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A novel mesocosm set-up reveals strong methane emission 1 

reduction in submerged peat moss Sphagnum cuspidatum by 2 

tightly associated methanotrophs. 3 
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 2 

Abstract 21 

Wetlands present the largest natural sources of methane (CH4) and their potential CH4 emissions 22 

greatly vary due to the activity of CH4-oxidizing bacteria associated with wetland plant species. In this 23 

study, the association of CH4-oxidizing bacteria with submerged Sphagnum peat mosses was studied, 24 

followed by the development of a novel mesocosm set-up. This set-up enabled the precise control of 25 

CH4 input and allowed for monitoring the dissolved CH4 in a Sphagnum moss layer while mimicking 26 

natural conditions. Two mesocosm set-ups were used in parallel: one containing a Sphagnum moss 27 

layer in peat water, and a control only containing peat water. Moss-associated CH4 oxidizers in the 28 

field could reduce net CH4 emission up to 93%, and in the mesocosm set-up up to 31%. Furthermore, 29 

CH4 oxidation was only associated with Sphagnum, and did not occur in peat water. Especially 30 

methanotrophs containing a soluble methane monooxygenase enzyme were significantly enriched 31 

during the 32 day mesocosm incubations. Together these findings showed the new mesocosm setup 32 

is very suited to study CH4 cycling in submerged Sphagnum moss community under controlled 33 

conditions. Furthermore, the tight associated between Sphagnum peat mosses and methanotrophs 34 

can significantly reduce CH4 emissions in submerged peatlands.  35 

 36 

Keywords: Methanotrophy, Peatland, Sphagnum moss, Methane cycle, mesocosm, climate change, 37 

soluble methane monooxygenase  38 
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 3 

Introduction  39 

Methane (CH4) has a 25 times higher Global Warming Potential (GWP) than carbon dioxide (CO2; on a 40 

100 year time scale) and is the second most important greenhouse gas (GHG), contributing for about 41 

16% to global warming [1, 2]. CH4 in the atmosphere originates from both natural and anthropogenic 42 

sources. Wetlands are the largest natural CH4 source, emitting an estimated 167 Tg CH4 yr-1 into the 43 

atmosphere [3], indicating an imbalance between CH4 production and CH4 consumption by 44 

methanotrophs. Climate change has the potential to further stimulate the emission of CH4 from 45 

(especially artic) wetlands [4]. Therefore, it is important to understand sources, sinks and microbial 46 

transformations of CH4 in wetland ecosystems. 47 

CH4 cycling in peat ecosystems is affected by peat degradation and subsequent restoration [5–7]. 48 

Restored (rewetted) sites appear to emit more CH4, indicating that restored conditions stimulate 49 

methanogenesis, and that methanotrophy cannot keep up. One well-known factor controlling CH4 50 

cycling in wetlands is the water-table [8, 9]. The CH4 emission from rewetted peatlands remains low 51 

when the water table remains well below the field surface. However, when the water-table rises, CH4 52 

emission strongly increases [10, 11]. As an example, the Mariapeel peatland in The Netherlands has 53 

been drained for many years, leading to severe drought. The peatland was rewetted again for 54 

restoration purposes, which resulted in a strong decrease of CO2 emissions that originated from the 55 

aerobic oxidation of organic material, whereas the emission of the much stronger greenhouse gas CH4 56 

emission strongly increased [10]. The CH4 emission in rewetted peatlands seems to be strongly 57 

reduced by development of (aquatic) Sphagnum mosses, which harbor CH4-oxidizing microorganisms 58 

[6, 10, 12]. It is, however, challenging to study CH4 dynamics in primary stages of peat development 59 

(either restored/natural) without disturbing the site. Furthermore, also abiotic factors such as 60 

temperature, water quality and light availability on site cannot be controlled as well as in the 61 

laboratory, making experimental work and predictions about peat development and CH4 cycling at 62 

least cumbersome.  63 
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As mentioned above, CH4 emissions are caused by an imbalance between CH4 production and 64 

consumption. The CH4 emitted by peatlands is mainly produced by methanogenic Archaea [13]. In the 65 

anaerobic, submerged peat layers that are devoid of electron acceptors other than CO2, methanogens 66 

produce CH4 from a limited number of substrates and/or in syntrophic interaction with other 67 

anaerobes that degrade organic carbon (C). However, not all of the CH4 produced reaches the 68 

atmosphere, due to methanotrophs that oxidize CH4 to CO2 [14, 15]. The oxidation of CH4 is performed 69 

both aerobically (e-acceptor: O2) by CH4-oxidizing bacteria (MOB), and anaerobically (AOM) by 70 

Archaea and bacteria (e-acceptors: nitrite, nitrate, metal-oxides, humic acids, and sulfate [16]). Both 71 

aerobic and anaerobic CH4 oxidation contribute to the reduction of CH4 emissions from peatlands [12, 72 

17–19]. Within the MOB the enzyme methane monooxygenase (MMO) is responsible for the oxidation 73 

of CH4 to methanol. The majority of MOB have a copper containing, membrane bound form of MMO 74 

(pMMO) [20]. In addition, a small fraction of the MOB also has a soluble form of MMO (iron containing 75 

sMMO) [20]. The sMMO seems to be only expressed when copper limitation is experienced and has a 76 

less restricted substrate specificity than pMMO [20]. Peatland methanotrophs typically possess both 77 

pMMO and sMMO [12, 21–23], which can be targeted via the pmoA and mmoX genes encoding one 78 

of the subunits, respectively. Some peatland and marine methanotrophs are unique in that they only 79 

possess sMMO [23–27]. Also mmoX transcripts indicate that sMMO is an active enzyme in peatlands 80 

[28], although its importance is not yet well understood. 81 

Studies have shown that aerobic CH4 oxidation is most prominent in submerged Sphagnum mosses in 82 

a range of peatlands [12, 29, 30]. Furthermore, the association between methanotrophs and 83 

Sphagnum was shown to be mutually beneficial Raghoebarsing et al. [31]. The methanotrophs convert 84 

CH4 into CO2, thereby relieving part of the CO2 limitation that Sphagnum mosses experience [32] 85 

especially under submerged conditions [12, 31]. The aerobic MOB in return benefit from O2 produced 86 

and shelter provided by the moss [12].  87 

Molecular surveys showed that several CH4-oxidizing bacteria are present in Sphagnum dominated 88 

peatlands. Alphaproteobacterial methanotrophs typically dominate in 16S rRNA gene libraries over 89 
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the other methanotroph-containing (sub)phyla Gammaproteobacteria and Verrucomicrobia 90 

(Methylacidiphilaceae [33–35]. Within the Alphaproteobacteria especially methanotrophs of the 91 

family Methylocystaceae (Methylocystis spp.) and the acidophilic methanotrophs of the family 92 

Beijerinckiaceae (Methylocella, Methyloferula, Methylocapsa) are often found and several of these 93 

have been isolated from peatlands [24–26, 36, 37]. Using Fluorescence in situ Hybridization (FISH) 94 

combined with confocal microscopy, Alphaproteobacteria have shown to be localized inside 95 

Sphagnum mosses, in the dead hyaline cells [38]. Furthermore, Verrucomicrobia including the class 96 

containing CH4 oxidizers, Methylacidiphilae, can make up 10% of the total microbial community 97 

associated with Sphagnum. However, the Methylacidiphilae found with Sphagnum mosses have not 98 

yet been coupled to CH4-oxidizing activity [34, 39, 40]. Their role in peatland C cycling has yet to be 99 

confirmed [23, 41–43]. 100 

The goal of this study was to design and test a new mesocosm set-up where a submerged Sphagnum 101 

community could be mimicked under fully controlled conditions. In this way, the irregularity and 102 

variability often encountered in field studies could be excluded. The new set-up was used to study the 103 

association between CH4 oxidizers and a layer of submerged Sphagnum mosses. We hypothesized that 104 

the submerged Sphagnum moss layer acts as a biofilter for CH4, thereby reducing CH4 emission to the 105 

atmosphere. Furthermore, it is expected that the CH4-oxidizing microorganisms are associated with 106 

Sphagnum, rather than the peat water. Monitoring of the CH4 flux throughout the mesocosm 107 

incubation, as well as CH4 batch assays and molecular analysis of 16S rRNA gene amplicons and qPCR 108 

on 16S rRNA, pmoA and mmoX showed that during the 32 days of incubation aerobic methanotrophs 109 

were highly active and enriched in the mesocosm.   110 
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Materials & Methods 111 

Sampling site and field measurements 112 

The sampling site was located in the Mariapeel (51°24’28.4’’N, 5°55’8’’E), a peat bog nature 113 

conservation area in the south of the Netherlands. This site was visited for measurements and 114 

sampling on 09/08/2017. Net diffusive gas fluxes of CO2 and CH4 were measured in the field using a 115 

fast greenhouse gas analyzer with cavity ringdown spectroscopy (GGA-24EP; Los Gatos Research, USA) 116 

connected to a Perspex chamber (15 cm in diameter). The chamber was put on top of the moss layer 117 

for 10 min to measure fluxes of CO2 and CH4. In total 3 independent measurements were taken within 118 

2 m distance from each other. After removal of the peat moss layer measurements were repeated, 119 

after an equilibration period of 15 min. Submerged Sphagnum cuspidatum moss and water were 120 

collected after the measurements. 121 

Upon arrival in the laboratory, 1 set of mosses was used to determine field activity, and another part 122 

was washed using sterile demineralized H2O.  One fraction of water was used to determine field 123 

activity, the other fraction was filtered (2 – 5 nm, HF80S dialysis filter, Fresenius Medical Care, 124 

Homburg, Germany). All samples were stored at 4 °C (1 week) until the start of the incubation.  125 

 126 

Mesocosm design  127 

The mesocosm consists of a glass cylinder with a diameter of 12 cm and a height of 54 cm, to which a 128 

separate reservoir is connected (see Supplementary Figs. 1 and S1). The total reservoir volume is 0.5 129 

L, the connector tube volume is 0.07 L and the total column volume is 6.11 L. The water level in the 130 

mesocosms was maintained at 5.09 L, leaving a headspace of 1.02 L in the column. The column 131 

headspace was closed throughout the day using a greased lid with sampling port. Several sampling 132 

ports (in the reservoir, cylinder headspace and in the cylinder at 10, 20, 30, 35 and 40 cm height) allow 133 

for sampling of either the gas or water phase. Throughout the mesocosm incubation all sampling ports 134 

were closed off using boiled, red butyl rubber stoppers and capped using metal crimp caps. 135 

 136 
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Mesocosm incubation 137 

The mesocosms were autoclaved prior to use. Two mesocosms were simultaneously incubated for 138 

this experiment. A moss mesocosm, containing 100 Sphagnum cuspidatum plants (6 cm length, 120 g 139 

fresh weight) in filtered peat water (5.09 L), and a control mesocosm which contained only filtered 140 

peat water (5.09 L).  Both mesocosms had an acclimatization period of 7 days prior to sampling. 141 

The CH4 was added via the reservoir headspace and dissolved into the water by stirring with a 2 cm 142 

magnetic stir bar at 250 rpm. Throughout the week, lids were opened each morning for 1 h to allow 143 

aeration, after which they were closed for the rest of the day. The CH4 supply in the reservoir 144 

headspace was replaced daily, directly after aeration, with a mixture of 50ml 99% CH4 and 5 ml CO2.  145 

The mesocosm experiment was performed twice, each time for 32 days. Incubations were performed 146 

at room temperature. The light regime consisted of 16 h daylight (150 µmol m-2 s-1 photosynthetically 147 

active radiation at vegetation level) and 8 h of darkness. Light was supplied on top of the mesocosm 148 

column, via 120 deep red/white LED lamps (Philips, Green-Power LED, Poland). 149 

 150 

Mesocosm CH4 fluxes 151 

After the acclimatization period the fate of CH4 was followed through the mesocosm over time (0 - 32 152 

days). To determine the concentration of CH4 in the headspace or the concentration of dissolved CH4 153 

in water, gas and water samples were collected via the different sampling ports. A volume of 0.5 ml 154 

gas or 0.5 ml water was taken and injected into a closed 5.9 ml Exetainer vial (Labco, Lampeter, UK). 155 

The concentration of CH4 in the headspaces of the reservoir and the column were determined by 156 

taking samples directly after closing the column in the morning (0 h) and before opening the column 157 

for aeration again (23 h).  The concentration of dissolved CH4 throughout the column was determined 158 

once a week, by sampling water at 4 different time points during the day (0 h, 3 h, 7 h, 23 h after 159 

closing the headspace). 160 

The CH4 concentration in the Exetainers was measured at least 4 h after sampling to allow for 161 

equilibration between Exetainer headspace and liquid. The CH4 concentration was measured using a 162 
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 8 

gas chromatograph with a flame-ionized detector and a Porapak Q column as described by De Jong et 163 

al. [4].  164 

Net CH4 flux in the mesocosm was calculated as the change in CH4 concentration in the headspace of 165 

the mesocosm column for each day and divided by the surface area (0.01131 m2) of the mesocosm 166 

column. 167 

 168 

Potential CH4 oxidation rates 169 

The CH4 oxidation rates were determined in triplicate in batch incubations prior to and after 170 

mesocosm incubation.  Prior to the mesocosm incubation, both unwashed and washed moss (3 g fresh 171 

weight) as well as unfiltered and filtered porewater (12 ml) were placed into autoclaved 120 ml serum 172 

vials and closed with boiled, red-butyl rubber stoppers and metal crimp-caps. Each batch flask 173 

received 2 ml 99% CH4. The CH4 concentration in the headspace was followed in time as described for 174 

mesocosm CH4 fluxes.  175 

At the end of the mesocosm experiment, potential CH4 oxidation rates were determined for the 176 

mosses from moss mesocosm and for porewater from both the moss and control mesocosm.  Samples 177 

were incubated as described above. Two sets of each 3 replicates were incubated, where one set was 178 

used to determine CH4 oxidation rates and the other set received the acetylene (6 ml 99.9% (C2H2)), 179 

an inhibitor of the CH4 monooxygenase enzyme, which was added after 10 h of incubation.  180 

The concentrations of CH4 were calculated using a calibration curve that was measured daily. 181 

Ultimately, the CH4 concentrations were plotted over time, from which CH4 oxidation rates were 182 

calculated from the slope of the linear part of the graph.  183 

 184 

Elemental analysis water 185 

Both unfiltered and filtered peat water was sampled and analyzed. The pH was measured and 186 

elemental composition was determined using the auto analyzer and the ICP-OES as explained before 187 

[34]. Dissolved CH4 in field porewater was determined by injection of 1 ml porewater into a closed 188 
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 9 

Exetainer (5.9 ml), after 6 hours the headspace CH4 concentration was measured as described above. 189 

Data are shown in Supplementary Table S9. 190 

 191 

DNA extraction 192 

DNA extraction was performed by grinding 5 g of mosses (fresh weight) using pestle and mortar and 193 

liquid nitrogen, after which DNA was extracted using the DNeasy Powersoil DNA extraction kit 194 

following manufacturers protocol (Qiagen Benelux B.V., Venlo, Netherlands). DNA quality was 195 

checked by gel electrophoresis (1% agarose gel in TBE buffer) and fluorometrically using the Qbit 196 

dsDNA HS Assay Kit (Invitrogen, Thermo Fisher, Carlsbad, CA).  197 

 198 

Amplicon sequencing and analysis 199 

Barcoded Amplicon sequencing of the amplified V3-V4 region of the bacterial 16s rRNA gene (primers 200 

Bact-341f and Bact 785r [44]) was done using Illumina Miseq, performed by BaseClear B.V. (Leiden, 201 

the Netherlands). A total of 326 045 reads was obtained. The reads were quality filtered and analyzed 202 

using Mothur (v1.36.1), following the Illumina Standard Operating Procedure (SOP, accessed on May 203 

8th 2018, Kozich et al. 2013). Merged reads shorter than 400 bp were discarded, chimeras were 204 

removed using the UCHIME algorithm [46] and the remaining sequences were clustered at 97% 205 

identity. The resulting OTUs were classified based on the SILVA v132 16s rRNA gene non-redundant 206 

database (SSURef_99_v132_SILVA). Next, non-target sequences (Chloroplasts, Mitochondria, 207 

unknown, Archaea and Eukaryota) were removed from the dataset. See Supplementary Tables S1 and 208 

S2 for full overview of read processing. The output was analyzed with R (version 3.4.0 by the R 209 

Development Core Team [47]) and Rstudio v1.1.456 [48] using the packages Phyloseq [49] and vegan 210 

[50]. Singletons were removed, and read libraries of all samples were rarefied by random subsampling 211 

(seed: 12345) to 6 500 reads per sample (Rarefaction curves are depicted in Supplementary Fig. S2). 212 

A PcoA plot (Supplementary Fig. S4) was created using Phyloseq, and based upon Bray-Curtis 213 
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dissimilarity matrix on rarefied data. All sequencing data can be accessed in GenBank NCBI BioProject 214 

PRJNA517391. 215 

 216 

Quantitative PCR 217 

Copy numbers of the Bacterial 16S rRNA gene (for all primers see Table S3; Bact 341f - Bact 785r; 218 

Klindworth et al. 2013), as well as functional genes pmoA (primers A189f-A682r; Holmes et al. 1995) 219 

and mmoX (mmoX1-mmoX2; Miguez et al. 1997) were quantified using a qPCR approach. The qPCR 220 

reaction mix consisted of PerfeCTA Quanta master mix (Quanta Bio, Beverly, MA) and 0.5 ng sample 221 

DNA and 1µl of each primer (10 µM). In negative controls DNA was replaced by sterilized milli-Q water. 222 

The qPCR reaction mix was loaded in triplicate into a 96‐well optical PCR plates (Bio‐Rad Laboratories 223 

B.V., Veenendaal, The Netherlands), closed with an optical adhesive cover (Applied Biosystems, Foster 224 

City, CA) and reactions were performed with a C1000 Touch thermal cycler equipped with a CFX96 225 

Touch™ Real‐Time PCR Detection System (Bio‐Rad Laboratories B.V., Veenendaal, The Netherlands). 226 

Standard curves were obtained via 10-fold dilution series of a PGEM T-easy plasmid (Promega, 227 

Madison, WI) containing the target gene. The data was analyzed using Bio‐Rad CFX Manager version 228 

3.0 (Bio‐Rad Laboratories B.V., Veenendaal, The Netherlands). Triplicate analysis per samples were 229 

averaged prior to statistical analysis. 230 

 231 

Statistics 232 

The CH4 flux in the field and in the mesocosm, CH4 oxidation rates in batch and qPCR data were 233 

analyzed using R version 3.4.0 by the R Development Core Team [47]. In order to allow for parametrical 234 

statistical tests, Shapiro-Wilk’s test was used on the residual (stats-package) to test the normality of 235 

the data and Levene’s test (car-package) was used to test for homogeneity of variance. If assumptions 236 

of tests were not met, data was log-transformed (ln), which was the case for the field CH4 flux data. A 237 

paired T-test was used to test whether the net CH4 flux in the field was affected by the presence of 238 

moss (moss field / moss removed). Differences between material (moss/peatwater) in the potential 239 
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 11 

CH4 oxidation activity prior to mesocosm incubation was tested using a non-parametric Kruskal Wallis 240 

tests. Within each material (moss/peatwater) the effect of treatment (field / washing or filtering) was 241 

tested using an independent T-test.  242 

Differences between mesocosms (moss / control), material (moss / peat water) and inhibitor (yes/no) 243 

in the potential CH4 oxidation activity after mesocosm incubation, were tested using a 3-way Anova, 244 

followed by a Tukey HSD post-hoc test. Differences in copy number between each moss sample (Moss 245 

Field/Moss Washed/Moss incubated) within each target gene (16S rRNA/mmoX/pmoA) was analyzed 246 

using a one-way Anova, followed by a Tukey HSD post-hoc test. Here, the data for 16S rRNA gene and 247 

mmoX gene were log-transformed (ln) prior to analysis.  248 

 249 

Results 250 

Field CH4 flux 251 

To estimate diffusive CH4 emissions in the field, flux chamber measurements were carried out in plots 252 

with submerged Sphagnum mosses before and after removal of the moss layer. The CH4 emission in 253 

the field situation with the submerged Sphagnum moss layer resulted in a net total of 4.1 ± 2.1 mmol 254 

CH4 m-2 day-1 (mean ± SEM, n=3; Fig. 2). Removal of the Sphagnum moss layer significantly increased 255 

the net CH4 emission (t(2) = -6.1, p < 0.05) to a total of 60 ± 32 mmol CH4 m-2 day-1 (Fig. 2). 256 

 257 

Methane oxidation activity prior to mesocosm incubation 258 

The CH4 oxidation rates associated with the Sphagnum moss and peat water were determined prior 259 

to the incubation in the mesocosm, using batch assays (Fig. 3). Sphagnum mosses showed much higher 260 

CH4 oxidation rates (average rate mosses 143 ± 17 mol g DW-1 day-1, Fig. 3) compared to peat water, 261 

which had virtually no activity (0.05 ± 0.06 mol g DW-1 day-1; χ2 = 7.5, p < 0.01, Supplementary Fig. 262 

S5). Washing of the Sphagnum mosses was reduced the CH4 oxidation rate 121 mol g DW-1 day-1; t(2) 263 

= 1.5, p > 0.05).  264 

  265 
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Mesocosm incubation 266 

Two parallel mesocosm incubations were performed, one including a Sphagnum layer and one 267 

without. The net CH4 flux in the mesocosm showed a similar pattern for both mesocosms until day 8 268 

of the incubation (Fig. 4). After 8 days, the moss mesocosm headspace always showed a lower CH4 269 

concentration than the control mesocosm with only peat water. Furthermore, the emission from the 270 

Sphagnum moss mesocosm gradually decreased over the 32 day of the incubation, which is a strong 271 

indication of increasing CH4 oxidation activity. The variation in Fig. 4 is partly due to the daily manual 272 

refreshment of CH4 and air. The experiment was repeated for a second time, and the replicate 273 

incubation showed a similar pattern, with lower CH4 emission with the presence of Sphagnum moss 274 

layer (Supplementary Fig. S8 and Tables S7 and S8).  275 

 276 

Methane oxidation activity after mesocosm incubation  277 

After 32 days of incubation in the mesocosms, the CH4 oxidation activity was determined in batch for 278 

each element of both mesocosms (water and/or moss). The CH4 oxidation activity was on average 189 279 

µmol CH4 g-1 DW day-1 (Table 1) in mosses. Even after mesocosm incubation the peat water showed 280 

no CH4 oxidation activity (R2 <0.9; see Table 1 and Figs. S6 and S7), indicating that the water is not a 281 

favorable place for MOB. In the presence of acetylene, CH4 oxidation associated with the mosses was 282 

almost completely inhibited (F(1,4) = 981.3, p < 0.001), indicating that the CH4 oxidation rate is entirely 283 

associated with methanotrophic microorganisms in or at the moss. Compared to the start of the 284 

incubation, the CH4 oxidation activity associated with mosses had increased by 155% (from 121 to 189 285 

mol g DW-1 day-1; Table 1 and Fig. 3). 286 

 287 

qPCR  288 

To quantify the microbial community, both qPCR and amplicon sequencing of 16S rRNA genes were 289 

performed. Quantification of the bacteria (16S rRNA gene; Fig. 5) showed that bacterial copy numbers 290 

differed between all stages (F(2,6)=34.3, p<0.001). Substantial amounts (98%) of presumably epiphytes 291 
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were washed away (Tukey HSD p<0.001). At the end of the incubations the copy numbers were back 292 

to about 97% of the original value (Tukey HSD p<0.05).  293 

Quantification of methanotrophic microorganisms by mmoX gene and pmoA gene amplification 294 

showed a similar trend (mmoX F(2,6)=40.7, p<0.001; pmoA F(2,6)=27.1, p<0.001; Fig. 5). The pmoA-295 

containing methanotrophs were overall less abundant than mmoX-containing methanotrophs (resp. 296 

105 vs. 1010 copies). The washing step greatly reduced the abundance of the mmoX-containing 297 

methanotrophs from 1010 to 102 copies (Tukey HSD p<0.001), whereas pmoA-containing 298 

methanotrophs were much less affected (remained around 105 copies; Tukey HSD p>0.05). Upon 299 

mesocosm incubation mmoX copies increased from 102 to 108 (Tukey HSD p<0.001), while pmoA-300 

containing methanotrophs marginally increased from 105 to 106 copies (Tukey HSD p<0.01).  301 

 302 

Microbial community (16S rRNA gene) 303 

The microbial community associated with the mosses was studied by 16S rRNA gene sequencing of 304 

the V3-V4 region. Comparison of the moss microbial community in the field, after washing and after 305 

incubation in the mesocosm shows a gradual change in microbial community. However, the main 306 

classes remained present throughout the incubation. Furthermore, mesocosm incubation increased 307 

diversity of the microbial community (Shannon and Chao 1 index, Table S4).  308 

Looking at microbial community composition depicted as relative abundances in Fig. 6A, the 309 

Proteobacteria were the overall dominant phylum. Relative abundance of Proteobacteria was not 310 

affected by washing, but decreased during incubation in our mesocosm set-up. For the 311 

Verrucomicrobiae the relative abundance was lower after washing and increased after incubation. 312 

Especially the relative abundance of Pedosphaerales and Opitutales increased upon incubation 313 

(Supplementary Table S5). When focusing on the methanotrophic community, the relative abundance 314 

of Verrucomicrobial Methylacidiphilales increased by incubation (Fig. 6B). Other methanotrophic 315 

species whose relative abundance increased upon incubation are Methylomonas spp. and 316 

Methylocystis spp. (Fig. 6B). Only acidophilic Methylocystis isolates, M. bryophila and M. heyeri [53, 317 
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54], are known to contain both sMMO and pMMO, whereas neutrophilic Methylocystis and 318 

Methylocella species isolated so far only contain pMMO. 319 

 320 

Discussion 321 

Mesocosm approach 322 

Studying and sampling the Sphagnum microbiome in the field is challenging, because the microbial 323 

community associated with the moss is influenced by many biotic and abiotic factors that are not 324 

controlled for. After many field campaigns we set out to circumvent these challenges and fluctuations. 325 

Therefore, we designed a novel mesocosm set up to mimic submerged Sphagnum moss ecosystem 326 

and operated it under controlled laboratory conditions to shed light on the association between 327 

aerobic CH4 oxidizers and a submerged Sphagnum cuspidatum community. We hypothesized that the 328 

submerged Sphagnum moss layer acts as a biofilter for CH4 and expected that the CH4-oxidizing 329 

community was mainly associated with Sphagnum moss. Indeed, in this controlled mesocosm set-up, 330 

we were able to mimic a significant reduction (31%) in CH4 emissions as was also observed in the field 331 

(Figs. 4 and S8). This CH4 removal was only associated with the mosses and not found in the peat water.  332 

 333 

The novel mesocosm set-up allowed for enrichment of both methanotrophic activity and their 334 

abundance. Potential CH4 oxidation batch assays revealed a significant increase in methanotrophic 335 

activity after mesocosm incubation (from 121  4 to 189  6 mol CH4 g-1 DW day-1, resp. Fig. 3 & Table 336 

1). Similarly, qPCR of functional methanotrophic genes (mmoX and pmoA), indicated that significant 337 

numbers of CH4-oxidizing bacteria were present in and on the moss and that their numbers increased 338 

over the course of the incubation. 339 

 340 

Peat mosses strongly facilitate CH4-oxidizing activity 341 

Washing of the moss and filtering of the peat water had little effect on CH4 oxidation activity and 342 

community composition, which underlines the tight association between CH4 oxidizers and Sphagnum 343 
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mosses. Yet, qPCR revealed that bacterial copy numbers decreased by washing of the moss. The 344 

number of sMMO-containing methanotrophs decreased most significantly during washing, indicating 345 

that these methanotrophs might only be loosely attached epiphytes on the Sphagnum mosses. 346 

However, they showed the highest increase (102 to 108 copies/g FW) upon mesocosm incubation, 347 

equaling growth of up to 20 generations in 32 days. The transcription of mmoX gene and activity of 348 

sMMO-containing methanotrophs has previously been reported in peatlands [55–57]. The increase in 349 

sMMO copy number during incubation suggests that sMMO-containing methanotrophs are 350 

environmentally relevant in acidic peatland ecosystems, especially in submerged conditions, but their 351 

importance and contribution needs further study. Surprisingly, the pMMO-containing methanotrophs 352 

were initially less abundant than sMMO-containing methanotrophs, but seemed more tightly 353 

associated to the moss as washing had no effect on the copy numbers. There was hardly any increase 354 

in abundance upon incubation. Lack of copper might explain why pMMO containing methanotrophs 355 

did not thrive in the mesocosm incubation [20]. Ultimately, the enrichment of sMMO-containing 356 

methanotrophs upon mesocosm incubation shows that this set-up can be used to further study the 357 

functioning of sMMO methanotrophs in Sphagnum mosses as their ecology is far less understood than 358 

that of canonical pMMO containing methanotrophs. 359 

 360 

Microbial community composition 361 

The Sphagnum-associated microbial community in all samples of this study showed high similarity to 362 

previous Sphagnum-associated 16S rRNA gene libraries [34, 38, 39]. Similar dominant community 363 

members were found in this study, with dominant phyla being the Proteobacteria (Alpha- and 364 

Gammaproteobacteria), Cyanobacteria (Oxyphotobacteria) and Acidobacteria and a relatively high 365 

abundance of Verrucomicrobia. Upon mesocosm incubation the microbial diversity increased, 366 

potentially due to the limited amount of nutrients present compared to field conditions. The relative 367 

abundance of Verrucomicrobia and Planctomycetes increased, whereas the relative abundance of the 368 
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Proteobacteria decreased. Which processes control the changes in the moss-associated microbial 369 

community is topic for further study. 370 

 371 

Strong natural CH4 filter 372 

The reduction of CH4 emission by the Sphagnum-methanotroph interaction in the studied mesocosm 373 

set-up is large (31%), compared to other high CH4 producing moss-dominated ecosystems. In other 374 

ecosystems CH4 oxidation also mitigates CH4 emission. For example, in the arctic tundra [28] 5% of the 375 

total CH4 emission is mitigated, whereas in hollows in Sphagnum-dominated peatland [58] measured 376 

CH4 production and oxidation rates and calculated that nearly 99% of the CH4 emission was mitigated 377 

by CH4-oxidizing microorganisms. For free-floating wetland plants, it was shown that up to 70% of the 378 

CH4 emission may be oxidized by the combination of decreased flux rates and high CH4-oxidizing 379 

activity [59].  380 

Yet, the CH4 activity in the mesocosm set-up it is lower than the reduction found in the field. This is 381 

likely to be caused by the peat moss density, which was much higher in the field, where the moss layer 382 

was more than 50 cm deep. Although the stabilization of the net CH4 flux in both mesocosms occurred 383 

relatively quickly (8 days) and considerable CH4 mitigation was measured after 32 days of incubation, 384 

we believe that the CH4 mitigation by the moss associated methanotrophs in the mesocosm will most 385 

probably increase even further by prolonging the incubation time and increased amount of Sphagnum 386 

mosses. Additionally, the mesocosm set-up could be improved by replacing the manual addition of 387 

CH4 and air of the mesocosm with a continuous supply system. In a continuous bioreactor set-up, the 388 

system is even more stable, and variation is further reduced. The high reduction in CH4 emission in 389 

submerged Sphagnum emphasizes that the methanotrophs associated with Sphagnum are important 390 

in CH4 cycling in peatlands [12, 28–30], as they strongly regulate CH4 emission from Sphagnum 391 

dominated peatlands.  392 

 393 

Implications for degraded peatlands   394 
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The large organic matter stocks in peatlands are a great potential source for CO2 when these peatlands 395 

are drained. Restoration measures aimed at preventing further oxidation and degradation of these 396 

drained peatlands, often involve hydrological measures (rewetting), resulting in inundation of large 397 

surface areas. After rewetting, anaerobic degradation of organic matter will result in high CH4 398 

production rates. As shown above, methanotrophs are tightly associated to Sphagnum mosses. 399 

Presence of this consortium in restored peatlands can thereby strongly mitigate CH4 emissions. Since 400 

the presence and abundance of Sphagnum in peatlands is affected by peatland degradation as well 401 

[60, 61], care should be taken to restore and facilitate Sphagnum mosses in restored peatlands. 402 

 403 

Conclusion 404 

Sphagnum mosses have many key roles in peat ecosystems [62], and this study shows that their 405 

microbiome and specifically the methanotrophs associated with Sphagnum are crucial to keep CH4 406 

emissions from Sphagnum-dominated peatlands low. Peatland restoration practices involving 407 

rewetting, should therefore aim to stimulate Sphagnum growth simultaneously, in order to keep CH4 408 

emissions at bay. The presented mesocosm set-up can be used to further study the effect of various 409 

climate change relevant factors (such as temperature, pH, fertilization) on CH4 cycling in submerged 410 

Sphagnum moss ecosystems. Studying the influence of climate change on the Sphagnum-411 

methanotroph interaction and CH4 balance is crucial to get a better understanding of the potential 412 

positive feedback loop that reside in peatlands.  413 
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Table & Figure legends 593 

Table 1 Potential CH4 oxidation rate in batch, after mesocosm incubation. Moss and peat water 594 

samples from each mesocosm were incubated in batch, with or without acetylene. Different italic 595 

letters indicate statistical differences between PMO rates, tested by 3-way Anova. 596 

 597 

Fig. 1 Schematic set up of mesocosm incubation with in A. control mesocosms containing only filtered 598 

peat water (blue) and in B. the moss mesocosms, containing sphagnum moss layer (green) in filtered 599 

peat water.  600 

 601 

Fig. 2 Net CH4 flux (mmol CH4 m-2 day-1) measured in the field with Sphagnum moss layer present 602 

(green, n=3) and after moss removal (blue, n=3). Error bars indicate the standard error of the mean. 603 

 604 

Fig. 3 Potential CH4 oxidation rate in batch, associated with field Sphagnum mosses (light green, µmol 605 

CH4 g-1 DW day-1) or washed Sphagnum mosses (darker colors) and rates in peat water unfiltered or 606 

filtered. Error bars indicate the standard error of the mean (n=3). 607 

 608 

Fig. 4 Net CH4 flux (mmol CH4 m-2 day-1) from the mesocosms with Sphagnum moss (green) and the 609 

control mesocosm with only peat water (blue) measured in the headspace over time (days). Each dot 610 

represents the mean of 2 technical replicates. 611 

 612 

Fig. 5 Copy numbers of bacteria 16S rRNA, pmoA and mmoX genes obtained via qPCR. Error bars 613 

indicate the standard error of the mean (n=3). 614 

 615 

Fig. 6 A Phylogenetic classification of the bacterial community based on 16S rRNA gene amplification 616 

and sequencing. Taxonomic groups with a relative abundance <1% are depicted as “Other”. In B 617 
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specific relative abundances (RA in %) of methanotrophic bacteria in the bacterial 16s rRNA 618 

community profile are shown.   619 
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Tables 620 

Table 1 Potential CH4 oxidation rate in batch, after mesocosm incubation. Moss and peat water samples from 621 

each mesocosm were incubated in batch, with or without acetylene. Different italic letters indicate statistical 622 

differences between PMO rates, tested by 3-way Anova. 623 

 624 

Material Mesocosm Treatment Potential methane oxidation rate    

   (µmol CH4 g-1 DW day-1) SEM R2 n 

Moss Moss  189    a  6 0.98 3 

Moss Moss + acetylene   2.0    b  2 0.30 3 

Material Mesocosm Treatment Potential methane oxidation rate    

   (µmol CH4 ml-1 day-1) SEM R2 n 

Water Moss  0.02    a  0.02 0.17 3 

Water Moss + acetylene 0.03    a  0.01 0.51 3 

Water 
Peatwater 

only 
 0.09    b  0.01 0.86 3 

Water 
Peatwater 

only 
+ acetylene 0.05    b  0.01 0.67 3 

 625 

Figures  626 

 627 

 628 

 629 

 630 

 631 

 632 

 633 

 634 

 635 

 636 

 637 

 
 
Fig. 1 Schematic set up of mesocosm incubation with in A. control 
mesocosms containing only filtered peat water (blue) and in B. 
the moss mesocosms, containing sphagnum moss layer (green) in 
filtered peat water.  
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 663 

 664 

 
Fig. 2 Net CH4 flux (mmol CH4 m-2 day-1) measured 
in the field with Sphagnum moss layer present 
(green, n=3) and after moss removal (blue, n=3). 
Error bars indicate the standard error of the mean. 

 
 
Fig. 3 Potential CH4 oxidation rate in batch, associated with field Sphagnum 
mosses (light green, µmol CH4 g-1 DW day-1) or washed Sphagnum mosses 
(darker colors) and rates in peat water unfiltered or filtered. Error bars indicate 
the standard error of the mean (n=3). 
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 673 

 
Fig. 4 Net CH4 flux (mmol CH4 m-2 day-1) from the mesocosms with Sphagnum moss 
(green) and the control mesocosm with only peat water (blue) measured in the 
headspace over time (days). Each dot represents the mean of 2 technical replicates. 

 
Fig. 5 Copy numbers of bacteria 16S rRNA, pmoA and mmoX genes obtained via qPCR. Error bars 
indicate the standard error of the mean. 
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 674 

 
Fig. 6 A Phylogenetic classification of the bacterial community based on 16S rRNA gene amplification and sequencing. Taxonomic groups with a relative abundance <1% are depicted 
as “Other”. In B specific relative abundances (RA in %) of methanotrophic bacteria in the bacterial 16s rRNA community profile are shown. 
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