analysis for its coding genes with the R package WebGestaltR (0.1.1)67, using
all dynamic coding genes in the respective organ as a background set.

Patterns of INcRNA developmental expression

We identified the protein-coding genes and INcRNAs that are differentially expressed
between adjacent time-points in mouse using DESeq?2 (with default settings)53. We required
an adjusted P-value < 0.05 and a log, fold change = 0.5. The sets of dynamic INCRNAs
expressed in each organ and developmental stage were selected based on a median
expression value across replicates of at least 1 RPKM. To estimate the degree of INCRNA
conservation for each organ and developmental stage, we calculated the fraction of mouse
IncRNASs with an inferred evolutionary age of at least 80 Mya (i.e., shared with at least one
other species in our dataset besides rat). We estimated the degree of expression similarity
between human and mouse, for each organ and developmental stage, by calculating the
Spearman correlation coefficient of 1:1 orthologous INcRNAs dynamic in both species for
matched developmental stages18. The differences in pleiotropy between different stages of
organ development were estimated based on the tissue-specificity indexes for different
classes of developmental trajectories, as described above. Similarly, we estimated the
phenotypic impact of IncRNAs with different developmental trajectories based on the
fraction of functionally validated IncRNAs (IncRNAdb)27 and growth phenotype-associated
hits in the CRISPRI screen21. To test the enrichment for functionality of late-expressed
developmentally dynamic IncRNAs compared to non-dynamic IncRNAs, we selected human
dynamic IncRNAs that are classified as ‘late’ in all somatic organs in which they show
dynamic expression profiles.

Co-expression with adjacent coding genes

Dynamic IncRNAs in human and mouse were assigned to their nearest protein-coding gene
using bedtools (2.25.0) closest60 using the distance between gene bodies (similar results
obtained using the distance between TSSs). Each protein-coding gene assigned to a IncRNA
was then matched to its immediately neighboring protein-coding gene, which was used as a
control. We estimated Pearson’s expression correlation between IncRNA-mRNA and
mRNA-mRNA pairs using all samples in our dataset, except for sexually mature testis
samples (P3 and later for mouse, young teenager and later for human). Median variance
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stabilized counts across replicates were used as the input for these correlations. We observed
that protein-coding genes annotated as paralogs in Ensembl showed significantly higher
correlation coefficients compared to the other mMRNA-mRNA pairs (Extended Data Fig. 9a;
P=2.2x 10716, two-sided Mann-Whitney Utest). Paralogous genes most commonly arise
through segmental DNA duplications, thus representing copies of the ancestral gene and
sharing the same regulatory sequences68. Thus, although the functions and expression
patterns of the two copies may diverge with time68, paralogous genes are on average
expected to be more functionally related than protein-coding genes that only share a similar
chromatin environment. Consequently, we removed triplets containing paralogous protein-
coding genes from the comparison of correlation coefficients between INCRNA-mRNA and
mRNA-mRNA pairs and from the identification of candidate co-expressed pairs. However,
we still used paralogous genes to estimate the degree of correlation that implies functional
relatedness, since the extent and significance of gene expression correlations vary depending
on the size and nature of the dataset. Specifically, we compared the ratio of paralogous/non-
paralogous protein-coding pairs identified as co-expressed using a range of Person’s r
correlation cutoffs (Extended Data Fig. 9b).

Based on this analysis, we identified candidate cis-coexpressed INCRNA-mRNA pairs as
those with correlation coefficients greater than 0.75 and for which the correlation between
the MRNA and the control was smaller than 0.75. To select only cases where the INCRNA-
mRNA correlation was significantly higher than the mMRNA-mRNA control, we additionally
performed a Fisher Z-transformation and estimated the difference between the correlation
coefficients for the IncRNA and the control using the function paired.r from the R package
psych (1.8.4)69 to perform two-tailed tests for independent samples. We required our
candidate InNcRNA-mRNA pairs to have an adjusted £< 0.05. A gene ontology enrichment
analysis was performed for the protein-coding genes of these pairs, using the R package
WebGestaltR67.

To test the enrichment of co-expressed pairs shared between human and mouse with
developmental functions, we used AmiGO (v2) to download all human protein-coding genes
associated with the development of the organs in our dataset (brain development, GO:
0007420; heart development, GO:0007507; kidney development, GO:0001822; liver
development, GO:0001889; gonad development, GO:0008406) and performed a
hypergeometric test to compare human protein-coding genes co-expressed with a IncRNA in
both human and mouse to all human protein-coding genes co-expressed with a IncRNA.

We note that although we tried to control for the effect of a shared regulatory
environment31,70 using MRNA-mRNA controls, IncRNAs are likely more susceptible to it
due to their weaker regulatory complexity (Fig. 2f)28. Furthermore, as our data correspond
to steady-states, positive correlations are used to identify functional relatedness between the
IncRNA and its adjacent protein-coding gene but cannot be interpreted as mechanistic
interactions. Even in cases when the IncRNA has a regulatory effect on the adjacent protein-
coding gene, distinguishing between activating and repressive effects would require precise
knowledge about the expression state of the target gene in the absence of the IncCRNA,
information that can only be obtained through perturbation approaches.
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General statistics and plots

Unless otherwise stated, all statistical analyses were performed in R71, utilizing the
packages dplyr (0.7.6)72, tidyr (0.8.1)73, stringr (1.3.1)74, data.table (1.11.4)75 and psych
(1.8.4)69. All plots were generated in R71 using the packages ggplot2 (3.0.0)76, gridExtra
(2.3)77, reshape2 (1.4.3)78, plyr (1.8.4)79, FactoMineR (1.41)80 and pheatmap (1.0.10)63.
The R implementation of WebGestalt (0.1.1)67 was used for all GO enrichments.

Data availability

LncRNA annotations (Supplementary Data 1), expression tables (in RPKM; Supplementary
Data 2) and homologous IncRNA families (Supplementary Table 8) are available as
supplementary materials. We also provide a tabular summary of IncRNA genomic,
evolutionary and expression features (Supplementary Tables 1-7). We created a public
interactive tool that allows the visualization of IncRNA genomic coordinates and expression
profiles (Incrnas.kaessmannlab.org).

Extended Data
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least one protein-coding gene neighbor for increasing evolutionary distances. f, Organ of
maximum expression for expressed INcRNAs (= 1 RPKM) in each species. g, Number of
IncRNASs expressed (= 1 RPKM) in each species during the development of each organ (in
logarithmic scale).

Nature. Author manuscript; available in PMC 2019 December 26.



s1duosnuBIA Joyiny sispund DN edoin3 ¢

s1dLIOSNUBIA JoLINY sispund DN 8doin3 ¢

Sarropoulos et al.

Page 19

a Hum_XLOC_032747 Hum_XLOC_007765 Hum_XLOC_053863 Hum_XLOC_046884 Hum_XLOC_048978 Hum_XLOC_032875
dynamic dynamic dynamic
40 1.00 10.0 1.00
60
075 o8 75 075
S 0
x 0.6
0.50 5.0
% 0.50
20 0.25 03 25 025
0 0.00 { 0.0 0.0 0.00
Brain Liver Heart Heart
Developmental stage
b
Summary Statistics Human Macaque* Mouse Rat Rabbit Opossum Chicken
Total IncRNAs 31678 33419 25342 28554 20252 24948 16784
Dynamic IncRNAs 5887 5313 5622 7491 3929 6480 6419
Dynamic IncRNA fraction 0.19 0.16 0.22 0.26 0.19 0.26 0.38
Median dynamic tissues for dynamic IncRNAs 1 1 1 1 1 1 1
Fraction of dynamic IncRNAs dynamic in one tissue 0.57 0.63 0.58 0.55 0.51 0.60 0.59
Total protein-coding genes (ENSEMBL) 22809 21899 22186 22774 19284 21317 15494
Dynamic protein-coding genes 16761 16240 17090 16794 15495 16138 14041
Dynamic protein-coding gene fraction 0.73 0.74 0.77 0.74 0.80 0.76 0.91
Median dynamic tissues for dynamic coding genes 4 3 > ) 5! 4 5
*No data for the ovary in macaque
c
Human | I Macaque I I Mouse I I Rat I I Rabbit I | Opossum I I Chicken I
4000 IncRNA
coding
_ 3000
€
5
2
O 2000
1000 4
0
1234567 123456 1234567 12834567 1234567 1234567 1234567
Organs with dynamic expression
d E coding - dynamic IncRNA E non-dynamic IncRNA
Human ][ Macaque | [ Mouse | [ Rat | [ Rabbit | [_Opossum ][ Chicken |
n 4885 4666 4065 5597 3604 5510 5064
1.00. [— [—— — = e — —
3
€ 0.75.
s O
S
S 0.50
a
@
2 o025 .
8 b4
= e e
0.00. b
e Human | [ Macaque | [ Mouse ][ Rat | [ Rabbit | [___Opossum | [ Chicken |
= n 4885 4666 4065 5597 3604 5510 5064
o 1.00 ]
2 [ ] B - ] ==
£ o7
5
2
& 050 8
£ s | ]
= -
§ 025 H i
8 . .
= 0004
f
Human ] I Macaque I I Mouse I I Rat I I Rabbit ] I Opossum I I Chicken
E % n 5887 5313 5622 7491 3929 6480 6419
o
r.:u% ' H L
g2 4 . H . ¢ ' dynamic ¢
- :
[ ; H
83
8o
£E£
535
E3Z
z 2
2L 2

Extended Data Figure 3. Features of developmentally dynamic IncRNA expression.

a, Representative examples of human developmentally dynamic (n=5,887) and non-dynamic

(n=25,791) IncRNAS’ expression profiles (mean expression; vertical bars represent the
minimum and maximum values across replicates) for varying levels of maximum
expression, replicate reproducibility and expression windows. The vertical dashed line

represents birth; the horizontal dashed line marks 1 RPKM. b, Summary statistics for the
IncRNAS and protein-coding genes in this study. ¢, Number of organs with developmentally
dynamic expression for dynamic INcRNAs and protein-coding genes in each species. d, €,
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Tissue and median time-specificity of non-dynamic and dynamic IncRNAs, and protein-
coding genes, across species. Tissue and time-specificity indexes range from 0 (broad
expression) to 1 (specific expression). All comparisons between non-dynamic and dynamic
IncRNAs, and protein-coding genes are significant (P= 2.2 x 1016, two-sided Mann-
Whitney U'test). f, Maximum expression levels (log;g RPKM) for developmentally dynamic
and non-dynamic IncRNAs across species (excluding samples from the sexually mature
testis). Developmentally dynamic IncRNAs are more highly expressed in all species (P= 2.2
x 10716, two-sided Mann-Whitney Utest). In d-f, box plots represent median + 25th and 75th
percentiles, whiskers at 1.5 times the interquartile range.
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Extended Data Figure 4. Functionality signature enrichments of developmentally dynamic
IncRNAs.

a, Fraction of developmentally dynamic human IncRNAs (n = 5,887) for different genomic
classes. Overrepresented classes were determined by comparing the fraction of dynamic
IncRNAs in each class against all other classes. b, Normalized density distribution of the
distance to the nearest protein-coding gene for dynamic (n = 5,887) and non-dynamic (n =
25,791) human IncRNAs. ¢, Generation of expression-matched dynamic (n = 2,906) and
non-dynamic IncRNAs (n = 3,098) and their distribution among genomic classes. d, Fraction
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of developmentally dynamic human IncRNAs among isoforms with an increasing number of
exons. The number of exons is significantly higher for developmentally dynamic INcRNAs
(P=2.2 x 10716, two-sided Mann-Whitney Utest). e, Fraction of human IncRNAs that are
intergenic, developmentally dynamic and that do not overlap enhancers25 (n = 16,481)
among different age groups. f, Fraction of developmentally dynamic genes across
expression-matched (n = 6,004) human IncRNAs of different age groups (top) and
functionally characterized IncRNAs27 (bottom). g, Generation of expression-matched, lowly
expressed (0.25-0.75 RPKM) dynamic (n = 798) and non-dynamic (n = 717) human
IncRNAs and their distribution across different age groups. h, Fraction of developmentally
dynamic human IncRNAs (n = 5,887) with or without a mouse (dynamic or not) ortholog (P
=2.2 x 1016, hypergeometric test). i, Similarity of spatiotemporal expression (Spearman’s
correlation coefficient between human and mouse organs/developmental stages) for 1:1
orthologs. j, Expression similarity across matched organs and developmental stages for
mouse and rat 1:1 orthologous INcRNASs that are dynamic in both species, for different
evolutionary ages. k, Fraction of IncRNAs present in the CRISPRi screen library21 resulting
in a significant growth phenotype (hits) in at least one cell line for IncRNAs present (n =
2,364) or absent (n = 14,037) in our annotation and dynamic (n = 1,093) or non-dynamic (n
=1,277). |, Fraction of IncRNAs present in the CRISPRi screen library21 resulting in a
significant growth phenotype (hits) in expression-matched dynamic (n = 2,906) and non-
dynamic IncRNAs (n = 3,098). In ¢, g, h-j and I, box plots represent median + 25th and 75th
percentiles, whiskers at 1.5 times the interquartile range. In a-l, statistical tests are two-
sided.
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Extended Data Figure 5. Transcriptional regulation of dynamic IncRNAsin mouse.
a, Fraction of promoters of protein-coding genes, dynamic and non-dynamic IncRNAs, and

size-matched random intergenic regions that overlap with binding sites for TFs. Each data
point corresponds to a TF (n = 355). Box plots represent median + 25th and 75th percentiles,
whiskers at 1.5 times the interquartile range. b, Selection of the 50 TFs with the highest
binding variability across promoters of InNcRNAs dynamic in different organs (in blue). TFs
with maximum binding frequency < 0.05 (red line) were not considered, as their high
variability is likely associated with a low binding frequency. ¢, Spatiotemporal expression

Developmental stage
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patterns of the 50 most variable TFs in mouse. The heatmap is clustered by rows and shows
expression levels in counts (after variance-stabilizing transformation).
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Extended Data Figure 6. Patterns of INCRNA expression in mammalian development.
a, Number of differentially expressed protein-coding genes and dynamic IncRNAs between

adjacent stages of organ development in human, rat, rabbit, opossum and chicken. b,
Number of differentially expressed ‘isolated intergenic’ (> 100 kb from the closest protein-
coding-gene) dynamic IncRNAs between adjacent stages during mouse development.
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Extended Data Figure 7. Clustering of dynamic IncRNAs based on developmental trajectories.
Clusters of developmentally dynamic IncRNAs and protein-coding genes across mouse

organs (brain = 14,629 genes; cerebellum = 13,166; heart = 12,382; kidney = 14,634; liver =
13,888; ovary = 12,694; testis = 13,749). Gray lines represent individual gene trajectories
and solid lines posterior mean trajectories for each cluster. Clusters are arranged by
decreasing fraction of IncRNAs. Enriched representative biological processes (Benjamini-
Hochberg adjusted P < 0.05, hypergeometric test) are shown for each cluster.
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Extended Data Figure 8. Characteristics of dynamic IncRNAs expressed in different

developmental stages.
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a, Expression similarity between human and mouse 1:1 orthologous protein-coding genes (n
= 16,078), developmentally dynamic (n = 281) and non-dynamic (n = 1,386) InNcRNAs
across organs/developmental stages. Each point corresponds to the Spearman’s correlation
coefficient of expression between human and mouse orthologs for matching samples. Lines
and the 95% confidence interval (shaded regions) correspond to linear model predictions.
Spearman’s correlation coefficients between expression similarity and developmental stage
are given for each comparison (*P< 0.05, **P< 0.01, ***P< 0.001). b, Expression
similarity between dynamic human and mouse orthologous IncRNAs from a, summarized by
organ (*P<0.05, **P< 0.01, ***P< 0.001, two-sided Mann-Whitney Utest). ¢, Fraction of
conserved (= 80 Mya) dynamic IncRNAs expressed in each mouse organ during
development (*P< 0.05, **P< 0.01, ***P < 0.001, two-sided Mann-Whitney U'test; the
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color signifies the focal organ for each comparison). d, Tissue-specificity for mouse
IncRNAs with different developmental trajectories. e, Fraction of human IncRNAs with
different developmental trajectories among functionally characterized INcRNAs27 (n = 59)
and f, CRISPRi growth screen hits21 (n = 98). g, Fraction of late-expressed dynamic (n =
2,956) and non-dynamic IncRNAs (n = 25,791) for different age groups and functionally
characterized27 human IncRNAs. In b-d, box plots represent median + 25th and 75th
percentiles, whiskers at 1.5 times the interquartile range. In a-g, the statistical tests are two-
sided.
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Extended Data Figure 9. Co-expression of dynamic IncRNAs with adjacent protein-coding genes.
a, Normalized density distribution of Pearson’s correlation coefficients () of spatiotemporal

gene expression between adjacent paralogous (human = 267; mouse = 263) and non-
paralogous (human = 3,359; mouse = 3,382) MRNA-mRNA pairs. b, Number of paralogous
(human = 267; mouse = 263) and non-paralogous (human = 3,359; mouse = 3,382) adjacent
MRNA-mRNA pairs detected as co-expressed above a range of Pearson’s rcutoffs. c,
Relationship between distance and Pearson’s correlation of expression for INcRNA-mRNA
(human = 4,881; mouse = 4,722) and mMRNA-mRNA (human = 3,359; mouse = 3,382) pairs.
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Lines were estimated through loess regression and the 95% confidence interval is shown in
gray. d, Distribution of Pearson’s rfor IcRNA-mRNA and mRNA-mRNA pairs across
different distance intervals. Box plots represent median £ 25th and 75th percentiles,
whiskers at 1.5 times the interquartile range. e, Density distributions of Pearson’s rbetween
a protein-coding gene and its nearest dynamic IncRNA (human=2,440; mouse=2,549) and
protein-coding gene (human=1,606; mouse=1,777) after excluding antisense and divergently
transcribed IncRNAs. f, Enriched biological processes among human protein-coding genes
with significantly higher expression correlations with their adjacent dynamic IncRNA than
with the control protein-coding gene (n=358; Benjamini-Hochberg adjusted < 0.01,
hypergeometric test; data for mouse in Fig. 4b). In a-f, statistical tests are two-sided.
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Figure 1. IncRNAs expressed during mammalian organ development.
a, Schematic representation of the dataset. b, Phylogenetic distribution of 1:1 orthologous

IncRNA families (branches) and species-specific INCRNAs (leaves). ¢, Overlap with
Ensembl v92 annotations.
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Figure 2. Developmentally dynamic IncRNAs are enriched for functional loci.
a, Number of non-dynamic and dynamic IncRNAs identified in each species. The box plots

summarize the variability in the size of the repertoires across species (n = 7). b, Density
distribution of transcript length for non-dynamic (n = 25,791) and dynamic human IncRNAs
(n =5,887). c, Fraction of dynamic loci for human IncRNAs of different evolutionary ages
(top), functionally characterized InNcRNAs27 and protein-coding genes (bottom; **£< 0.01,
***P<0.001). d, Similarity of spatiotemporal expression (Spearman’s correlation
coefficient between human and mouse organs/developmental stages) for 1:1 orthologs
(dynamic IncRNAs = 281, protein-coding genes = 16,078). e, Fraction of a CRISPRI screen
library21 resulting to a significant growth phenotype (“hit”) for non-dynamic (n = 1,277)
and dynamic human IncRNAs (n = 1,093). f, Number of TF binding sites29 overlapping the
promoters of protein-coding genes (n = 20,202), dynamic (n = 3,169) and non-dynamic
IncRNASs (n = 11,818), and size-matched random intergenic regions (n = 20,202). g,
Normalized TF binding frequency (heatmap) of the 50 TFs with the highest binding
variability across organs. Rows and columns are hierarchically clustered. The row annotation
depicts the organ of maximum expression for organ-specific TFs. In a, d and f, box plots
represent median + 25th and 75th percentiles, whiskers at 1.5 times the interquartile range.
In a-f, statistical tests are two-sided.
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Figure 3. Patterns of dynamic IncRNA expression.
a, Number of differentially expressed (DE) protein-coding genes and dynamic IncRNAs

between adjacent developmental stages (additional species in Extended Data Fig. 6a). b,
Number of dynamic IncRNAs (n = 5,622) expressed and c, fraction of those conserved
(evolutionary age = 80 million years), during mouse organ development. Lines estimated
through loess regression; 95% confidence interval shown in gray. d, Tissue-specificity of
IncRNAs with different developmental trajectories. Box plots represent median * 25th and
75th percentiles, whiskers at 1.5 times the interquartile range. e, Proportions of INcRNAs
with different developmental trajectories among functionally characterized INcRNAs27 (n =
59) and f, CRISPRI growth screen hits21 (n = 98). Data for the remaining organs in
Extended Data Fig. 8. In c-¢, statistical tests are two-sided.
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Figure 4. Co-expression with adjacent protein-coding genes.
a, Density distributions of the Pearson correlation coefficients between a protein-coding
gene and its nearest dynamic IncRNA (n = 4,722) and protein-coding gene (control; n =
3,382). b, Enriched biological processes among protein-coding genes with significantly
higher expression correlation with their adjacent dynamic IncRNA than with the control
protein-coding gene (n = 449; Benjamini-Hochberg adjusted £ < 0.01, hypergeometric test).
¢, Fraction of positionally-conserved IncRNAs (pcRNAs)33 among all IncRNAs (n =
31,678), developmentally dynamic IncRNAs (n = 5,887) and IncRNAs co-expressed with
their adjacent protein-coding genes (n = 411). d, Overlap between human and mouse
protein-coding genes that have a significantly higher expression correlation (Pearson’s /)

with their adjacent dynamic IncRNA than with the control protein-coding gene. In a-c,

statistical tests are two-sided.
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