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INTRODUCTION

All areas of health care stand to benefit from data sharing, but no 
group perhaps more so than patients with rare disorders affecting 
facial morphology and their families (Boycott et al., 2017). This 
paper presents the Minerva Initiative, a global initiative to enable 
integration of facial photographs and medical information 
across health care systems and for research. The purpose of this 
initiative is to empower global research into rare diseases through 
computational phenotyping from personally identifiable data.

New machine learning approaches hold great promise for 
transforming health care. By interrogating vast amounts of rich 
data, they can develop tools that empower clinical care. Making 
personal data available to researchers across the world raises a 
number of ethical, legal, data security, and societal challenges. 
Among the issues one must consider are the following: What 
is the scope for anonymization of data? How can the rights of 
individuals be protected in a rapidly changing digital world? 
How does one enable the potential positive benefits of data 
sharing? These require the development of new ways of working 
with, and securely sharing, identifiable data in a scalable and 
rigorous manner.

Below, we outline the Minerva Initiative—a research data 
resource (Minerva Image Resource—MIR) and an open 
research consortium (Minerva Consortium—MC), which has 
been set up to allow the sharing of identifiable patient data, 
such as facial photographs and collaborative research projects 
on rare diseases.

IMPROVING RARE DISEASE 
DIAGNOSTICS WITH DEEP PHENOTYPING

With the advances in clinical and research availability of next-
generation sequencing technologies in settings exemplified by 
initiatives such as the 100,000 genomes project (Caulfield et al., 
2017), the All of Us initiatives (“National Institutes of Health 
(NIH)—All of Us”, n.d.) and the Undiagnosed Diseases Network 
International (Taruscio et al., 2015; “UDNI”, n.d.), one could be 
forgiven for thinking that the problem of rare diseases has been 
largely solved. However, sequencing in clinical settings only aids 
diagnosis of about 50–60% of rare diseases (Boycott et al., 2017) 
(selection of patient population influences what this number 
means in practice), leaving a large group of undiagnosed patients.

We all carry de novo and rare variants predicted to have 
gene-damaging effects that could lead to the variant being 
interpreted as putatively pathogenic (MacArthur and Tyler-
Smith, 2010). Coming to the conclusion that a particular 
variant is disease contributing for a set of phenotypes is not 
trivial. There are a number of initiatives to collect information 
on patient phenotypes, gene, and variants in databases, such 
as DECIPHER (Wright et al., 2018), PhenomeCentral (Buske 
et al., 2015a), PhenoDB (Hamosh et al., 2013), GeneMatcher 
(Sobreira et al., 2015), IRUD (Adachi et al., 2017), KCCG Patient 
Archive (“Patient Archive”, n.d.), MyGene2 (“MyGene2—Home” 
2, n.d.), Human Disease Gene Website series (“Human Disease 
Genes”, n.d.), ClinVar (Landrum et al., 2016), and the Centers for 
Mendelian Genomics (Chong et al., 2015). Many of these resources 

Genetics Service and Murdoch Childrens Research Institute, The Royal Children’s Hospital, Parkville, VIC, Australia, 47 Northern 
& Yorkshire Cleft Lip and Palate Service, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom, 48 Department of 
Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States, 49 Department of Medical Genetics, 
University and University Hospital Antwerp, Antwerp, Belgium, 50 Center for Human Genetics, University Hospitals Leuven, 
University of Leuven, Leuven, Belgium, 51 Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of 
Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom

The clinical utility of computational phenotyping for both genetic and rare diseases is 
increasingly appreciated; however, its true potential is yet to be fully realized. Alongside 
the growing clinical and research availability of sequencing technologies, precise deep 
and scalable phenotyping is required to serve unmet need in genetic and rare diseases. 
To improve the lives of individuals affected with rare diseases through deep phenotyping, 
global big data interrogation is necessary to aid our understanding of disease biology, 
assist diagnosis, and develop targeted treatment strategies. This includes the application 
of cutting-edge machine learning methods to image data. As with most digital tools 
employed in health care, there are ethical and data governance challenges associated 
with using identifiable personal image data. There are also risks with failing to deliver 
on the patient benefits of these new technologies, the biggest of which is posed by 
data siloing. The Minerva Initiative has been designed to enable the public good of deep 
phenotyping while mitigating these ethical risks. Its open structure, enabling collaboration 
and data sharing between individuals, clinicians, researchers and private enterprise, is key 
for delivering precision public health.
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are connected as the Matchmaker Exchange (Philippakis et al., 
2015), via a common Application Program Interface (Buske et al., 
2015b), allowing researchers and clinicians to identify additional 
patients for novel disorders, and in some cases collect additional 
cases for known ones. However, as these resources grow, it is no 
longer safe to infer pathogenic causality just because a putative 
variant has been observed in another patient previously. As the 
number of variants of uncertain significance grows, it is expected 
that the rate of false-positive mutation matches will also increase 
(Dorschner et al., 2013; Akle et al., 2015; Krawitz et al., 2015). 
Consequently, the current approach to search disease databases 
for a mutation match might be insufficient to identify new 
pathogenic mutations. Patients with very different rare diseases 
are still likely to have rare mutation matches by random chance. 
Employing phenotype metrics could add additional power to 
DNA variant pathogenicity classifications and should feature in 
efforts to understand genomic variants in clinical settings, such 
as ClinGen (Rehm et al., 2015). Deep and objective phenotyping 
delivers an independent source of information that can contribute 
to inferences about disease-contributing associations (Bone et al., 
2016; Pena et al., 2018; Köhler et al., 2017; Robinson et al., 2015). 
If two patients share a variant of uncertain significance (VUS) 
and also have similar rare phenotypic manifestations, then the 
likelihood of the variant being disease contributing is much 
higher. Certainly, if the putative variants and the combination 
of clinical metrics are both rare, then the chance of randomly 
encountering the same combination in an unrelated individual 
is even less likely (Sifrim et al., 2013; Javed et al., 2014; Singleton 
et al., 2014; Robinson et al., 2014; Pengelly et al., 2017). Even so, 
such hypothetical associations should be contextualized in terms 
of null expectations given variant mutation and population allele 
frequencies, and additionally verified with functional genetic 
studies (Akle et al., 2015; Krawitz et al., 2015).

Precise deep phenotyping of patient traits, including facial 
characteristics, is one such way of aiding the mapping and 
matching of disease-associated traits. This has the potential to 
aid the clinical pathways to diagnosis and to empower inference 
of disease-contributing associations to genetic variants. This 
promise is contingent on having enough high-quality and 
accurate data to build methods for extracting disease relevant 
phenotypes, but also the numbers to link rare and ultra-rare 
disorders. Translating deep phenotyping approaches to clinical 
utility is a big data challenge.

PHENOTYPING FROM PHOTOGRAPHS

Developments in computer vision and deep learning are being 
applied to patient datasets with the aim of aiding diagnosis, 
prediction of outcomes, and monitoring of clinical phenotypes. 
One of the first clinical settings where this is being applied is 
clinical dysmorphology for rare diseases.

It should be noted that the idea to objectively assess body 
form (anthropometrics) in Western medicine was pioneered 
by Francis Galton well over a century ago (Galton, 1879) and 
applied to images by Sheldon et al., in 1940 (Sheldon et al., 1945). 
However, the formalized discipline of clinical dysmorphology, 

as the study of birth defects, was not conceptualized until 
1966 (Smith, 1966). The challenge of bringing to bear machine 
learning and data analytic approaches to clinical dysmorphology, 
and anthropometrics from image data, has been the target 
of many threads of research. Various research endeavors for 
extracting objective phenotype metrics have been applied to both  
2D (Herpers et al., 1993; Loos et al., 2003; Vollmar et al., 2008; 
Balliu et al., 2014) and 3D craniofacial imaging (Hammond et al., 
2004; Hammond et al., 2005; Hennessy et al., 2010; Hammond 
et al., 2012; Baynam G. et al., 2013; Baynam G.S. et al., 2013; Kung 
et al., 2015; Baynam et al., 2016).

Despite the precision and objectivity of these methods, their 
practical application has been relatively limited. This can be 
largely attributed to a combination of expensive instrumentation, 
a requirement that patients are able to pose for imaging, and 
the need for expertise for the manual steps in subsequent data 
analyses. Recent developments in imaging platforms and machine 
learning capabilities provide the foundation for applications with 
greater clinical utility. High-quality 2D digital imaging cameras 
have become ubiquitously available, and 3D capabilities are 
beginning to enter the consumer market. Also, cutting-edge deep 
convolutional neural networks approaches are transforming the 
way these images can be analyzed. It has been shown that they 
can be trained to be highly robust for imaging variation, reducing 
the need for highly controlled subject poses (Xiangyu Zhu et al., 
2015). There are a number of current research and commercial 
efforts to create fully automated analysis pipelines for clinical 
interpretation of dysmorphologies (Ansari et al., 2014; Ferry et al., 
2014; Manousaki et al., 2015; Basel-Vanagaite et al., 2016; Gripp et 
al., 2016; Baynam et al., 2017; Bengani et al., 2017; Dudding-Byth 
et al., 2017; Deciphering Developmental Disorders Study, 2017; 
Gardner et al., 2017; Hadj-Rabia et al., 2017; Kruszka et al., 2017a; 
Kruszka et al., 2017b; Kruszka et al., 2017c; Lumaka et al., 2017; 
Shukla et al., 2017; Valentine et al., 2017; Reijnders et al., 2018b; 
Gurovich et al., 2018; Knaus et al., 2018; Kruszka et al., 2018; Liehr 
et al., 2018; Pantel et al., 2018; Reijnders et al., 2018a; Reijnders 
et al., 2018b; Zarate et al., 2018). However, all these efforts are 
meeting the same barriers to progression of the methods and 
prospects for clinical impact, challenges to do with data access, 
ethics, governance, and security. Without addressing these issues 
on a common basis, these efforts will struggle to deliver on their 
potential patient benefits.

BIG DATA CHALLENGES

There is a long history of the use of medical algorithms. The 
clinical process of establishing a diagnosis and suitable treatment 
is essentially a step-wise application of decisions facilitated 
by objective tools and metrics and augmented by cumulative 
knowledge and experience. Artificial intelligence, or machine 
learning, in health care employs the same principles to improve 
and accelerate clinical pathways. New machine learning 
approaches could add value in health care sectors challenged by 
extreme data volumes or complexity of inferences needed.

While there is a noticeable rush of “big data” applications 
in health care, the delivered clinical utility has so far been very 
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limited. This lack of clinical utility has been attributed to the 
poor model interpretability or performance on real world data. 
All deep learning approaches are reliant on large datasets to learn 
from in order to perform accurately. Identifiable medical datasets 
are typically relatively small in the context of deep learning, 
and data are usually sourced from single health care settings or 
specific populations. This makes models over fit, that is to say, 
become overly specific to the particular datasets they have been 
shown, and consequently, they perform poorly on new datasets. 
To efficiently use big data approaches, we need to address the 
challenges of working with data outside of the isolated silos of 
single projects or health care systems.

Ethical, legal, data security, and intellectual property issues 
are key barriers preventing the ascertainment, interrogation 
of big datasets, and the implementation of big data solutions 
in health care. Traditional research consent structures may 
constrain or prevent data sharing and the integration of datasets 
essential for these new approaches. In the context of the strict 
regulation of and accountability in health care data, if there are 
any doubts about the rules around sharing, the default position 
is to not share. Consequently, data sharing is unlikely to happen 
without specific consent for integration of personally identifiable 
information. Consequently, most data-sharing efforts bringing 
together global data rely heavily on de-identification or the 
minimization of sharing more sensitive data (Dyke et al., 2017).

The reality of big data is that anonymization might not 
be possible (Gymrek et al., 2013; de Montjoye et al., 2015). 
Furthermore, data security concerns for data access rights and 
the prospects of malicious digital activity (hacking) imply often 
unacceptable risk where organizations are liable for data loss. 
Finally, data sharing is inhibited by concerns about intellectual 
property rights: who owns the data and to whom do any findings 
or inventions derived from the data belong? In practice, these 
factors all tend to result in data siloing, since the easiest way 
to control the use of data is to keep it hidden. However, such 
practices hamper the prospects of new public good, increased 
clinical utility, and impact.

Moreover, data silos inevitably build in data biases, which 
create implicitly biased models, which in turn limit generalization 
to new data. For big medical data to deliver on its potential 
clinical utility, generally and equitably, approaches must be able 
to generalize across health care systems and different populations. 
Such an approach will deliver solutions from a basis of “n = 1” 
approach prevalent in precision medicine approaches to an “n = 
many” impact under a precision public health paradigm (Collins 
and Varmus, 2015; Weeramanthri et al., 2018; “Precision Public 
Health: What Is It? | | Blogs | CDC”, n.d.).

MINERVA INITIATIVE

The Minerva Initiative has been developed to enable research 
into the use of image analysis for the diagnosis of diseases, 
prevent data siloing, and foster further healthy competition 
between various image phenotyping approaches. The Minerva 
Initiative is an effort to construct a precompetitive space for 
enabling research on clinical phenotyping tool development. It 

has been constructed in the spirit of open science (Woelfle et al., 
2011; Nielsen, 2012) and within the bounds of ethics and data 
governance constraints.

The Minerva Initiative has the following objectives: to build a 
community of researchers and clinicians; to continue to develop 
ethical structures and provisions for working on identifiable 
clinical images; and to deliver secure data sharing between 
consortium members. It has been constructed to align with 
the goals and objectives of the Global Alliance for Genomics & 
Health (“Global Alliance for Genomics and Health”, n.d.) and 
the International Rare Diseases Research Consortium (IRDiRC) 
(“IRDiRC”, n.d.).

MINERVA CONSORTIUM

The Minerva Consortium (MC) is an international network 
of clinicians and researchers, from both public and private 
organizations, involved in the Minerva Initiative. Within the MC, 
there are many purposes and interests, but all MC members seek 
to establish a commonly agreed set of conduct and praxis for 
the benefit of all stakeholders: patients, participants, researchers, 
clinicians, and social systems.

The MC consists of a management group, clinical collaborators, 
working groups, and phenotyping groups. The management group 
is tasked with guiding directions of joint MC efforts, MC policy 
and strategy, acceptance of new MC Computational Phenotyping 
Groups, and dispute resolution. For prospective data collected 
under the Minerva Initiative consent, the Management Group 
also  acts as  a Data Access Committee overseeing Phenotyping 
Groups’ access to the Minerva Image Resource. The goal of the 
MC is not to consolidate all phenotyping projects to one unified 
approach but rather to foster an environment to enable a multiplicity 
of methods to develop.

MINERVA IMAGE RESOURCE

To improve the models for phenotype descriptions through deep 
learning, data need to be brought together in a unified compute 
system. Distributed systems are not feasible because either they 
sacrifice security, by virtue of exchange of semi-identifiable 
data, or because data transfer time and volumes are increased to 
such a level they are not workable. While fixed algorithms can 
be deployed in distributed frameworks, this would also prevent 
iterative learning regimens, which are required for continuing 
improvements. Consequently, the Minerva Consortium has 
focused on legal, ethical, and data governance structures to allow 
the global pooling of data in a unified system.

The Minerva Image Resource (MIR) is a centralized repository 
of personally identifiable data, which covers both images and linked 
medical data. While the facial images are inherently identifiable, 
other directly identifiable data, such as names, addresses, social 
security numbers, or any direct hospital identifiers, are not stored 
in the MIR. Coded identifiers, supporting privacy preserving 
record linkage, are stored in the MIR, but the linkage to any other 
data remains with the original data controllers—but are expected 
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to be available through Matchmaker Exchange linked initiatives 
(Philippakis et al., 2015).

ETHICS AND DATA FLOW

Retrospective Data
Patient datasets that comprise collected data and images from 
previous projects can be joined into the MIR if the existing 
consent allows for data use for general research purposes. The 
threshold that should be met for data to be contributed to the 
MIR is consented for use in research, not necessarily consented 
for publication. No identifiable information held in the MIR is 
shared outside the scope of legal agreements covering agreed 
research purposes.

The MC has a defined standardized Material Transfer 
Agreement and collaborator letter that is recommended 
for use within the consortium, but ultimately it is up to each 
clinical collaborator and phenotyping group to sign any given 
agreement. It is up to MC Clinical Collaborators to vouch that 
this consent is in place and that the wording of the patient 
consent encompasses image data. This is also specified in the 
Terms and Conditions for the Material Transfer Agreements. 
The expectation is that data should be shared as openly as 
possible within the consortium within the permissible scope of 
consent and data governance restrictions.

Prospective Data
Clinicians can recruit patients into the Minerva Initiative if 
they obtain consent for the use of patient’s data and images 
collected through routine clinical practice. The Minerva 
Consortium have drafted patient information and consent 
forms, but locally valid research ethics approvals need to be 
sought for the inclusion of patient data and images in Minerva 
Consortium research. The patient consent forms cover a broad 
remit of health-related research using images and associated 
clinical data.

Once research ethics committee-approved based consent 
has been given and a Data Submission Agreement is in 
place, data can be entered into the MIR and become part of 
the Minerva Initiative. The data flow pathway for this is not 
prescriptive. The data could, in future, be deposited in the MIR 
directly or through affiliated third-party apps or other health 
care record platforms.

Data collected prospectively through clinical collaborators 
using the Minerva Initiative consent will be shared between 
all Phenotyping Groups in good standing with the Minerva 
Consortium (having been approved by the MC Management 
Group and having a legal agreement for data access with 
the  MIR). To be clear, in line with these structures, the 
original photographs will thereby be shared with these 
phenotyping groups.

Public Participation
A public website has been constructed, Minerva&Me (https:///
www.minervaandme.com) (“Minerva and Me—Help Rare 

Disease Research”, n.d.), which allows anyone around the 
world to participate directly in the Minerva Initiative. Through 
Minerva&Me participants are able to enter basic information 
about themselves and any medical diagnoses they might have 
and to upload images. Photographs of themselves can be 
“selfies” or scanned images from photographs in existing family 
albums. Participants retain control of the use of their image 
and associated personal data. Minerva&Me employs a dynamic 
consent model (Kaye et al., 2015; “Platform for Engaging 
Everyone Responsibly | GeneticAlliance.Org”, n.d.), whereby 
participants are able to amend their consent or delete their data 
from the MIR directly.

Minerva&Me has been reviewed and approved by a research 
ethics committee (Oxford Tropical Research Ethics Committee 
at the University of Oxford), and also has a governing Advisory 
Board. This Advisory Board has representatives from clinicians, 
lawyers, data security experts, and patient advocacy groups 
including Unique, NORD, Rare Voices Australia, and Rare 
Disease UK. This Advisory Board has oversight of any future 
developments and directions for Minerva&Me.

In future versions of Minerva&Me, we intend to allow 
participants the option to enable their doctor to have limited 
access to their data analyses through coded linkers. The purpose 
of such links would be to allow further clinical information to 
be integrated by the MC Clinical Collaborator and, in future, 
allow a potential feedback route through the clinician to patient 
(if and when returnable findings are generated). Consent sought 
between patient and clinician must then cover the use of clinical 
data through the Minerva Consortium and the linkage to 
Minerva&Me through coded identifiers.

Analyzed Data
Identifiable data within the MIR is only available to the original 
data submitters or MC Computational Phenotyping Groups. 
MC Computational Phenotyping Group researchers could be 
from all over the world and may be working in academia or 
commercial companies. Access to the Minerva Image Resource 
is only granted for purposes that align with the research goals of 
the Minerva Initiative (to improve diagnosis, clinical treatment, 
and understanding of a wide range of illnesses). Data access 
conditions are further explained below.

The MIR, as a precompetitive space, does not enforce a single 
approach or initiative but rather seeks to encourage multiple 
efforts. There is the expectation that results from analyses on 
the images and identifiable data will be returned and shared 
within the MC. This is to enable comparisons between different 
approaches using commonly agreed upon testing sets but also 
to keep the science as open and collaborative as possible. A 
schematic overview of the flow of data in the Minerva Initiative 
is shown in Figure 1.

COLLABORATION ENABLING NETWORK

One of the purposes of the MC is to encourage and enable 
collaborative work on identifiable patient data. These 
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collaborative initiatives are not centrally coordinated but are 
expected to be conducted through normal scientific practice. In 
addition, there is a framework for collective attribution through 
a publication policy.

Any data submitted that contribute to a publication using 
the pooled dataset will be acknowledged in accordance with the 
guidelines of the International Committee of Medical Journal 
Editors (“ICMJE | Recommendations | Defining the Role of 
Authors and Contributors”, n.d.). We envisage two broad groups 
of publications to arise from project data, each with distinct 
guidelines for recognizing contributions:

 I. “Core” MC papers have a broad focus and use large amounts 
of data from multiple aspects of the project. Named authors 
(details below) plus “Minerva Consortium” with all project 
participants listed in the end matter [cf. Mells et al. WTCCC3 
paper (Mells et al., 2011)]

 II. “Affiliated” MC papers arising from more specific collaborations 
focused on a particular phenotype, methodology, policy question, 
etc. Named authors based on contribution and the Minerva 
Consortium as a “corporate” author [project participants not 
listed, cf. Firth, Wright & DDD Study paper (Firth et al., 2011)].

Manuscripts derived from research conducted on data 
acquired through the Minerva Initiative are reviewed by a 
Publication Review Group to affirm that author attribution 
follows the publication policy. The publication review group also 
ensures that all statements, and images used in Minerva Initiative 
publications comply with participant consents, image usage 
rights, data privacy, and data governance considerations.

IDENTIFIABLE INFORMATION FLOW 
AND INTELLECTUAL PROPERTY

While analyses produced by models are shared within the 
Minerva Initiative, the initiative does not require that the models 
themselves are shared. This is to ensure data protection and 
intellectual property rights. For many models being trained, 
there is a large gap in understanding of interpretability—to the 
degree that there is no guarantee that personally identifiable 
information from individuals in the training data might not be 
recoverable. Thus, to assure future compliance with the protection 
of individuals’ data rights within the MIR, the models must not 
be shared without corresponding data governance assurances. 
Secondly, as the Minerva Initiative allows the coexistence of both 
academic and commercial enterprise initiatives, the fair and 
equitable basis of IP domains must be clear.

In other words, in line with personality rights, ownership 
of the data and photographs remains with the original creators 
(the person in the image). The means to compare data between 
people, the models, is where we expect new intellectual property 
to be created.

It should also be noted that for most anticipated uses, models, in 
themselves, will contribute very little without access to the datasets. 
To successfully identify patients with rare disease and match them 
with others around the world, broad and unfettered interrogation 
of data is key. No model will have the accuracy or confidence to 
make assertions about rare diseases without reference back to the 
original patients and data. Consequently, it is in every stakeholder’s 
interest that the data are shared as openly and as widely as possible.

FIGURE 1 | Schematic overview of the Minerva Initiative structure and data flow into the Minerva Image Resource.
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JOINING THE MINERVA CONSORTIUM 
AND DATA ACCESS CONDITIONS

As a clinician or research academic seeking to collaborate on 
de-identified data or wishing to submit consented patient data to 
the MIR for analysis, the Minerva Initiative is open to join. The 
criteria are a formal affiliation and good standing with professional 
organizations in either a clinical or academic capacity. The Minerva 
Consortium relies on a peer system of oversight on membership, 
with the Management Group having power to rule in disputes.

In the case of a group seeking to become a Phenotyping Group, 
who can access identifiable data held in the MIR, this status 
should only be granted to groups who align with the research 
goals of the Minerva Initiative (to improve diagnosis, clinical 
treatment, and understanding of a wide range of illnesses). In 
addition, the Management Group will assess the stated purpose, 
ethics approvals, data management plans, and legal status of the 
applicant organization and proposed legal agreement for access 
to the MIR. Legal agreements will specify the parties’ obligations 
to adhere to the allowed uses and purposes for the data and the 
rights to change, revoke, or enforce these conditions (i.e., how 
access can be revoked and who is liable for possible misuses).

CONCLUSION

The Minerva Initiative is a framework for global collaboration on 
identifiable patient data including photographs. It is designed to 
complement current initiatives for global data sharing in rare diseases 
by specifically addressing the analysis of data where anonymization 
is not possible. The Minerva Initiative directly addresses the ethical, 
legal, and data security challenges associated with inherently 
identifiable data, thereby enabling big data research. We envisage 
that the frameworks established within the Minerva Initiative will 
provide a useful community model to ensure that the amount or 

variety of identifiable data that any one group, institution, or country 
can assemble is no longer the limiting factor for advancements in 
clinical translation of new machine learning methods. Through these 
approaches, we aim to improve diagnostic rate and classification of 
DNA variants with a focus on rare diseases. Accordingly, we envisage 
that this will assist in achieving the International Rare Diseases 
Consortium Vision, specifically to enable all people living with a rare 
disease to receive an accurate diagnosis, care, and available therapy 
within 1 year of coming to medical attention.
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