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Deep learning and manual assessment show that the absolute
mitotic count does not contain prognostic information in triple
negative breast cancer
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Abstract
Purpose The prognostic value of mitotic count for invasive breast cancer is firmly established. As yet, however, limited studies
have been aimed at assessing mitotic counts as a prognostic factor for triple negative breast cancers (TNBC). Here, we assessed
the prognostic value of absolute mitotic counts for TNBC, using both deep learning and manual procedures.
Methods A retrospective TNBC cohort (n = 298) was used. The absolute manual mitotic count was assessed by averaging counts
from three independent observers. Deep learning was performed using a convolutional neural network on digitized H&E slides.
Multivariable Cox regression models for relapse-free survival and overall survival served as baseline models. These were
expanded with dichotomized mitotic counts, attempting every possible cut-off value, and evaluated by means of the c-statistic.
Results We found that per 2 mm2 averagedmanual mitotic counts ranged from 1 to 187 (mean 37.6, SD 23.4), whereas automatic
counts ranged from 1 to 269 (mean 57.6; SD 42.2). None of the cut-off values improved the models’ baseline c-statistic, for both
manual and automatic assessments.
Conclusions Based on our results we conclude that the level of proliferation, as reflected by mitotic count, does not serve as a
prognostic factor for TNBC. Therefore, TNBC patient management based on mitotic count should be discouraged.

Keywords Triple negative breast cancer . Mitotic count . Artificial intelligence . Prognosis

1 Introduction

Recent advances in machine learning have resulted in
computer algorithms that are capable of analysing entirely
digitized microscopic tissue sections (whole slide images;
WSI). It has been shown that such algorithms can, for
instance, accurately detect and delineate tumour areas in

breast and colon tissue sections and detect mitotic figures
in breast cancer [1–3]. Next to direct use in research and
clinical practice, such algorithms are also of interest to re-
assess the diagnostic/prognostic value of widely used
morphological criteria. As these algorithms allow a fully
automatic analysis of large numbers of tissue sections
with high reproducibility, this opens up new ways to es-
tablish ‘evidence-based’ pathology. In the present study
we used deep learning to evaluate the prognostic value
of mitosis counting for triple negative breast cancer
(TNBC).

TNBCs comprise ~15% of all breast tumours, and are
characterized by absence of expression of the oestrogen
receptor (ER) and the progesterone receptor (PR) and ab-
sence of overexpression of the human epidermal growth
factor receptor 2 (HER2) [4]. TNBCs are known to occur
at a relatively young age and to have a worse prognosis
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than their hormone receptor positive counterparts [5]. In
routine pathology practice, every newly diagnosed inva-
sive breast tumour will undergo histological grading
[6–8]. Histological grading of breast cancer is routinely
performed by means of the modified Bloom and
Richardson grading system [9, 10], which comprises a
three-tiered classification system. Microscopically
assessed scores, expressing the severity of nuclear pleo-
morphism, the relative amount of tubule formation and
the mitotic count in a 2 mm2 area are summed up and
translated into an overall histological grade. The histolog-
ical grade ranges from grade 1, with features similar to
normal breast epithelium, to grade 3, being most deviant
from normal breast epithelium.

The vast majority of TNBCs is of histological grade 3,
while grade 1 TNBCs are rare [11–14]. It has been sug-
gested, however, that histological grade does not provide
prognostic information for TNBC [11, 15]. TNBC tumours
display wide ranges of mitotic counts [16, 17], with most
tumours showing counts that largely exceed the minimum
number required for grade 3 of the modified Bloom and
Richardson grading system. These tumours, therefore, often
fall in the highest class for mitotic counting, not reflecting
the wide variation in absolute mitotic counts in TNBC. To
date, no studies have been reported assessing the prognostic
value of mitotic counts in TNBC. In addition, considering
the wide range of mitotic figures present in TNBC, it may be
questioned whether the cut-off values of the modified
Bloom and Richardson grading system are applicable to
TNBC or whether better suited TNBC-specific cut-off
values are available. The application of deep learning in
the present study allows for a comprehensive analysis of
absolute mitotic counts, even in the presence of very high
densities of such cells.

Previously, we [15] developed a multivariable prog-
nostic model for TNBC in which histological subtype
was found to serve as an independent prognostic factor.
In the present study, this existing multivariable model
was used as a baseline to study the added prognostic
value of mitotic count for TNBC. In addition to the
‘grade 3’ cut-off value of the modified Bloom and
Richardson grading system, we investigated the prog-
nostic value of a range of alternative mitotic count
cut-off values. To be able to identify alternative cut-off
values in the most objective manner, we performed cur-
rently used manual assessment and average counts made
independently by three pathologists, as well as a
counting procedure based on state-of-the-art deep learn-
ing strategies. Combined with whole slide scanning of
microscopic tissue sections, deep convolutional neural

networks (CNN) [18] have been shown to be highly
suited for routinely performed pathological assessments,
such as metastasis detection in breast cancer sentinel
lymph nodes [19] and for mitosis detection [1].

2 Materials and methods

2.1 Patients and tissue selections

In a previous study, a multicentre retrospective cohort of
TNBC was e s t ab l i s hed us i ng the Ne t he r l ands
Comprehensive Cancer Registry (IKNL; a nationwide registry
in which all malignancies in the Netherlands are registered)
[15]. The cohort comprises 597 patients who were diagnosed
with TNBC between the years 2006 and 2014 in the Eastern
Netherlands in an academic hospital (Radboudumc,
Nijmegen) or a general hospital (Canisius Wilhelmina
Hospi ta l , Ni jmegen; Jeroen Bosch Hospi ta l , ‘s-
Hertogenbosch; Bernhoven Hospital, Uden; Hospital
Pantein, Boxmeer). Patients with stage IV disease on initial
presentation and patients who were treated with neoadjuvant
therapy were excluded. For each tumour, one representative
tissue block was selected based on inspection of archival tis-
sue sections for the presence of the tumour burden and the
presence of a transition from tumour to normal breast tissue
(the border of the tumour, often referred to as Binvasive
margin^) [20]. From every selected tissue block, one new
slide was cut and stained with H&E in the Radboudumc pa-
thology department according to routine practice. All tumours
underwent central histopathological revision for histological
subtype and grade (MCAB, PB) using currently applicable
guidelines [10, 21].

For all patients, clinical and follow up data were
retrieved from the Netherlands Comprehensive Cancer
Registry (overall survival; OS) and from local patient
files (relapse-free survival; RFS). The interval between
the date of diagnosis of TNBC via core needle biopsy
or fine needle aspiration and the date of clinically and/
or pathologically detected recurrence of TNBC was de-
fined as RFS. The occurrence of hormone receptor and/
or HER2 positive breast cancer was regarded as a new
primary tumour and not as a recurrence. If no recur-
rence occurred, patients were censored at the date of
last follow up. OS was defined as the interval between
the date of diagnosis of TNBC and the date of death or
the moment of last follow up. The REMARK guidelines
for reporting tumour marker prognostic studies were
followed [22] and the study was conducted according
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to the Standards for Reporting of Diagnostic Accuracy
(STARD) guideline [23].

2.2 Ethical approval

The requirement for ethical approval was waived by the insti-
tutional review board (case number 2015–1711) of the
Radboudumc. All patient material and data were treated ac-
cording to the Code of Conduct for the Use of Data in Health
Research [24] and the Code of Conduct for responsible use of
human tissue in the context of health research [25].

2.3 Manual mitosis counting

Three observers (MCAB: pathology resident; WV and
PCC: pathologists with special interest in breast cancer)
independently assessed the absolute mitotic counts for all
tumours. All observers performed exhaustive visual mito-
sis counting in a 2 mm2 area, which was selected accord-
ing to the modified Bloom and Richardson grading sys-
tem [9, 10]. The absolute number of mitoses was record-
ed, without translating into predefined classes. All ob-
servers were blinded for any clinical or pathological in-
formation, as well as for the scores of the other observers.

2.4 Automatic mitosis counting

For automatic mitosis counting we used a previously de-
scribed deep learning algorithm [1]. In brief, algorithm train-
ingwas performed using 18 tumours of the TNBCcohort, for
which an additional H&E slide was made and scanned on a
Pannoramic 250 Flash II slide scanner (3DHistech,
Hungary) at a spatial resolution of 0.25 μm/pixel. Next,
slides were de-stained and immunohistochemically re-
stained using an anti-phosphorylated histoneH3 (PHH3) an-
tibody, which stains mitotic figures. [26]. PHH3-stained
slides were scanned using the same scanner and resolution
as for the H&E slides. Resulting pairs of H&E and PHH3
whole slide images (WSI) were subsequently co-registered
(i.e., images were aligned such that there was a pixel level
correspondence between two images). This procedure
allowed exact localization of the PHH3 positive cells in the
H&E section (Fig. 1). Deep learning algorithms are typically
trained using large sets of labelled examples. The set of im-
ages of mitotic figures resulting from the de-staining and re-
staining procedure described above provided a very exten-
sive training set, producing a state-of-the-art algorithm for
the detection of mitoses in H&E stained slides.

The H&E slides of the TNBC cohort were scanned
using the same Pannoramic 250 Flash II slide scanner

and settings as the algorithm was trained on. The deep
learning algorithm was applied to resulting H&E WSI to
automatically detect all mitotic figures (example in
Fig. 2a, b). To establish an automated procedure for mi-
tosis counting, comparable to manual counting, we calcu-
lated the number of mitoses detected by the deep learning
algorithm in circles with a 2 mm2 area in every possible
location in the WSI. Of all potential counting locations,
the one with the highest mitotic density was automatically
selected (Fig. 2b, c). The number of mitotic figures in this
automatically identified hotspot was reported (automatic
count; AMC).

For visual inspection, all automatically detected mitotic
figures and the 2 mm2 circle were projected on the H&E
WSI (Fig. 2c). Because the algorithm does not discriminate
between mitotic figures in benign and malignant epitheli-
um, a number of cases with a low mitotic density in the
invasive tumour area showed a 2 mm2 hotspot outside the
tumour (52 of the 597 tumours). In these cases, the tumours
were delineated by a pathology resident (MCAB) and the
algorithm was applied again, now forced to designate the
hotspot in the delineated area.

2.5 Statistical analysis

Because visual counting of mitoses is a very labour-
intensive procedure, we performed a power analysis to cal-
culate the number of tumours needed to be included for
manual mitosis counting. As no literature is available on
the prognostic value of the mitotic count in TNBC, we based
our power calculations on studies that have reported hazard
ratio’s for mitotic counts in the general breast cancer popu-
lation [27–30]. The reported hazard ratio’s in these studies
varied between 1.5 and > 8. For TNBC, we assume that the
mitotic count yields a HR in the lower range of this spec-
trum. For the power analyses we, therefore, assumed a haz-
ard ratio of 2.5. For an alpha significance level of 0.05, a
power of 80% and a risk of developing a recurrence within
5 years of 20% (19.6% in the present cohort), the required
sample size for a HR of 2.5 was 292. Using an overall risk of
dying within 5 years of 25% (25.1% in the present cohort),
the required sample size was 200. Based on these power
calculations, in the present study we selected 50% of the
cases (n = 298) of the previously described cohort [15] as
follows: after ranking all patients by incidence date (date of
diagnosis with TNBC by either histology or cytology) every
second patient was included. The distribution of variables of
interest and of number of events between the selected and
un-selected cases was compared using cross tabulation. No
significant differences were observed (p > 0.05; data not

Deep learning and manual assessment show that the absolute mitotic count does not contain prognostic... 557



shown) using Pearson Chi-Square test. Also, independent
sample T tests showed no significant differences (p > 0.05;
data not shown) in mean time to events between selected
and un-selected cases. Interobserver variability between
observers and between the CNN and observers was
expressed as intraclass correlation coefficients (ICC). We
used a 2-way random-effects model and tested for absolute
agreement with a reliability calculated from a single
measure (corresponding to ICC(2,1) according to the
Shrout and Fleiss convention [31]). For every tumour, the
mean manual mitotic count (MMC) was calculated as the

average over the three observers. Multivariable Cox
regression analysis was performed to assess the prognostic
value for a range of cut-off values for the MMC and the
AMC, with RFS and OS as the primary outcome measures.
Our previously described models [15] for RFS and OS of
TNBC were used as baseline prognostic models. The
baseline model consists of the variables age, primary
tumour stage, regional lymph node stage, histological
subtype, primary surgical treatment, adjuvant systemic
therapy and adjuvant radiotherapy. Interaction terms
between mitotic counts and available clinicopathological

Fig. 1 One example of the 18 TNBC cases that was used to train the deep
learning algorithm. (a) Overview at low magnification of the additional
H&E slide. After de-staining and re-staining using PHH3 (b), the

images could be co-registered to allow precise localization of the PHH3
positive cells in the H&E section. (c) and (d) show exact correspondence
between the H&E and PHH3 sections at high magnification
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variables for RFS and OS were calculated to investigate
whether the prognostic value of the mitotic count was
different at different values of the other causal variable.
We performed Cox analysis using the baseline model and
separately adding the dichotomized MMC and AMC as a
variable, for a range of different cut-off values. The lowest
10% and highest 10% of values of the MMC and the AMC

were not considered as cut-off values. The range of values
tested also included the cut-off value of 15, which
discriminates between the classes 2 and 3 of the modified
Bloom and Richardson mitotic score [10].

As a performance measure for assessment of the mod-
el, the c-statistic was used. The c-statistic indicates the
discriminative power of a regression model. The approach

Fig. 2 Example of the deep learning algorithm applied to one of the
TNBC tumours. (a) Overview at low magnification of the deep learning
result. Every detected mitotic figure is marked with a green dot. The
yellow circle indicates the 2 mm2 area with the highest density of
mitotic figures. (b) Hotspot area as found by the deep learning

algorithm at higher magnification. The blue rectangle in the yellow
hotspot circle relegates to the area that is shown in c. (c) Selected area
(blue rectangle in b) at high magnification in which the mitotic figures
found by the deep learning algorithm are circled in green. Two mitotic
figures are missed by the algorithm (blue arrows, top right)
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of Harrell et al. was used to calculate the c-statistic [32],
which is the preferred approach for studies focusing on

long term risk prediction and in which not all individuals
experience the event of interest [33]. As an additional
experiment, we analysed the results of AMC on the total
cohort of 597 TNBC tumours, applying the procedure
described above.

For all analyses, confidence intervals were set at the
95% level and a minimal p value of < 0.05 was consid-
ered statistically significant. All analyses were performed
using statistical software SPSS (version 24.0; IBM,
Chicago, USA) and R (version 3.5.1).

3 Results

3.1 Patient demographics and tumour characteristics
of the triple negative breast cancer cohort

Table 1 shows the patient and tumour characteristics of
the selected cases. The majority of patients were 50 years
or older at the time of diagnosis (64.8%). About half of
the tumours were smaller than 2 cm (54.0%) in size. The
prevailing histological subtype was invasive carcinoma
NST (88.6%). Patients who were treated with chemother-
apy were given anthracyclines with or without the addi-
tion of taxanes. For the group of patients treated with
taxanes, no survival benefit was observed when com-
pared to the anthracycline only patient group (data not
shown). None of the patients were treated with the first
generation chemotherapy regime CMF (cyclophospha-
mide, methotrexate, and 5-fluorouracil). In addition, no
patients were treated with platinum salts. About one in
five patients were confronted with a recurrence of TNBC
(20.1%) and one in four patients died during the follow
up period (25.5%). For the patients that developed a
recurrence, the median time for developing a clinically
detected recurrence was 28.8 months after primary
TNBC diagnosis. The median time to TNBC-specific
death was 3.7 months (mean 8.0 months) after being
diagnosed with a recurrence of TNBC.

3.2 Baseline prognostic model

Baseline multivariable Cox regression analysis showed that
a high primary tumour stage, a high regional lymph node
stage and no administration of adjuvant therapy were corre-
lated with a worse survival (Table 2). The values of the c-
statistic for the baseline RFS model and the baseline OS
model were 0.745 and 0.761, respectively.

Table 1 Overview of patient and tumour characteristics of the triple
negative breast cancer cohort (n = 298)

n %

Gender
Female 298 100.0

Age, years
≥ 50 193 64.8
< 50 105 35.2

Primary tumour stage*
T1 161 54.0
T2 124 41.6
T3 10 3.4
T4 3 1.0

Regional lymph node stage*
N0 (including isolated tumour cells) 206 69.1
N1 64 21.5
N2 14 4.7
N3 6 2.0
Nx (regional lymph nodes could not be assessed) 8 2.7

Histological grade [9, 10]
1 1 0.3
2 29 9.7
3 268 89.9

Histological subtype [21]
Invasive carcinoma of no special type 264 88.6
Special histological subtypes** 34 11.4

Primary surgical treatment
Mastectomy 106 35.6
Breast conserving surgery 186 64.4

Adjuvant systemic therapy
None 130 43.6
Anthracyclines 69 23.2
Anthracyclines with taxanes 97 32.6
Other regimes 2 0.7

Adjuvant radiotherapy
No 191 64.1
Yes 107 35.9

Development of recurrence***
No 238 79.9
Yes 60 20.1

Deceased (overall)
No 222 74.5
Yes 76 25.5

*Primary tumour stage, regional lymph node stage and TNM stage are
classified according to TNM6th edition [34] for the years 2006 until 2009
and TNM 7th edition [35] that was in use from 2010. However, no
changes considering the classification of the pathological T-stage and
N-stage were made in the TNM 7th edition, resulting in comparable
stages between the 6th and 7th edition

**Metaplastic carcinoma (14 patients), invasive lobular carcinoma (6
patients), adenoid cystic carcinoma (4 patients), glycogen rich clear cell
carcinoma (2 patients), malignant adenomyoepithelioma (2 patients),
medullary carcinoma (1 patient), invasive carcinoma with osteoclast like
giant cells (1 patient)

***The presence of a recurrence was confirmed either clinically (imaging
studies) or with additional pathological examination
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3.3 Prognostic value of the mitotic count
and the value of alternative cut-off values

The MMC ranged from 1 to 187 (median 34.7; mean
37.6; SD 23.4). The level of agreement between the three
observers was good (intraclass correlation coefficient:
0.60, range 0.585–0.616). The upper and lower bound-
aries used for the range of cut-off values for the manual
count were set at 66 and 12, respectively. The AMC
ranged from 1 to 269 (median 50.5; mean 57.6; SD

42.2). The level of agreement (ICC) between AMC and
observers ranged from 0.497 to 0.626. For the automatic
count, the upper and lower boundaries of the cut-off
values were set to 110 and 12. Figure 3 shows the dis-
criminative capacity (expressed in the c-statistic) of the
baseline prognostic model (red line) and the baseline
prognostic model with the mitotic count as additional
variable (green line) for both MMC (left) and AMC
(right). For RFS (Fig. 3a-b), the c-statistic value of the
baseline prognostic model was found to be nearly equal

Table 2 Baseline multivariable model for relapse-free survival and overall survival for the selected cases of the triple negative breast cancer cohort (n =
298)

Relapse free survival
HR (95% CI)

p value Overall survival
HR (95% CI)

p value

Age, years

< 50 1 (ref) 1 (ref)

≥ 50 0.63 (0.32–1.24) 0.179 0.72 (0.35–1.46) 0.359

Primary tumour stage*

T1 1 (ref) 1 (ref)

T2 1.58 (0.89–2.82) 0.121 2.85 (1.66–4.89) < 0.001

T3 3.31 (1.23–8.94) 0.018 5.20 (1.73–15.65) 0.003

T4 NA NA NA NA

Regional lymph node stage*

N0 (including isolated tumour cells) 1 (ref) 1 (ref)

N1 1.45 (0.72–2.91) 0.296 1.46 (0.79–2.70) 0.225

N2 9.16 (3.62–23.17) < 0.001 4.72 (1.90–11.72) 0.001

N3 7.53 (1.99–28.41) 0.003 4.13 (0.93–18.30) 0.062

Nx (regional lymph nodes could not be assessed) NA NA NA NA

Histological type [21]

Invasive carcinoma NST 1 (ref) 1 (ref)

Special histological subtypes 2.21 (1.08–4.53) 0.030 1.37 (0.69–2.70) 0.369

Primary surgical treatment

Mastectomy 1 (ref) 1 (ref)

Breast conserving surgery 1.04 (0.54–2.00) 0.916 0.93 (0.52–1.67) 0.819

Adjuvant systemic therapy

None 1 (ref) 1 (ref)

Anthracyclines 0.88 (0.42–1.85) 0.730 0.32 (0.15–0.67) 0.002

Anthracyclines with taxanes 0.52 (0.23–1.19) 0.122 0.24 (0.10–0.56) 0.001

Other regimes NA NA NA NA

Adjuvant radiotherapy

No 1 (ref) 1 (ref)

Yes 0.56 (0.27–1.17) 0.124 0.45 (0.24–0.84) 0.012

Abbreviations: CI confidence interval, HR hazard ratio, NA not applicable, NST no special type, ref.: reference category

*Primary tumour stage, regional lymph node stage and TNM stage are classified according to TNM 6th edition [34] for the years 2006 until 2009 and
TNM 7th edition [35] that was in use from 2010. However, no changes considering the classification of the pathological T-stage and N-stage were made
in the TNM 7th edition, resulting in comparable stages between the 6th and 7th TNM edition
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to the model with the addition of the mitotic count for all
possible cut-off values, indicating that the mitotic count
does not improve the baseline model. In addition, for OS
(Fig. 3c-d) the curve that corresponds with the value of
the c-statistic of the model with the addition of the mi-
totic count was found to fluctuate with very small mar-
gins around the curve of the c-statistic value of the base-
line model. The algorithm was additionally applied to the
unselected cases of the TNBC cohort using the automatic
counts of the total cohort (n = 597) as input for the mul-
tivariable Cox regression model. Application of AMC on

the extended cohort did not show any additional prog-
nostic value of the mitotic count (Fig. 4).

3.4 Subgroup analysis of the prognostic value
of the mitotic count

The relation between the mitotic counts and the available
clinicopathological variables were calculated using inter-
action terms. The only variable for which interaction
with the mitotic count was found was type of adjuvant
systemic therapy. Figures 5 and 6 visualise the baseline

Fig. 3 Graphic representation of the c-statistic value of the Cox
regression model. The middle red line represents the value of the c-
statistic of the model without the mitotic count (baseline model) with
corresponding upper and lower 95% confidence interval indicated by
the fine red lines. The green line indicates the value of the c-statistic for
every cut-off value of the mean mitotic score for the range between 12
and 66 mitoses per 2 mm2 for the averaged manual assessments and
between 12 and 110 mitoses per 2 mm2 for the automatic assessment.

The translucent green area indicates the 95% upper and lower confidence
interval for the value of the c-statistic. The vertical yellow line indicates
the cut-off value of the modified Bloom and Richardsonmitotic score (15
mitoses per 2 mm2). (a) Relapse-free survival for the mean mitotic count
of the manual assessments. (b) Relapse-free survival for the mitotic count
of the automatic assessment. (c) Overall survival for the mean mitotic
count of the manual assessments. (d) Overall survival for the mitotic
count of the automatic assessment
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c-statistics and additional prognostic value of the mitotic
counts for the different adjuvant systemic therapy re-
gimes. Due to too small numbers, no calculation for the
patients who received other systemic therapy regimens
(n = 2) could be performed. Figures 5a and 6a show that
for a selection of cut-off values, the c-statistic of the
model that includes the mitotic count (green line) ex-
hibits higher values than the baseline c-statistic. No
cut-off value, however, exhibited values outside the con-
fidence intervals of the baseline models (fine red lines).

4 Discussion

Previously, we showed that histological subtype is an
independent prognostic feature for RFS in TNBC [15].
In the present study we explored the prognostic value of
the mitotic count for TNBC. The multivariable Cox re-
gression model developed in our prior study served as
baseline model and was used to assess the putative
added prognostic value of the mitotic count for TNBC.
The Cox regression models for RFS and OS were ex-
panded with the mitotic count, after which we analysed
the discriminative value of the regression model for a
wide range of cut-off values for the mitotic count. We
found that the addition of the mitotic count did not

improve the prognostic model for RFS or OS for any
of the tested cut-off values.

TNBC tumours are characterized by the absence of
ER and PR expression and the absence of HER2 over-
expression. As such, the TNBC category contains a
mixture of tumours with widely varying histopathologi-
cal and genomic characteristics and, consequently, vari-
able clinical courses of the disease. This situation poses
challenges for the treating clinician, as the basis for
therapy choices is small. Well-known prognostic factors
are not yet established for TNBC. Recent work has
focused on identifying immune-based and molecular
features of TNBC to obtain prognostic [36, 37] and
predictive [38–40] biomarkers. For the TNBC subtype,
only scarce literature exists focusing on the prognostic
value of proliferation. It has been shown that TNBC
tumours express high levels of proliferative activity on
the mRNA [41] and protein levels [42]. However, so far
no strong proliferation-based prognosticator specifically
for this type of cancer has evolved. We previously
found that histopathological subtype serves as an inde-
pendent prognostic factor, potentially identifying a small
subgroup (up to 30% [11–13]) of TNBC with a worse
prognosis. The present study shows that mitotic
counting does not yield any prognostic information for
TNBC. To the best of our knowledge, this is the first
study that focused on the prognostic value of absolute

Fig. 4 Graphic representation of the c-statistic value of the Cox
regression model for the total TNBC cohort (n = 597) in combination
with the automatic assessment of the mitotic count. The middle red line
represents the value of the c-statistic of the model without the mitotic
count (baseline model) with corresponding upper and lower 95%
confidence interval indicated by the fine red lines. The green line

indicates the value of the c-statistic for every cut-off value of the mean
mitotic score for the range between 12 and 110 mitoses per 2 mm2. The
translucent green area indicates the 95% upper and lower confidence
interval for the value of the c-statistic. The vertical yellow line indicates
the cut-off value of the modified Bloom and Richardsonmitotic score (15
mitoses per 2 mm2). (a) Relapse-free survival. (b) Overall survival
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mitotic counts for TNBC. Mitotic counting as part of
tumour grading is considered an established prognostic
factor for breast cancer in general, and is routinely per-
formed for every new case. Results from the present
study indicate that we may have to re-consider the cur-
rent practice of grading TNBC. Clearly, alternative
prognostic factors for TNBC are urgently needed.

Although many studies have assessed the prognostic
value of the mitotic count for invasive breast cancer, the
prognostic value of the absolute mitotic count is not
commonly studied. The mitotic count is typically
analysed as a categorical variable that comprises three
classes (low, middle and high) with cut-off values that
are based on the modified Bloom and Richardson grad-
ing system [43, 44]. An exception is the study design of
Kronqvist et al. [45, 46]. The prognostic value of a
range of thresholds of the mitotic count was analysed
by these authors in a cohort of 364 breast cancer pa-
tients. An optimal cut-off value for the mitotic count
was determined by examining Chi-square values of the
log rank test for every cut-off value for different sub-
groups of patients. Although this approach bears simi-
larities with our study design, the most important differ-
ence is that our current study explores the prognostic
value of cut-off values specifically for TNBC, which
are known to exhibit much higher mitotic counts than
general breast cancers. Also, we performed a multivari-
able approach to correct for other prognostic factors, in
contrast to the univariable analyses applied by
Kronqvist et al.

It has been shown that counting of mitotic figures is
prone to subjectivity [42] due to a lack of standardization

[47, 48] and, additionally, is hampered by external fac-
tors such as fixation artefacts [49]. To become less de-
pendent on individual assessments of the number of mi-
totic figures and of the selection of the area where to
count, three observers independently assessed the mitotic
count for every tumour in our study. We used the aver-
age of the three observers as the mean mitotic count for
every tumour. By taking the average of the individual
counts the interobserver variation was reduced. In addi-
tion, we applied a deep learning algorithm to assess the
mitotic counts in an objective and reproducible manner.
Automated counting based on deep learning potentially
yields a more objective and reproducible measure [50].
Also, because of the extensive effort associated with
manual counting of larger numbers of mitoses, only by
using automated counting we could analyse the prognos-
tic value in the entire cohort of almost 600 cases, adding
considerable power to the study. The use of a deep
learning-based algorithm in the present study showcases
the potential of such techniques for re-evaluating existing
histopathological features.

Next to research use, deep learning will most likely
also find clinical application in histopathology.
Algorithms such as the one used in the present study
may be very useful in a clinical setting, pre-analysing
scanned tissue sections before the pathologist starts the
diagnostic process. With the introduction of whole slide
imaging devices, the introduction of such algorithms
will be strongly facilitated. An algorithm that has al-
ready processed WSI can subsequently be used to assist
pathologists to reduce observer biases, and increase ac-
curacy and efficiency. The first study on the potential of
such a setup in a prospective setting showed that
screening for metastases in sentinel lymph nodes of
breast cancer patients was both faster and more accurate
when a pathologist was assisted by a deep learning-
based system [51].

This study has several strengths. Because our TNBC
cohort was deduced from 5 different hospitals over sev-
eral years, it can be regarded as a good reflection of the
diverse TNBC population. Counting mitotic figures in
H&E slides is a laborious and time-consuming task.
The time and effort that the three observers have put
into counting the absolute numbers of mitotic figures in
nearly 300 tumours is, therefore, very valuable. The
additional analyses of mitotic counts assessed by a
computer-based algorithm, which showed comparable
prognostic value as the counts of the human observers
did, underscore the conclusion that mitotic count is of
no prognostic value for TNBC. As stated, no previous
reports have been published studying the prognostic val-
ue of mitotic counts in TNBC. Our analysis is limited
by the constraints of a retrospective study, although we

�Fig. 5 Graphic representation of the c-statistic value of the Cox regression
model for the different adjuvant systemic therapy regimens; relapse-free
survival. The middle red line represents the value of the c-statistic of the
model without the mitotic count (baseline model) with corresponding upper
and lower 95% confidence interval indicated by the fine red lines. The green
line indicates the value of the c-statistic for every cut-off value of the mean
mitotic score for the range between 12 and 66 mitoses per 2 mm2 for the
averagedmanual assessments and between 12 and 110mitoses per 2mm2 for
the automatic assessment. The translucent green area indicates the 95% upper
and lower confidence interval for the value of the c-statistic. The vertical
yellow line indicates the cut-off value of the modified Bloom and
Richardson mitotic score (15 mitoses per 2 mm2). (a) Mean mitotic count
of the manual assessments, patients who did not receive adjuvant systemic
therapy (n= 130). (b)Mitotic count of the automatic assessment, patientswho
did not receive adjuvant systemic therapy (n= 130). (c)Meanmitotic count of
the manual assessments, patients who received anthracycline-based
chemotherapy regimens (n = 69). (d) Mitotic count of the automatic
assessment, patients who received anthracycline-based chemotherapy
regimens (n= 69). (e)Meanmitotic count of themanual assessments, patients
who received anthracycline with taxane-based chemotherapy regimens
(n= 97). (f) Mitotic count of the automatic assessment, patients who received
anthracycline with taxane-based chemotherapy regimens (n= 97)
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made a considerable effort to obtain high quality and
complete follow up data by using a highly reliable na-
tionwide cancer registry and an extensive review of the
patient files. In conclusion, by analysing a wide range
of cut-off values, we show that mitotic count does not
improve the prognostic value of currently available mul-
tivariable prognostic models for RFS and OS for TNBC.
Our results suggest that mitotic count is of no prognos-
tic value for TNBC patients. As this is the first study
that specifically explored the prognostic value of mitotic
counts for TNBC, these results must be confirmed in
independent TNBC cohorts. In addition, this study
shows the potential of deep learning-based algorithms
for evaluating histopathological features in large series
in an objective manner.
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