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Abstract

While many long noncoding RNAs (lncRNAs) have been identified in human and other 

mammalian genomes, there has been limited systematic functional characterization. In particular, 

the contribution of lncRNAs to organ development remains largely unexplored. Here we analyze 

the expression patterns of lncRNAs across developmental timepoints in seven major organs, from 

early organogenesis to adulthood, across seven species (human, macaque, mouse, rat, rabbit, 

opossum, and chicken). Our analyses identified ~15,000-35,000 candidate lncRNAs in each 

species, most of which show species specificity. We characterized expression patterns of lncRNAs 

across developmental stages, and found many with dynamic expression patterns across time that 

show signatures of enrichment for functionality. During development, there is a transition from 

broadly expressed and conserved lncRNAs towards an increasing number of lineage- and organ-

specific lncRNAs. Our study provides a resource of candidate lncRNAs and their patterns of 

expression and evolutionary conservation across mammalian organ development.

Previous studies identified numerous long noncoding RNAs (lncRNAs) in human1–4 and 

other mammals5–8. However, molecularly characterized cases are limited9 and the 

functionality of most loci remains uncertain10. Cross-species genomic comparisons provide 

a powerful framework for the large-scale identification of putatively functional lncRNAs, as 

these should carry signatures of evolutionary constraint11,12. Although the physical 

proximity13,14 and co-expression of lncRNAs with developmental regulators6, together 

with individual paradigms15–17, have long suggested a contribution of lncRNAs to 
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mammalian development, data limitations confined previous evolutionary studies of 

lncRNAs to adult organs6–8. Here, we utilize a dataset of bulk transcriptomes in seven 

major organs across developmental stages, from early organogenesis to adulthood, across 

seven species (reported in an accompanying publication, 18) to examine the contribution of 

lncRNAs to developmental expression programs.

Developmental lncRNA atlases

To assess the relevance of lncRNAs for mammalian organ development we analyzed an 

RNA-seq dataset18 covering the development of seven major organs (forebrain/cerebrum — 

hereinafter referred to as “brain”, cerebellum, heart, kidney, liver, ovary, and testis) from 

early organogenesis to adulthood in seven species (human, macaque, mouse, rat, rabbit, 

opossum, and chicken; Fig. 1a). Using this dataset we annotated candidate lncRNAs as 

spliced and long transcripts (>200 nucleotides) with no detectable protein-coding potential 

and reconstructed homologous lncRNA families based on sequence similarities between 

species (Methods; Fig. 1b; Extended Data Fig. 1a-b; Supplementary Data 1; Supplementary 

Tables 1-8).

We identified ~15,000-35,000 candidate lncRNAs of various genomic classes in each 

species (Extended Data Fig. 2a). We recovered ~50% of the human and murine lncRNA and 

antisense transcripts from Ensembl19, and detected 24,951 and 21,263 novel lncRNAs, 

respectively (Fig. 1c). The distribution of genomic classes and spatial expression patterns is 

indistinguishable between the newly identified and the previously annotated lncRNAs, 

suggesting our repertoire extensions are unbiased (Extended Data Fig. 2b). While most of 

our lncRNAs are species-specific6–8, we identified 8,953 conserved human lncRNAs (Fig. 

1b). The sensitivity of our lncRNA family detection was similar to previous studies8 and 

synteny conservation was comparable to that of protein-coding genes (Extended Data Fig. 

2c-e). The lncRNA expression profiles and gene models can be explored interactively: 

lncrnas.kaessmannlab.org.

Depending on the species, 35-60% of robustly expressed lncRNAs (i.e., RPKM ≥ 1 in at 

least one sample) show maximal expression in the testis (Extended Data Fig. 2f), confirming 

the disproportional contribution of this organ to lncRNA repertoires1,6–8. However, this 

peculiarity is limited to the adult organ; the number of lncRNAs expressed in the developing 

testis is indistinguishable from the remaining organs (Extended Data Fig. 2g).

Features of developmentally dynamic lncRNAs

We identified lncRNAs with significant differential expression through time (termed 

“developmentally dynamic”) using a regression approach (maSigPro; Methods)20. The 

ability to detect dynamic expression depends on multiple factors, some of which have been 

associated with increased functional relevance of lncRNAs. These include robust expression 

levels21, transcript stability22, reproducibility between biological replicates, and consistent 

changes in expression across developmental stages10 (Extended Data Fig. 3a). While 

dynamic expression is not sufficient to claim functionality, we reasoned that it would allow 

us to enrich for functionally relevant lncRNAs. As the disproportionate lncRNA expression 
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of the adult testis6,12,23 is associated with a pervasive chromatin environment that also 

allows the transcription of putatively non-functional elements23, we excluded post-puberty 

testis samples from this estimation.

Most protein-coding genes (73-90% depending on the species) but only a fraction of 

lncRNAs (16-38%) show developmentally dynamic expression (Extended Data Fig. 3b). 

Contrary to the highly variable total number of lncRNAs, the numbers of developmentally 

dynamic lncRNAs are similar across species (Fig. 2a). Notably, large proportions of 

dynamic lncRNAs in human (2,998, 51%) and mouse (4,188, 74%) are not annotated in 

Ensembl19. While most dynamic lncRNAs (51-63%) are differentially expressed in a single 

organ they show broader and higher expression than non-dynamic lncRNAs (Extended Data 

Fig. 3c-f).

Developmentally dynamic lncRNAs show an overrepresentation of divergent, downstream 

sense and antisense transcripts, which results in a closer proximity to protein-coding genes 

(Extended Data Fig. 4a-b). However, all genomic classes substantially contribute to the total 

number of dynamic lncRNAs (Extended Data Fig. 4a) and the differences between classes 

mostly disappear after controlling for maximum expression (Extended Data Fig. 4c). 

Dynamic lncRNA transcripts are also longer (Fig. 2b) and contain more exons (Extended 

Data Fig. 4d), suggesting selection for splice sites and against premature polyadenylation 

signals, as well as a higher capacity to accommodate modular RNA domains that facilitate 

interactions with proteins or other nucleic acids24.

Evolutionary conservation provides a strong line of evidence for lncRNA functionality6,11–

13. We observed a significant increase in the fraction of developmentally dynamic genes for 

older lncRNA groups (Fig. 2c; P < 0.01, two-sided Fisher’s exact test). As the overlap with 

protein-coding genes and regulatory elements can lead to the overestimation of lncRNA 

evolutionary age, we repeated this analysis excluding antisense and divergent transcripts, 

and lncRNAs that overlap transcribed enhancers25, with similar results (Extended Data Fig. 

4e; P < 0.05, two-sided Fisher’s exact test). The enrichment of dynamic transcripts amongst 

older lncRNAs also remained significant after controlling for maximum expression, even for 

lowly expressed lncRNAs (Extended Data Fig. 4f-g; P < 0.05, two-sided Fisher’s exact test). 

Overall, our analyses suggest a clear association between developmentally dynamic 

expression and evolutionary conservation.

Next, we assessed the extent of spatiotemporal expression similarity between species. 

Human lncRNAs with a dynamic mouse ortholog are more likely to also be dynamic 

(Extended Data Fig. 4h), and lncRNAs that are dynamic in both species show almost as high 

expression similarity as protein-coding genes, even after excluding antisense and divergent 

lncRNAs (Fig. 2d; Extended Data Fig. 4i). To assess the effect of evolutionary age on the 

conservation of lncRNA spatiotemporal profiles across a wider phyletic range, we analyzed 

lncRNAs dynamic in mouse and rat. We observed an increase in expression similarity with 

lncRNA age (Extended Data Fig. 4j), in agreement with the slow turnover of transcription 

and tissue-specificity of conserved lncRNAs7,26.
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Finally, we sought to more directly examine the functional relevance of dynamic lncRNAs. 

In a set of molecularly characterized, functional lncRNAs from lncRNAdb27, the fraction of 

dynamic genes is 76%, four times higher than among all human lncRNAs and close to the 

fraction of dynamic protein-coding genes (86%, Fig. 2c). This enrichment remained 

significant after controlling for maximum expression (Extended Data Fig. 4f; P = 0.037, 

two-sided Fisher’s exact test). To account for ascertainment biases, like the preferred 

experimental characterization of broadly expressed and conserved lncRNAs, we also 

examined a set of lncRNAs associated with cell proliferation phenotypes based on an 

unbiased CRISPRi screen in human cell lines21. Despite the different physiological context 

and high cell line specificity of the reported results, we found that lncRNAs in the screen 

libraries that were also present in our annotation had an increased likelihood of exhibiting a 

cell proliferation phenotype (“hit”, Extended Data Fig. 4k; P = 2.2 x 10-16, two-sided 

Fisher’s exact test). Moreover, we observed a significant, albeit small, enrichment of hits 

among dynamic lncRNAs (Fig. 2e; Extended Data Fig. 4k; P = 0.02, two-sided Fisher’s 

exact test) further supporting their enrichment for functional loci.

Regulatory landscape of dynamic lncRNAs

We next investigated whether the developmentally dynamic expression of lncRNAs is also 

reflected in more complex transcriptional regulation (Methods). As expected6,28 the 

promoters of protein-coding genes contain the most transcription factor (TF) binding sites29 

(Fig. 2f). However, the promoters of dynamic intergenic lncRNAs are bound by more TFs 

than those of non-dynamic lncRNAs, suggesting a stronger and more complex 

transcriptional regulation (Fig. 2f; Extended Data Fig. 5a).

To assess the relevance of this increased transcriptional regulation during development, we 

estimated the fraction of dynamic lncRNA promoters bound by each TF (termed “binding 

frequency”). We identified three major classes: TFs with high binding frequencies for 

lncRNAs dynamic in the nervous tissues, heart or liver (Fig. 2g; Extended Data Fig. 5b). For 

tissue-specific TFs, we observed a high concordance between the organ where the TFs are 

maximally expressed and the binding frequency for lncRNAs dynamic in that organ (Fig. 2g; 

Extended Data Fig. 5c). Despite their ubiquitous expression, well-established regulators of 

cardiac development30, such as Nkx2-5, Mef2d and Gata4, also predominantly bind to 

promoters of lncRNAs dynamic in the heart (Fig. 2g). Overall, these results show that the 

increased transcriptional regulation of dynamic lncRNAs matches the organ in which they 

are expressed.

Expression patterns during organ development

Organ development is punctuated by periods when large numbers of protein-coding genes 

change their expression levels18. These periods are associated with the establishment of 

organ identity early in development and with the transition to mature organ-specific 

functions around birth18. Strikingly, the stages where dynamic lncRNAs show the greatest 

differential expression coincide with these periods of greater transcriptional change, even 

when only considering lncRNAs located more than 100 kb away from the closest protein-

coding gene (Fig. 3a; Extended Data Fig. 6a-b). Although we cannot exclude a contribution 
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from proximal developmental enhancers31, the enrichment of dynamic lncRNAs for 

functionally relevant features (Fig. 2) argues against the prevalence of non-autonomous 

expression for most loci.

Motivated by the similar temporal dynamics between protein-coding genes and lncRNAs, 

we assigned putative functions to dynamic lncRNAs based on their co-expression with 

protein-coding genes, i.e. through "guilt by association"6,13. Across organs, the co-

expression clusters with the highest fraction of lncRNAs consistently showed similar 

developmental trajectories and were associated with developmental functions and adult 

organ physiology (Extended Data Fig. 7; Supplementary Tables 9-10). By contrast, lncRNAs 

contributed the least to clusters associated with housekeeping genes, in agreement with the 

hypothesis that few lncRNAs are involved in essential cellular functions10.

Early vs. late development

In the developmental period studied here, the transcriptomes of different organs share strong 

commonalities at the earliest stages and then gradually diverge into distinct, organ-specific 

developmental programs18. In parallel with this divergence of gene expression programs, 

the number of dynamic lncRNAs expressed in each organ steadily increases (Fig. 3b). In 

contrast, the fraction of lncRNAs showing selective preservation (i.e., those with an age > 80 

million years) decreases with time (Fig. 3c). Consistently, the expression similarity between 

lncRNAs dynamic in both human and mouse, also declines during development (Extended 

Data Fig. 8a). Thus, although the absolute number of lncRNAs expressed during early organ 

development is lower than in postnatal stages, these genes have been under stronger selective 

constraints. Notably, levels of lncRNA sequence and expression conservation are 

particularly high in nervous tissues and lower in liver and gonads (Extended Data Fig. 8b-c), 

as observed for protein-coding genes18.

Early-expressed protein-coding genes also show higher sequence and expression 

conservation, which was suggested to result from the higher pleiotropy (broader 

spatiotemporal expression) of early-expressed genes and associated increased functional 

constraints18. Consistently, we found that lncRNAs expressed early in development are 

more broadly expressed across organs than lncRNAs expressed late (Fig. 3d; Extended Data 

Fig. 8d). We also found that lncRNAs expressed earlier in development are more likely to be 

characterized as functional by lncRNAdb27 and to result in a cell proliferation phenotype in 

the CRISPRi screen21 (Fig. 3e-f; Extended Data Fig. 8e-f). This enrichment is consistent 

with our ‘guilt-by-association’ analysis, which associated early-expressed lncRNAs with 

broad cellular functions (Extended Data Fig. 7). On the other hand, late-expressed dynamic 

lncRNAs still retain signatures of functional enrichment when compared to non-dynamic 

lncRNAs (Extended Data Fig. 8g). Their organ-specific expression (Fig. 3d; Extended Data 

Fig. 8d) suggests they may be involved in more specialized functions and thus under weaker 

functional constraints than early-expressed lncRNAs.

Collectively, our analyses revealed a distinction between lncRNAs expressed early and late 

in organ development. While fewer lncRNAs are expressed during early stages, these genes 

are more pleiotropic and are under stronger evolutionary constraint at the sequence and 
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expression levels, consistent with broader functions. By contrast, most lncRNAs are 

expressed in later stages and are characterized by higher organ- and lineage-specificity, 

suggesting milder effects on developmental programs and phenotypes.

Co-expression with adjacent protein-coding genes

Several well-characterized lncRNAs, such as XIST and Airn, are known to act in cis, 

regulating the expression of their immediate neighbors9. However, the extent of such effects 

at the genomic scale remains unresolved1,2,26,32. We examined this question within the 

context of organ development using our set of dynamic lncRNAs. We observed a 

significantly higher expression correlation between dynamic lncRNAs and their adjacent 

protein-coding genes compared to mRNA-mRNA controls (Fig. 4a; P = 2.2 x 10-16, two-

sided Wilcoxon’s signed-rank test; Methods; Extended Data Fig. 9a-b). Although the 

distance between genes impacts the degree of their correlation, we found an excess of 

positive correlations for lncRNA-mRNA pairs for distances up to 100 kb (Extended Data 

Fig. 9c-d). We obtained similar results excluding bidirectional and antisense lncRNAs, as 

few protein-coding genes are transcribed in such orientations (Extended Data Fig. 9e; P = 

2.2 x 10-16, two-sided Wilcoxon’s signed-rank test). Protein-coding genes significantly 

correlated with their neighboring lncRNA were enriched for developmental genes (Fig. 4b; 

Extended Data Fig. 9f), supporting the biological significance of the enrichment of lncRNAs 

near developmental regulators13. Consistently, our set of co-expressed lncRNAs is enriched 

for a set of “positionally conserved” lncRNAs that are linked to chromatin organization 

structures and are co-expressed with their adjacent developmental protein-coding genes in 

adult primary tissues and cancer samples33 (Fig. 4c; P < 10-11, two-sided Fisher’s exact 

test).

We identified 77 protein-coding genes co-expressed with an adjacent lncRNA in both human 

and mouse (Fig. 4d), a significant enrichment relative to the fraction of 1:1 orthologous 

protein-coding genes co-expressed with a lncRNA in each species (P = 2.2 x 10-16, 

hypergeometric test; Supplementary Tables 11-12). Compared to all co-expressed pairs, 

those detected in both species show an even stronger association with organ development 

(38% involved in the development of at least one organ; P = 0.0002, hypergeometric test; 

Methods). Thus, co-expression between developmental regulators and their adjacent 

lncRNAs is a feature shared between species.

We note that the observed correlations are not sufficient to infer regulatory functions for 

lncRNAs, which requires experimental scrutiny9. Nonetheless, our results are consistent 

with studies suggesting that some mammalian lncRNAs act by influencing the expression of 

their adjacent genes9,33,34, having identified several lncRNAs (i.e., GAS6-AS235, 

DEANR133,36, SSTR5-AS137, EMX2OS38 and Dlx1as39) previously implicated in the 

regulation of their neighboring protein-coding genes. The co-expressed lncRNA-mRNA 

pairs represent a reference set to facilitate future efforts for the experimental characterization 

of the cis-regulatory potential of lncRNAs.
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Discussion

We utilized a dataset of transcriptomes across seven major organs and developmental stages 

to provide uniformly processed annotations and expression profiles for thousands of 

candidate lncRNAs. This extensive resource will facilitate future investigations of lncRNA 

biology (lncrnas.kaessmannlab.org). We also identified a set of developmentally dynamic 

lncRNAs that show multiple signatures of functional enrichment. We cannot exclude that 

some of our observations for dynamic lncRNAs might be explained by proximal or 

overlapping regulatory sequences, although these are typically transcribed into short-lived, 

unspliced and non-polyadenylated transcripts40, which are not included in our annotations. 

Furthermore, the enrichment of dynamic lncRNAs for longer and more complex transcripts 

argues against them being transcriptional or splicing by-products of regulatory sequences. 

Our analyses identified important differences in the contribution of lncRNAs to different 

stages of organ development and associated dynamic lncRNAs with putative functions. 

Future studies utilizing emerging technologies, such as single-cell41 or long-read RNA 

sequencing42, will further refine the annotations and expression profiles of mammalian 

developmentally dynamic lncRNAs.

Online Methods

Annotation of transcribed regions and identification of lncRNAs

We used a transcriptomic dataset covering the development of seven major organs 

(forebrain/cerebrum, hindbrain/cerebellum, heart, kidney, liver, ovary and testis) across 

seven amniote species (human, rhesus macaque, mouse, rat, rabbit, opossum, chicken), 

comprising a total of 1,993 (strand-specific) RNA-seq libraries18. Data for ovary 

development in rhesus macaque were not available. Genomic read alignments (BAM files)18 

were filtered from reads partially mapping outside a contig or chromosome, mapping to 

more than 50 locations or having more than 50 nt with a phred score below 20 using 

samtools (0.1.18)43. The processed BAM files from the same species, organ and 

developmental stage (i.e., replicates) were merged to increase coverage and detection power. 

The merged BAM files were then used to identify transcribed regions for each sample 

(species, organ and developmental stage) with stringtie (1.2.3)44 using the following 

parameters:

stringtie <sample.bam> -o <sample.gtf> -p 2 -f 0.50 -m 200 -a 10 -j 3 -c 0.1 

-g 10

The multiexonic transcripts from each sample were combined into a single assembly for 

each species using the tool cuffmerge from the Cufflinks package (2.2.1)45:

cufflinks -o <outprefix> -F 0.0 -q --overhang-tolerance 200 --library-

type=transfrags -A 0.0 --min-frags-per-transfrag 0 --no-5-extend --overlap-

radius 1 -p 20 <assembly_list.txt>

We first removed from each species’ annotation the genes that overlap with Ensembl 

protein-coding genes in the same strand or that are shorter than 200 nts (Extended Data Fig. 
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1a). We then removed all genes with evidence for coding potential. The coding potential of 

our lncRNA candidates was estimated in three ways: using CPAT (1.2)46, RNAcode (0.3)47 

and similarity with known proteins. CPAT uses an alignment-independent logistic regression 

model to detect lncRNAs based on sequence features46. To select a cutoff for the 

classification, we used a training set of randomly selected 10,000 protein-coding genes and 

10,000 intronic regions. We selected the cutoff of 0.8 for mouse, rat and rabbit; 0.75 for 

human; and 0.70 for macaque, opossum and chicken. RNAcode uses multiple-species 

alignments to infer coding probability based on the rate of synonymous to non-synonymous 

mutations47. We generated customized whole genome alignments for each species in our 

dataset against seven other species (Supplementary Table 13), which we used to estimate 

coding potential. Transcripts with an open reading frame in the same strand, P ≤ 10-5 and 

alignment length ≥ 10 aminoacids were considered to be putatively coding (termed ‘new 

putative-coding’). Finally, we used blastx (2.4.0)48 to translate each lncRNA in all possible 

six frames, which we then compared to known proteins in the databases UniProt 

(2016_04)49 and PFAM (v29)50. Transcripts with E ≤ 10-3, alignment length ≥ 10 

aminoacids and identity ≥ 95% were considered ‘new putative-coding’. Only genes that 

successfully passed all three filters for all their isoforms were included in our lncRNA 

annotation (Supplementary Data 1).

Gene expression quantification, specificity indexes and dynamic expression

For each species, we merged our lncRNA annotation with Ensembl’s (v75 for human and 

v77 for all other species), after removing from the latter all genes overlapping lncRNAs in 

the same strand. We generated read counts using HTSeq (0.6.1)51, only allowing for 

uniquely mapped reads and only for the alignments of the 1,893 libraries that had a 

Spearman’s correlation with its biological replicates ≥ 0.918. Since the samples used to 

quantify gene expression are a subset of the dataset used for the annotation of lncRNAs (see 

above), we removed lncRNAs showing no detectable expression in this smaller dataset. We 

calculated expression levels as cpm (counts per million) or RPKM (reads per kilobase of 

exon model per million mapped reads) (Supplementary Data 2) after normalizing the count 

data using the method TMM from the package edgeR (3.14.0)52. We also generated 

variance stabilized counts, using the respective transformation (VST) implemented in the 

package DESeq2 (1.12.4)53.

We estimated time- and tissue-specificity indexes using the Tau metric of tissue-

specificity54. Tissue-Tau was calculated as previously described54, using for each organ the 

maximum expression observed during development. For time-specificity, we applied the 

same metric to the expression across developmental stages of the same organ. Time-

specificity indexes were only calculated for the organs in which a gene is robustly expressed 

(i.e., RPKM > 1). Because time-specificity is highly correlated between organs18, we used 

the median time-specificity in our analyses unless otherwise noted. The median time-

specificity only takes into consideration the organs where lncRNAs are expressed. Both 

time- and tissue-specificity indexes range from 0 (broad expression) to 1 (restricted 

expression).
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Developmentally dynamic gene expression (i.e., significant temporal changes during organ 

development) was detected using masigPro20, an R package designed for the analysis of 

transcriptomics time-courses, as previously described18. Briefly, expression values in cpm 

were given as input to calculate a goodness-of-fit (R2) metric for each organ. Genes with an 

R2 > 0.3 in an organ were classified as developmentally dynamic in that organ. 

Consequently, developmentally dynamic genes in our dataset reach an R2 > 0.3 in at least 

one organ. Due to the extensive transcription associated with the permissive chromatin 

environment of the sexually mature testis23, we excluded these samples from the calculation 

of the R2 index for the testis. Differences between species in the number of identified 

developmentally dynamic genes can most likely be attributed to technical aspects, such as 

the number of assayed developmental stages and the similarity between biological replicates. 

The latter is influenced by the amount of genetic diversity across sampled individuals and 

the developmental interval spanned by replicates (e.g., hours for rodents, days-years for 

humans)18.

Orthology assignment and lncRNA age estimation

We used a Markov clustering algorithm to reconstruct homologous lncRNA families based 

on sequence similarity55 (Extended Data Fig. 1b). For each species, we merged all exonic 

regions for each lncRNA or ‘new putative-coding’ locus (newly identified transcribed 

regions that failed one of the coding potential filters, see above). ‘New putative-coding’ loci 

were included in this analysis because some lncRNAs have been shown to originate from 

protein-coding genes through pseudogenization56,57. We used blastn to search for similarity 

with exonic sequences of the same or different species, following soft-masking for repeats 

from RepeatMasker (4.0.6)58 (within and between species blastn (2.4.0)48). We filtered our 

alignments for identity ≥ 10% or a minimum length ≥ 50 nts and additionally required an E-

value ≤ 10-3. We then used reciprocal best hits between pairs of species and significant self-

hits to cluster genes into homologous families with OrthoMCL (2.0)55, a method allowing 

for recent paralogs (duplicate genes arising after speciation) to be incorporated into 

families55. We allowed up to one member of each lncRNA family to be classified as ‘new 

putative-coding’ and required at least one lncRNA member of each family to show evidence 

of detectable transcription (> 1 RPKM in at least one sample). Finally, we removed all 1,324 

multimember lncRNA families (families with recent paralogs, Supplementary Table 14) 

because manual inspection revealed that many of the identified paralogous relations were 

driven by repeats, low complexity regions or the split of a single lncRNA into two genes 

during annotation. For example, the lncRNA Xist is detected in all eutherian mammals in 

our dataset (marsupials and birds have different dosage compensation systems) but appears 

as two separate lncRNAs, Rab_XLOC_042762 and Rab_XLOC_042763, in rabbit. The two 

lncRNAs are directly adjacent to each other, transcribed from the same strand and show 

similar female-specific spatiotemporal expression. Both align to the human XIST but not to 

each other, thus clearly representing a case where our genome annotation pipeline artificially 

split one lncRNA into two loci. To avoid incorrectly estimating the evolutionary age of these 

ambiguous multimember families, we only used our 18,459 high-confidence 1:1 orthologous 

lncRNA families (Supplementary Table 8) to infer the minimum evolutionary age for each 

lncRNA with parsimony, based on the phylogenetic relationships of the species where each 

lncRNA was transcribed, as previously described6. To account for the asymmetric 
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distribution of species in our dataset, we classified the age of lncRNAs shared between 

chicken and no more than two other species as “ambiguous”.

Evaluation of the lncRNA orthology assignment

We used the identity of neighboring protein-coding genes to assess the specificity of our 

lncRNA family definitions, as orthologous loci are often found in conserved synteny across 

vertebrates8,11,14,59. For each human lncRNA we identified the closest upstream and 

downstream protein-coding gene using bedtools (2.25.0) closest with the options –id and –

iu, respectively60. We calculated distances based on gene bodies and allowed for assignment 

to an overlapping transcript. We repeated the procedure for lncRNAs in three more species 

in our dataset representing various evolutionary distances (macaque - 25 million years ago, 

Mya, mouse - 90 Mya, opossum - 180 Mya). We then estimated the fraction of lncRNA 

orthologs in each species pair that had at least one conserved neighbor (in the same 

orientation)8. Protein-coding gene orthologs were retrieved from Ensembl v75. As a control, 

we used protein-coding genes to estimate the expected degree of synteny conservation across 

these evolutionary distances. As the presence of antisense lncRNAs, which are expected to 

overlap the same gene across species, can lead to an overestimation of the extent of synteny 

conservation, we repeated the analysis considering only intergenic lncRNAs.

To benchmark the sensitivity of our lncRNA family determinations, we compared them to a 

study that used sequence similarity between lncRNA exons to identify lncRNA orthology8. 

We extracted families that contained a human lncRNA and were termed “Mammalian-only” 

and “Amniote-only” and compared them to our 180 Mya and 300 Mya lncRNA families, 

respectively. As the number of mammalian and amniote species used for the lncRNA family 

reconstruction differs between the two studies, we calculated the fraction of available 

species that were found in each family and rounded to the first digit (e.g., 10%, 20%) to 

summarize the data into bins. We then compared the distribution of species fractions across 

matched lncRNA ages between the two studies (Extended Data Fig. 2d).

Comparison with Ensembl, genomic classification and integration with other datasets

We intersected the exons of our lncRNA annotations with all noncoding exons from the 

Ensembl annotation of the respective species in a strand specific manner using bedtools 

(2.25.0) intersect60. To estimate the number of newly identified transcripts we used a more 

recent Ensembl release, v9219. Since the genome assemblies for human, rhesus macaque, 

rat and chicken have been updated during the transition from v77 to v92, we used liftover 

chains61 to map the v92 Ensembl annotations to the old genome assemblies before 

intersecting. For all other analyses we used the Ensembl annotations matching our genome 

annotations, i.e., v75 for human and v77 for all other species.

For the genomic classification of our lncRNAs we used the sliding-window based classifier 

module of the tool FEELnc (1.0)62, classifying our lncRNA annotations against protein-

coding genes from Ensembl (v75 for human and v77 for all other species). We used a 

maximum window extension of 100,000 bp and otherwise default settings. The results were 

filtered for the best hits according to the default criteria, which prioritize assignment to the 

closest genes and exonic over intronic interactions62. To simplify our analysis, we collapsed 
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the classification to the position (overlapping, upstream, downstream) and strand (sense or 

antisense, Extended Data Fig. 2a). LncRNAs transcribed in upstream antisense orientation 

and located up to 2 kb from their assigned coding gene were classified as divergent. Finally, 

lncRNAs located more than 100 Kb apart from their nearest coding gene were classified as 

“isolated intergenic”.

We used the Reference Database for Functional LncRNAs (lncRNAdb, v2.0)27 to identify 

functionally validated human lncRNAs. To integrate with our annotation, we parsed the 

content of lncRNAdb for Ensembl IDs and then used the intersection to Ensembl as 

described above. For the CRISPRi screen library21, we used the primary transcription start 

site (TSS) provided by the authors to intersect with the first exon of our lncRNA annotations 

in a strand-specific manner. Since the precise TSS definition may differ between the two 

datasets, we extended the reported primary TSS (often provided at a single nucleotide 

resolution) by 500 bp in each direction (Extended Data Fig. 4k). To identify lncRNAs 

overlapping enhancers, we intersected our lncRNA exons with a set of human transcribed 

enhancers identified based on distinct bidirectional CAGE (Cap Analysis of Gene 

Expression) patterns from a total of 432 primary cell, 135 tissue and 241 cell line human 

samples25. For the positionally-conserved lncRNAs (pcRNAs)33, we downloaded transcript 

coordinates in bed12 format, lifted over from hg38 to hg19 and intersected the exonic 

regions with our annotation in a strand specific manner.

Controlling for maximum expression levels

Developmentally dynamic lncRNAs show significantly higher maximum expression 

compared to non-dynamic lncRNAs (Extended Data Fig. 3f; P = 2.2 x 10-16, two-sided 

Mann-Whitney U test). To control for the effect of maximum expression on the association 

of developmentally dynamic lncRNAs with conservation and functionally characterized 

transcripts, we generated sets of expression-matched human lncRNAs. First, we identified 

the non-dynamic lncRNAs that showed the closest maximum expression to each human 

dynamic lncRNA. Sampling without replacement failed to equalize the expression levels, so 

we sampled with replacement obtaining 3,098 non-dynamic lncRNAs. We then selected the 

dynamic lncRNAs that were closest in maximum expression to each of those non-dynamic 

lncRNAs (2,906 dynamic lncRNAs). Using this procedure we obtained similar numbers and 

almost identical distributions of maximum expression values for developmentally dynamic 

and non-dynamic lncRNAs (Extended Data Fig. 4c).

As this set of expression-matched lncRNAs was shifted towards expression levels more 

representative of the dynamic lncRNA population, we repeated the procedure with a second 

set of lncRNAs with maximum expression levels ranging from 0.25 to 0.75 RPKM to 

evaluate whether our observations also hold true for lowly expressed dynamic lncRNAs. 798 

human dynamic lncRNAs fall within this range (as opposed to 7,100 non-dynamic 

lncRNAs). We then identified the 717 non-dynamic lncRNAs that showed the closest 

expression values to the dynamic lncRNAs (sampling with replacement), obtaining similar 

expression distributions (Extended Data Fig. 4g).
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Spatiotemporal expression similarity of 1:1 orthologs

To estimate the expression similarity between human and mouse 1:1 orthologs we calculated 

the Spearman correlation for 1,663 lncRNA and 16,078 protein-coding gene pairs across the 

entire dataset, i.e., 67 organs/developmental stages between human and mouse 

(Supplementary Table 15). We then compared the distribution of Spearman correlation 

coefficients for lncRNA pairs that are non-dynamic, dynamic in only one species or dynamic 

in both species, and for protein-coding genes. As a control, we used the set of lncRNAs 

developmentally dynamic in both species, and calculated their expression correlation after 

shuffling their orthology relationships (sampling without replacement).

We used a set of 924 lncRNAs, identified as 1:1 orthologs between mouse and rat and 

developmentally dynamic in both species, to estimate the effect of evolutionary age 

constraint on lncRNA expression evolution. We divided our set of 1:1 orthologs based on the 

estimated age of the lncRNA family (families with 80 and 90 million years were combined). 

For each age group, we estimated expression similarity by calculating the Spearman 

correlation coefficient for the lncRNA pairs across 82 organs/developmental stages in mouse 

and rat (Supplementary Table 16)18.

Estimation of TF binding on promoters

Promoter regions were defined as regions 2,000 bp upstream to 1,000 bp downstream of a 

gene’s TSS. For protein-coding genes, TSS coordinates were retrieved from Ensembl’s 

BioMart19. For lncRNAs, the TSS was defined as the starting coordinate of the first exon of 

the longest isoform. We excluded antisense and divergently transcribed lncRNAs to avoid 

biases created by the overlap of lncRNA and protein-coding gene promoters. Randomly 

generated, non-repetitive, intergenic regions of matched length (3,000 bp) were generated as 

negative controls. We retrieved mouse TF binding sites from GTRD, a publicly available set 

of more than 5,000 uniformly processed ChIP-seq experiments for 432 mouse TFs29. The 

data have been summarized into meta-clusters corresponding to non-redundant binding 

positions of each TF to the mouse genome. We used bedtools (2.25.0) intersect60 to 

determine the overlap of TF binding sites with our regions of interest. Transcriptional 

regulation and complexity was calculated based on the number of distinct TFs bound to each 

region. As a complementary metric, we defined TF binding frequency for each TF as the 

fraction of promoters of each gene class that is bound by the respective TF.

The TF binding frequency was also used to determine tissue-specific transcriptional 

regulation. For each TF, we calculated the fraction of lncRNAs dynamic in each tissue with 

promoters bound by that TF. To identify the TFs with the highest binding variability, we 

normalized each binding frequency as a fraction of the maximum binding frequency of each 

TF and determined the standard deviation of the normalized frequencies. We removed TFs 

with a maximum frequency lower than 5% (less than 5% of the promoters of the lncRNAs 

dynamic in the organ with the highest frequency are bound by this TF), as these cases 

showed artificially high variability due to noise (Extended Data Fig. 5b). We then identified 

the 50 TFs with the highest normalized binding frequency variability across the organs. We 

used the normalized binding frequency to perform hierarchical clustering based on 

Euclidean distances in both dimensions (lncRNAs dynamic in each organ and TFs) using the 
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R package pheatmap (1.0.10)63. To examine the functional relevance of these TFs for the 

development of the organs where they show the maximum binding frequency on lncRNA 

promoters, we identified tissue-specific TFs as those with tissue-specificity greater than 0.6 

and determined the tissue where they show maximum expression.

Classification and co-expression based on developmental trajectories

We identified the most common developmental trajectories in each organ using GPClust, a 

method to cluster time-series based on Gaussian process18,64–66. We combined lncRNAs 

and protein-coding genes dynamic in each organ and species and used the median variance-

stabilized counts across replicates as input. We set the noise variance (k2.variance.fix) to 1.0 

for mouse and 1.5 for human. We then classified clusters (and associated genes) as early, late 

or other based on their developmental trajectories (Fig. 3; Extended Data Fig. 8c). 

Representative functions were assigned to each cluster based on a gene ontology (GO) 

enrichment analysis for its coding genes with the R package WebGestaltR (0.1.1)67, using 

all dynamic coding genes in the respective organ as a background set.

Patterns of lncRNA developmental expression

We identified the protein-coding genes and lncRNAs that are differentially expressed 

between adjacent time-points in mouse using DESeq2 (with default settings)53. We required 

an adjusted P-value ≤ 0.05 and a log2 fold change ≥ 0.5. The sets of dynamic lncRNAs 

expressed in each organ and developmental stage were selected based on a median 

expression value across replicates of at least 1 RPKM. To estimate the degree of lncRNA 

conservation for each organ and developmental stage, we calculated the fraction of mouse 

lncRNAs with an inferred evolutionary age of at least 80 Mya (i.e., shared with at least one 

other species in our dataset besides rat). We estimated the degree of expression similarity 

between human and mouse, for each organ and developmental stage, by calculating the 

Spearman correlation coefficient of 1:1 orthologous lncRNAs dynamic in both species for 

matched developmental stages18. The differences in pleiotropy between different stages of 

organ development were estimated based on the tissue-specificity indexes for different 

classes of developmental trajectories, as described above. Similarly, we estimated the 

phenotypic impact of lncRNAs with different developmental trajectories based on the 

fraction of functionally validated lncRNAs (lncRNAdb)27 and growth phenotype-associated 

hits in the CRISPRi screen21. To test the enrichment for functionality of late-expressed 

developmentally dynamic lncRNAs compared to non-dynamic lncRNAs, we selected human 

dynamic lncRNAs that are classified as ‘late’ in all somatic organs in which they show 

dynamic expression profiles.

Co-expression with adjacent coding genes

Dynamic lncRNAs in human and mouse were assigned to their nearest protein-coding gene 

using bedtools (2.25.0) closest60 using the distance between gene bodies (similar results 

obtained using the distance between TSSs). Each protein-coding gene assigned to a lncRNA 

was then matched to its immediately neighboring protein-coding gene, which was used as a 

control. We estimated Pearson’s expression correlation between lncRNA-mRNA and 

mRNA-mRNA pairs using all samples in our dataset, except for sexually mature testis 

samples (P3 and later for mouse, young teenager and later for human). Median variance 
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stabilized counts across replicates were used as the input for these correlations. We observed 

that protein-coding genes annotated as paralogs in Ensembl showed significantly higher 

correlation coefficients compared to the other mRNA-mRNA pairs (Extended Data Fig. 9a; 

P = 2.2 x 10-16, two-sided Mann-Whitney U test). Paralogous genes most commonly arise 

through segmental DNA duplications, thus representing copies of the ancestral gene and 

sharing the same regulatory sequences68. Thus, although the functions and expression 

patterns of the two copies may diverge with time68, paralogous genes are on average 

expected to be more functionally related than protein-coding genes that only share a similar 

chromatin environment. Consequently, we removed triplets containing paralogous protein-

coding genes from the comparison of correlation coefficients between lncRNA-mRNA and 

mRNA-mRNA pairs and from the identification of candidate co-expressed pairs. However, 

we still used paralogous genes to estimate the degree of correlation that implies functional 

relatedness, since the extent and significance of gene expression correlations vary depending 

on the size and nature of the dataset. Specifically, we compared the ratio of paralogous/non-

paralogous protein-coding pairs identified as co-expressed using a range of Person’s r 
correlation cutoffs (Extended Data Fig. 9b).

Based on this analysis, we identified candidate cis-coexpressed lncRNA-mRNA pairs as 

those with correlation coefficients greater than 0.75 and for which the correlation between 

the mRNA and the control was smaller than 0.75. To select only cases where the lncRNA-

mRNA correlation was significantly higher than the mRNA-mRNA control, we additionally 

performed a Fisher Z-transformation and estimated the difference between the correlation 

coefficients for the lncRNA and the control using the function paired.r from the R package 

psych (1.8.4)69 to perform two-tailed tests for independent samples. We required our 

candidate lncRNA-mRNA pairs to have an adjusted P ≤ 0.05. A gene ontology enrichment 

analysis was performed for the protein-coding genes of these pairs, using the R package 

WebGestaltR67.

To test the enrichment of co-expressed pairs shared between human and mouse with 

developmental functions, we used AmiGO (v2) to download all human protein-coding genes 

associated with the development of the organs in our dataset (brain development, GO:

0007420; heart development, GO:0007507; kidney development, GO:0001822; liver 

development, GO:0001889; gonad development, GO:0008406) and performed a 

hypergeometric test to compare human protein-coding genes co-expressed with a lncRNA in 

both human and mouse to all human protein-coding genes co-expressed with a lncRNA.

We note that although we tried to control for the effect of a shared regulatory 

environment31,70 using mRNA-mRNA controls, lncRNAs are likely more susceptible to it 

due to their weaker regulatory complexity (Fig. 2f)28. Furthermore, as our data correspond 

to steady-states, positive correlations are used to identify functional relatedness between the 

lncRNA and its adjacent protein-coding gene but cannot be interpreted as mechanistic 

interactions. Even in cases when the lncRNA has a regulatory effect on the adjacent protein-

coding gene, distinguishing between activating and repressive effects would require precise 

knowledge about the expression state of the target gene in the absence of the lncRNA, 

information that can only be obtained through perturbation approaches.
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General statistics and plots

Unless otherwise stated, all statistical analyses were performed in R71, utilizing the 

packages dplyr (0.7.6)72, tidyr (0.8.1)73, stringr (1.3.1)74, data.table (1.11.4)75 and psych 

(1.8.4)69. All plots were generated in R71 using the packages ggplot2 (3.0.0)76, gridExtra 

(2.3)77, reshape2 (1.4.3)78, plyr (1.8.4)79, FactoMineR (1.41)80 and pheatmap (1.0.10)63. 

The R implementation of WebGestalt (0.1.1)67 was used for all GO enrichments.

Data availability

LncRNA annotations (Supplementary Data 1), expression tables (in RPKM; Supplementary 

Data 2) and homologous lncRNA families (Supplementary Table 8) are available as 

supplementary materials. We also provide a tabular summary of lncRNA genomic, 

evolutionary and expression features (Supplementary Tables 1-7). We created a public 

interactive tool that allows the visualization of lncRNA genomic coordinates and expression 

profiles (lncrnas.kaessmannlab.org).

Extended Data
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Extended Data Figure 1. Annotation and orthology assignment of lncRNAs.
a, Schematic representation of the lncRNA annotation pipeline. b, Schematic representation 

of the pipeline for the detection of 1:1 lncRNA families.
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Extended Data Figure 2. Genomic classification and expression patterns of lncRNAs.
a, Distribution of lncRNAs among genomic classes in each species. b, Comparison of 

genomic classes (left), evolutionary age (middle) and organ of maximum expression (right) 

for known (Ensembl19) and newly annotated (novel) human lncRNAs. c, Number of species 

with a detected lncRNA member for human families of various evolutionary ages. d, 
Comparison of the fraction of species with a detected lncRNA member for human families 

conserved across mammals (180 Mya) and amniotes (300 Mya) with a previous study8. e, 
Fraction of lncRNAs and protein-coding gene orthologs found in conserved synteny with at 
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least one protein-coding gene neighbor for increasing evolutionary distances. f, Organ of 

maximum expression for expressed lncRNAs (≥ 1 RPKM) in each species. g, Number of 

lncRNAs expressed (≥ 1 RPKM) in each species during the development of each organ (in 

logarithmic scale).

Sarropoulos et al. Page 18

Nature. Author manuscript; available in PMC 2019 December 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Extended Data Figure 3. Features of developmentally dynamic lncRNA expression.
a, Representative examples of human developmentally dynamic (n=5,887) and non-dynamic 

(n=25,791) lncRNAs’ expression profiles (mean expression; vertical bars represent the 

minimum and maximum values across replicates) for varying levels of maximum 

expression, replicate reproducibility and expression windows. The vertical dashed line 

represents birth; the horizontal dashed line marks 1 RPKM. b, Summary statistics for the 

lncRNAs and protein-coding genes in this study. c, Number of organs with developmentally 

dynamic expression for dynamic lncRNAs and protein-coding genes in each species. d, e, 
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Tissue and median time-specificity of non-dynamic and dynamic lncRNAs, and protein-

coding genes, across species. Tissue and time-specificity indexes range from 0 (broad 

expression) to 1 (specific expression). All comparisons between non-dynamic and dynamic 

lncRNAs, and protein-coding genes are significant (P = 2.2 x 10-16, two-sided Mann-

Whitney U test). f, Maximum expression levels (log10 RPKM) for developmentally dynamic 

and non-dynamic lncRNAs across species (excluding samples from the sexually mature 

testis). Developmentally dynamic lncRNAs are more highly expressed in all species (P = 2.2 

x 10-16, two-sided Mann-Whitney U test). In d-f, box plots represent median ± 25th and 75th 

percentiles, whiskers at 1.5 times the interquartile range.
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Extended Data Figure 4. Functionality signature enrichments of developmentally dynamic 
lncRNAs.
a, Fraction of developmentally dynamic human lncRNAs (n = 5,887) for different genomic 

classes. Overrepresented classes were determined by comparing the fraction of dynamic 

lncRNAs in each class against all other classes. b, Normalized density distribution of the 

distance to the nearest protein-coding gene for dynamic (n = 5,887) and non-dynamic (n = 

25,791) human lncRNAs. c, Generation of expression-matched dynamic (n = 2,906) and 

non-dynamic lncRNAs (n = 3,098) and their distribution among genomic classes. d, Fraction 
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of developmentally dynamic human lncRNAs among isoforms with an increasing number of 

exons. The number of exons is significantly higher for developmentally dynamic lncRNAs 

(P = 2.2 x 10-16, two-sided Mann-Whitney U test). e, Fraction of human lncRNAs that are 

intergenic, developmentally dynamic and that do not overlap enhancers25 (n = 16,481) 

among different age groups. f, Fraction of developmentally dynamic genes across 

expression-matched (n = 6,004) human lncRNAs of different age groups (top) and 

functionally characterized lncRNAs27 (bottom). g, Generation of expression-matched, lowly 

expressed (0.25-0.75 RPKM) dynamic (n = 798) and non-dynamic (n = 717) human 

lncRNAs and their distribution across different age groups. h, Fraction of developmentally 

dynamic human lncRNAs (n = 5,887) with or without a mouse (dynamic or not) ortholog (P 
= 2.2 x 10-16, hypergeometric test). i, Similarity of spatiotemporal expression (Spearman’s 

correlation coefficient between human and mouse organs/developmental stages) for 1:1 

orthologs. j, Expression similarity across matched organs and developmental stages for 

mouse and rat 1:1 orthologous lncRNAs that are dynamic in both species, for different 

evolutionary ages. k, Fraction of lncRNAs present in the CRISPRi screen library21 resulting 

in a significant growth phenotype (hits) in at least one cell line for lncRNAs present (n = 

2,364) or absent (n = 14,037) in our annotation and dynamic (n = 1,093) or non-dynamic (n 

= 1,277). l, Fraction of lncRNAs present in the CRISPRi screen library21 resulting in a 

significant growth phenotype (hits) in expression-matched dynamic (n = 2,906) and non-

dynamic lncRNAs (n = 3,098). In c, g, h-j and l, box plots represent median ± 25th and 75th 

percentiles, whiskers at 1.5 times the interquartile range. In a-l, statistical tests are two-

sided.
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Extended Data Figure 5. Transcriptional regulation of dynamic lncRNAs in mouse.
a, Fraction of promoters of protein-coding genes, dynamic and non-dynamic lncRNAs, and 

size-matched random intergenic regions that overlap with binding sites for TFs. Each data 

point corresponds to a TF (n = 355). Box plots represent median ± 25th and 75th percentiles, 

whiskers at 1.5 times the interquartile range. b, Selection of the 50 TFs with the highest 

binding variability across promoters of lncRNAs dynamic in different organs (in blue). TFs 

with maximum binding frequency ≤ 0.05 (red line) were not considered, as their high 

variability is likely associated with a low binding frequency. c, Spatiotemporal expression 
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patterns of the 50 most variable TFs in mouse. The heatmap is clustered by rows and shows 

expression levels in counts (after variance-stabilizing transformation).
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Extended Data Figure 6. Patterns of lncRNA expression in mammalian development.
a, Number of differentially expressed protein-coding genes and dynamic lncRNAs between 

adjacent stages of organ development in human, rat, rabbit, opossum and chicken. b, 
Number of differentially expressed ‘isolated intergenic’ (> 100 kb from the closest protein-

coding-gene) dynamic lncRNAs between adjacent stages during mouse development.
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Extended Data Figure 7. Clustering of dynamic lncRNAs based on developmental trajectories.
Clusters of developmentally dynamic lncRNAs and protein-coding genes across mouse 

organs (brain = 14,629 genes; cerebellum = 13,166; heart = 12,382; kidney = 14,634; liver = 

13,888; ovary = 12,694; testis = 13,749). Gray lines represent individual gene trajectories 

and solid lines posterior mean trajectories for each cluster. Clusters are arranged by 

decreasing fraction of lncRNAs. Enriched representative biological processes (Benjamini-

Hochberg adjusted P < 0.05, hypergeometric test) are shown for each cluster.
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Extended Data Figure 8. Characteristics of dynamic lncRNAs expressed in different 
developmental stages.
a, Expression similarity between human and mouse 1:1 orthologous protein-coding genes (n 

= 16,078), developmentally dynamic (n = 281) and non-dynamic (n = 1,386) lncRNAs 

across organs/developmental stages. Each point corresponds to the Spearman’s correlation 

coefficient of expression between human and mouse orthologs for matching samples. Lines 

and the 95% confidence interval (shaded regions) correspond to linear model predictions. 

Spearman’s correlation coefficients between expression similarity and developmental stage 

are given for each comparison (*P < 0.05, **P < 0.01, ***P < 0.001). b, Expression 

similarity between dynamic human and mouse orthologous lncRNAs from a, summarized by 

organ (*P < 0.05, **P < 0.01, ***P < 0.001, two-sided Mann-Whitney U test). c, Fraction of 

conserved (≥ 80 Mya) dynamic lncRNAs expressed in each mouse organ during 

development (*P < 0.05, **P < 0.01, ***P < 0.001, two-sided Mann-Whitney U test; the 
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color signifies the focal organ for each comparison). d, Tissue-specificity for mouse 

lncRNAs with different developmental trajectories. e, Fraction of human lncRNAs with 

different developmental trajectories among functionally characterized lncRNAs27 (n = 59) 

and f, CRISPRi growth screen hits21 (n = 98). g, Fraction of late-expressed dynamic (n = 

2,956) and non-dynamic lncRNAs (n = 25,791) for different age groups and functionally 

characterized27 human lncRNAs. In b-d, box plots represent median ± 25th and 75th 

percentiles, whiskers at 1.5 times the interquartile range. In a-g, the statistical tests are two-

sided.
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Extended Data Figure 9. Co-expression of dynamic lncRNAs with adjacent protein-coding genes.
a, Normalized density distribution of Pearson’s correlation coefficients (r) of spatiotemporal 

gene expression between adjacent paralogous (human = 267; mouse = 263) and non-

paralogous (human = 3,359; mouse = 3,382) mRNA-mRNA pairs. b, Number of paralogous 

(human = 267; mouse = 263) and non-paralogous (human = 3,359; mouse = 3,382) adjacent 

mRNA-mRNA pairs detected as co-expressed above a range of Pearson’s r cutoffs. c, 
Relationship between distance and Pearson’s correlation of expression for lncRNA-mRNA 

(human = 4,881; mouse = 4,722) and mRNA-mRNA (human = 3,359; mouse = 3,382) pairs. 
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Lines were estimated through loess regression and the 95% confidence interval is shown in 

gray. d, Distribution of Pearson’s r for lncRNA-mRNA and mRNA-mRNA pairs across 

different distance intervals. Box plots represent median ± 25th and 75th percentiles, 

whiskers at 1.5 times the interquartile range. e, Density distributions of Pearson’s r between 

a protein-coding gene and its nearest dynamic lncRNA (human=2,440; mouse=2,549) and 

protein-coding gene (human=1,606; mouse=1,777) after excluding antisense and divergently 

transcribed lncRNAs. f, Enriched biological processes among human protein-coding genes 

with significantly higher expression correlations with their adjacent dynamic lncRNA than 

with the control protein-coding gene (n=358; Benjamini-Hochberg adjusted P < 0.01, 

hypergeometric test; data for mouse in Fig. 4b). In a-f, statistical tests are two-sided.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. lncRNAs expressed during mammalian organ development.
a, Schematic representation of the dataset. b, Phylogenetic distribution of 1:1 orthologous 

lncRNA families (branches) and species-specific lncRNAs (leaves). c, Overlap with 

Ensembl v92 annotations.
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Figure 2. Developmentally dynamic lncRNAs are enriched for functional loci.
a, Number of non-dynamic and dynamic lncRNAs identified in each species. The box plots 

summarize the variability in the size of the repertoires across species (n = 7). b, Density 

distribution of transcript length for non-dynamic (n = 25,791) and dynamic human lncRNAs 

(n = 5,887). c, Fraction of dynamic loci for human lncRNAs of different evolutionary ages 

(top), functionally characterized lncRNAs27 and protein-coding genes (bottom; **P < 0.01, 

***P < 0.001). d, Similarity of spatiotemporal expression (Spearman’s correlation 

coefficient between human and mouse organs/developmental stages) for 1:1 orthologs 

(dynamic lncRNAs = 281, protein-coding genes = 16,078). e, Fraction of a CRISPRi screen 

library21 resulting to a significant growth phenotype (“hit”) for non-dynamic (n = 1,277) 

and dynamic human lncRNAs (n = 1,093). f, Number of TF binding sites29 overlapping the 

promoters of protein-coding genes (n = 20,202), dynamic (n = 3,169) and non-dynamic 

lncRNAs (n = 11,818), and size-matched random intergenic regions (n = 20,202). g, 
Normalized TF binding frequency (heatmap) of the 50 TFs with the highest binding 

variability across organs. Rows and columns are hierarchically clustered. The row annotation 

depicts the organ of maximum expression for organ-specific TFs. In a, d and f, box plots 

represent median ± 25th and 75th percentiles, whiskers at 1.5 times the interquartile range. 

In a-f, statistical tests are two-sided.
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Figure 3. Patterns of dynamic lncRNA expression.
a, Number of differentially expressed (DE) protein-coding genes and dynamic lncRNAs 

between adjacent developmental stages (additional species in Extended Data Fig. 6a). b, 
Number of dynamic lncRNAs (n = 5,622) expressed and c, fraction of those conserved 

(evolutionary age ≥ 80 million years), during mouse organ development. Lines estimated 

through loess regression; 95% confidence interval shown in gray. d, Tissue-specificity of 

lncRNAs with different developmental trajectories. Box plots represent median ± 25th and 

75th percentiles, whiskers at 1.5 times the interquartile range. e, Proportions of lncRNAs 

with different developmental trajectories among functionally characterized lncRNAs27 (n = 

59) and f, CRISPRi growth screen hits21 (n = 98). Data for the remaining organs in 

Extended Data Fig. 8. In c-e, statistical tests are two-sided.

Sarropoulos et al. Page 36

Nature. Author manuscript; available in PMC 2019 December 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 4. Co-expression with adjacent protein-coding genes.
a, Density distributions of the Pearson correlation coefficients between a protein-coding 

gene and its nearest dynamic lncRNA (n = 4,722) and protein-coding gene (control; n = 

3,382). b, Enriched biological processes among protein-coding genes with significantly 

higher expression correlation with their adjacent dynamic lncRNA than with the control 

protein-coding gene (n = 449; Benjamini-Hochberg adjusted P < 0.01, hypergeometric test). 

c, Fraction of positionally-conserved lncRNAs (pcRNAs)33 among all lncRNAs (n = 

31,678), developmentally dynamic lncRNAs (n = 5,887) and lncRNAs co-expressed with 

their adjacent protein-coding genes (n = 411). d, Overlap between human and mouse 

protein-coding genes that have a significantly higher expression correlation (Pearson’s r) 
with their adjacent dynamic lncRNA than with the control protein-coding gene. In a-c, 
statistical tests are two-sided.
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