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Abstract

The cohabitation of Drosophila melanogaster with humans is nearly ubiquitous. Though it has been well established that this fly

species originated in sub-Saharan Africa, and only recently has spread globally, many details of its swift expansion remain unclear.

Elucidating the demographic history of D. melanogaster provides a unique opportunity to investigate how human movement might

have impacted patterns of genetic diversity in a commensal species, as well as providing neutral null models for studies aimed at

identifying genomic signatures of local adaptation. Here, we use whole-genome data from five populations (Africa, North America,

Europe, Central Asia, and the South Pacific) to carry out demographic inferences, with particular attention to the inclusion of

migration and admixture. We demonstrate the importance of these parameters for model fitting and show that how previous

estimates of divergence times are likely to be significantly underestimated as a result of not including them. Finally, we discuss how

human movement along early shipping routes might have shaped the present-day population structure of D. melanogaster.
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Introduction

Drosophila melanogaster is a pre-eminent genetic and evolu-

tionary model. The species originated in sub-Saharan Africa,

and only recently expanded its range to inhabit diverse hab-

itats around the globe. At some point early in the species’

history, D. melanogaster evolved to be a human commensal

(David and Capy 1988; Lachaise et al. 1988). Its recent global

expansion and well-documented large population sizes have

implied a capacity to quickly adapt to local ecological condi-

tions. These insights, together with powerful functional ge-

nomic and genetic tools available for D. melanogaster,

position it as a compelling model species with which to study

the molecular mechanisms and evolutionary processes of

range expansion and local adaptation. Foundational to under-

standing recent adaptive differences between populations of

D. melanogaster is an understanding of its recent demo-

graphic history.

Past surveys of genetic diversity have placed the origin of

D. melanogaster in sub-Saharan Africa (Begun and Aquadro

1993; Lachaise and Silvain 2004), and more recent African

sampling has begun to illuminate an increasingly fine-scale

understanding of its genetic variation over the continent

(Pool et al. 2012). The common understanding is that D.

melanogaster began to expand north in concert with the re-

cession of the last ice age (David and Capy 1988; Li and

Stephan 2006), resulting in a single “out-of-Africa” popula-

tion bottleneck, possibly in concert with human dispersal

(Henn et al. 2012). Current estimates place this divergence

between African and European lineages at 12–19,000 years

ago (assuming ten generations per year), though its severity

and timing have been topics of debate (Thornton and

Andolfatto 2006; Stephan and Li 2007). There was an initial

conjecture based on elevated phenotypic divergence that

some Asian populations might pose an exception, possibly

having an older independent colonization unrelated to human

movement (referred to as an ancient “Far Eastern race”;

David et al. 1976; Lemeunier et al. 1986; David and Capy

1988). However, subsequent modeling using Southeast

Asian samples (Kuala Lumpur) was unable to identify genetic

signatures of such a scenario (Laurent et al. 2011). As a result,
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the factors underlying the morphological characteristics of

Asian subpopulations have remained enigmatic.

Although genome-wide approaches to identify and esti-

mate admixture between populations of D. melanogaster

have been expanding (Kao et al. 2015; Bergland et al.

2016), demographic models for non-African populations

have been limited to three general locales: the aforemen-

tioned Southeast Asian sample (Laurent et al. 2011), a

North American sample (Duchen et al. 2013), and a

European sample (the Netherlands [Li and Stephan 2006]).

Estimates from these analyses have supported a single out-

of-Africa event for Eurasian populations (12,000–19,000 ya;

Li and Stephan 2006; Laurent et al. 2011; Duchen et al. 2013)

associated with a severe bottleneck. They have additionally

provided extant and ancestral population size estimates,

which indicate a recent population expansion.

Together, these previous analyses have provided an initial

understanding of the divergence patterns, the existence of

admixture, and changes in population size among D. mela-

nogaster populations. However, from the perspective of de-

mographic parameterization, these efforts have been limited

by small sample sizes and by the scope of model parameters

that were investigated. For example, many of the previous

data sets used for demographic modeling relied primarily on

a small number of X-linked polymerase chain reaction-ampli-

fied fragments. Additionally, aside from the admixture esti-

mate provided by Duchen et al. (2013), most of the previous

demographic models have not included gene flow between

populations (i.e., migration and admixture).

Here, we present an analysis of the population structure

and demographic history inferred from autosomal polymor-

phism in the Global Diversity Lines (GDLs) (Grenier et al.

2015). The GDL provide high-quality, validated and uniformly

generated genome-wide samples from five geographically di-

verse D. melanogaster populations: Africa, North America,

Europe, Asia, and the South Pacific (fig. 1A) . We first show

that the African and Asian populations are the most diverged

among pair-wise comparisons, with the remaining three pop-

ulations closely related to each other (including the physically

distant Tasmanian sample). We then fit demographic models

to these populations and demonstrate that the inclusion of

gene flow, by long-term migration and by more recent ad-

mixture, provides critical improvements to the model fits and

yields earlier divergence times. We discuss these results in light

of several open questions, including the age and severity of

the out-of-Africa bottleneck, the “European-like” south

Pacific samples, as well as the implications these models

have for inferences of natural selection.

Materials and Methods

Single Nucleotide Polymorphism Data Set

The single nucleotide polymorphism (SNP) data used for this

study originated from the GDLs (Grenier et al. 2015), a

collection of 84 lines that were derived from five world pop-

ulations: Beijing, China (15), Ithaca, USA (19), the Netherlands

(19), Tasmania (18), and Zimbabwe (13). GDLs were inbred

for 12 generations and are largely homozygous, the exception

being regions associated with inversions harboring lethal

alleles that could not be made homozygous by inbreeding

(Grenier et al. 2015). GDLs were fully sequenced to an aver-

age depth of 12.5� per line, and independent SNP validation

was carried out demonstrating very high-quality calls. These

data are publicly available (SRA study SRP050151). We ap-

plied the IBD and callability masks to the SNP calls, as de-

scribed (Grenier et al. 2015). SNPs were limited to

autosomes (excluding chromosome 4) and only small intronic

(positions 32–65 bp) and 4-fold degenerate positions were

used based on genomic annotations generated using

SNPeff (Cingolani et al. 2012) and D. melanogaster’s r5.57

genome assembly (Grenier et al. 2015). This subset of the full

GDLs was outputted into VCF files (supplementary 1 file,

Supplementary Material online) using vcftools (v0.1.11;

Danecek et al. 2011). For calculating summary statistics, we

treated our data sets as haploid by randomly selecting one of

two alleles across heterozygous sites (within the heterozygous

blocks). Missing SNP genotypes were imputed based on the

population-specific allele frequency of the site. SNP diversity

estimates generated using vcftools (v0.1.11; Danecek et al.

2011). Divergence statistics were based on the alignment of

the GDL SNPs to D. melanogaster (dm3), Drosophila simulans

(droSim2), Drosophila sechellia (droSec1), Drosophila erecta

(droEre2), and Drosophila yakuba (droYak2).

Given that we had access to high-quality alignments and

posterior probabilities assigned to ancestral states for most our

SNP data set (Grenier et al. 2015), we initially aimed to use the

unfolded site frequency spectrum (SFS) for our demographic

inferences. However, as errors in polarization can greatly im-

pact the high- and low-frequency bins of the SFS (and can

thus result in model misestimation), we provided additional

analyses of the ancestral state calls. To do this, we used the

SNP-dense ancestral-like Zimbabwe data set. Summarizing a

large subset of all posterior probabilities indicated that nearly

all ancestral calls were above 0.75, with a vast majority>0.95

(supplementary fig. 3A, Supplementary Material online). One

option to guard against mispolarization would have been to

use SNPs above an arbitrary allele frequency threshold. We

thus extracted all SNPs with a posterior probability �0.95

and plotted these values as a function of frequency class (sup-

plementary fig. 3B, Supplementary Material online). We ob-

served a steady decline across the frequency bins, with a

notable drop for SNPs at frequencies �0.9. We hypothesize

that this decline is attributable to positions hit by more than a

single mutation (a violation of the infinite site assumption) as

well as to incomplete lineage sorting. To guard against this

subtle but impactful bias, we chose to carry out all of our

analyses with the folded SFS. Furthermore, recent simulation

results indicate that fastsimcoal2 can correctly identify the
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intensity and direction of gene flow using a folded site fre-

quency spectrum (Gollner et al. 2016). In cases where unfold-

ing the SFS is required, correcting erroneous ancestral state

calls can be done following the methods of Hernandez et al.

(2007) or Keightley and Jackson (2018).

Data Processing and Demographic Inferences

@a@i (Gutenkunst et al. 2009) was used to generate input files

and summary statistics for fastsimcoal2 (v2.5.2.21) (Excoffier

and Foll 2011; Excoffier et al. 2013). VCF files were converted

to @a@i-formatted files using our vcf2dadi_GDL_

Neutral_Class.py script (https://gitlab.com/roman.arguello/

GDL_demo; last accessed February 28, 2019). To inspect

the unfolded SFS, we appended ancestral state calls to the

@a@i-formatted file using the input_GDLancestral_

GDLstates.pl script (https://gitlab.com/roman.arguello/GDL_

demo; last accessed February 28, 2019). For each population,

we generated SFS based on the sample size that maximized

the number of SNPs by using @a@i’s “projection” function

within the *pop_Srange.py scripts (supplementary table 3,

Supplementary Material online; https://gitlab.com/roman.

arguello/GDL_demo; last accessed February 28, 2019). SFS

data sets were outputted by @a@i, and the fastsimcoal2

header was manually added. Demographic parameter infer-

ences were calculated with the maximum likelihood frame-

work implemented in fastsimcoal2 (v2.5.2.21; Excoffier and

Foll 2011; Excoffier et al. 2013). For each model, we ran 50

replicates, each with 100,000 simulations and 40 expecta-

tion–maximization cycles. Model choice was carried out by

calculating the Akaike’s weight of evidence based on the

natural logarithm-transformed maximum likelihood output-

ted for each model (Johnson and Omland 2004; Excoffier

et al. 2013). The complete output and scripts are available

within the supplementary 2 file, Supplementary Material on-

line. Within this zipped file are individual directories for all of

the models contained in supplementary table 2,

Supplementary Material online, and “best_paramater” files

that additionally summarize the parameters outputted over

all of replicates.

Predictive Simulations

Coalescent simulations were generated using fastsimcoal2

(v2.5.2.21) (Excoffier and Foll 2011; Excoffier et al. 2013).

FIG. 1.—Overview and clustering of the data. (A) Sampling locales included in the GDLs. (B) Population differentiation as measured by genome-wide FST

within a pair-wise network. Thickness of the lines connecting pairs of populations indicate FST measured between them. (C) Summary statistics for genome-

wide SNP data (TajD¼ Tajima’s D; polymorphism¼ average number of nucleotide differences per site, p [Nei and Li 1979], Poly/Div¼p/divergence, where

divergence was measured as the average number of nucleotide substitutions per site between the Drosophila melanogaster and Drosophila simulans;

modified from Grenier et al. [2015]). (D) Genetic clustering of “neutral” autosomal SNPs by Discriminant Analysis of Principal Components (Jombart 2008;

Jombart and Ahmed 2011).
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For each model, we simulated 1,000 data sets under the

parameters that generated the maximum likelihood for the

best fitting model (see above). Summary statistics and the

folded SFS were calculated from these simulations using @a@i

within our predictor*.py scripts (supplementary 3 file,

Supplementary Material online). The outputted data were

then plotted with the scripts found in R files:

1pop_pred_sims.Rmd, 3pop_BNZ_pred_sims.Rmd, 3pop_

NIZ_pred_sims.Rmd, and 3pop_NTZ_pred_sims.Rmd (https://

gitlab.com/roman.arguello/GDL_demo; last accessed

February 28, 2019). The complete input, output, and code

for these simulations are available within the supplementary 3

file, Supplementary Material online.

Confidence Intervals

Confidence intervals (CIs) were calculated for all parameters

of the four best models (dro03, dro17, NIZ03, and dro21, see

also supplementary table 2, Supplementary Material online).

We used each of these demographic models, together with

their respective estimated parameters, to generate 100 simu-

lated data sets each consisting of 25,000 fragment of 100 bp.

The mutation and recombination rates were set to 1.39 �
10�9 and 1 � 10�8, respectively. We re-estimated demo-

graphic parameters for each of the simulated data sets using

the same procedure as was applied to the observed data

(above) and constructed the CIs as the 0.025 and 0.975 quan-

tiles of the distributions obtained from 100 re-estimated pa-

rameter values. The complete output and scripts are available

within the zipped supplementary 4 file, Supplementary

Material online.

Population Clustering

To investigate the genetic clustering of individual lines with

respect to their geographic origins, we applied Discriminant

Analysis of Principal Components implemented within the R

(v3.4.1) package adegenet (v1.4-2; Jombart 2008; Jombart

and Ahmed 2011). The VCF-formatted data file (above) was

converted to adegenet-formatted data using the

“VCF_2_adegenet_snp_format.pl” script. The R markdown

file with the analysis scripts (DAPC_GDL_

autosomal_neutral_SNPs.Rmd) is available (https://gitlab.com/

roman.arguello/GDL_demo; last accessed February 28, 2019).

Shipping Route Data

To visualize early European shipping routes, we used data

available for the years 1662–1855 from the CLIWOC

Database 2.1 (A Climatological Database for the World’s

Oceans; Garc�ıa-Herrera 2007). The IMMA-formatted data

file was converted to a csv file and plotted with a script

with R (v3.4.1) script plot_CLIWOC21.Rmd file (https://

gitlab.com/roman.arguello/GDL_demo; last accessed

February 28, 2019).

Results

Population Structure of the GDL

Though D. melanogaster has colonized much of the globe,

population genetic surveys have demonstrated that individuals

from even distant locales regularly display low to intermediate

levels of population differentiation (Caracristi and Schlötterer

2003; Dieringer et al. 2005; Turner et al. 2008; Pool et al.

2012). Consistent with these previous observations, the five

GDL populations also display relatively low levels of population

differentiation, with genome-wide pair-wise FST ranging from

0.027 to 0.086 (fig. 1B; see also Grenier et al. 2015). In addi-

tion to genetic differentiation, there are notable differences

among geographic populations in population genetic sum-

mary statistics (fig. 1C; see also Grenier et al. 2015), including

a significant reduction in nucleotide diversity among all non-

African populations (Begun and Aquadro 1993), a pattern

consistent with D. melanogaster’s range expansion subse-

quent to its southern African origin (Stephan and Li 2007).

Given the relatively low genetic differentiation, particularly

between the non-African lineages, we initially asked to what

extent these populations could be defined as distinct clusters.

To examine this, we quantified the probability that individuals

from a given population could be correctly assigned to its

geographic sampling locale using Discriminant Analysis of

Principal Components (DAPC; Jombart et al. 2010). Our anal-

yses were carried out on �167,000 small intronic and 4-fold

degenerate autosomal SNPs, which were chosen to minimize

the impact of nonneutral evolutionary forces on these (and

subsequent) analyses (Parsch et al. 2010; Lange and Pool

2018; see Materials and Methods). This data set clustered

strongly by sample locale, with the posterior probabilities of

the assignability of each fly line to its geographic label being

unambiguous (posterior probabilities nearly 100% for all sam-

ples; fig. 1D; supplementary table 1, Supplementary Material

online).

As expected based on genome-wide FST, Zimbabwe is

the most differentiated among pair-wise comparisons, fol-

lowed by Beijing (fig. 1D). The increased divergence be-

tween our Asian samples and the other three derived

populations adds to previous observations that Northern

Asia samples display some of the most differentiated

D. melanogaster lineages outside of Africa (Schlötterer

et al. 2006; Laurent et al. 2011). Additionally, the clustering

of the Tasmanian samples with the North American and

European samples affirms the close genetic relationship

that this S. Pacific population has with the latter, an obser-

vation that was previously reported using an independent

genomic data set (Bergland et al. 2016).

Together, these initial analyses indicate that, despite the

modest genetic differentiation among the five GDL popula-

tions, they display sufficient genetic divergence to enable cor-

rect assignment of individual samples to their geographic

locality. The population clustering among the GDL, along
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with previous analyses of other D. melanogaster samples

(Duchen et al. 2013; Kao et al. 2015; Bergland et al. 2016),

does not suggest isolation-by-distance, raising questions

about the demographic models that could account for these

more complicated historical genetic patterns. Among these

questions are what models are capable of explaining the ele-

vated Beijing divergence, and how might past gene flow have

impacted Tasmania’s relationship with samples from North

America and Europe?

Demographic Inference: The Population Expansion Signal
in the Zimbabwe Population

We chose to start our demographic inference by identifying

the best 1-population model for the African sample because

this population is central to all subsequent more complex

models. Using the same set of �167,000 autosomal SNPs,

we carried out model choice among three models that have

previously been investigated: steady state, expansion, and a

bottleneck model (Li and Stephan 2006; Thornton and

Andolfatto 2006; Duchen et al. 2013; Ragsdale and

Gutenkunst 2017). The estimates for the bottleneck model

effectively yield a population size expansion similar to the one

estimated for the expansion model (the expansion model was

parameterized to be nested in the bottleneck model). Thus,

owing to a smaller number of parameters, the expansion

model was identified as our best model for the African pop-

ulation (fig. 2A). Similar results were obtained by Ragsdale

and Gutenkunst (Ragsdale and Gutenkunst 2017). The ances-

tral African population size was estimated to be �1,900,000

(1,907,055–1,980,494) individuals, with the expansion hav-

ing a relative increase in size (Nancestral/Npresent) of 0.48 (0.46–

0.51) beginning�99,000 ya (86,779–122,664, assuming ten

generations per year; fig. 1B). This estimate places the expan-

sion �1.5–2.5 times earlier than the previous estimates of

37,300 and 60,000 ya (figs. 2, 4A, and B; Li and Stephan

2006; Laurent et al. 2011).

Demographic Inference: Three Population Models

Having clarified the ancestral-like Zimbabwe population ex-

pansion, we next aimed to infer models for the samples that

were collected from the regions more recently colonized (con-

ditioning on the ancestral African expansion, above). We

were particularly interested in the extent to which gene

flow through past migration and more recent admixture

has contributed to patterns of genetic diversity. These esti-

mates have largely been excluded from previous inference

FIG. 2.—Single population demographic inferences. (A) Schematic of the single population demographic model. (B) Table of estimates [for] the single

population model. Symbols indicate the following: Ne ¼ effective population size, Tgrowth ¼ time of population growth measured in number of generation

(assuming ten generation per year). (C) Comparison of estimated and predictive simulation values that were calculated under the best fitting population

expansion (nucleotide diversity [p], Tajima’s D [D; Tajima 1989], and the nucleotide SFS). Black vertical lines on the simulated SFS bars indicate the 95% CIs.
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work, and we hypothesized that if their inclusion provided

improved fits to the data then most of the existing demo-

graphic estimates would be significantly impacted. In partic-

ular, the split-times of these populations will have likely been

underestimated.

We examined three sets of models involving the samples

from the more recently colonized localities. Each of the three

sets used the Zimbabwe and the Netherlands data sets (ab-

breviated as Z and N, respectively) but differed by the inclusion

of Tasmania, Beijing, or Ithaca (abbreviated as T, B, or I, re-

spectively). Eighteen models were examined in total (supple-

mentary fig. 1 and supplementary table 2, Supplementary

Material online). The motivation for this approach was to

keep our models relatively tractable while also facilitating

comparisons between several previous demographic analyses

that used 1) African–European–North American trio of data

sets and 2) African–European–Asian trio of data sets (Laurent

et al. 2011; Duchen et al. 2013) (see Discussion). The South

FIG. 3.—Best fitting 3-population models and their parameter estimates. (A) Schematics for the three best fitting 3-population models. Width of the

population branches suggest population sizes (not to scale); arrows indicate direction of migration forward in time, with their sizes suggesting relative rates

(not to scale). (B) Parameter estimates for the corresponding best fitting models and their 95% CI ranges. Symbols indicate the following: Ne ¼ effective

population size, 2Nm ¼ scaled migration rate forward in time, Tsplit ¼ population split-time measured in number of generations (ten generation per year),

Tgrowth ¼ time of population growth measured in number of generations (ten generation per year), and A ¼ admixture proportion.
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Pacific sample provides a novel population data set for demo-

graphic inferences. For the models involving Tasmania and

Ithaca samples, we constrained the divergence times to be

no older than the start of European seafaring exploration, as

was done previously (Duchen et al. 2013).

D. melanogaster Experienced a Single Out-of-Africa Event

Among the three 3-population models tested, we found no

evidence for additional out-of-Africa colonization events.

Indeed, multiple models in which the Asian lineage indepen-

dently diverged prior to the European lineage provided lower

FIG. 4.—3-Population predictive simulations. Comparison of simulated values under the three best fitting 3-population models (from fig. 3A) to the

observed values: (nucleotide diversity [p] [Nei and Li 1979], Tajima’s D [D] [Tajima 1989], population differentiation [FST], and the nucleotide SFS). Population

names are abbreviated: B¼ Beijing; I¼ Ithaca; N¼ the Netherlands; T¼ Tasmania; and Z¼ Zimbabwe. Black vertical lines on the simulated SFS bars indicate

the 95% CIs.
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likelihoods than the serial founding model with gene flow

(supplementary fig. 1 and supplementary table 2,

Supplementary Material online). This latter result is important

because the previous Asian demographic modeling included

samples from Kuala Lumpur, a region that experienced sig-

nificant early European shipping activity and potentially differ-

ent histories from more isolated regions of Asia

(supplementary fig. 2, Supplementary Material online).

Instead, by using a north Asian sample located more distant

from maritime routes, our analyses indicate that all non-

African lineages are derived from the same out-of-Africa

event, consistent with previous claims (Baudry et al. 2004;

Laurent et al. 2011).

Migration and Admixture Are Crucial Historical Factors for
D. melanogaster

For each of the 3-population models, the inclusion of migra-

tion consistently provided significantly better fits to the data

than models without it (fig. 3A; see supplementary table 2,

Supplementary Material online, for comparisons). Generally,

migration was greatest between pairs of populations from the

Ithaca, Tasmania, and Zimbabwe populations, with the direc-

tion of migration usually asymmetric (fig. 3A and B). For ex-

ample, there was considerably more back migration into

Africa from European lineages (2Nm ranged from 3.87 to

72.61 vs. 0.09 to 2.90 for the opposite direction), as well as

higher rates from European gene pools to the S. Pacific (2Nm

¼ 107.70 vs. 24.40; see fig. 3B for all estimates and CIs).

Notably, migration was inferred to be overall lower for the

best-fitting model involving the Beijing population.

In addition to migration, gene flow is expected to have also

impacted patterns of genetic diversity through recent admix-

ture. Admixture has been shown to occur among African D.

melanogaster populations (Pool et al. 2012), as well as grow-

ing evidence for it occurring among populations from similar

regions of the world that the GDL represent (Caracristi and

Schlötterer 2003; Duchen et al. 2013; Kao et al. 2015;

Bergland et al. 2016). Although the genetic signatures of ad-

mixture have been identified among these populations, other

than the modeling done by Duchen et al. (2013), demo-

graphic inferences that include these parameters have largely

been ignored (but see Corbett-Detig and Nielsen 2017;

Medina et al. 2018).

In line with the previous N. America–Africa estimate

(Duchen et al. 2013), we again estimated the African admix-

ture proportion to be 18% (16–23%). We additionally found

that admixture between Tasmania and Africa provided a bet-

ter fit compared with models without it, with the proportion

of African admixture estimated to be two times higher than

that seen between Africa and N. America (33% [29–39%];

fig. 3B). Intriguingly, the same admixture models tested with

the BNZ trio did not result in a better fit over the migration-

alone model (supplementary table 2, Supplementary Material

online). Therefore, along with the reduced migration rates for

the BNZ data set (above), these results highlight a second line

of evidence that gene flow experienced by the Asian lineage

has been significantly lower compared with the New World

samples (fig. 3B). They also provide key demographic infor-

mation that likely underlies the elevated population differen-

tiation observed for Beijing (as illustrated in the DAPC and by

FST values; fig. 1).

To determine how well our best-fitting models recapitulate

our observed data, we again carried out predictive simulations

under the maximum likelihood estimates for each of the best

3-population models. Overall, we observe good matches to

our SFS and summary statistics, particularly with respect to

diversity levels (fig. 4). However, the predictive simulations did

highlight aspects of these populations’ histories that we have

not captured in our current models. This is most readily ob-

served in the singleton and low-frequency class of the SFS

(and reflected in D), where our models result in both higher

and lower expectations within the Netherlands and

Tasmanian data sets. Additionally, these simulations predicted

lower FST values for the N–Z comparison, and higher FST values

for the T–Z comparison in the ZNT model. Likewise, in the case

of the NIZ model, they predicted higher FST values for the I–Z

comparison and slightly lower values for the N–Z comparison.

We suspect that these misspecifications arise primarily from

two sources. First, despite our efforts to enrich our SNP data

with neutral variants, it is likely that a subset of these variants

are linked to sites under selection (both negative and positive

selection). Second, we have focused on relatively simple mod-

els that aim to capture the predominant demographic fea-

tures of the species’ history; this simplistic approach likely

omits aspects of their histories that have important but

more subtle impacts on genetic diversity (see Discussion).

Overall however, these migration and admixture estimates

highlight the historical and ongoing importance that gene

flow has played in shaping global patterns of genetic diversity

within D. melanogaster.

Inclusion of Gene Flow Impacts Our Demographic
Understanding

It is well appreciated that gene flow between diverging pop-

ulations decreases the coalescence time for alleles drawn from

the distinct populations (Wakeley 2000). Estimates based on

models that omit past gene flow can therefore result in sig-

nificantly shallower population divergence times. As most of

the previous demographic work on D. melanogaster did not

include migration, it is of interest to examine how the inclu-

sion of these parameters impact the split-time of the popula-

tions. Previously, estimates for the out-of-Africa D.

melanogaster split-time/bottleneck has been estimated at

�12–19 ka (Li and Stephan 2006; Thornton and Andolfatto

2006; Laurent et al. 2011; Duchen et al. 2013). Though the

estimates obtained from models depended to some extent on
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the populations included in the analyses, all results indicate

that the split-time/bottleneck was likely to be at the upper end

of the previous estimates (19,000 ya), and most likely earlier:

INZ¼ 20,040 (7,243–24,345), NTZ¼ 26,021 (5,054–26,830),

BNZ¼ 66,208 (11,727–102,890) (fig. 3B). Additionally, com-

pared with the previous estimates for the Asian split-time

(Laurent et al. 2011) of �22,000 ya (3,409–31,235), we in-

ferred the event to have occurred much earlier, at �5,000 ya

(fig. 3B). For the North American split-time, Duchen et al.

(2013) constrained their models based on entomological sam-

pling records from the turn of the 19th century. We have

similarly constrained our NTZ and INZ models to have a

North American split-time to be � 500 ya (i.e., around the

European discovery of N. America).

Discussion

Geographically diverse population genomic data for D. mela-

nogaster provide unique opportunities to investigate the his-

torical processes experienced by a human commensal insect,

as well helping to establishing neutral expectations for genetic

diversity upon which tests of selection can be based.

Benefiting from significantly expanded genomic data sets

compared with earlier D. melanogaster demographic studies,

as well as an expanded set of populations (Grenier et al.

2015), our results demonstrate a central role for both ancient

migration and more recent admixture. However, the degree

to which populations experienced gene flow varied. Most

prominently, the European (the Netherlands) and New

World samples (Ithaca and Tasmania) were inferred to have

experienced recent admixture, a historical feature not sup-

ported for the Asian sample (Beijing). Additionally, except

for the Asia-to-Europe migration, the overall estimate of

gene flow was reduced for the Asian population (fig. 2B; sup-

plementary table 2, Supplementary Material online). In light of

the gene flow inferred for INZ and NTZ, the BNZ model helps

inform previous reports of elevated genetic and phenotypic

divergence of Asian populations of D. melanogaster (Lachaise

et al. 1988; Schlötterer et al. 2006; Laurent et al. 2011;

Scheitz et al. 2013). It suggests a scenario in which increased

divergence has been promoted through a relative reduction

of both ancient and recent gene flow, and not an earlier

independent colonization. Though direct evidence is lacking,

these patterns of genetic diversity are consistent with expect-

ations based on early ocean-based human exploration, which

likely accelerated D. melanogaster’s global colonization. In

particular, the stronger connection between Europe, N.

America, and the S. Pacific provided by European exploration

and shipping routes (supplementary fig. 2, Supplementary

Material online) compared with Asia would be consistent

with increased opportunity for recent admixture. It also pro-

vides an explanation for the close genetic relationships be-

tween the physically distant Tasmanian and N. American–

European populations (fig. 1B and D).

The inclusion of gene flow in the D. melanogaster mod-

els has had the greatest impact on the population split-time

estimates for the European and Asian populations.

Previous studies had indicated that the European–African

split and the Asia–Africa split were comparable, having

occurred around 12–15,000 ya (Li and Stephan 2006;

Laurent et al. 2011). The CIs of our estimates are partially

overlapping with the CIs of previous estimates but, as

expected, indicate older divergence times with MLEs

>20,000 ya for both population spit times. These results

suggest that D. melanogaster was likely expanding its

northern range before the end of the last glacial period

(�12,000 ya). We emphasize that this estimate is not

equivalent to the timing of the colonization of Europe

and Asia, but rather places the lineages from these locales

within the subpopulation that had begun to separate from

the ancestral sub-Saharan population. A recent study by

Kapopoulou et al. (2018) estimated an ancient divergence

between west and southern African populations (Zambia)

�72,000 years. It remains to be investigated from which of

these two populations the European lineages have likely

diverged and whether the population size expansion and

these early population divergences have or have not been

influenced by the demography of human populations.

To our knowledge, these models provide the most com-

prehensive demographic estimates for D. melanogaster

populations to date. As a result, these estimates provide

updated parameters that can be used to establish null

expectations for studies of selection designed to identify

loci involved in population-specific adaptation. Although

the GDL have previously been used to examine population

differences in targeted classes of genes and gene families

(Arguello et al. 2016; Cardoso-Moreira et al. 2016; Early

et al. 2017 ), these models should broaden the capacity to

test for local adaptation and for quantifying rates of

change among populations. Additionally, we expect that

the parameter estimates derived from these models can

help to inform patterns of genetic diversity that will be

ascertained in several large-scale ongoing (and future) D.

melanogaster sequencing efforts in North America,

Europe, and elsewhere (Kapun et al. 2018).

The approach that we have used to infer demography

for these populations has assumed that the genetic varia-

tion is neutral. Our effort to reduce the GDL data set to the

most “neutral-like” SNP set has been to analyze only small

intronic and 4-fold degenerate SNPs (Parsch et al. 2010).

However, the compactness of the D. melanogaster’s ge-

nome, combined with its large Ne, does raise concern over

potential biases introduced if some portion of these sites

are linked to regions under selection. We suspect that

some of our model misspecifications that were illustrated

in our predictive simulations (fig. 4) could in part be

explained by linked selection. Further distilling the D. mel-

anogaster SNP data set to neutral variants would likely
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require additional information on population-specific

regions under selection as well as population-specific re-

combination rates across the genome, which are known to

vary among individuals (Comeron 2014). How selection is

biasing our inferences is difficult to assess because the

specificities of our modeling approach are also likely to

have an impact; though we have considered a relatively

broad collection of models, they still remain simple despite

having a rich parameter space. Lending additional confi-

dence [to our study] is evidence that selection may have

relatively less impact on biasing parameters for recent de-

mographic events (such as we focus on here) than for more

ancient events when using “neutral-like” data sets (Lange

and Pool 2018).

Our aim to minimize the effect of selection on our demo-

graphic inferences led us to exclude sex chromosomes,

which carry genetic signals of nonneutral processes including

sex-specific variation in reproductive success, sex-biased dis-

persion, and elevated rates of positive selection (Caballero

1995; Charlesworth 2001; Pool and Nielsen 2007; Ellegren

2009; Meisel and Connallon 2013; Charlesworth et al.

2018). We did observe considerably more population sepa-

ration within X-chromosome DAPC analyses (data not

shown), consistent with diversity estimates and theory (Pool

and Nielsen 2007; Grenier et al. 2015). Our autosome-based

demographic inferences will provide valuable future compar-

isons to those based on X-linked variation. Will SNP data

from the X, for example, support the population split-times

and size changes consistent with the best autosomal models

provided here? Hinting at possible differences between these

genomic contexts, one previous demographic study using

polymorphism data from a highly recombining 2.1-Mb re-

gion of the X provided evidence for a more complex African

demographic scenario (Singh et al. 2013). Additionally,

autosomal-X comparisons may help tease apart demo-

graphic processes from selective events on the X.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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