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A B S T R A C T

In this paper we study the interactions of two biomolecules (ascorbic acid and Annonacin) with a bilayer lipid
membrane. Egg yolk phosphatidylcholine (eggPC) liposomes (in crystalline liquid state) were prepared in so-
lutions of ascorbic acid (AA) at different concentration levels. On the other hand, liposomes were doped with
Annonacin (Ann), a mono-tetrahydrofuran acetogenin (ACG), which is an effective citotoxic substance. While AA
pharmacologic effect and action mechanisms are widely known, those of Ann’s are only very recently being
studied.

Both Fourier Transformed Infrared (FTIR) and Raman spectroscopic techniques were used to study the par-
ticipation of the main functional groups of the lipid bilayer involved in the membrane-solution interaction. The
obtained spectra were comparatively analyzed, studying the spectral bands corresponding to both the hydro-
phobic and the hydrophilic regions in the lipid bilayer. Electrochemical experiments namely; impedance spec-
troscopy (EIS) and cyclic voltamperometry (CV) were used as the main characterization techniques to analyse
stability and structural changes of a model system of supported EggPC bilayer in connection with its interactions
with AA and Ann.

At high molar ratios of AA, there is dehydration in both populations of the carbonyl group of the polar head of
the lipid. On the other hand, Ann promotes the formation of hydrogen bonds with the carbonyl groups.

No interaction between AA and phosphate groups is observed at low and intermediate molar ratios. Ann is
expected to be able to induce the dehydration of the phosphate groups without the subsequent formation of H
bonds with them.

According to the electrochemical analysis, the interaction of AA with the supported lipid membrane does not
alter its dielectric properties. This fact can be related to the conservation of structured water of the phosphate
groups in the polar heads of the lipid. On the other hand, the incorporation of Ann into the lipid membrane
generates an increase in the number of defects while changes the dielectric constant. This, in turn, can be
associated with the induced dehydration of the phosphate groups.

1. Introduction

The phospholipids that form cell membranes not only play a
structural role in them but they are also involved in cellular regulatory
functions such as intracellular second messengers. Evidence suggests
that the choline phospholipids can act as second messengers (Fig. 1).
Liposomes are a suitable membrane model system to research into the
behavior of the cell membranes (Garber et al., 2002).

]The most important effects of Annonaceous acetogenins (ACG)

have been described on cancer cell lines, especially those resistant to
chemotherapy. Their cytotoxicity is due to the fact that they inhibit ATP
synthesis at the mitochondrial complex I. Apparently, inhibition of the
respiratory chain would be the most important mechanism through
which ACG cause insect larval and pupal mortality. On other hand, Di
Toto Blessing et al. (2012) suggested that mitochondrial Complex I
inhibition was not the only mode of action of ACG, since insecticidal
action would be by the destabilization that occurred in the membrane
due to dehydration around the phosphate groups caused by interaction
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with ACG and their synthetic analogues (Barrachina et al., 2004;
Álvarez Colom et al., 2009) (Fig. 2a).

L-Ascorbic acid (also called vitamin C), hereafter abbreviated as L-
AA; is one of the most essential vitamins for both pharmaceutical and
food processing industries. In view of its nutritional significance, varied
uses in food and high daily doses necessary for optimum health, L-AA is
a very significant vitamin for better public health (Levine, 1986). It has
been reported that large doses of vitamin C increases greatly the rate of
production of lymphocytes under antigenic stimulation and it is well
established that such a high rate of lymphocyte blastomogenesis is as-
sociated with a favorable prognosis of cancer (Lee, 1999; Carr and Frei,
1999; Patterson et al., 1997; Head, 1998; Prasad et al., 1999; Cort,
1982; Barnes and Kodicek, 1972; Hollis et al., 1985). L-AA is known to
kill HIV-positive cells and to be useful in HIV-positive patients as a
consequence of the potentiating of the immune system (Rivas et al.,
1997).

L-AA is a six-carbon keto-lactone (Fig. 2b), a strong reducing agent
and serves as an antioxidant. The hydrogen donation from L-AA is
considered to be primarily responsible for the antioxidant properties
attributed to this molecule. It contains four OH groups (two enol OH
groups on lactone ring carbons and two OH groups on the side chain C
atoms). It can be very easily oxidized and changed to dehydroascorbic
acid. Its four hydroxyl (OH) groups play important role in its anti-
oxidant property (Singh et al., 2010).

Previous results have indicated that the effects caused by certain
compounds on the hydration patterns surrounding phosphate and car-
bonyl groups of phospholipids can be studied by FTIR and Raman
spectroscopy (Díaz et al., 1999, 2003; Hübner and Blume,1998). Our
investigations of “membrane-acetogenin” and “membrane-ascorbic
acid” interactions were carried out by employing FTIR at different
molar ratios of eggPC: biomolecule. In the IR spectra, the frequency
shifts of the PO2

− and C═O stretching-vibration bands were analyzed in
comparison with the corresponding bands of eggPC with no addition of
the biomolecules.

The knowledge of the specific sites of anchorage of the biomolecules
on the lipid membrane together with the structural requirements for the
interaction may help us to design synthetic derivatives therapeutically
selective.

Supported membranes on top of gold surfaces are interesting models
for biomembranes as cell membranes. Supported membranes can be

characterized by using electrochemical techniques. In particular, im-
pedance measurements provides monitoring of the dielectric properties
of the membranes and their changes related to the interaction with
different biomolecules (Steinem et al., 2000; Du et al., 2006;
Rameshkumar and Kumaravel, 2017).

Recently, Acetogenins aroused a deep interest in the scientific
community, in particular, the effects on human beings of Ann. Since
these compounds can be found in different edible fruits and vegetables
there is a strong motivation to study the interaction with cell mem-
branes.

Several compounds of acetogenin have been reported to possess
anti-proliferative and cytotoxicity properties. Acetogenins, a number of
compounds isolated from various parts of Annona muricata, have been
shown to exhibit cytotoxicity against various types of cancer cells and
to be selectively toxic without harming other healthy cells, in vitro
(Rohaizad Md Roduan et al., 2017). The consumption of Annona fruits
and herbal teas has been linked to atypical forms of Parkinsonism/de-
mentia in the French West Indies, as well as in other tropical areas.
Since evidence of possible neurotoxic long-term effects in humans was
brought to light, estimation of exposure to acetogenins raised the at-
tention of several research groups (Bonneau et al., 2017) Custard apple
(Annona squamosa L.) is an edible tropical fruit, and is also called sugar
apple or sweet sop. As a famous tropical fruit, it is consumed in lots of
countries. Botanical extracts have been used as a source of medicinal
agents for thousands of years (Chen et al., 2016). The abnormal accu-
mulation of the axonal microtubule-associated protein tau in the so-
matodendritic compartment of neurons is the defining hallmark of a
group of neurodegenerative disorders termed tauopathies (Goedert
et al., 2000; Trojanowski and Lee, 2005). Rare mutations in the tau
gene (MAPT, MIM# 157140), located on chromosome 17q21, cause
autosomal dominant tauopathies called frontotemporal dementia with
Parkinsonism linked to chromosome-17 (FTDP-17). Other forms of
frontotemporal dementias, argyrophilic grain disease, corticobasal de-
generation, Pick's disease and progressive supranuclear palsy (PSP) are
examples of the more frequent sporadic tauopathies. The etiology of the
sporadic tauopathies is, at present, largely unknown and requires fur-
ther scientific attention.

A particular variant of a sporadic tauopathy, endemic to the island
of Guadeloupe, has been linked in clinical case-control studies to the
consumption of fruit and infusions of the leaves of Annona muricata
(Caparros-Lefebvre et al., 2002; Lannuzel et al., 2007), which contain
annonaceous acetogenins, a large and unique family of potent lipophilic
inhibitors of mitochondrial complex I (Bermejo et al., 2005). Anno-
nacin, the major acetogenin in Annona muricata, readily crosses bio-
logical membranes, such as the blood–brain barrier (Champy et al.,
2004) and the neuronal cell membrane (Lannuzel et al., 2003) due to its
high lipophilicity, and therefore has easy access to cerebral mitochon-
dria upon systemic exposure. Low nanomolar concentrations of anno-
nacin reduce adenosine-triphosphate (ATP) levels and induce a redis-
tribution of tau protein from the axon to the somatodendritic
compartment of striatal neurons in vitro (Escobar-Khondiker et al.,

Fig. 1. The molecular structure of eggPC (L-α-Phosphatidylcholine), from egg yolk.

Fig. 2. The molecular structures of biomolecules a) annonacin and b) as-
corbic acid.
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2007). After chronic systemic infusion in rats, annonacin reduces cer-
ebral ATP levels and causes neuronal cell loss and gliosis in the brain
stem and basal ganglia (Champy et al., 2004).

The quantities of annonacin in the fruit and traditionally prepared
infusions of leaves of Annona muricata are such that a cumulative dose
sufficient to cause neurodegeneration in rats can be attained in humans
by regular consumption within a year (Champy et al., 2005). Therefore,
it appears plausible that annonacin or other annonaceous acetogenins
might be implicated in the etiology of the tauopathy of Guadeloupe.

Since acetogenins are produced exclusively by annonaceous plants,
which do not have a global distribution, but are grown and consumed
mainly in tropical and subtropical zones, it has been hypothesized that
other compounds with similar biochemical properties might be im-
plicated in the etiology of sporadic neurodegenerative tauopathies with
a more global prevalence (Höllerhage et al., 2009).

Likewise, regarding ascorbic acid (AA) and its action on human
health many aspects remain still unclarified particularly those related
to the interaction with cell tissues. Consequently, there is a great in-
terest in this issue and in the development of biosensors to sense its
concentration in different media.

Humans need to obtain vitamin C from their diet due to the lack of L-
gulono-γ-lactone oxidase involved in AA (vitamin C) synthesis
(Lachapelle and Drouin, 2011; Gutiérrez-Quequezana et al., 2018).
Owing to its importance in water-soluble vitamins, AA has been widely
investigated as a target analyte for the prevention and treatment of
diseases, such as scurvy, common cold, mental illness, and cancer, re-
lated to its antioxidant properties (Zhang et al., 2018).

Additionally, due to the fact that the concentration of AA is on a
milli molar level in the central nervous system and much less in other
humoral fluids, the development of a simple and rapid method for the
determination of AA with high sensitivity is desirable in a vast range of
areas such as foods, drugs, and cosmetic applications (Fana et al.,
2017).

This work aims at gaining insight into the characteristics of the
membrane-biomolecule interaction in order to understand the action
mechanisms of the biomolecules, their effectivity and physicochemical
properties. Motivation to select these two biomolecules was provided
by their different chemical characteristics (AA is hydro soluble while
Ann is liposoluble) what is expected to exhibit different ways of inter-
acting with the lipid membrane. Moreover, while AA pharmacologic
effect and action mechanisms are widely known, those of Ann’s are only
very recently being studied (Salama and Arias-Carrión, 2011; Vieira
Machado de Moraes et al., 2016). Over-consumption of Graviola fruits
containing Ann has caused an atypical form of Parkinson’s disease.

2. Experimental

2.1. Lipids and chemicals

Synthetic L-α-Phosphatidylcholine (eggPC) with a purity approx.
99%, positively charged dimethyldioctadecyl-ammoniumchloride
(DODAC) and Tris (tris-hydroxymethyl aminomethane) with a
purity ≥ 99.8 % were purchased from Sigma–Aldrich Inc. (St. Louis,
MO, USA); 3-Mercaptopropionic acid (Ac MP) from Merck (Germany),
(L+) Ascorbic acid Pro-analysis (USP). Purity was checked by thin-
layer chromatography, and lipids were used without further purifica-
tion. (L+) Ascorbic acid purity was checked by FTIR spectra. All other
chemicals were of analytical grade, and tridistilled water was employed
in all the experiments.

The annonaceous acetogenin Annonacin (Ann, Fig. 2a) was isolated
and purified from the seeds of Annona cherimolia at the Institute of
Organic Chemistry of the Faculty of Biochemistry, Chemistry and
Pharmacy of the National University of Tucumán, R. Argentina. It was
identified by its spectroscopic characteristics compared to the pre-
viously reported literature data.

2.2. Lipid sample preparation

Multilamellar vesicles (MLVs) were prepared following Bangham’s
method (Bangham et al., 1974) to study biomolecules (Ann and AA)
and eggPC interaction. The lipid pure and samples at different molar
ratios (0.38:1 and 0.77:1) of Ann:eggPC in chloroform solution were
dried to form a film under a nitrogen stream that was left for 24 h under
vacuum to ensure proper solvent removal. The samples were rehy-
drated and suspended in deuterated water. The pure Ann compound
was obtained in a small amount (μg) from a plant extract, so the
available concentrations were used.

On the other hand, the lipid was rehydrated in D2O solutions of
different concentrations of AA (25, 50, 100 and 200 mM). Or equiva-
lently in terms of molar fractions of AA:eggPC: 0.34:1, 0.77:1, 1.50:1
and 3.10:1, respectively. In the case, values of adequate concentrations
were used for the change in the signals using the Raman and FTIR
spectroscopic techniques.

The mechanical dispersion of the hydrated lipid film was made
under vigorous by shaking for 15 min, resulting in an opalescent sus-
pension of MLVs, at room temperature. The final lipid concentration
was 50 mg/mL.

2.3. Preparation of supported lipid bilayers (SLBs) on Au

Unlike a vesicle or a cell membrane in which the lipid bilayer is
rolled into an enclosed shell, a supported bilayer is a planar structure
sitting on a solid support. Because of this, only the upper face of the
bilayer is exposed to the free solution. One of the greatest advantages of
the supported bilayer is its stability. SLBs will remain largely intact
even when subject to high flow rates or vibration and the presence of
holes will not destroy the entire bilayer (Purrucker et al., 2001). SLBs
were obtained by attaching the lipid bilayer to the surface of the gold
electrode through a negatively charged self-assembled monolayer of Ac
MP. For this purpose the electrode was incubated for at least 1 h in an
ethanolic solution of 0.1 M Ac MP. The lipidic film (Bangham et al.,
1974) was prepared as indicated in Section 2.2, from mixtures of: 80%
eggPC and 20% dimethyl dioctadecyl ammonium chloride (DODAC)
and another 76.4% eggPC, 19.1% DODAC and 4.5% Ann. DODAC, a
positively charged molecule, acts by electrostatically binding the lipid
bilayer to the self-assembled monolayer. MLV́s were formed by vig-
orous shaking and rehydration of the film in the presence of 10 mM Tris
buffer solution with 0.1 M potassium chloride (KCl), pH 7.4. A sus-
pension of multilamellar vesicles of final concentration of 3 % w/v was
obtained. To ensure that only one lipid bilayer was attached to the gold
surface, the MLV‘s suspension was extruded with LIPEX™ Extruder
(Bergera et al., 2001; Olson et al., 1979), obtaining unilamellar vesicles
(LUV‘s), with which the electrode, containing the Ac MP‘s self-as-
sembled monolayer, was incubated for at least 15 h (Fig. 3).

Fig. 3. Diagram of a supported bilayer (Alvarez et al., 2007).
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2.4. FTIR and Raman spectroscopic measurements

2.4.1. FTIR measurements
FTIR measurements were carried out in a Perkin Elmer GX spec-

trophotometer, provided with a DTGS detector. The spectra of biomo-
lecules with the phospholipid were acquired in a demountable cell for
liquid samples with ZnSe windows. The working temperature cell was
25 °C, controlled using a Peltier-type system with accuracy of± 0.1 °C.
The resolution of the equipment employed was 1 cm−1. A total of 64
scans were done in each condition and the spectra were analyzed using
the OMNIC v.7.2 mathematical software provided by the manufacturer.

The bands in the mixtures were assigned to the carbonyl and
phosphate groups by comparison with pure lipids. The C]O bands, are
broad and overlapping. The Fourier deconvolution was used to estimate
the frequencies of the component bands, followed by curve-fitting to
obtain the bandwidth and the intensity (band narrowing factors:
1.6–2.2). Spectra of pure D2O were subtracted in all analyzed samples
to avoid solvent interference with the phosphate group.

Deconvolution was used to obtain the peak frequencies of the
component bands reported for the two populations of carbonyls: the
non-hydrated (1737 cm−1) and the hydrated (1722 cm−1) populations
in the fluid state (Díaz et al., 1999; Hübner and Blume, 1998; Disalvo
et al., 2002; Pohle et al., 1998). The shifts of these two populations
were studied as a function of the biomolecules/lipid ratio of eggPC in
liquid crystalline state.

2.4.2. RAMAN measurements
The vibrational Raman spectra of samples were recorded by using a

confocal Thermo Scientific-DXR Raman Microscope. The microscope is
equipped with a high resolution motorized platen, a set of Olympus
optical objectives, lighting module bright field/dark field trinocular
viewer, Olympus camera of 2048 pixels with CCD detector. The con-
focal system is real, with opening/hole matched with the point of
symmetry of the excitation laser. The resolution is 2 μm in depth pro-
files. The standard spatial resolution was better than 1 μm.

The spectra were obtained at room temperature, by using a laser
diode-pumped solid state (DPSS) of 532 nm with a power of 10 mW; the
optical objective used was a 10X with an optical opening of 25 μm. The
spectra were analyzed using the OMNIC™ program for Dispersive
Raman.

2.5. Electrochemical measurements

Electrochemical experiments were obtained by using a three-elec-
trode cell and a Zahner IM6 electrochemical workstation. The working
Au electrode had an area of 1 cm2. The counter electrode was a pla-
tinum sheet, and a saturated calomel electrode (SCE) was used as the

reference electrode. All potentials in this work are referred to the SCE
(0.2412 V with respect to the normal hydrogen electrode).
Voltammetric experiments were run at a sweep rate of 50 mV s−1.
Impedance data were recorded in the 30 kHz-0.01Hz frequency range
with perturbation signal amplitude of 10 mV.

3. Results/discussion

3.1. Vibrational spectroscopy measurements

Biomolecules (AA and Ann) interactions with a lipid membrane of
eggPC were studied by Fourier Transformed Infrared (FTIR) and Raman
spectroscopic techniques. The obtained spectra were comparatively
analyzed by a study of the spectral bands corresponding to the inner
and interphase regions of the lipid bilayer.

3.1.1. Hydrophobic region
3.1.1.1. FTIR measurements. Moderate wavenumber ranges in the FTIR
spectrum may be assigned to different parts of the lipid molecule.
Detailed information about the molecular interactions can be obtained
for hydrated liposomes.

Changes in the wavenumbers of symmetric and antisymmetric
stretching vibrations of the methyl and methylene groups inside the
lipid bilayer were not significant within the experimental error for both
biomolecules, in the liquid crystalline phases (Tables S1 and S2).

3.1.1.2. Raman measurements. Raman measurements show significant
displacements in the CH3 symmetric and antisymmetric stretchings to
lower frequencies for the Ann: eggPC complex but only in the CH3

antisymmetric stretching for the AA: eggPC complex, which could
indicate an increase in disorder in the liquid crystalline state induced by
biomolecules Annonacin and L-ascorbic acid respectively (Tables S3 and
S4 and Figs. 4 and 5).

The region between 1000 and 1200 cm−1 corresponds to the
stretching vibrations of the CeC bonds of the acyl chains of the phos-
pholipids. The peaks of 1126 cm−1 and 1067 cm−1 are assigned to such
stretches of the trans conformations, while the peak of 1089 cm−1

corresponds to the gauche conformations. The peak intensity ratio I1089
(G) / I1067 (T) is a parameter indicating the relative number of gauche/
trans rotamers in the acyl chains of the phospholipids. Other bands of
interest whose intensity ratios are useful are as follows: I2935 / I2851 (I
νsCH3 / I ννsCH2) and I2885 / I2851 (I νasCH2 / I νsCH2) which are in-
dicative of the interaction between the hydrocarbon and the con-
formation. More specifically, these intensity ratios are used to indicate
changes in the order / disorder ratio of the hydrocarbon chains (Snyder,
R. G. y col. 1982) (Snyder et al., 1982; Fox and Harris, 2010; Fox,
2007).

Fig. 4. Effect of AA on the position of the vibrational bands of Raman
spectra for the CH2 and CH3 groups in eggPC at liquid crystalline state.
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At higher concentrations of AA slightly decreases the ratio of in-
tensities I1089 (G) / I1067 (T) in 0.2, as well as for the greater Ann:eggPC
molar ratio in 0.1. It was observed that in the presence of both bio-
molecules, the gauche rotamers decrease slightly compared with trans,
in liquid crystalline state. The intensity ratio of the peaks of I νas(CH2) /
Iνs(CH2) is specifically indicative of the rotational disorder and the in-
termolecular coupling of the chains. At higher concentrations of AA
there is a slight increase (0.1) in the ratio of intensities. For Ann:eggPC
it could be said that there is practically no modification. The Intensity
ratio of the peaks Iνs(CH3) / Iνs(CH2) is related to the degree of rota-
tional and vibrational freedom of the terminal methyl groups. As the
concentration of AA increases, there is an increase in the ratio of in-
tensities (0.3), which would indicate an increase in the rotational and
vibrational freedom of the terminal methyl groups. In the case of Ann:
EggPC there is an increase of 0.1 for both molar ratios, in liquid crys-
talline state. (Tables S5 and S6 and Fig. 6).

3.1.2. Hydrophilic region
3.1.2.1. FTIR measurements. The interphase region (Disalvo and de
Gier, 1983) may be characterized by FTIR spectra of the
biomolecules: eggPC systems, which are strongly dependent on the
state of hydration and are susceptible to hydrogen bonding. In the IR
spectra, the wavenumber shifts of the PO2

− and C═O stretching-
vibration bands were analyzed in comparison with the corresponding
bands of eggPC without addition of the biomolecules.

3.1.2.2. C]O group. It has been reported that the main ν C]O peak in

diacyl lipids can be unfolded into at least two components that
correspond to the ν C]O vibrational modes of non-bonded (free) and
H-bonded (bond) conformers of the C]O group (Díaz et al., 1999;
Hübner and Blume, 1998; Disalvo and de Gier, 1983). To investigate H-
bonding interactions between the biomolecules and the C]O lipid
groups, deconvolution of the main band of ν C]O (located at
∼1734 cm−1 for pure lipid) into three components (ν C]Obond, ν
C]Ofree and ν C]Obiomolecules) were performed. The higher
wavenumber band component (1740 cm−1) was assigned to the free ν
C]O groups (ν C]Ofree), whereas the lower wavenumber component
(1731 cm−1) was attributed to the ν C]O vibration of H-bonded
conformers (ν C]O bond) in eggPC liposomes. Tables S7 and S8 and
Fig. 7 display the position of the carbonyl stretching bands in MLV’s as
measured by FTIR.

It was observed that at the molar ratio 0.38:1 for AA: eggPC there is
a slight interaction with formation of hydrogen bonds between the AA
and the C]O group, in both populations of the eggPC carbonyl groups.
At higher molar ratios there is a different qualitative behavior which
would be attributed to the loss of structured water molecules in both
populations of the carbonyl group in the region of the polar head of the
lipid (Fig. 7).

It can be seen that at 25 °C (liquid crystalline phase) Ann displaces
the band assigned to both carbonyl populations to lower frequencies,
suggesting the formation of hydrogen bonds between Ann and the
carbonyl groups (Fig. 7).

3.1.2.3. PO2
− group. In fully hydrated phosphatidylcholine in the

Fig. 5. Effect of Ann on the position of the vibrational bands of Raman
spectra for the CH2 and CH3 groups in eggPC at liquid crystalline state.

Fig. 6. Intensity ratio of νas(CH2)2893 to νs(CH2)2853; ν(CeC)1089 to ν(CeC)1067; and νsCH3)2928 to νs(CH2)2853 as a function of the molar ratio of biomolecules: eggPC in liquid crystalline
state.
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liquid crystalline state, the characteristic phosphate group vibrational
bands assigned to the PO2

− antisymmetric stretching mode (νas PO2
−)

is centered at 1229.5 cm−1 and the PO2
− symmetric stretching mode

(νs PO2
−) at 1085.0 cm−1. It is widely accepted that the frequency of

the vibration (νas PO2
−) is very sensitive to lipid hydration mainly

because of direct H binding to the charged phosphate oxygens (Mantsch
and McElhaney, 1991).

For the PO2
− antisymmetric vibration band (1213 cm−1 for pure

eggPC), at different molar ratios of the AA:eggPC complex, no sig-
nificant interaction is observed within the experimental error.
However, the PO2

−antisymmetric stretching for the Ann:eggPC com-
plex, is slightly affected towards higher frequencies with respect to the
pure lipid (Tables S9 and S10 and Figs. 8–10).These results suggest that
Ann would be able to induce the dehydration of the phosphate groups
without the subsequent formation of H bonds with them.

No significant changes are observed in the band frequencies of
PO2

− symmetric stretching (1088 cm−1), in both cases (AA:eggPC and
Ann:eggPC complexes). This may be due to the fact that in the fluid
state the polar groups are more hydrated, which makes the water dis-
placement for biomolecules insertion more difficult.

3.2. Electrochemical characterization of SLB on Au.Electrochemical
characterization of SLB on Au

Voltammetric response (a) in Fig. 11 corresponds to an Au electrode

covered by the SLB in solution of buffer Tris 10 mM, pH = 7.4. Vol-
tammogram (b) shows the same modified electrode but in the presence
of ascorbic acid (AA) in the electrolyte. This response shows the oxi-
dation of AA with a single peak shifted towards anodic potentials. Fi-
nally, voltammetric curve (c) results for the redox behavior of AA on a
Au electrode in the absence of the SLB. Two anodic peaks can be clearly
observed without the inhibition brought about by the lipid membrane.
Thus, in spite of a marked barrier effect by the SLB, AA still exhibits a
small degree of anodic oxidation, although in a much more irreversible
fashion.

Fig. 12 contains the voltammetric response for a Au electrode
modified by the SLB in solution 1 mM Fe(CN)64−/3− and 0.15 M KCl as
supporting electrolyte. Additionally, the voltammetric response for an
Au electrode modified by the SLB doped with Annonacin (Ann) in the
same solution is also shown. In these experiments Fe(CN)64−/3− is used
as a redox couple marker since Ann has no electrochemical transfor-
mation, at least in the studied potential window. Moreover, since Ann is
not water soluble, it was incorporated into the lipid membrane. Only a
slight increase in the anodic current can be observed in the presence of
Ann that could, in principle, indicate an increase in the number of
defects in the lipid membrane.

Fig. 13 shows impedance data for a Au electrode covered by the SLB
in solution of buffer Tris. Impedance data analysis was performed ac-
cording parameters identification procedures by using complex non-
linear least squares (CNLS) fitting based on the Marquardt-Levenberg

Fig. 7. Wavenumber variation of the CO stretching in connection with the
increasing biomolecule: DPPC molar ratio, at 25 °C.

Fig. 8. FTIR spectra of the pure eggPC multilamellar vesicles and the
AA:eggPC complexes, at different ratio molar, in the region corresponding.
C]O and PO2

−.
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algorithm. Non-linear optimizations based on the Marquardt-Levenberg
algorithm contained a weighting function that ensured a more uniform
relative distribution of the differences over all frequencies.

A single capacitive relaxation characterizes the measured im-
pedance behaviors which were fitted to the impedance of an equivalent
circuit resulting from a series connection of the electrolyte resistance Re

and an impedance element containing the parallel connection of a ca-
pacitor and a large resistance as shown in Fig. 14. The membrane

Fig. 9. FTIR spectra of the pure eggPC multilamellar vesicles and the
Ann:eggPC complexes, at different ratio molar, in the region corre-
sponding. C]O and PO2

− .

Fig. 10. Effect of AA and Ann on the position of the vibrational bands of FTIR for the
PO2

− groups in eggPC, at 25 °C.

Fig. 11. Voltammograms for Au electrodes modified by the SLB in solution of buffer Tris
(a) and in solution containing 7 mM ascorbic acid (AA) (b) and for an unmodified Au
electrode in solution containing 7 mM AA (c).

Fig. 12. Voltammograms for a Au electrode modified with the SLB in solution containing
1 mM Fe(CN)64−/3− (red trace) and with the SLB doped with Annonacin (Ann) in the
same solution as before (blue trace). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 13. Bode plots for experimental and fit impedance spectra measured with a Au
electrode modified with the SLB in solution of the buffer tris.
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capacitance is represented here by a constant phase element (CPE) Q in
parallel connection with the membrane resistance Rf.

Fig. S1 shows impedance data for a Au electrode covered by the SLB
in solution of buffer Tris and 7 mM AA. The same dynamic behavior as
in Fig. 14 can be observed.

The impedance of a CPE is given by:

=Z
jw Q

1
( )CPE n (1)

Accordingly, the membrane capacitance Cm can be calculated (Brug
et al., 1984) as

=

+
− − −

C Q
R R( )

m
e f

n1 1 1
(2)

Best-fit parameters of impedance data in Figs. 13 and S1 are given in
Table 1. Values for the exponent n are close to 1, indicating a capaci-
tance behavior.

Then, for the SLB covered electrode Cm ≈ 2.4 10−5 F cm−2 while in
the presence of AA Cm ≈ 2.15 10−5 F cm−2.

The resistance of the membrane can be considered as a result of the
presence of bilayer-thickness spanning pores, which are filled with the
electrolyte solution. Thus, we can calculate the relative pore area
fraction as usual:

Rf/Ae = ro L/Ap (3)

where, L is the length of the membrane (5 nm), Ap is the pore area, Ae is
the area of the electrode and ro is the resistivity of the electrolyte so-
lution (16.67 Ω cm) (Zhang et al., 2018).

Hence, for the SLB covered electrode the pore fraction Ap/Ae = ro
L/ Rf = 16.67 Ω cm × 5 10−7 cm / 1.7 106 Ω cm2 ≈ 5 × 10−12 while
in the presence of AA Ap/Ae ≈ 2.8 10−12.

The presence of AA results in an increase in Rf and a decrease in Cm

what is equivalent to a membrane with lower number of defects as
calculated above.

Fig. S2 shows impedance data for a Au electrode modified by the
SLB in solution 1 mM Fe(CN)64−/3− and 0.15 M KCl as supporting
electrolyte. A single capacitive relaxation characterizes the measured
impedance behavior which can be fitted to the impedance of the
equivalent circuit shown in Fig. 14. Fig. 15 shows impedance data for
an Au electrode covered by the SLB doped with Annonacin (Ann) in
solution of buffer Tris. The same dynamic behavior as in Fig. S2 can be
observed.

Best-fit parameters of impedance data in Figs. S2 and 15 are given in

Table 2. Values for the exponent n are close to 1, indicating a capaci-
tance behavior.

The membrane capacitance Cm was calculated with the expression
(2). Then, for the SLB covered electrode in solution 1 mM Fe(CN)64−/

3− results Cm ≈ 2.3 10−5 F cm−2 while for the SLB with Ann in the
same solution Cm ≈ 1.6 10−5 F cm−2.

Regarding the pore fraction in these systems, for the SLB covered
electrode in solution 1 mM Fe(CN)64−/3−can be calculated as follows
(Cassier et al., 1999): Ap/Ae = ro L/ Rf = 16.67 Ω cm × 5 10−7 cm/
1.2 106 Ω cm2 ≈ 7 × 10−12 while in the presence of Ann Ap/Ae ≈ 11
10−12.

The presence of Ann in the lipid bilayer results in a decrease in Rm

and a decrease in Cm what can be understood in terms of a membrane
with a higher number of defects and with lower dielectric constant ε.
This last feature being brought about by the incorporation of Ann into
the hydrophobic region of the membrane as discussed above.

4. Conclusions

We investigated the interaction between two biomolecules (AA acid
and Ann) with a bilayer lipid membrane. The results demonstrated that
AA and Ann interact diffently with models of lipid bilayers that mimic
the cell membrane.

At high molar ratios of AA, there is a loss of structured water mo-
lecules in both populations of the carbonyl group in the region of the
polar head of the lipid. At 25 °C (liquid crystalline phase).On the other
hand, Ann promotes the formation of hydrogen bonds with the carbonyl
groups.

The PO2
− antisymmetric stretching for the Ann:eggPC complex, is

slightly affected towards higher frequencies with respect to the pure
lipid. Consequently, Ann is expected to be able to induce the dehy-
dration of the phosphate groups without the subsequent formation of H
bonds with them. No significant changes are observed in the band
frequencies of PO2

− symmetric stretching (1088 cm−1), in both cases
(AA:eggPC and Ann:eggPC complexes). This may be due to the fact that
in the fluid state the polar groups are more hydrated, which makes the
water displacement for biomolecules insertion more difficult.

Fig. 14. Equivalent circuit used to fit impedance spectra.

Table 1
Best fit parameters resulting from the fitting of data in Figs. 14 and S1.

Re / Ω Q / sn−1 F n Rf / Ω

Au-SLB 150 ± 3 (2.30 ± 0.05) 10−6 0.90 ± 0.01 (1.7 ± 0.1) 106

Au- SLB +
AA

260 ± 5 (1.60 ± 0.03) 10−6 0.95 ± 0.01 (3.0 ± 0.1) 106

Fig. 15. Bode plots for experimental and fit impedance spectra measured with a Au
electrode modified with the SLB doped with Ann in solution of the buffer tris and 1 mM Fe
(CN)64−/3−.

Table 2
Best-fit parameters resulting from the fitting of data in Figs. S2 and 15 .

Re/Ω Q/sn−1 F n Rf/Ω

Au-SLB+ Fe(CN)64−/3− 800 1.1 10−6 0.9 1.2 106

Au-(SLB +Ann) + Fe(CN)64−/3− 150 1.0 10−6 0.9 7.6 105
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According to the electrochemical analysis, the interaction of AA
with the supported lipid membrane does not alter its dielectric prop-
erties. This fact can be related to the conservation of structured water of
the phosphate groups in the polar heads of the lipid. On the other hand,
the incorporation of Ann into the lipid membrane generates an increase
in the number of defects while changes the dielectric constant. This, in
turn, can be associated with the induced dehydration of the phosphate
groups.
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