
The Knowledge Engineering Review, Vol. 00:0, 1–1. c© 00, Cambridge University Press
DOI: 10.1017/S000000000000000 Printed in the United Kingdom

Exploiting Personal Web Servers for Mobile Context-Aware

Applications

Andrés Fortier1,2, Cecilia Challiol1,2, Juan Lautaro Fernández1,3, Santiago
Robles1,3, Gustavo Rossi1,2 and Silvia Gordillo1,4.
1LIFIA, Facultad de Informática, UNLP.
E-mail: (andres, ceciliac, lfernandez, srobles, gustavo, gordillo)@lifia.info.unlp.edu.ar
2Also CONICET.
3Also CICPBA.
4Also CIC.

Abstract

There is an increasing trend in moving desktop applications to web browsers, even when the web
server is running on the same desktop machine. In this paper we go further in this direction
and show how to combine a web server, a web application framework (enhanced to support
desktop-like Model-View-Controller interaction) and a context-aware architecture to develop web-
based mobile context-aware applications. By using this approach we take advantage of the well
established web paradigm to design the GUIs and the inherent ability of the web to mash up
applications with external components (such as Google Maps). On top of that, since the web
server runs on the device itself, the application can access local resources (such as disk space or
sensing devices, which are indispensable for context-aware systems) avoiding the sandbox model
of the web browsers. To illustrate our approach we show how a mobile hypermedia system has
been built on top of our platform.

1 Introduction

Web applications are constantly gaining presence in everyday life. Today most languages have
their frameworks and toolkits to build web applications and even Operating Systems are following
this trend1. If we analyze this evolution we can see very good reasons that support it: web
applications are inherently portable across operating systems and devices2, they do not require
installation, updates are managed in the server side (thus lowering the client burden) and the data
back-up is a problem of the provider, not the client. On top of that, the web is rapidly becoming
ubiquitous, part of our everyday life: we plan trips on-line, we buy electronics in virtual shops
and meet people in social networks. We are also gearing towards the integration phase, where the
so called mashups combine different modules to provide better services.

On a different area, the ideas proposed by the Ubiquitous Computing (UbiComp) concept
(and its related disciplines such as Pervasive Systems, Ambient Intelligence -AmI-, Context-
Aware Applications, etc.) have been gaining importance. As time goes by, we are becoming more
familiar with incorporating new technologies, appliances and applications in a way that was
almost unthinkable ten or fifteen years ago.

In his seminal paper, Weiser (1995) envisioned a future where humans would be surrounded
by a myriad of computing devices, aimed at improving the user’s lifestyle. Nowadays there is a
1http://googleblog.blogspot.com/2009/07/introducing-google-chrome-os.html
2Sadly things are not ideal, since there is no standard that works across all major browsers. However
there are libraries and frameworks that help to mitigate these problems such as Scriptaculous or ExtJs.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/226966049?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 andrés fortier et al.

broad range of applications that are consider ubiquitous, like health care systems (Bricon-Souf
and Newman, 2006), smart homes (Edwards and Grinter, 2001), automated tour guides (Cheverst
et al., 2002), Location Based Services (Rao and Minakakis, 2003), memory aids (Lamming and
Flynn, 1994) and augmented reality (Rekimoto et al., 1998), just to name a few. In this scenario
it is reasonable to think that these two technologies (web applications and UbiComp) should
meet to create the next generation of user applications: web applications that are cross-device,
combining services that are aware of the user’s situation and adapt to best suit his/her needs.

However, web applications have some limitations that are especially relevant to UbiComp. Due
to security reasons, web applications are executed inside a sandbox, which restricts its access to
local resources. This means that access to local files or a web cam in the client device is, in
principle, forbidden. To overcome this problem we can embed special controls that break the
sandbox model, such as Microsoft ActiveX controls. However by doing this we may go against
the main idea of web applications, since now we have to perform an extra installation step, the
operating system stability may be compromised and the control has to be regularly updated.

Another major issue with web applications and UbiComp is the need for a network connection
and the fact that the data itself resides outside the client’s device. As a result the roaming user
heavily depends on a set of external resources (access points, ISPs, hosting, etc.) which are a
must for its application to run and that are not guaranteed to be accessible.

For these reasons we consider that a different approach is required to successfully achieve the
combination between web applications and UbiComp. In this article we propose our approach,
which is based on a personal web server running in the user’s device as a platform to provide
UbiComp web applications. To build this platform we combine:

• A web server that supports streaming (Swazoo).
• A framework for building web applications (Seaside).
• A Comet-based approach to create real MVC web applications (Meteoroid).
• An architecture and its associated toolkit for developing context-aware applications.

By using these components we can create web applications that have access to local resources
(since the web server runs in the device) with the natural facilities associated to web applications
(e.g. using Google Maps). On top of this, the application framework has been extended
with Meteoroid (Fernandez et al., 2009), a Comet-based framework that provides server-client
communication and desktop-like web widgets, allowing the developer to create web applications
that have desktop-like interaction and responsiveness.

The rest of the paper is structured as follows: in Section 2 we review some of the most important
works performed in different areas related to our research. In Section 3 we explain how we
combined a personal web server with Comet to obtain web applications with full MVC support.
In Section 4 we outline our context-aware architecture followed by a description of our mobile
platform in Section 5. In Section 6 we show how a mobile hypermedia application can be built
with our approach and we conclude the paper in Section 7 with the further work we are pursuing.

2 Related Work

Weiser’s (Weiser, 1995) pioneer work at Xerox Parc was followed by Schilit’s (Schilit et al., 2002)
system architecture and the Stick-e Notes (Pascoe, 1997) framework. These first approaches to
build context-aware systems helped to understand many of the challenges we are facing today
and some interesting ways of tackling them. Maybe one of the most important lessons learned
is Schilit’s decision to decouple the independently-changing blocks of the system to support
scalability, which is a way of anticipating future changes. Also, Schilit emphasized that sensing
devices should be abstracted, so that the application logic does not have to get involved with the
burden of connecting to hardware devices and sensing information.

Exploiting Personal Web Servers for Mobile Context-Aware Applications 3

The next milestone in the history of context-aware architectures was Dey’s Context Toolkit
(Dey, 2000), which is a pioneer framework aimed at building distributed context-aware applica-
tions, based on a peer-to-peer architecture. The framework is built around the notion of context
widgets, which are used to access context data (gathered by physical or logical sensors) using
the widget metaphor. Context interpreters are used at a later stage to abstract the widget’s
information, which may also be composed with context aggregators. The toolkit is finally
completed with services (which implement the required behavior) and discoverers, which know the
state of the application in terms of available components (i.e. widgets, interpreters, aggregators
and services).

In a recent work on mobile services by Pederson et al. (2008) we have found many interesting
points that we share in our approach. One of their first statements is that different applications
cater for different aspects of the user’s context, which means that a unique context model for
different applications is not a viable solution. They also stress the fact that the context may be
on a server, on a client or distributed between both of them. We clearly share this view and this
is one of the main reasons why our design splits context in a set of small grained features.

Moving to the web area, in (Ceri et al., 2007) the authors show how to incorporate changes in
the page generation logic that depend on context. The authors present a model-driven approach
for context-aware web applications based on WebML (Ceri et al., 2000), where context is treated
as a first class citizen, operating on the hypertext the users navigate. In (Daniel and Matera,
2008) the authors present a component-based approach to build adaptive web applications. In
particular the authors focus on adapting to context by using client-side context information
(both from local and remote sensors) and context data found in the server. Each UI component
is defined by an XML file stating the properties of the component and the events it can trigger. The
authors propose an event-based communication mechanism between components, managing their
connection through listeners, which are configured in another XML document (the XPIL file).
Finally, Chang and Agha (2007) show an approach for building context-aware web applications
by adapting to specific contexts through reconfigurable component distribution. The authors can
add new context features by adding the corresponding context variables and monitors, along with
the adaptation policies to these variables.

Since the Mobile Web era began, an important amount of research has been devoted to
managing small screen resolution and low bandwidth, two common characteristics of mobile
devices when compared to their desktop counterparts. Many researchers came to the conclusion
that just shrinking a desktop-sized web GUI to fit a mobile display did not yield satisfactory
results, and thus contents should be tailored to fit the mobile web characteristics (Billsus et al.,
2002). However, as noted in (Nichols et al., 2008), as new devices offer better screen resolution
and browsing capabilities (such as multi-touch screens and gestures) more support is given to the
user to browse desktop-sized web sites.

In the HCI area, the field work carried by Pascoe et al. (2000) concluded that mobile
applications should avoid distracting the user from his current activity and that applications
enhanced with context-aware behavior can improve the user experience. Finally, as mobile devices
gained popularity, toolkits and frameworks started to appear to develop mobile web applications.
While most of them are geared towards GUI management (e.g. iUI, jQtouch, iWebKit) domain-
specific frameworks are also starting to appear (Simon and Fröhlich, 2007).

An interesting combination of web applications and UbiComp ideas is realized in the Physical
Hypermedia (PH) (Grønbæk et al., 2003). In this approach the ”standard” hypermedia is
extended to include physical artifacts and materials, augmenting real world objects with digital
information. In (Grønbæk et al., 2003) the authors present a prototype based on a RFID tagging
system which associates digital information with real world objects. When the user reads a RFID
tag, he receives digital information about it. In a similar area Bouvin et al. (2003) present a
framework for Context-Aware Mobile Hypermedia applications (HyCon), which supports four
different context-aware techniques: browsing, searching, annotating, and linking. Finally (Harper

4 andrés fortier et al.

et al., 2004) extended the metaphor of links with the idea of “walking” a link as they augment
hypertext with physical relationships present in the real world. The authors use the concept of
walking the link to represent the intentions and movement of the user to reach a real world target.

In general terms, the PH approach is based on the well-known and intuitive navigation-by-
links style of web software, extending it to the physical level, where the mobile user can access
information items both physically and digitally. We have studied the field of PH and based our
research in the mentioned previous works. We have also extended the concept of PH beyond
information about real world objects towards a generic mobile hypermedia model and have
characterized the different browsing semantics (physical vs. digital). The interested reader can
find more information in (Gordillo et al., 2005; Challiol et al., 2006, 2007b, 2008).

3 The Foundations: a Personal Mobile Web Server with real MVC

We created a lightweight platform for developing mobile applications which combines the benefits
of web applications with the access to local resources. To achieve the latter the web server is
installed in the device itself, effectively becoming a personal web server. As a result we display
the application in a familiar environment (the web browser), we can use external services (by
mashing up web components) and have access the local device out of the browser sandbox.

To build desktop-like interfaces that are easy to develop an maintain we created Meteoroid
(Fernandez et al., 2009), an MVC framework for developing web applications in the same way
native GUI applications are written. Using this approach the application model resides in the
server and is completely decoupled from the view displayed in the web browser.

While we acknowledge that having a server running in a PDA requires the user to perform an
extra installation step, we consider that the associated benefits of having a full fledged application
environment outweighs this particular disadvantage. This is specially true in the case of our
personal web server, since the only installation required is to copy a couple of files to the PDA.
Also, as we will show later, this server can be used to host multiple applications.

3.1 Problem Statement

HTTP3 has long been the standard communication protocol for the web, fitting its purpose
particularly well for static web sites. However, as web applications started to appear, more
dynamic interactions were needed. As an example consider an on-line newspaper that keeps
track of a tennis match or a web instant messenger. In those applications a model resides in the
web server and the page acts as a view of it. When the model changes in the server we would like
to see it immediately reflected in the view. Unfortunately, the HTTP protocol is not suited for
this kind of interaction since the request must be started by the browser and not the server. In
other words, there is no way of notifying the client that there has been a change in the server.

Even though Netscape started to research about this in 19954, not much attention has been
paid to this problem. Up to date there are still basically two main approaches to solve this issue:

• Client Pull, where the web browser is constantly asking for new data in the server, essentially
implementing a busy-waiting loop. The response may be the whole page or only a portion of
it, obtained by issuing an Ajax5 request and manipulating the DOM tree6.

• Server Push, where an endless communication channel is established between the server and
the client. By using this channel the server can communicate with the browser when changes
arise, without a client request.

Comet (Crane and McCarthy, 2008), which is actually a set of possible techniques for server-
browser communication, combines the Server Push approach with Ajax. By doing so, the server
3http://www.w3.org/Protocols/rfc2616/rfc2616-sec1.html
4http://256.com/gray/docs/netscape/pushpull.html
5http://www.adaptivepath.com/ideas/essays/archives/000385.php
6http://www.w3.org/DOM

Exploiting Personal Web Servers for Mobile Context-Aware Applications 5

is able to send events and data to the client (through Server Push) while the later can perform
asynchronous requests (through Ajax) to update only the required parts of the web page. Even
though this approach does not support many clients concurrently (350 accordingly to (Bozdag
et al., 2007)) it certainly allows to develop web applications that resemble desktop ones, since
the only missing part up to date (sending events from the model to the view) is now solved.
In our particular case, since the server is dedicated to a single client, the amount of concurrent
connections is not an issue.

3.2 Security and Web Applications

Accessing to local resources such as GPS devices, the file system or even the browser history is a
must for almost any UbiComp application. However, a standard web application is not allowed
to do so due to security measures. These security restrictions appeared in the early web days as
a way to protect the user when executing code obtained from an external server. This code can
be either requested and executed by a plugin (e.g. Java Applets) or can be embedded in the web
page and executed by the browser itself (e.g. Javascript). In any case, the problem we are facing
is that the client has to execute code in his device that is coming from an unknown (potentially
malicious) source. To overcome this problem two main approaches appeared and are still in use
today: Same origin policy and the Sandbox model. Since there is yet no accepted standard, each
web browser (or browser plug-in) has it’s own implementation and policies. For example, Mozilla-
based browsers define the same origin policy for Javascript as: “The same origin policy prevents a
document or script loaded from one origin from getting or setting properties of a document from
another origin (...) Mozilla considers two pages to have the same origin if the protocol, port (if
one is specified), and host are the same for both pages.”7.

In turn, the sandbox model approach creates a special environment where the mobile code
can be safely executed. In this environment the executed code does not have the rights to access
almost any Operating System resources, thus making it theoretically impossible to damage the
client device. As we previously stated, each browser implements it in its own way:

Javascript in Mozilla-based browsers. Besides the same origin policy, a script cannot access
any browser or Operating System resource directly. To overcome this restriction the script
must be signed8.

Internet Explorer. Security in Explorer is based in the idea of Security Zones9, which are
actually five (Local Intranet, Trusted Sites, Restricted Sites, Internet and Local Machine).
Each zone has different privileges assigned, which are inherited by the mobile code
(Javascript, .Net, Java, etc.).

Chromium-based browsers. A Chromium browser is separated in two modules, the browser
process and the rendering engine (Barth et al., 2008). The former has the same privileges
as the user running it and the latter is executed without any privileges in a sandbox model.
The security in the browser is based on the fact that the rendering engine process is the
one in charge of interpreting HTML and executing Javascript code.

Java applets also use a sandbox model10 to avoid evil code executing on the client device.
However signed applets can be executed outside the sandbox, accessing the host file system or
hardware devices.

In our approach we use a personal web server in the device itself, where the application
model resides. From the Operating System point of view the personal web server is just another
application, which can freely access the device’s resources (e.g. the GPS receiver).
7https://developer.mozilla.org/en/Same origin policy for JavaScript
8http://www.mozilla.org/projects/security/components/signed-scripts.html
9http://www.microsoft.com/windows/ie/ie6/using/howto/security/settings.mspx
10http://java.sun.com/developer/technicalArticles/Security/applets/

6 andrés fortier et al.

3.3 Meteoroid in a Nutshell

In our platform we heavily rely on Meteoroid (Fernandez et al., 2009), a Comet implementation
built on top of the Seaside (Ducasse et al., 2007) web application framework. By using Meteoroid
the server can send events with information to the client (i.e. the web page), which in turn can
update the required parts. The framework is designed in three loosely coupled layers:

Push-Script layer. Handles the low-level Javascript functionality, including cross-browser
issues and connection techniques. It provides the upper layer the functionality to create
a Comet connection between the client and the server and a service to send arbitrary
Javascript code to be executed on the client.

Announcements layer. Adds an observer-like mechanism to perform common update opera-
tions (e.g. replace a DOM object) based on events triggered by domain objects.

Web Value Model layer. Provides high-level components that act as standard desktop wid-
gets. This allows the developer to bind a widget (e.g. a cell of a table) to a model (e.g. the
value of a stock) so that when the model changes the widget is automatically updated. This
layer realizes the full MVC pattern between the server and the client.

To complete the high-level description we next show a schema of the layered approach used
in Meteoroid (see Figure 1). It should also be noted that since our implementation is compatible
with the native desktop GUI framework, the exact same application model can have both a native
and web GUI without any conflicts.

Figure 1 Meteoroid layered design.

3.4 Meteoroid Close Up

The Push-Script layer provides the core, low-level behavior of Meteoroid. It has the responsibility
of choosing the best technique to create a Comet-connection according to the client web browser
and creating a session to keep the mentioned connection alive. This layer also provides a raw
service to manipulate the DOM content of the client’s browser through Javascript. Even though
this layer can be used independently of the upper ones, the developer must handle all the page
modifications by writing hard-wired Javascript functions. Since this is a repetitive, error prone
task we added an event system in an upper layer.

The second layer provides an event system based on the Announcements framework (Cincom,
2008), which is an implementation of the Observer (Gamma et al., 1995) pattern. This event
system allows the developer to specify an action that can alter the page’s source code (HTML)

Exploiting Personal Web Servers for Mobile Context-Aware Applications 7

as a response of an event. As an example, consider a simple application that displays the position
of the user, obtained by his GPS. The method for rendering such page in Seaside is:

GPSWebView>>renderContentOn: html

html paragraph: [

html text: ‘Position ’.

html div id: ‘position’;

with: self gpsModel position printString.

].

This code would create a static page, since it is not programmed to be update when the user’s
position changes. To achieve this behavior with Meteoroid we must implement an initialization
method that reacts to the model’s change by updating the div’s text. For this example we
will assume that the object that represents the user’s GPS receiver (i.e. gpsModel) throws a
PositionChanged event each time the user moves. Also, notice that the div’s id is ‘position’, which
is how we bind the update callback to the page component:

GPSWebView>>initialize

self

on: PositionChanged

of: self gpsModel

update: ‘position’

callback: [:html | html text: self gpsModel position printString].

Despite the fact that the event system helps to decouple the model from the view, we can still
work at a higher abstraction level. For this purpose Meteoroid adds the Web Value Model layer,
which implements web-widgets around the value model concept (Coplien and Schmidt, 1995).
Web widgets are basically HTML form elements (such as inputs fields, text areas, selects, etc.)
which are bound to a specific model. When the model changes an event is thrown and the form
element is automatically updated.

To show how the widgets are used we will rewrite the previous GPS example, this time using
web widgets. In the #renderContentOn: message we replace the div element with an “updatable”
div, which is bound to a model (a value holder):

GPSWebView>>renderContentOn: html

html paragraph: [

html text: ‘Position ’.

html divUpdateableFor: self positionHolder.

].

We now have to create the model in the initialization of the page, which must be configured
to get the information from the GPS receiver.

GPSWebView>>initialize

self positionHolder: (WebValueModel

with: self gpsModel

aspect: #position

announcement: PositionChanged).

As it is shown, we do not need to explicitly state how the div contents will be rendered or
updated, since the web value model knows how to do this. When the model (in this case, the object
returned from the #gpsModel message) changes its state an event is triggered (PositionChanged).
When the web value model captures this event it obtains the new value (by sending the #position

message) and pushes it into the web browser. Thus, each time the model changes, the div contents
are automatically updated.

8 andrés fortier et al.

4 Context-Aware Architecture

In this section we will briefly describe our architecture to develop context-aware applications. The
architecture is based in a clear separation of those concerns that evolve in different directions
and for different reasons. In particular we separate the context model, the sensing support and
the domain-specific adaptation behavior. This design is briefly summarized in Figure 2.

Figure 2 Overview of the Context-Aware architecture.

4.1 Context Model

Our architecture for context-aware applications is based on an object-oriented context model
(Fortier et al., 2009; Perez et al., 2009; Challiol et al., 2007a; Rossi et al., 2005), where each
entity whose context must be recorded is modeled as an aware-object (i.e. an object that is aware
of its context). An aware object is in turn configured with a set of context features to define its
context shape (note that context features can be added or removed in run-time). Thus, if we
wanted to model a user and his location we would create an aware object (the user) which would
have a context feature (his location). If we wanted to extend the user’s context, for example by
adding his pulse for a jogging application, we would add another feature (see Figure 3).

Figure 3 A simple context model.

As can be seen in Figure 3 there is a dependency relationship between an aware-object and its
context features. By having this relationship, each time a context feature changes (e.g. because
the user has changed its location) the aware object receives a notification. This notification is in
turn converted into a context-change event, which is raised by the aware object.

To complete our model we have created a library of context features where most common
uses are already implemented and, if required, the programmer can add new ones. Examples of
these pre-build features are tracking features (used to record context changes), derived features (a
context feature resulting of applying a function to other features, such as inferring user activity by
using his location, time of the day and schedule), model-based features (those features that rely
on an existing model to make sense) or adapted features (information from an already existing
model that must be treated as context).

Exploiting Personal Web Servers for Mobile Context-Aware Applications 9

4.2 Sensing Support

Once the context model has been defined, the next step is to connect it to the required information
sources. These sources can be hardware sensors (e.g. a GPS receiver) or software components (e.g.
a web service). As a generalization, we call these sources sensors and we define a sensing layer
that can be easily plugged into any context model. The main component of this layer is the
sensing concern, which is in charge of taking input information from a sensor and updating a
context feature accordingly. To do so a sensing concern is configured with three collaborators:

• A sensing policy, which can be push or pull according to the sensors characteristics.
• A dispatcher, that decides if the quality of a sensed value is suitable for the context feature

(e.g. the GPS error must be less than 10 meters).
• A transformation, which is used to map low-level data to semantically rich objects (e.g.

applying reverse geo-coding to a GPS coordinate to obtain an address).

A sensing concern acts like a “big brother”, always watching the sensor and updating the
context features as required. As we did with the context features, on top of the architecture we
have built a set of commonly used dispatchers (e.g. to avoid GPS signals with high dilution of
precision) and transformations (e.g. bytes to number, lookups, parser-based, etc.) that can be
easily instantiated to develop new applications. In Figure 4 we show a simplified class diagram of
the layer’s main abstractions. The interested reader is referred to (Grigera et al., 2007) for more
information on the sensing layer.

Figure 4 A class diagram of the sensing layer.

To conclude this section, consider the simple context model presented previously based on a
user, his location and his pulse. To effectively update the user’s location as he moves we must

10 andrés fortier et al.

create a sensing concern that connects the GPS receiver in the user’s device to the location
context feature. This is achieved by:

• Using a NewValuePullPolicy, since the GPS must be polled for data and we are only interested
in updating the context model when the location has changed.

• Using a DOPDispatcher, which only allows a location to pass to the next stage if its DOP is
less than a certain threshold.

• Creating a new Transformation subclass (GPS2LatLon), which removes the GPS metadata and
returns a LatLon object. Notice that this transformation depends on the API provided by the
GPS and/or underlying Operating System.

4.3 Domain-Specific Adaptation

Besides the GUI, the final step to build a context-aware application is to define the behavior of
the application as a reaction to a context change. To do so we have isolated each application-
dependent behavior into adaptation environments. An adaptation environment implements the
context-aware behavior of an application, such as providing location based services, a context-
aware messenger or a mobile hypermedia system. To effectively manage context changes, each
environment is configured with one or more handlers.

To illustrate our approach consider a simple application that defines a set of information areas,
so that when the user enters any of these areas a brief description appears in his screen. Assuming
that the context model and sensing layer have been set up as described in the previous sections,
we must:

• Create an InformationAreasEnvironment, which holds a collection that relates areas with their
corresponding information.

• Create a handler so that when the user’s location changes we check if he has entered an
information area. If this is the case, an information window will appear.

• Register the user as part of the environment.

We next show the handler class that is in charge of reacting to a change of a user’s location

LocationChangeHandler>>handle: aContextEvent

from: aContextFeature

on: aUser

in: anEnvironment

(anEnvironment hasAreaFor: aContextEvent position)

ifTrue:[anEnvironment popUpInformation: aContextEvent position]

We next show how to configure the information area environment by adding rectangles of
(lat,long) coordinates and associating a simple text message. After the areas are loaded, the
user is registered to the environment so that context changes are notified to it. Finally, when
the handler is added to the environment, it is instructed to listen only for the changes in the
locationFeature of the user.

| env handler |

env:= InformationAreasEnvironment new.

env

addArea: ((-34.9219@-57.9561) corner: (-34.9236@-57.9562))

information: ‘This is the Cathedral of La Plata,...’

...

env register: user.

handler:=LocationChangeHandler new.

env addHandler: handler listenFor: user locationFeature.

Exploiting Personal Web Servers for Mobile Context-Aware Applications 11

5 The platform’s basics

Our mobile platform relies on a web server running in the mobile device, which can in turn execute
many applications. When the platform is launched an application manager is shown, displaying
the list of available mobile applications to the user. The upper part of the screen is used as a
notification area, which is a place for any application to post application-related information (e.g.
the arrival of a new mail). In Figure 5 (left) we show a screenshot of the application manager
layout, while in the right an example of a Google Maps application is depicted.

Figure 5 Mobile platform layout.

When the user taps on an icon the associated application is launched, using the lower part of
the display. When the user wants to quit the application he can tap in the X button. However
this does not mean that the application is effectively closed, since the GUI can be closed while
the application is still running in background (e.g. polling a mail server for new messages). If
necessary a hidden application can post relevant information to the user in the notification area.

Since the framework is conceived to quickly implement mobile applications, creating a “Hello
World” application is almost straight forward:

• A subclass of MobileApplication (HelloWorldApplication) must be created.
• A title and icon must be provided for the application manager.
• A small icon must be provided for the notification area.

With these basic settings the application will be shown in the manager and any event triggered
by it will be recorded in the notification area with the application’s icon. We now must program
how the application will be displayed in the browser. To do so the #renderContentOn: message
must be implemented:

HelloWorldApplication>>renderContentOn: html

html paragraph: ‘Hello World!’

A final aspect to note about the platform is that each application has its own history
of visited pages and can redefine what back and forward means. In the MobileApplication

class the navigation strategy is decoupled from the application itself, delegating how the
back and forward buttons are created. The default strategy is the EmulatedBrowserStraetgy,
which is the standard stack-based navigation. However, we also implemented a custom strategy
(CustomBrowsingStrategy) which is used to implement a different behavior.

At this stage we can now put together the different pieces to build a simple application that
shows the users location as he moves. To do so we combine:

• Our context model.
• The Meteoroid capabilities to push information from the server to the web browser.
• The mobile platform.

12 andrés fortier et al.

In this example we will have a user (which is an aware object) that holds his location
information (a context feature). The location context feature will be bound to a sensing concern
that takes the coordinates from the GPS receiver and updates the feature accordingly. A
MobileApplication subclass (SimpleUserLocation) must then be implemented, defining the basic
properties of a mobile application and creating an updatable div tag that is updated on a context
change. The two main methods in this class are:

SimpleUserLocation>>initialize

super initialize.

self positionHolder: (WebValueModel

with: self user

aspect: #currentLocation

announcement: ContextEvent)

which establishes the relationship between the aware object, his location and the event
triggered on a context change. Finally, we must specify how the page is rendered:

SimpleUserLocation>>renderContentOn: html

html paragraph:[

html text: ‘Position ’.

html divUpdateableFor: self positionHolder.

].

The resulting application will produce the screenshot shown in Figure 6.a. However the
application can be enhanced by usign a Google Map component instead of a div tag,
updating the marker’s position as the user’s location changes (see Figure 6.b). To do so we
rewrite the #initialize method (the Javascript used to move the marker is written in the
#updateGoogleMarker:announce: method):

SimpleUserLocation>>initialize

super initialize.

self gpsMap: (GPSMobileMap fromUser: self user).

self on: ContextEvent

of: self user

update: ‘javascriptDivHolder’

callback: [:html :ann | self updateGoogleMarker: html announce: ann].

Figure 6 Using Google Maps to show the user’s location.

Exploiting Personal Web Servers for Mobile Context-Aware Applications 13

6 Mobile Hypermedia

As we described in Section 2, a Mobile Hypermedia application combines digital and physical
information into a single application, using the well-known hypermedia concepts (such as nodes
and links). In this section we analyze a typical mobile hypermedia application for tourism and
show how it can be implemented with our platform. As a by-product we present a generic
infrastructure for mobile hypermedia we built using the platform.

6.1 The basics

To represent the mobile hypermedia information in a conceptual model we use two different
domains (the digital and physical one) and a type of node (the usual representation in most
hypermedia applications) for each domain (thus we have digital and physical nodes).

A digital node represents the common hypermedia node, which contains descriptive informa-
tion (i.e. text, images, etc.) and digital links (i.e. “conventional” hypermedia links). On the other
hand, a physical node represents a real world object and is mostly relevant when the user is
standing in front of this object (e.g. a detail in the walls of a cathedral) or when the object is
involved in some activity that implies interaction in the real world (e.g. walking to that object
or finding it). For this purpose these nodes also have physical links, which express a physical
relationship between this type of nodes. In case two nodes of different domains represent the
same object we can establish a mapping between them (see Figure 7).

Figure 7 Nodes in a mobile hypermedia application.

A mobile hypermedia application can be browsed in different modes (physical and digital) and,
thanks to the nodes mapping, the user can alternate through different “views” of the same object.
In the digital domain nodes are connected through digital links and the behavior is the usual one,
where clicking on a link implies navigating to the target node. However, in the physical domain
(where nodes are connected through physical links), clicking on a link has a different semantic,
since it shows the intention of the user to physically navigate to the target object. This difference
is quite important in terms of navigation, since it implies that the user has to move physically
(e.g. walking to the target node) and that he may decide to stop doing so in the middle of his path.
Thus, compared to the digital navigation, physical navigation is neither atomic nor immediate
and there are actually many reasons for the user to cancel a physical navigation (getting lost,
being tired, finding a more interesting place to visit, etc.). For this reason, when the user clicks
on a physical link the system must help him arriving to his intended destination (e.g. by showing
a map with the path or recommending the available public transportation means).

The other main difference between the digital and physical domains is the intentionality of the
navigation; in a mobile hypermedia application the physical objects are sensed automatically by
the users device (e.g. by using GPS, the IR port, visual tags, etc.). Thus, if the user is walking from
the Museum to the Cathedral and passes by the Theater, the physical object will be discovered.
Depending on the user preferences and current activity (whether the user is physically navigating

14 andrés fortier et al.

or just wandering around) the system may show information about the object and even offer the
user an activity related to it (e.g. a free piano rehearsal that starts in 30 minutes).

At this point the navigation strategies play a central role, since the notion of “back” and
“forward” are very different in each domain (see (Challiol et al., 2007b) for a detailed discussion
in this subject). While the digital one uses the standard stack-based strategy, the strategy for
the physical domain is not straightforward. As an example consider the following situations:

• Cities have lots of potential physical objects (government buildings, ATMs, attractions, etc.)
and after a short walk the user may have passed by many of them. To reach his starting
point, the user should have to hit the back button dozens of times. Should the back function
consider the physical objects that the user has accidentally passed by?

• Physical nodes can be tagged according to their characteristics (e.g. tourist points of interests,
public places, etc.). Should we provide different tagged-based filters to navigate the user’s
physical history?

• Suppose that the user has physically navigated from the Museum to the Theater and then
to the Cathedral, passing by the Football Stadium. Now the user hits back three times to
go to the Museum again. Should we calculate a new path (maybe shorter and avoiding the
Cathedral) or should we go through the Theater and the Stadium again?

What is interesting about these questions is that there is no single right answer, since it
heavily depends on the application. Luckily, in our mobile platform the navigation is decoupled
from the browser and handled by each application, which allows us not only to implement different
navigation strategies, but even allow the user to select the one he finds more appropriate.

The navigation case presented before is just one example of the many issues that arise when
building mobile hypermedia applications. This is due to the many concerns have to be managed
at the same time, each of them evolving for different causes.

An alternative to implementing these kind of applications from scratch is to work at a higher
level of abstraction, using models than can be later derived into a concrete implementation. This
approach is not only useful for the first design, but also for later maintenance. Due to the lack
of space we will not explain how to the conceptual model of a mobile hypermedia applications is
achieved; the interested reader can refer to (Challiol et al., In press) for details about this subject.

6.2 Implementing a Mobile Hypermedia Application

To implement a mobile hypermedia application we must design a domain model that is able to
handle the different navigation concerns. For this example, as we only focus on the digital and
physical concerns, the discussion is simplified. The basic idea in our approach is to model each
navigation concern with its specific nodes and navigation semantics. This is particularly easy in
our platforms for two main reasons:

• The web application framework is component-based, which means that the html generation
is encapsulated in objects. Also, links are associated with actions triggered in the server on
components directly.

• The mobile platform delegates the navigation logic to each application, thus we can decide
how to react to back and forward commands according to the current navigation domain.

The mobile hypermedia model takes a navigational model and maps its components to nodes.
For each navigation domain a separate node graph is created. For those cases where a digital node
has a physical counterpart a relationship is established, thus allowing the user to jump from one
domain into another. The nodes that are related to application domain objects are then linked
to them, so that domain-specific services can be called (for example, in a tourist application the
museum may offer the service of buying on-line tickets).

Having the mobile hypermedia application model in place the next step is to create the views of
each navigation domain. For the digital domain this is straightforward, since the node description

Exploiting Personal Web Servers for Mobile Context-Aware Applications 15

is rendered as html and the associations to other objects as standard hypermedia links. For the
physical domain a Google Map is shown as a general view. According to the map viewport, the
nearby physical nodes are shown. If the user is physically near a physical object the application
assumes that the user is in front of that object11. In this case the association between the node
and other physical nodes are rendered as hyperlinks in the bottom of the map. However, clicking
on a hyperlink does not take the user immediately to the node, but shows the path from the users
location to that physical object. At this point the user has started a physical navigation, which
is modeled as an object that decouples its current State (Gamma et al., 1995) in a hierarchy of
possible situations:

• InFrontOf. The user is standing in the buffer zone around a physical object.
• Started. The user has selected a target object and the path has been calculated.
• InCourse. After the path has been calculated the user is moving towards his target in the

suggested path.
• OutOfCourse. The user has selected a target object and the path has been calculated, but

he is moving outside the planned path.
• Canceled. The user has decided to cancel his navigation.
• Ended. The user has reached his target object.
• NotSpecified. The user is moving, but no target object has been selected to navigate to.

At any time the user can decide to switch between the physical and digital view, which is
possible since the physical nodes are mapped to their digital counterparts. We next show a
couple of screenshots of the mobile hypermedia basic application (Figure 9).

Figure 8 A basic mobile hypermedia application.

In Figure 10 we show a simplified class diagram of the generic model for a mobile application.
Note that all classes in the diagram are completely independent of the concrete application we
are building (e.g. tourist cities guide, augmented reality museum, etc). In this way, this software
substrate becomes itself a framework for specific mobile hypermedia applications which can be
instantiated in different applications.

Concrete application nodes (e.g. the cathedral, monuments, etc) become instances of their
corresponding classes in the application domain model. By means of the DigitalNode and
PhysicalNode classes these instances are integrated into the mobile-hypermedia model.

6.3 Adding Context-Aware Behavior

The first step to create context-dependent behavior in our approach is to define a context model.
To do so we will use an aware object to represent the user and a location feature to model his
11To determine this we use a buffer zone around the user’s location. If more than one physical object is
inside this zone the nearest to the user is considered the current physical node.

16 andrés fortier et al.

Figure 9 Class diagram of a mobile hypermedia application.

location. However we can also take advantage of the navigation information already present in
the hypermedia application and use it as part of the context model. To do so a derived feature
is added to the aware object, presenting application information as part of the context model.
Figure 11 depicts this situation.

Figure 10 Context model for an extended mobile hypermedia application.

Having this basic information as context we can start to add context-dependent behavior
to the application. To combine the context model and the context-dependent behavior a
MobileHypermediaEnvironment must be created and the user has to be registered to it.

In this scenario, maybe one of the easiest behaviors to implement is to give a visual (or audible)
cue to warn the user when he has left the proposed path while navigating from a physical object
to another. To do so a new handler class is created (OutOfPathWarning) implementing the abstract
message used to handle context changes:

Exploiting Personal Web Servers for Mobile Context-Aware Applications 17

OutOfPathWarning>>handle: anEvent from: aCF on: aUser in: anEnvironment

(aUser navigationFeature isNavigating

and: [(aUser navigationFeature includesPoint: aUser location) not])

ifTrue:[self warnUser].

Where the #warnUser message can send a notification to the general notification area or play
a warning sound to alert the user in case he is not watching his device. To add this new behavior
we just add the handle to the environment and configure it to only listen for changes in the users
location.

warningHandler:= OutOfPathWarning new.

environment addHandler: warningHandler listenFor: user locationFeature.

Another interesting behavior would be to listen for changes in the navigation state, so
that when the user plans a new physical navigation the system can perform some sort of
recommendation (e.g. if it is lunch time and the trip is expected to last more than an hour,
offer the user to recalculate a new path that passes by a restaurant).

To complete this section we will now show how to integrate location-based services (LBS)
to the mobile hypermedia application. As part of our context-aware prototypes we developed a
small LBS framework that defines the basic abstractions present in any LBS application (such as
services and service consumers) and creates a new environment class (ServicesEnvironment) which
coordinates these abstractions (adding and removing services, the activation and deactivation of
services, etc.). With these abstractions different applications can be easily created, like friend
finders, location-based information systems, location-based messengers, etc. In our prototypes
these applications have, in average, 4 classes and 9 methods per class. As a concrete example
consider a location-based messenger, which only delivers a message to another user if he is in a
certain range. In case the recipient is outside the physical area the message is stored in a queue
and delivered when the recipient is back in the range. Also the sender is informed of the relevant
events, getting a notification when the message has been finally delivered.

An interesting thing about the LBS framework is that it poses a single restriction: to add an
aware object (i.e. a service consumer) to the environment it must have a location feature. As
expected, the user’s location model must be compatible with the one used to specify de services
description (in other words, if the location feature uses a (latitude,longitude) pair we can not
express the services availability with a symbolic location model (Leonhardt, 1998)). Since the
aware object in the mobile hypermedia application naturally supports this prerequisite, it can be
directly added to any LBS application.

Even though the integration of new context-dependent behavior can be done without any
rewriting, extending the GUI is not a simple task. At this time the mobile hypermedia GUI
would have to be modified and extended to support the new features. From an architectural
point of view this is still a weak point that must be addressed, since it means actually changing
a part of an existing application.

7 Conclusions and Further Work

In the introduction of this paper we highlighted the advantages of web applications and the
new trends towards UbiComp applications and mobile software. We consider that in the years
to come it is natural that these technologies converge to create the next generation of mobile
applications. However, web applications have their own restrictions, due to the sandbox model and
the dependency on a wireless connection, which is extremely important for UbiComp software. To
solve these problems we conceived a platform that takes the best of both worlds by developing
web applications that have access to local resources and that can gracefully degrade to work
without remote resources like any native mobile application.

18 andrés fortier et al.

In this paper we have combined a personal web server with an application framework to
create web applications that run locally (thus having the ability to access local resources)
with the natural facilities to access external services (such as Google Maps). The application
framework has been extended with Meteoroid, a Comet-based framework that provides server-
client communication and desktop-like web widgets, which are automatically updated when their
model changes. With this infrastructure web applications can be developed using the same
approach that is used to develop native mobile applications.

Using these tools as a basis we created a development platform by merging them with our
context-aware architecture, which is based in loosely-coupled components and a rich context-
model. As a case study we have shown how a mobile hypermedia application can be developed
from scratch and later on incrementally extended to support context-aware behavior.

We next summarize the main contributions of the paper:

• We explained how to create mobile web applications with a familiar look and feel, while
keeping native access to local resources.

• We described a framework for easily creating and maintaining web applications that require
server changes to be immediately propagated to the client.

• We presented a flexible architecture for developing context-aware applications.
• We showed how both designs can be combined for developing context-aware mobile applica-

tions.

Regarding our further work in the mobile platform area, there are many topics that still need
to be addressed. In the first place, every application of our platform runs in the same operating
system process and is internally scheduled by using green threads. This exposes the entire platform
to failure in case an application has a hard failure. A possible alternative that we will investigate
is to launch each application in its own separate process; however this would mean an important
refactoring in our architecture. A second issue that must be addressed is to lower the platform’s
memory footprint. Our current implementation of the platform uses an average of 24 MB in RAM
which is about three times the memory used by the Opera mobile web browser and two times the
memory used by Adobe’s Flash plugin. While most modern PDAs support this load, we consider
that better results can be achieved.

Focusing on the implemented toolkit, even though we have modeled most of the html form tags
as web widgets, we must add more complex components to it, so that interesting applications
can be quickly prototyped without explicitly handling events or writing custom Javascript code.
Finally, as we stated in the previous section, we are researching in a mechanism that allows a
GUI to be extended to support new context-aware behavior.

In the context-aware area we are currently revisiting the context model implementation and
distilling a set of conceptual guidelines for context modeling (a first approach can be found in
(Perez et al., 2009)). Also, since the mobile web platform is a work in progress we still have to
port our previous prototypes to the new platform.

References

A. Barth, J. Collin, R. Charles, and G. C. Team. The security architecture of the chromium
browser. Technical report, 2008.

D. Billsus, C. A. Brunk, C. Evans, B. Gladish, and M. Pazzani. Adaptive interfaces for ubiquitous
web access. Commun. ACM, 45(5):34–38, 2002. ISSN 0001-0782.

N. O. Bouvin, B. G. Christensen, K. Grønbæk, and F. A. Hansen. Hycon: a framework for
context-aware mobile hypermedia. The New Review of Hypermedia and Multimedia, 9(1):59–
88, 2003.

E. Bozdag, A. Mesbah, and A. van Deursen. A comparison of push and pull techniques for ajax.
CoRR, abs/0706.3984, 2007.

Exploiting Personal Web Servers for Mobile Context-Aware Applications 19

N. Bricon-Souf and C. Newman. Context awareness in health care: A review. International
Journal of Medical Informatics, 76(1):2–12, 2006.

S. Ceri, P. Fraternali, and A. Bongio. Web modeling language (webml): a modeling language for
designing web sites. Computer Networks, 33(1-6):137–157, 2000.

S. Ceri, F. Daniel, M. Matera, and F. M. Facca. Model-driven development of context-aware web
applications. ACM Trans. Internet Techn., 7(1), 2007.

C. Challiol, G. Rossi, S. E. Gordillo, and V. D. Cristófolo. Systematic development of physical
hypermedia applications. IJWIS, 2(3/4):232–246, 2006.

C. Challiol, A. Fortier, S. E. Gordillo, and G. Rossi. A flexible architecture for context-aware
physical hypermedia. In DEXA Workshops, pages 590–594, 2007a.

C. Challiol, A. Muñoz, G. Rossi, S. E. Gordillo, A. Fortier, and R. Laurini. Browsing semantics
in context-aware mobile hypermedia. In OTM Workshops (1), pages 211–221, 2007b.

C. Challiol, A. Fortier, S. E. Gordillo, and G. Rossi. Model-based concerns mashups for mobile
hypermedia. In MoMM, pages 170–177, 2008.

C. Challiol, G. Rossi, S. E. Gordillo, and A. Fortier. Separation of concerns in mobile hypermedia:
Architectural and modeling issues. In P. Alencar and D. Cowan, editors, Handbook of Research
on Mobile Software Engineering: Design, Implementation and Emergent Applications. IGI
Global, In press.

P.-H. Chang and G. Agha. Towards context-aware web applications. In DAIS, pages 239–252,
2007.

K. Cheverst, K. Mitchell, and N. Davies. The role of adaptive hypermedia in a context-aware
tourist guide. Commun. ACM, 45(5):47–51, 2002.

Cincom. Application developer’s guide (chapter 11), 2008.

J. O. Coplien and D. C. Schmidt, editors. Pattern Languages of Program Design. Software
Pattern Series. Addison-Wesley, Reading, Mass., 1995.

D. Crane and P. McCarthy, editors. Comet and Reverse Ajax: The Next-Generation Ajax 2.0.
Software Pattern Series. APRESS, 2008.

F. Daniel and M. Matera. Mashing up context-aware web applications: A component-based
development approach. In WISE, pages 250–263, 2008.

A. K. Dey. Providing architectural support for building context-aware applications. PhD thesis,
Georgia Institute of Technology, 2000. Director-Gregory D. Abowd.

S. Ducasse, A. Lienhard, and L. Renggli. Seaside: A flexible environment for building dynamic
web applications. IEEE Softw., 24(5):56–63, 2007. ISSN 0740-7459.

W. K. Edwards and R. E. Grinter. At home with ubiquitous computing: Seven challenges. In
Ubicomp, pages 256–272, 2001.

J. L. Fernandez, S. Robles, A. Fortier, S. Ducasse, G. Rossi, and S. Gordillo. Meteoroid: Towards
a real mvc for the web. IWST, 2009.

A. Fortier, G. Rossi, S. E. Gordillo, and C. Challiol. Dealing with variability in context-
aware mobile software (in press). Journal of Systems and Software, special issue on Software
Architectures, 2009. ISSN 0164-1212.

20 andrés fortier et al.

E. Gamma, R. Helm, and R. Johnson. Design Patterns. Elements of Reusable Object-Oriented
Software. Addison-Wesley Professional Computing Series. Addison-Wesley, 1995.

S. E. Gordillo, G. Rossi, and F. Lyardet. Modeling physical hypermedia applications. In SAINT
Workshops, pages 410–413, 2005.

J. Grigera, A. Fortier, G. Rossi, and S. E. Gordillo. A modular architecture for context sensing.
In AINA Workshops (2), pages 147–152, 2007.

K. Grønbæk, J. F. Kristensen, P. Ørbæk, and M. A. Eriksen. ”physical hypermedia”: organising
collections of mixed physical and digital material. In Hypertext, pages 10–19, 2003.

S. Harper, C. A. Goble, and S. Pettitt. proximity: Walking the link. J. Digit. Inf., 5(1), 2004.

M. Lamming and M. Flynn. Forget-me-not: intimate computing in support of human memory.
In Proceedings FRIEND21 Symposium on Next Generation Human Interfaces, 1994.

U. Leonhardt. Supporting Location-Awareness in Open Distributed Systems. PhD thesis, Dept.
of Computing, Imperial College, 1998.

J. Nichols, Z. Hua, and J. Barton. Highlight: a system for creating and deploying mobile web
applications. In UIST ’08: Proceedings of the 21st annual ACM symposium on User interface
software and technology, pages 249–258, New York, NY, USA, 2008. ACM.

J. Pascoe. The stick-e note architecture: Extending the interface beyond the user. In IUI, pages
261–264, 1997.

J. Pascoe, N. Ryan, and D. Morse. Using while moving: Hci issues in fieldwork environments.
ACM Trans. Comput.-Hum. Interact., 7(3):417–437, 2000. ISSN 1073-0516.

T. Pederson, C. Ardito, P. Bottoni, and M. F. Costabile. A general-purpose context modeling
architecture for adaptive mobile services. In ER Workshops, pages 208–217, 2008.

E. Perez, A. Fortier, G. Rossi, and S. Gordillo. Rethinking context models (in press). In OTM
Workshops, 2009.

B. Rao and L. Minakakis. Evolution of mobile location-based services. Commun. ACM, 46(12):
61–65, 2003.

J. Rekimoto, Y. Ayatsuka, and K. Hayashi. Augment-able reality: Situated communication
through physical and digital spaces. In ISWC, pages 68–75, 1998.

G. Rossi, S. E. Gordillo, and A. Fortier. Seamless engineering of location-aware services. In OTM
Workshops, pages 176–185, 2005.

B. N. Schilit, D. M. Hilbert, and J. Trevor. Context-aware communication. Wireless Communi-
cations, IEEE, 9(5):46–54, 2002.

R. Simon and P. Fröhlich. A mobile application framework for the geospatial web. In WWW
’07: Proceedings of the 16th international conference on World Wide Web, pages 381–390, New
York, NY, USA, 2007. ACM. ISBN 978-1-59593-654-7.

M. Weiser. The computer for the 21st century. Human-computer interaction: toward the year
2000, pages 933–940, 1995.

