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Over the last decades treatment guidelines have increasingly been based on the best 
available scientific evidence. In the early 1990s(1) the concept of Evidence Based Medi-
cine (EBM) was introduced as a systematic approach to analyse published research as the 
basis of clinical decision making. The implementation of EBM was taken up worldwide 
by the Cochrane Collaboration. The existing medical scientific literature, with special at-
tention to randomized trials, was summarized in tightly protocolized systematic reviews, 
which were then widely distributed through the Cochrane Library.(2) In this framework, 
meta-analysis of randomized clinical trials (RCTs) are regarded as the gold standard to 
provide evidence of causal effectiveness of medical interventions.(3)

However, RCTs are increasingly criticised for several reasons. First, RCTs have strict in-
clusion criteria limiting the generalizability for the full population of patients. Moreover, 
financial, ethical, and practical constraints prevent RCTs from being conducted for all 
clinical questions to guide clinical decision-making.(4) Also, recruitment of sufficient 
numbers of patients is a challenge in RCTs. Patients’ treatment preferences and clinicians’ 
lack of perceived equipoise are often cited as barriers to recruitment in RCTs.(3, 5, 6)

Recently, comparative effectiveness research (CER) gained increasing attention as a 
method to deliver broadly generalizable evidence on effectiveness of interventions. CER 
is the direct comparison of existing health care interventions to determine which work 
best for which patients and which pose the greatest benefits and the least harms.(7) The 
core question of CER is which treatment works best, for whom, and under what circum-
stances.(7) CER is not using data from patients with random allocation of treatments 
as in an RCT, but may include pragmatic RCTs or observational data that represent the 
current practice of treatments in ‘real life’. Partly due to the ample availability of observa-
tional data, there is increasing attention for observational and quasi-experimental study 
designs that can be applied in such data.

The most important methodological challenge in observational data, is to determine 
whether the medical intervention under study is causally related to an outcome, rather 
than simply being correlated with another factor that is truly causally related to the out-
come under study.(3) This is a particular threat as in observational studies comparison 
groups are different because of non-random treatment allocation. Patients are treated 
in accordance to the preferences of treating physicians, rather than because of a coin 
flip, like in randomized studies.(8, 9) These treatment choices are frequently informed by 
a patient’s severity of illness. The treatment may be associated with outcome but could 
be interfered by other factors like disease severity that are causally related to outcome. 
Thus, observational studies assessing the causal effect of treatments are at risk of obtain-
ing incorrect results. This type of bias is called confounding by indication.(4) It has been 
suggested that among non-randomized study designs, the quasi-experimental regres-
sion discontinuity (RD) design mostly resembles an RCT and overcomes confounding 
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by indication.(10, 11) But the methodological properties of this alternative study design 
are still unclear, and methods to increase the validity and efficiency need to be studied.

Thus, both randomized and non-randomized studies, like the RD design, have challeng-
es to overcome. In this thesis, methodological challenges in both randomized and non-
randomized studies are addressed. The benefits of covariate adjustment and proportional 
odds analysis, two different methods to optimize the validity and reliability of treatment 
effect estimates from RTCs in heterogeneous diseases are studied. Also, the (in)efficiency 
and threats to the validity of the RD design to estimate treatment effects are examined.

Randomized controlled trials

An RCT is an experimental study design in which the treatment is randomly allocated to 
patients. Random allocation between treatment and control group in such a study design 
means that patients are allocated to the groups in such a way that each participating 
patient has an equal chance of being allocated to either the treatment group (receiv-
ing the treatment) or the control group (not receiving the treatment).(3) All factors that 
can influence the outcome are on expectation equally distributed to the treatment and 
control group. This means when a difference in outcome between the treatment- and 
control group is found, this can be directly attributed to the treatment under study. The 
most important strength of an RCT is this controlled assignment of treatment which gives 
a good understanding of the assignment mechanism.(10) The treated and untreated 
patients in an RCT are unconditionally exchangeable.(10) This makes it possible to draw 
causal inference between treatment and the outcome under study in RCTs.

Nevertheless, RCTs may be difficult to set up in health care in practice for several 
reasons. First, the increasing complexity of regulations and logistics to conduct an RCT 
has raised the costs dramatically.(3, 12) Second, in part because of the high costs of RCT, 
an increasing proportion of studies is initiated by pharmaceutical companies that may 
influence the independency of the study. Third, patients may already receive a standard 
treatment that cannot be withheld but may interfere with the effects of a new treatment. 
Fourth, treating physicians may be convinced that the new treatment is better than the 
standard treatment and consider it unethical to withhold the new treatment even is 
the efficacy has not been proven.(3, 6) In addition, patient may have strong opinions 
on the effectiveness or risks of new treatments and not be willing to participate in a 
randomization. Hence, recruitment of adequate numbers of patients may be difficult in 
RCTs. Failure to achieve recruitment goals limits statistical precision, leads to an increase 
of costs, and decreases the efficiency of a RCT.(13) Even when investigators enrol a 
sufficient number of participants, they rarely do so on schedule.(6, 14) In addition, low 
recruitment rates threaten the generalizability of the findings in RCTs. A strict selection 
of patients enrolled in trials may poorly represent the population of interest, which 
limits the external validity of the results of a trial.(15, 16)
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Specific challenges of RCTs in heterogeneous and rare diseases
Besides these more general limitations of RCTs, specific challenges with regard to 
efficiency arise when conducting RCTs in rare diseases with to the small numbers of 
patients(17) and in heterogeneous populations(18). In such a scenario, different ap-
proaches can be used to optimize the design and analysis in an RCT.

Random treatment allocation in RCTs ensures that observed and unobserved patient 
characteristics on average are similar between treatment arms.(17) However, it does 
not ensure full balance in small trials.(17) Differences in baseline risk on outcome other 
than treatment may arise between the treatment- and control group, simply due to 
chance.(17) In diseases with large heterogeneity in pathogenesis and natural disease 
course, severity and outcome, small differences in baseline risk on outcome between 
the treatment arms may influence the estimation of the treatment effect. In part, this 
effect can be compensated by increasing the number of patients included in the RCT. 
As indicated before, the rate of inclusion of patients is already a critical factor in most 
RCTs, but even more challenging in rare diseases. Small trials are also subject to a greater 
chance of imbalance between treatment arms than large trials.(17) Furthermore, small 
RCTs in rare diseases can easily fail to detect treatment benefits, due to lack of statistical 
power.

Covariate adjustment and ordinal outcome analysis
Two approaches to optimize the design and analysis of an RCT to increase the statistical 
power and to adjust for imbalances are covariate adjustment and ordinal analysis. Both 
approaches have been applied successfully in various acute neurological diseases such 
as stroke and traumatic brain injury.(19-21)

Covariate adjustment is a statistical method that adjusts the treatment effect for 
baseline risk on poor outcome in the treatment and control arms. When the treatment 
arms are unbalanced, the unadjusted estimate of the treatment effect may be biased. In 
addition, covariate adjustment increases statistical power.(17, 18, 22) In order to adjust 
for covariates in RCTs, it is required to have good knowledge on the prognostic factors 
for outcome, as the gain in power from covariate adjustment is directly related to the 
predictive strength of the adjustment model.(23) Prediction research can provide infor-
mation on which covariates are important to adjust for in the analysis of the treatment 
effect.

Ordinal analysis is an approach to analyse a full ordinal outcome scale instead of a 
dichotomized version. It is common in medical research to use a functional or clinical 
outcome scale consisting of more than two categories, but often the ordinal outcome 
scale is dichotomized into favorable or unfavorable outcome as primary outcome of 
a study. In ordinal analysis the outcome is not dichotomized but analysed as the full 
ordinal scale with proportional odds analysis, preventing loss of information that occurs 
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when dichotomizing outcome measures.(24) Both simulation studies and empirical 
validation studies in various fields have demonstrated that proportional odds analysis 
increases the statistical power of RCTs.(24-27)

Non-randomized studies

There is an increasing interest to use non-randomized and observational data to study 
the effectiveness of medical interventions, for example in the framework of comparative 
effectiveness research. However, in observational data, it is complicated to draw causal 
inference between treatment and outcome. The treated patients may be systematically 
different from the control patients. For example, physicians could treat more severely af-
fected patients differently form less severely affected patients.(4, 28) The disease sever-
ity could influence the risk on outcome of interest and can thus be a confounder for the 
causal relation between treatment and outcome. When this confounder is unmeasured 
it is impossible to correct for it in the analysis. This can lead to bias in the treatment 
effect estimate. This type of bias is called confounding by indication.

Regression discontinuity design
When performing an RCT is impossible, the quasi-experimental “regression disconti-
nuity” (RD) design is an alternative epidemiological design to study effectiveness of a 
medical intervention. The RD design is common in social sciences, and was introduced 
in public health and medicine in 1996.(29) RD has been evaluated in other fields(30-35), 
but the importance of studying the feasibility and robustness of this design in clini-
cal settings has been noted.(36-38) It has been suggested that RD is the observational 
design that most resembles an RCT.(10, 11) In the RD design, treatment is not assigned 
randomly like in an RCT, but is allocated to a subset of patients, based on a cut-off of 
a baseline assignment variable. A subset of patients below the cut-off, not receiving 
a medical intervention, is considered as the control group. (Figure 1) E.g. all patients 
with a baseline cholesterol level 5 mmol/L may receive treatment (intervention group) 
and patients with a baseline cholesterol level below 5 mmol/L do not receive treatment 
(control group). Such treatment assignment closely resembles clinical practice especially 
when a standard treatment protocol is used and may thus facilitate easier recruitment 
of participants into a prospective, comparative study. Due to the controlled treatment 
assignment, an RD design achieves balance on unobserved factors between the treat-
ment- and control group, just like in an RCT. RD may provide an opportunity to obtain 
unbiased causal treatment effect estimates, when an RCT is not feasible.(39) Moreover, 
it might be attractive to apply the RD design as a prospective study because the chal-
lenges of the randomization of patients are eluded. However, it is unclear whether the 
estimates from a quasi-experimental RD design might be different and substantially less 
efficient compared to an RCT.
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Case-studies

The studies in this thesis test the different approaches to optimize the design and 
analysis of randomized and non-randomized studies in several databases on different 
neurological and cardio-vascular diseases.

Neurological diseases
Traumatic brain injury (TBI) is a serious public health problem with an estimated annual 
incidence of up to 500 cases per 100,000 population in the USA and Europe.(40-42) TBI 
is a major cause of death and disability, leading to great personal suffering for patients 
and relatives and huge direct and indirect costs to society.(40) It is defined as an injured 
brain as a result of an external force. TBI patients are variable with regard to causes, 
pathophysiology, treatment, and outcome.(40) Mild TBI patients may show full recovery, 
even without treatment. Severely affected TBI patients may develop serious psychologi-

A)

Baseline severity

(F
un

ct
io

na
l) 

ou
tc

om
e

Cut-offControl Treatment

B)

(F
un

ct
io

na
l) 

ou
tc

om
e

Baseline severity

Cut-offControl Treatment

Figure 1. Graphical presentation of the regression discontinuity design in 2 studies showing no treatment 
effect (A) and showing a treatment effect (B).
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cal and physical disabilities or die. A systematic literature search of the years from 1980 to 
2009 revealed 27 large phase III trials in TBI; and at least further 6 unpublished trials.(43) 
Nevertheless, these clinical trials failed to show convincing efficacy of the treatments 
that were studied, mainly neuroprotective agents.(44-46) Currently the research efforts 
in TBI are shifting towards large observational studies to identify optimal effective treat-
ments with CER.(47)

Guillain Barré Syndrome (GBS) is a life-threatening acute immune-mediated disorder 
of peripheral nerves and nerve roots (polyradiculoneuropathy)(48, 49) GBS requires 
early diagnosis and hospital admission for accurate monitoring, treatment and sup-
portive care. Worldwide, the reported GBS incidence rates, vary between 0.4 and 4 
per 100,000 per year, depending on age, sex, region, study methodologies and case 
ascertainment.(50) GBS is a heterogeneous disorder regarding pathogenesis, clinical 
presentation, severity and course and patients highly differ with respect to the required 
duration and intensity of hospital care.(51) Some patients with a mild form of GBS may 
show full recovery even without treatment. Other patients with a severe form of GBS 
may develop a full paralysis of the respiratory and limb muscles and require ventilation 
at an ICU for months despite treatment and may die or remain severely disabled. The 
current outcome of GBS is: a mortality rate of 5%, remaining unable to walk in 15% and 
the majority with residual complaints that interfere with daily life. In the last decade, 
various promising new immune-modulating treatments have been developed that may 
be effective in GBS as well but in this period only a very limited number of RCTs have 
been conducted in GBS worldwide. Because of these limitations, the treatment of GBS 
remained unchanged in the last 25 years.

Dementia is defined as significant loss of intellectual abilities, including memory, 
that is severe enough to interfere with social or occupational functioning. Increased life 
expectancy is associated with a steep increase of both the incidence and prevalence of 
dementia in the elderly. The number of 24.3 million patients that suffer from demen-
tia is projected to almost double every 20 years to 81.1 million by the year 2040.(52, 
53) Alzheimer disease is the most common cause of dementia, followed by vascular 
dementia.(52, 54) Treatment options for dementia are limited.(75, 76) Pharmaceutical 
treatment options include cholinesterase inhibitors, memantine and experimental 
medication. Cholinesterase inhibitors are only recommended for Alzheimer’s disease 
and mixed dementia, not for vascular dementia or mild cognitive impairment. There is 
no proof of effectiveness for the other pharmaceutical options.(55) Future randomized 
and non-randomized studies should lead to both better prevention strategies and treat-
ment possibilities and could help to decrease the burden of dementia.
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Cardio-vascular diseases
Cardio-vascular disorders are also heterogeneous with regard to severity of symptoms, 
nature of clinical failure. An example of cardio-vascular diseases that is used in this thesis 
is acute myocardial infarction (MI). Acute MI, also known as a heart attack, is a major cause 
of morbidity and mortality worldwide. More than 3 million people each year are esti-
mated  to  have  an  acute  ST-elevation  myocardial infarction (STEMI), with  more than  4 
million having a non-ST-elevation  myocardial infarction  (NSTEMI).(56) However, more 
effective treatment of patients hospitalized with acute myocardial infarction has led 
to a substantial decrease in deaths due to acute MI.(57) Several RCTs have established 
the beneficial effects and relative safety of several thrombolytic agents(58) (strepto-
kinase(59, 60) tissue plasminogen activator(61)) and adjunctive medical therapy(62) 
(β-adrenergic antagonists(63), angiotensin-converting enzyme inhibitors).(64-67)

Studies used

For this thesis nine different datasets were used. An overview of the different studies, 
their description and in which chapters the datasets were used, is presented in Table 1.

Aim of the thesis

The aim of the thesis is to investigate how to optimize the design and analysis of ran-
domized and non-randomized therapeutic studies, in order to increase the validity and 
reliability of causal treatment effect estimates, specifically in heterogeneous diseases.
The following research questions will be addressed:
1)	 What are the benefits of more advanced statistical analyses to estimate treatment 

effects from RTCs in heterogeneous diseases?
	 a.	� What is the heterogeneity in acute neurological diseases with regard to baseline 

severity and further course of the disease?
	 b.	� What is the potential gain in efficiency of covariate adjustment and proportional 

odds analysis in RCTs in Guillain-Barré syndrome (GBS)?
2)	 What is the validity and reliability of the RD design compared to an RCT to estimate 

causal treatment effects?
	 a.	� What are threats to the validity of the RD design to estimate treatment effects 

compared to an RCT?
	 b.	� How efficient is the RD design to estimate treatment effects compared to an RCT?
	 c.	� What are the potential benefits of an alternative assignment approach in an RD 

design?

The thesis consists of two parts. In order to increase the validity and reliability in future 
RCTs in heterogeneous diseases, in part I (chapter 2, 3 and 4) the design and analysis 
of RCTs is studied. In chapter 2 the heterogeneity with regard to the current hospital 
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Table 1. Overview of datasets used in this thesis.

Abbreviation Name Disease Description

PIV (68) Pandemic Influenza 
& Vaccination study

GBS The PIV study was originally designed to investigate the 
relation between GBS and the pandemic influenza A 
(H1N1) virus. Neurologists from all Dutch hospitals were 
requested to report patients diagnosed with GBS between 
November 2009 and November 2010.

PE vs IVIg trial 
(69)

Plasma Exchange 
(PE) vs Intravenous 
Immunoglobulin 
(IVIg) trial

GBS The PE vs IVIg trial was a multicenter double-blind 
trial conducted between 1986 and 1989 and included 
147 patients. The control group received IVIg and the 
treatment group received PE. The primary outcome was 
improvement by one or more grades on the GBS disability 
score after 4 weeks.

IVIg vs MP trial 
(70)

IVIg and placebo 
versus IVIg 
and Methyl-
Prednisolone (MP) 
trial

GBS In the IVIg vs MP trial, a multicenter double-blind trial, 
225 patients were included between 1994 and 2000. The 
patients receiving IVIg and placebo were considered as 
control patients and the patients receiving IVIg and MP 
were considered as treated patients. The primary outcome 
was improvement by one or more grades on the GBS 
disability score after 4 weeks.

IMPACT (71) International 
Mission on 
Prognosis and 
Clinical Trail design 
in TBI study

TBI The IMPACT study combines individual patient data from 
8 RCTs and three observational studies in moderate and 
severe TBI, mainly from the US and Europe. In Chapter 3 in 
this thesis we focused on the three observational studies 
(the European Brain Injury Consortium study (EBIC), the UK 
four center study (UK4), and the Traumatic Coma Databank 
(TCDB)). Patients were enrolled in these studies between 
1984 and 1995.

CRASH (72) Corticosteroid 
Randomisation 
After Significant 
Head injury trial

TBI In the CRASH trial the effect of corticosteroids on death 
and disability after head injury was studied. CRASH 
enrolled 10,008 patients between 1999 and 2005. The 
primary outcome in CRASH was 14-day mortality.

TARN (73) Trauma Audit & 
Research Network

TBI TARN is a hospital based trauma registry in England and 
Wales including all patients with trauma resulting in 
immediate admission to hospital for three days or longer 
or death. The patients from TARN included in this study 
were enrolled between 1990 and 2009.

preDIVA (52) Prevention of 
Dementia by 
Intensive Vascular 
Care study is

Vascular 
disease / 
dementia

An ongoing cluster-randomized trial to assess the efficacy 
of a multicomponent, nurse-led intervention targeting 
all cardiovascular risk factors in an elderly population 
(70-78 years). The primary outcome of this RCT is incident 
dementia during 6 years of follow-up. Of 3533 patients 
enrolled, 1894 are in the intervention and 1639 in the 
control group.

PROSPER (74) PROspective Study 
of Pravastatin in 
elderly individuals 
at risk of vascular 
disease

Vascular 
disease

The study was conducted between December 1997 and 
May 1999 and enrolled 5804 patients, who were assigned 
to pravastatin (n=2891) or placebo (n=2913) to reduce the 
risk of coronary disease in elderly individuals. The outcome 
was a composite endpoint of coronary death, non-fatal 
myocardial infarction and fatal or non-fatal stroke at 3.2 
years on average after randomization.



General Introduction 19

admissions, transfers and costs in GBS is described (research question 1a). In chapter 3, 
also concerning research question 1a, a meta-analysis of the prognostic value of major 
extracranial injury in TBI patients is presented. Chapter 4 corresponds to research ques-
tion 1b regarding the potential gain in efficiency of covariate adjustment and ordinal 
analysis in RCTs in GBS.

In part II (chapter 5, 6 and 7) the validity and reliability of the RD design compared to 
an RCT is addressed. Chapter 5 studies the validity and efficiency of the RD design in 
continuous outcomes. Similar research to chapter 5 is done in chapter 6, studying the 
validity and efficiency of the RD design in dichotomous outcomes. Chapter 7 focuses on 
the potential benefits of an alternative assignment approach to increase the efficiency 
of the RD design. The results of the studies in this thesis are further discussed in chapter 
8, together with their implications.

Table 1. (continued)

Abbreviation Name Disease Description

GUSTO (61) Global Utilization of 
Streptokinase and 
Tissue plasminogen 
activator for 
Occluded coronary 
arteries trial

Acute 
myocardial 
infarction

30,510 patients were entered between 1990 and 1993. 
10,348 patients were assigned to treatment (accelerated 
tissue plasminogen activator) and 20,162 patients were 
used as control patients receiving streptokinase. The 
primary endpoint was 30-day mortality.

TBI = Traumatic Brain Injury, GBS = Guillain-Barré syndrome, RCTs = randomized controlled trials
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Abstract

Introduction
Guillain-Barré syndrome (GBS) has a highly variable clinical course, leading to frequent 
transfers within and between hospitals and high associated costs. We defined the cur-
rent admissions, transfers and costs in relation to disease severity of GBS.

Methods
Dutch neurologists were requested to report patients diagnosed with GBS between No-
vember 2009 and November 2010. Information regarding clinical course and transfers 
was obtained via neurologists and general practitioners.

Results
87 GBS patients were included with maximal GBS disability score of 1 or 2 (28%), 3 or 4 
(53%), 5 (18%) and 6 (1%). Four mildly affected GBS patients were not hospital admitted. 
Of the 83 hospitalized patients 68 (82%) were initially admitted at a neurology depart-
ment, 4 (5%) at an ICU, 4 (5%) at pediatrics, 4 (5%) at pediatrics neurology and 3 (4%) 
at internal medicine. Median hospital stay was 17 days (IQR 11- 26 days, absolute range 
1-133 days). Transfers between departments or hospitals occurred in 33 (40%) patients 
and 25 (30%) were transferred 2 times or more. From a cost-effectiveness perspective 
21 (25%) of the admissions was suboptimal. Median costs for hospital admission of GBS 
patients were 15,060 Euro (IQR 11,226 - 23,683). Maximal GBS disability score was signifi-
cantly correlated with total length of stay, number of transfers, ICU admission and costs.

Conclusions
Hospital admissions for GBS patients are highly heterogeneous, with frequent transfers 
and higher costs for those with more severe disease. Future research should aim to de-
velop prediction models to early identify the most cost-effective allocation in individual 
patients.
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Introduction

Guillain-Barré syndrome (GBS) is a life-threatening immune-mediated polyradiculo-
neuropathy(1, 2) which requires early diagnosis and hospital admission for accurate 
monitoring, treatment and supportive care.

GBS was initially treated with plasma exchange (PE) in specialized centers, but since 
the introduction of intravenous immunoglobulin (IVIg) in 1992, care for GBS patients was 
highly decentralized.(3-5) GBS is a heterogeneous disorder regarding clinical presenta-
tion and course and patients highly differ with respect to the required duration and 
intensity of hospital care.(6) Diagnosis may be delayed, especially in patients with atypi-
cal clinical presentation, including pain(7), and in young children.(8) After admission, 
patients may rapidly progress and require intensive monitoring or long-term ventilator 
support at an Intensive Care Unit (ICU), which may not be available in smaller hospitals. 
Diagnostic delay and unexpected deteriorations in 8% to 16% of the patients (4, 9), may 
cause more (acute) transfers between wards and ICUs or between local and academic 
hospitals. Previous studies showed that transfers of critically ill patients and emergency 
intubations in general result in longer stay at the ICU(10), and have a negative impact on 
patient and public health.(10, 11)

Currently it is unknown in which departments and hospitals GBS patients are admit-
ted, how often they are transferred, and what the associated costs are. In this study we 
aim to evaluate the current practice of hospital admissions, transfers and costs in rela-
tion to severity of disease, with the ultimate aim to provide optimal, cost-effective care 
for GBS patients.

Methods

Data collection and patient population

Data from the Pandemic Influenza & Vaccination (PIV) study were used, which was origi-
nally designed to investigate the relation between GBS and the pandemic influenza A 
(H1N1) virus.(12) Neurologists from all Dutch hospitals were requested to report patients 
diagnosed with GBS between November 2009 and November 2010. All the neurologists 
reported the GBS patients on a voluntary basis. Consequently, information regarding 
diagnostic features, clinical course and transfers was obtained via neurologists, general 
practitioners and discharge letters from the hospital that was specifically approved by 
the Medical Ethical Committee of the Erasmus Medical Center in Rotterdam. Written 
informed consent was not given by participants for their clinical records to be used in 
this study. Patient information was anonymized and de-identified prior to analysis.
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Definitions

All patients included fulfilled the diagnostic criteria for GBS from the Brighton Collabora-
tion.(13) Clinical severity was defined by the GBS disability score at nadir (0 = healthy, 1 
= minor symptoms, 2 = able to walk 10m unassisted but unable to run, 3 = able to walk 
over 10m open space with help, 4 = bedridden or chair bound, 5 = requiring ventilation 
for at least a part of the day, 6 = dead). For each patient, the number of transfers was 
determined. Two transfers equal three beds (e.g. patient admitted at a neurology depart-
ment, transferred to an ICU and transferred back to the same neurology department). 
We counted both transfers between hospitals and between departments within a single 
hospital. Hospitals were divided in three categories; local, top clinical and academic 
centers. Top clinical centers are non-academic “high cure” centers, which have a high 
level ICU facility were prolonged mechanical ventilation is possible.(14)

Specific patterns of admission and transfer

Five specific transfer patterns were identified which might be suboptimal in terms of 
cost-effectiveness:
1)	 In adults a first admission to another department than neurology or ICU, as this may 

indicate misdiagnosis.
2)	 In children ≤ 18 year first admission to another department than pediatrics neurol-

ogy as children with GBS may be misdiagnosed and require specialized neurological 
care.(8)

3)	 Relatively mildly affected patients (maximal GBS disability score ≤ 3) admitted to an 
academic center or an ICU, as this might implicate unnecessary high costs.

4)	 Inter-hospital transfers from local to academic center in the first two days of hospital 
admission, as such a rapid deterioration might have been anticipated on with direct 
admission to an academic center.

5)	 Mechanical ventilation at the ICU in a local smaller center, as GBS patients may 
require mechanical ventilation for extensive periods of time and require specialized 
care in larger centers (at least level 2 ICU in The Netherlands).

Costs of GBS hospital admission

We included costs of admission days in general and academic hospitals, admission days 
at ICU, treatment with IVIg and transfers between hospitals. Costs consist of cost prices 
and volumes. Cost prices are the costs of one single cost unit, e.g. one admissions day. 
The cost prices were obtained from standardized cost-data in “Manual for cost research”.
(15) Costs for medical doctors, ward doctors, nurses, other staff members, equipment, 
medical devices, food, standard medicines, housing and overhead costs were included 
in the cost prices per one admission day at the intensive care unit. The costs for mechani-
cal ventilation are not charged separate from the costs for one admission day at the in-
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tensive care unit, since the costs for the equipment and extra monitoring of the patient 
are already included in the cost price for an admission day at the intensive care unit. 
Volumes are the number of a cost unit, thus the number of admission days. We did not 
have specific information on the type of treatment in all individual patients with GBS. In 
The Netherlands the first choice treatment according to the national CBO guideline for 
GBS is IVIg, which is also available in all centers. According to this guideline treatment is 
indicated in patients with GBS disability score ≥ 3) or who are transferred to the ICU and 
in this study costs for treatment with one course of IVIg was allocated. Consequently, by 
multiplying cost prices with volumes the total costs per patient were calculated. Mean 
and median costs with interquartile ranges (IQR) in Euros were assessed for the total 
study population and for each maximal GBS disability score subgroup. To assess which 
patient characteristics mainly determine costs, a linear regression model was fitted with 
age and maximal GBS disability score as independent variables and costs as dependent 
variable. The total costs of all GBS hospital admissions in The Netherlands per year were 
determined by multiplying the incidence of GBS per year in the total Dutch population 
by the median hospital costs.

Statistical analyses

Patient characteristics and hospital admissions were described as medians with IQRs 
and absolute ranges, or as frequencies. Spearman correlation coefficients (SCC) and cor-
responding p-values were calculated for correlations between maximal GBS disability 
score and total length of stay, frequency of transfers, ICU admission and days to first 
transfer. Similarly, correlation coefficients were calculated for maximal GBS disability 
score with days between hospital admission and transfer to the ICU, length of stay at 
ICU and total length of stay in patients admitted to an ICU during hospital stay.

All analyses were performed with SPSS 20.0 (SPSS Inc, Chicago, Illinois), figures were 
made with Graphpad Prism 6.01 (Graphpad Software Inc) and R statistical software 
2.15.3 (R Foundation for Statistical Computation, Vienna, Austria).

Results

Patient population and characteristics

The study population consisted of 87 GBS patients from a representative combination of 
41 different hospitals in The Netherlands (13% academic, 33% top clinical and 58% local 
centers in our cohort compared to 9%, 31% and 60% in The Netherlands). The maximal 
GBS disability scores were: 1 or 2 (28%), 3 or 4 (53%), 5 (18%) and 6 (1%) (Table 1) and 
was representative for the general population of GBS patients as described in a previous 
Dutch observational GBS study.(7) Four (5%) patients had a relatively mild variant of 
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Table 1. Characteristics of 83 hospitalized patients with GBS.

Characteristics Missing (%)
Age, median (IQR) 49 (30 – 64) 0 (0)

Sex, male (%) 49 (56) 1 (1)

Severity at nadir (maximal GBS disability score)* 0 (0)

1 (%) 4 (5)

2 (%) 16 (19)

3 (%) 25 (30)

4 (%) 21 (25)

5 (%) 16 (19)

6 (%) 1 (1)

Preceding diarrhoea (%) 13 (26) 33 (40)

Facial and/or bulbar weakness (%) 30 (36) 4 (5)

Days between onset weakness and admission, median (IQR) 2 (0 – 5) 6 (8)

Length of stay in hospital 2 (2)

median (IQR) 17 (11 – 26)

absolute range 1 - 133

1st hospital 0 (0)

Academic center (%) 12 (15)

Top clinical center (%) 33 (40)

Local center (%) 38 (46)

Departments during hospital stay**
Neurology (%) 74 (89)

ICU (%) 26 (31)

Medium Care/ Neurology- ICU (%) 4 (5)

Internal Medicine (%) 3 (4)

Paediatric Neurology (%) 6 (7)

Paediatrics (%) 4 (5)

Transfers during hospital stay 0 (0)

0 (%) 50 (60)

1 (%) 7 (8)

2 (%) 18 (22)

3 (%) 6 (7)

4 (%) 2 (2)

Days between 1st and 2nd bed, median (IQR)*** 2 (1 – 4) 5 (15)

ICU admission
mechanical ventilation (%) 17 (65)

Discharge direction
Home 41 (49)

2 (2)

Rehabilitation center 37 (45)

Nursing home 3 (4)

Data are presented as numbers (percentages) or medians (interquartile ranges), excluding patients with missing 
data.
* 1 = minor symptoms, 2 = able to walk 10m unassisted but unable to run, 3 = able to walk over 10m open space 
with help, 4 = bedridden or chair bound, 5 = needs ventilation for at least a part of the day, 6 = dead.
** These figures indicate in which departments the GBS patients were admitted at some time point during hospi-
tal stay. A proportion of patients was admitted at various departments, explaining the total number exceeds 83.
*** Calculated for patients with at least one transfer (n=33).
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GBS, not reaching a GBS disability score >3. They were not hospitalized and excluded 
from further analyses. The hospitalized patients had a median age of 49 (IQR 30 – 63), 
with 11 (13%) children (≤ 18 years old) and 48 (59%) males.

Hospital admissions

Of 83 hospitalized patients, 12 (15%) were initially referred to an academic center, 33 
(40%) to a top clinical center and 38 (46%) to a local center. The patients were initially 
referred to various departments: 68 (82%) to a neurology department, 4 (5%) to an ICU, 
3 (4%) to internal medicine, 4 (5%) to pediatrics, and 4 (5%) to pediatric neurology. The 
median hospital stay was 17 days (IQR 11-26 days; absolute range 1-133 days). A higher 
maximal GBS disability score was significantly correlated with a longer total length of 
stay (SCC 0.59, p < 0.001) (Table 2). Of the 83 admitted patients, 33 (40%) had at least 
one transfer to another department or hospital, and more than 50% of patients were 
transferred within 2 days after admission. Moreover, 26 (31%) patients were transferred 2 
times or more of which 2 (2%) were transferred 4 times. A higher maximal GBS disability 
score was significantly correlated with more transfers (SCC 0.62, p < 0.001). One patient 
had died in the hospital. More detailed information regarding the hospital admission 
is presented in Table 1. The course of hospital admission for all patients is presented in 
Figure 1.

ICU admissions

26 (31%) patients stayed at an ICU at some time during follow-up, of which 17 (65%) 
were ventilated. In patients with a GBS disability score of 4 or lower (i.e. not by definition 
admitted to the ICU) a higher maximal GBS disability score was significantly correlated 
to ICU admission (SCC 0.28, p = 0.025) (Table 2). Median time between onset of weak-

Table 2. Spearman correlations with maximal GBS disability score.

Total population (n=83) Correlation coefficient P-value

Total length of hospital stay 0.59 <0.001

Frequency of transfers 0.62 <0.001

ICU admission* 0.67 <0.001

Days to first transfer** 0.15 0.44

ICU admissions (n=26)*

Days between hospital admission and transfer to ICU 0.20 0.38

Length of stay at ICU 0.46 0.03

Total length of stay 0.37 0.08

* This correlation coefficient is based on the total GBS cohort. The correlation coefficient for patients with a maxi-
mal GBS disability score ≤ 4 is 0.28, p = 0.03.
** This correlation coefficient is based on GBS patients with at least one transfer (n=33).
***All correlation coefficients below are calculated only for patients admitted at an ICU (n=26).
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Figure 1. Overview hospital stay of 87 GBS patients.
7 patients not included in figure since limited data were available on exact days of admission and department(s) 
of admission.
Hatched bars are ICU admissions, non-hatched bars are admissions in any other department.
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ness and admission to the ICU was 4 days (IQR 2 – 7 days; absolute range 1 – 14 days). 
Median length of stay at the ICU was 12 days (IQR 2-20 days). A higher maximal GBS 
disability score was significantly correlated to a longer stay at the ICU (SCC 0.46, p = 
0.03). Median duration of ICU admission was 4 days (IQR 1 – 10 days) for patients with 
a maximal GBS disability score of 4 and 17 days (IQR 10 – 24 days) for patients with a 
maximal GBS disability score of 5. Main (documented) reasons for transfer to an ICU were 
(risk for) mechanical ventilation or short-term admission for observation.

Patients transferred between different types of hospitals

Nine (11%) patients were transferred between different types of centers, including 7 
patients from a local center to an academic center (median time of transfer after ad-
mission was 2 days; range 1-19 days). Two patients were transferred from a top clinical 
center to an academic center (after 1 day) or local center (after 7 days). No patients were 
transferred from a local to a top clinical center, and no patients initially admitted to an 
academic center were transferred to another type of hospital. 78% of the inter-hospital 
transfers occurred in the first week of admission and in 56% of the patients within two 
days. Five (56%) patients were children (≤ 18 years) and 3 (33%) patients had a maximal 
GBS disability score 5. (S1 Table)

Specific patterns of admission and transfer

In 21 (25%) patients, the admission and transfers might be classified as suboptimal from 
a cost-effectiveness perspective.
1)	 Three (4%) patients were initially admitted to an internal medicine department.
2)	 Four (5%) children were initially admitted to a general pediatric department, and 

transferred to pediatric neurology department or ICU. Three of them were transferred 
from a local to an academic center.

3)	 Six (7%) relatively mildly affected patients (maximal GBS disability score ≤ 3) were 
admitted to an academic center (3; 4%) or ICU (3; 4%).

4)	 Four (5%) patients were transferred within 2 days of admission from a local to an 
academic center.

5)	 Seven (8%) patients were mechanically ventilated in a local center.

Costs of GBS hospital admissions

Seven patients were excluded from cost analyses because of lack of data. Median costs 
of the remaining 80 patients were 15,060 Euro (IQR 11,226 – 23,683 Euro), with an 
absolute range of 575 – 208,018 Euro. These costs were composed of admission days 
in a general hospital (435 Euro per day), academic hospital (575 Euro per day), or ICU 
(2183 Euro per day), frequency of inter-hospital transfers (262 Euro per transfer) and 
treatment with one course of IVIg (8,100 Euro per course). The estimated total costs for 
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all GBS hospital admissions in the Netherlands per year were 4,832,000 Euro (estimated 
frequency in total Dutch population of 200 patients multiplied by the median hospital 
costs of 24,160 Euro).

Median costs were highly associated with disease severity (expressed as maximal GSB 
disability score), ranging from 2,428 Euro (IQR 796 – 3,806 Euro) for patients with a score 
of 1, to 59,167 Euro (IQR 45,031 – 68,369 Euro) for patients with a score of 5 (Table 3). The 
correlation between GBS disability score and costs was observed in both children and 
adults (Figure 2).

The beta for the effect of maximal GBS disability score on costs (adjusted for age) was 
16,442 (95% CI 10,939 – 21,945). This means, for example, that the costs for a patient 
with a maximal GBS disability score of 4 are is on average 16,442 Euro higher than those 
for a patient with a maximal GBS disability score of 3.

Discussion

In this study the current practice of hospital admissions of patients with GBS was evalu-
ated in terms of location, duration, transfers and costs, in a representative cohort of GBS 
patients in The Netherlands. Transfers within and between hospitals were frequent: 40% 
of the patients were transferred at least one time and half of them were transferred 
within 2 days of admission. Moreover, in 25% the admission may have been suboptimal 
form a cost-effectiveness perspective, including admission to other than (paediatric) 
neurology departments or ICUs, admission of mildly affected patients to ICUs and trans-
fers shortly after the initial admission. The related costs were highly variable between 
patients and mainly associated with the severity of disease. These findings may suggest 

Table 3. (Minimum) Costs* of hospital admission in GBS patients.**

Maximal GBS disability score N Mean costs in Euros Median costs in Euros (IQR)

1 4 2,428 2,175 (796-3,806)

2 16 5,558 4,258 (3,045-8,644)

3 23 15,866 14,625 (13,320-17,018)

4 20 22,715 19,296 (15,219-26,384)

5 12 75,066 59,167 (45,031-68,369)

6 1 17,529 17,529

Total 76 24,160 15,060 (11,226-23,683)

*These costs include costs for nursing days, treatment and transfers. Costs of diagnostic tests, physiotherapy and 
mechanical ventilation were not included in our calculations.
**Excluded were 7 patients from the cost analyses since limited data were available on exact days of admission 
and department(s) of admission.
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that the care of GBS patients in The Netherlands can be improved by developing more 
cost-effective referral strategies based on early diagnosis and prediction of clinical 
course and outcome.

Strengths and limitations

Only very few studies have described the practice of current hospital admission of 
patients with GBS. Most studies on the clinical course of GBS are based on data from 
therapeutic trials, which may be biased to severe cases. Although reporting of GBS cases 
by the neurologists was voluntary in this study, we had a representative cohort of GBS 
patients. In the Netherlands, all care for all patients with GBS is primarily coordinated by 
neurologists. Therefor it is highly unlikely that GBS cases were missed because treatment 
was coordinated at another department. The types of hospital (academic, top clinical 

Figure 2. Interquartile ranges (grey boxes), 95% confidence intervals (whiskers) and median (dark lines in 
middle of the boxes) of costs of hospital admission for different maximal GBS disability scores.
Excluded was one patient who died.
Circles are (extreme) outliers.
Maximal GBS disability score during hospital admission: 1 = minor symptoms, 2 = able to walk 10m unassisted 
but unable to run, 3 = able to walk over 10m open space with help, 4 = bedridden or chair bound, 5 = needs 
ventilation for at least a part of the day.
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and local) were similarly distributed as the total number of hospitals in the Netherlands. 
The distribution of age, disease severity at nadir, proportion of ventilated patients was 
similar to previous studies on GBS patients in The Netherlands. Previous studies were 
performed in the United States, which has a different health care system than European 
countries, and focused largely on indirect costs.(16) Other studies only measured the 
costs of specific treatments for GBS(17-19) or analyzed costs of a specific subgroup of 
GBS.(20) In the current study we aimed to determine the current costs of hospital admis-
sions across the full spectrum of this heterogeneous disorder.

Optimal and cost-effective care for GBS

GBS is a complex disorder for cost-effective care because of the various stages in the clini-
cal course and diversity in clinical course between patients. The complexity is reflected 
in the high frequency of transfers between departments and hospitals, especially shortly 
after initial admission. Patients initially admitted at the internal medicine department 
may result in delayed specialized treatment and monitoring, and an extra transfer. From 
a costs point of view, ideally mildly affected patients are admitted to a local or top clini-
cal center with good general care for GBS but relatively low costs. More severely affected 
patients with a higher chance of respiratory failure and complications may benefit from 
admission in a top-clinical or academic center. Four patients were transferred from a 
local to an academic center within two days of admission and ideally these patients 
would have been admitted directly to a specialized center. Adequate assessment of 
prognosis could aid decision making at the time of admission. Prognostic models have 
been developed to support this assessment, including the externally validated modified 
Erasmus GBS Outcome Score (mEGOS) to predict disability outcome in GBS patients at 
the time of admission.(21)

Seven patients were initially mechanically ventilated in a local center, which could 
have been prevented when earlier transferred to a top clinical or academic center. The 
Erasmus GBS Respiratory Insufficiency Score (ERGIS) (22) was developed to predict respi-
ratory insufficiency at time of admission. When a patient has a high chance of respiratory 
insufficiency, careful monitoring can potentially avoid an unexpected emergency intu-
bation and acute transfer to the ICU. The ERGIS could help clinicians to decide to admit 
or transfer a patient to an academic center before the critical stage of disease. Direct 
admission to a top clinical or academic is preferred above transfer since inter-hospital 
transfers have negative impact on patient outcome.(10, 11) ERGIS could also help avoid-
ing unnecessary ICU admissions of mild GBS patients to save costs. In this study, 9 of the 
ICU admitted patients had no need for mechanical ventilation. We cannot exclude the 
possibility that these patients were admitted to an ICU because of autonomic dysfunc-
tion, although this sole indication for admission to an ICU may be relatively rare.
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Children with GBS

Almost half of the children in this cohort were initially admitted to a general pediatrics 
department. Considering the challenging neurologic examination, monitoring and 
treatment of children with GBS, they should preferably be seen by a pediatric neurolo-
gist and be admitted to a center with a pediatric ICU. All children initially admitted to a 
pediatric department were later transferred to a pediatric neurology department or ICU. 
This referral pattern may indicate a delay in diagnosis of GBS in young children compared 
to adults or problems with monitoring children during the progressive state.(8) In one 
child, admitted to a pediatric department in a local center, the delayed diagnosis and 
insufficient monitoring resulted in death due to hypoxia after emergency intubation.
(8, 23)

Costs of GBS hospital admission

We found that the costs of hospitals admission in GBS are highly variable and mainly 
depend on maximal GBS disability score. These are the minimal costs of GBS hospital ad-
missions, since costs of diagnostic tests, physiotherapy and mechanical ventilation were 
not included. Moreover, one course with IVIg for each patient was assigned, although 
some patients may have received more (or no) course(s) with IVIg due to treatment 
related fluctuations or received other treatment like PE.

Length of stay is the main driver for high costs in GBS hospital admission, especially 
(long) admission to an ICU. This also explains the strong correlation between costs and 
GBS disability score. Compared to other costs during hospital admission, costs for in-
ter hospital transfers are relatively low. Also, a course with IVIg (8,100 Euro), although 
considered to be an expensive treatment, has relatively low costs compared to ICU 
admission (2,183 Euro per day).

Conclusion

In conclusion, substantial heterogeneity in admission and transfer patters of GBS pa-
tients and associated costs was found. As this study lacks outcome data, no definite 
conclusions can be drawn, but we suggested several possibilities for improving to 
cost-effectiveness of care for GBS patients. Future research should focus on identifying 
subgroups of patients who benefit most from specialized care in an academic center, 
e.g. based on prognostic models, and subsequently on developing admission guidelines 
to provide optimal, cost-effective care for GBS patients.
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From top clinical to academic center (n=1)*

10 5 1 Pediatrics Neurology Unknown 19 ICU Yes N/A

From top clinical to local center (n=1)*

21 5 7 ICU Parents of patient live 
closer to the local center on 
the other side of the county

28 ICU No 35

From local to academic center (n=7)*

28 4 19 Neurology Unknown 4 Neurology No 23

5 4 2 Pediatrics Unknown 27 Pediatric Neurology No 29

11 3 4 Pediatrics Unknown 16 Pediatric Neurology Yes 26

36 4 2 Neurology Unknown 7 Neurology Yes 11

6 4 2 Pediatrics Unknown 17 Neurology Yes 22

4 6 1 Pediatrics Unknown 4 ICU - 5

59 3 12 Neurology Risk for mechanical 
ventilation

4 Neurology Yes 43

* There were no transfers from an academic center to another type of hospital and no transfers from a local 
center to a top clinical center.
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Abstract

Introduction
Major extracranial injury (MEI) is common in Traumatic Brain Injury (TBI) patients, but 
the effect on outcome is controversial.

Objective
To assess the prognostic value of MEI on mortality after TBI in an individual patient data 
meta-analysis of three observational TBI studies (IMPACT), a randomized controlled trial 
(CRASH), and a trauma registry (TARN).

Methods
MEI (extracranial injury with an AIS ≥ 3 or “requiring hospital admission”) was related to 
mortality with logistic regression analysis, adjusted for age, GCS motor score and pupil 
reactivity, stratified by TBI severity. We pooled odds ratios (ORs) with random effects 
meta-analysis.

Results
We included 39,274 patients. Mortality was 25% and 32% had MEI. MEI was a strong 
predictor for mortality in TARN, with adjusted ORs and 95% confidence intervals (95%CI) 
of 2.81 (2.44-3.23) in mild, 2.18 (1.80-2.65) in moderate and 2.14 (1.95-2.35) in severe TBI 
patients. The prognostic effect was smaller in IMPACT and CRASH with pooled adjusted 
ORs and 95%CIs of 2.14 (0.93-4.91) in mild, 1.46 (1.14-1.85) in moderate and 1.18 (1.03-
1.55) in severe TBI. When patients who died within 6 hours after injury were excluded 
from TARN, the effect of MEI was comparable with IMPACT and CRASH.

Conclusion
MEI is an important prognostic factor for mortality in TBI patients. However, the effect 
varies by population, which explains the controversy in the literature. The strength of 
the effect is smaller in patients with more severe brain injury, and depends on time of 
inclusion in a study.
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Introduction

Major extracranial injury (MEI) is frequently present in patients with traumatic brain in-
jury (TBI). The prevalence differs from 23%(1) to 41%(2) dependent on study population 
and definition of MEI. Relatively few studies have however focused on the effect of MEI 
on mortality after TBI. Most studies concerning TBI and MEI have investigated patients 
with extracranial trauma, with or without TBI. These studies show that the coexistence of 
traumatic brain injury with extracranial injury is associated with both increased mortal-
ity and morbidity.(3-6)

In contrast, there is no consensus on the degree to which the presence of MEI worsens 
outcome in TBI patients. Some studies demonstrate that outcome mainly depends on 
the severity of the primary cerebral damage and is not worsened by the presence of 
extracranial injuries.(2, 7) Other studies suggest that the presence of MEI carries a poorer 
outcome in TBI patients.(1, 8-10) Differences between studies might be due to patient 
population, setting and study design. Determining the importance of MEI in outcome 
after TBI has relevance for understanding and potentially improving the patient path-
way, and for improving prognostic models that might be used to benchmark care(6), or 
to inform relatives and medical decisions.

We report a collaborative analysis on a large number of TBI patients with and with-
out documented MEI, including data from the International Mission on Prognosis and 
Clinical Trial design in TBI (IMPACT) study, the Medical Research Council Corticosteroid 
Randomization after Significant Head Injury (MRC CRASH) trial, and the Trauma Audit 
& Research Network (TARN) registry. Our aim was to determine the role of MEI as a 
prognostic factor for mortality after TBI and to solve the current disagreement in the 
literature. We hypothesize that the presence of MEI is associated with higher mortality 
in patients with TBI.

Methods

Patient population and data collection

We included individual patient data from the International Mission on Prognosis and 
Clinical Trail design in TBI (IMPACT) study, the Medical Research Council Corticosteroid 
Randomization after Significant Head Injury (MRC CRASH) trial, and the Trauma Audit & 
Research Network (TARN).

IMPACT combines individual patient data from randomized controlled trials (RCTs) 
and three observational studies in moderate and severe TBI, mainly from the US and 
Europe. Here we focused on the three observational studies (the European Brain Injury 
Consortium core data survey (EBIC), the UK four centre study (UK4), and the Traumatic 
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Coma Databank (TCDB)), as the presence of MEI was not an exclusion criterium for these 
studies. Patients were enrolled in these studies between 1984 and 1995.

The CRASH trial is a trial with broad inclusion criteria studying the effect of corticoste-
roids on death and disability after head injury. CRASH was conducted in both high and 
low/middle income countries. In CRASH we analyzed low/middle income countries and 
high income countries separately, as trauma organizations may be different.(1) CRASH 
enrolled 10,008 patients between 1999 and 2005, of which 9554 had complete outcome 
data.

TARN is a hospital based trauma registry in England and Wales including all patients 
with trauma resulting in immediate admission to hospital for three days or longer or 
death. From these, we selected TBI patients defined as having an Abbreviated Injury 
Scale for the Head Region of 3 or higher, which was not resulting from scalp laceration, 
scalp avulsion or penetrating injury. The patients from TARN included in this study were 
enrolled between 1990 and 2009.

Detailed descriptions of all the studies and data collection and management can be 
found in previous publications.(11-13)

Outcome and major extracranial injury

The primary outcome examined in this analysis was mortality at six months in IMPACT 
and CRASH and discharge mortality in TARN. In IMPACT, six-month mortality was miss-
ing in 3 patients who were excluded. CRASH had also 14 day mortality available. Major 
Extracranial Injury (MEI) was defined as “Abbreviated Injury Scale (AIS) ≥ 3” or “an injury 
requiring hospital admission on its own”.

Statistical analyses

The strength of the association between MEI and mortality was analyzed univariably 
and multivariably using binary logistic regression models. We adjusted for core prog-
nostic parameters: age, GCS motor score (1=makes no movements, 2=extension to 
painful stimuli, 3=abnormal flexion to painful stimuli, 4 =flexion/withdrawal to painful 
stimuli, 5=localizes painful stimuli, 6=obeys commands) and pupil reactivity (1= both 
responsive, 2=one responsive, 3=both unresponsive) at admission. We also adjusted 
for hypotension (prior to hospital admission) to better understand the pathway of the 
prognostic effect of MEI. When IMPACT was analyzed as a single study (in mild and mod-
erate TBI), we additionally adjusted for study, since IMPACT actually consists of three 
studies. In CRASH we also adjusted for treatment by adding the treatment variable to 
the multivariable regression model, since there was a significant treatment effect. Since 
the patients in TARN and IMPACT were included in a wide time range, we tested for 
interaction between MEI and year of injury.
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Results were expressed as odds ratio for mortality with MEI compared to absent MEI, 
with 95% confidence intervals. An overall summary measure was derived using random 
effects meta-analysis (Der Simonian-Laird pooling). We assessed the heterogeneity 
between the studies based on the between-study variance τ2 and its p-value to test for 
heterogeneity.

TARN was not included in the pooled analysis because of the different nature of the 
study and the different time point of the outcome. Forest plots were used to display con-
sistency of findings across the datasets. We calculated partial R2 statistics to indicate the 
amount of variance explained by MEI, both univariable and multivariable. In CRASH and 
IMPACT we corrected the univariable and multivariable R2s for the variance explained by 
study and treatment.

Absolute risks of patients with and without MEI were calculated from the models by 
taking the mean of the probabilities predicted by the multivariable models, stratified for 
brain injury severity.

Missing data is common in medical scientific research. One distinguishes three types of 
mechanisms leading to missing values. Missing completely at random (MCAR) are miss-
ing values due to for example administrative errors or accidents. Missingness related to 
known patient characteristics, time or place is called missing at random (MAR). The third 
mechanism, missing not at random (MNAR), is a problematic situation in which missing-
ness is related to unknown predictors. In epidemiology, it is generally acknowledged 
that imputation is preferable over complete case analysis in case of missing values.
(14-17) Estimating associations using complete case analysis is less efficient, since part 
of the data is not used. The simplest approach for imputation (‘simple imputation’) is 
imputing a fixed value for all patients with a missing value for a particular variable, e.g. 
the mean or the most common category. Such simple methods ignore the correlation 
between variables and are hence suboptimal. In ‘single imputation’, multivariable re-
gression models are used to predict the missing value based on associations with other 
variables. In multiple imputation this procedure is repeated several times resulting in 
multiple datasets, all with slightly different imputed values. Subsequent analyses are 
performed on each dataset separately and summarized to obtain more precise standard 
errors and P-values.(15) The assumption underlying single and multiple imputation is 
that missing values are MAR.

In our study, missing data were imputed for the motor score of the Glasgow Coma 
Scale (GCS), pupil reactivity and MEI with single imputation using all relevant prognostic 
factors and outcome. We thus assume MAR. Imputations were done separately for TARN, 
CRASH and IMPACT, using the AregImpute function in R statistical software.

Analyses were performed with R statistical software 2.7.1 (R Foundation for Statistical 
Computation, Vienna) using packages Rmeta, Hmisc and Design, and SPSS 15.0 (SPSS 
Inc, Chicago).
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Sensitivity analyses

In preliminary analysis we found a large difference between IMPACT and CRASH versus 
TARN in terms of the effect of MEI on outcome. We hypothesized that this might be due 
to the different setting (TBI studies versus a trauma registry), the different distribution of 
TBI severity across the studies (only moderate and severe TBI in IMPACT, many mild TBI 
patients in TARN), or the different time point of outcome assessment (discharge versus 6 
month). We tested these hypotheses by three approaches.
1)	 We tested for interaction between MEI and brain injury severity (GCS), by adding 

an interaction term between MEI and GCS to the binary logistic regression model 
containing age, GCS motor score, pupil reactivity, MEI and GCS as main effects. We 
assessed the p-value of the interaction term and subsequently stratified the analyses 
for brain injury severity, defining mild TBI as Glasgow Coma Scale (GCS) 13-15, mod-
erate TBI as GCS 9-12 and severe traumatic brain injury as GCS 3-8.

2)	 We excluded the patients from TARN who died within 6 hours after injury since the 
majority of these patients is not likely to be included in IMPACT or CRASH.

3)	 We analyzed in CRASH both 14 day and 6 month mortality.

Results

Patient population

We included 2,216 patients from IMPACT (791 from UK4, 603 from TCDB, and 824 from 
EBIC), 9,554 from CRASH (7,205 from low/middle income countries, and 2,349 from high 
income countries), and 27,504 from TARN. This resulted in 39,274 patients for the analy-
sis. For all variables missing was less than 10%, except for TARN where 90% of the pupil 
reactivity data was missing since this variable was only recorded from 2005 onwards.

Patient characteristics

The majority of the patients (17,136, 44%) had severe TBI. A total of 7,229 (18%) had 
moderate and 14,909 (38%) had mild TBI. The IMPACT studies included mainly severe 
TBI patients (81%) and TARN mainly mild (43%) and severe (42%) TBI patients. In CRASH 
the distribution of brain injury severity was more equal (30% mild, 30% moderate, 40% 
severe). In IMPACT, mortality was 41%, compared to 24% in CRASH and 28% in TARN. In 
IMPACT, 41% of the patients had MEI, in CRASH this was 23% and in TARN 34%. MEI was 
observed more frequently in patients with severe TBI (30-46%), than in those with mild 
TBI (14-41%). (Table 1)
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Table 1. Patient Characteristics of 11 Studies in the IMPACT database, the CRASH trial and the TARN registry.

Age GCS score Motor score Pupillary 
reactivity

Major 
extracranial
injury

Mortality

median
(25th-75th 
percentile)

Mild - GCS 13-15
Moderate - GCS 
9-12
Severe - GCS 3-8

none
extension
abnormal 
flexion
normal flexion
localize/obeys
untestable/
missing

both 
responsive
one responsive
both 
unresponsive

yes dead

UK4
(n=791)

36 (22-55) 24 (3%)
83 (11%)
684 (87%)

113 (14%)
85 (11%)
37 (5%)
141 (18%)
221 (28%)
194 (26%)

434 (55%)
113 (14%)
244 (31%)

303 (38%) 359 (45%)

TCDB
(n=603)

26 (21-40) 22 (4%)
45 (8%)
536 (89%)

136 (23%)
107 (18%)
74 (12%)
121 (20%)
134 (22%)
31 (5%)

299 (50%)
55 (9%)
249 (41%)

280 (46%) 264 (44%)

EBIC
(n=822)

37.5 (24-59) 73 (9%)
168 (20%)
581 (71%)

150 (18.2%)
80 (10%)
55 (7%)
113 (14%)
281 (34%)
143 (17%)

532 (65%)
80 (10%)
210 (26%)

316 (38%) 281 (34%)

CRASH LOW/
MIDDLE 
INCOME 
(n=7,205)

32 (24-45) 2108 (29%)
2331 (32%)
2766 (38%)

356 (5%)
403 (6%)
531 (7%)
891 (12%)
5024 (70%)
0 (0%)

6135 (85%)
450 (6%)
620 (9%)

1694 (23%) 1854 
(26%)

CRASH HIGH 
INCOME 
(n=2,349)

37 (24-54) 760 (32%)
551 (24%)
1038 (44%)

429 (18%)
112 (5%)
128 (5%)
290 (12%)
1390 (59%)
0 (0%)

1965 (84%)
147 (6%)
237 (10%)

522 (23%) 469 (20%)

TARN 
(n=27,504)

39 (24-60) 11922 (43%)
4051 (15%)
11531 (42%)

4117 (15%)
838 (3%)
973 (4%)
1449 (5%)
11892 (43%)
8235 (30%)

21548 (78%)
1630 (6%)
4326 (16%)

9452 (34%) 7673 
(28%)
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Major Extracranial Injury and mortality

We found a moderate prognostic effect of MEI in IMPACT and CRASH with pooled 
adjusted ORs and 95% confidence intervals (95%CIs) of 2.14 (0.93-4.91) in mild, 1.46 
(1.14-1.85) in moderate and 1.18 (1.03-1.55) in severe TBI patients. The between-study 
variances τ2 and p-values for heterogeneity were 0.39 (p=0.02) for the mild, 0.11 (p=0.10) 
for the moderate and 0.0 (p=0.98) for the severe TBI studies. In TARN MEI was a strong 
prognostic factor for mortality, with adjusted odds ratios (OR) and 95%CIs of 2.81 (2.44-
3.23) in mild, 2.18 (1.80-2.65) in moderate and 2.14 (1.95-2.35) in severe TBI patients 
(Figure 1 and Table 2). The unadjusted ORs were all smaller than adjusted ORs, indicating 
that the effect of MEI on mortality was independent of other predictors of mortality.

Adjusting the effect of extracranial injury for hypotension led to a small decrease of the 
prognostic effect (ORs decreasing by 0.1-0.4) of MEI, indicating that hypotension indeed 
explains part of the relationship between extracranial injury and outcome. Hypotension 
itself was a strong prognostic factor for mortality, independent of MEI (adjusted ORs 2.9 
to 3.6).

Odds ratio

S
tu

dy
 R

ef
er

en
ce

UK4, TCDB, EBIC

CRASH Low/Middle income

CRASH High income

TARN

0.5 1.0 2.0 4.0

Figure 1. Forest plots showing the strength of the adjusted association between major extracranial injury 
and mortality in mild (left), moderate (middle) and severe (right) TBI patients
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In IMPACT there was no significant interaction between MEI and year of injury 
(p=0.618). In TARN there was a significant interaction between MEI and year of injury 
(p=0.000), with outcomes slightly improving over time and the effect of MEI slightly 
decreasing.

The prognostic value of MEI in terms of univariable R2 (Figure 2) varied from 0.0% (in 
severe patients in IMPACT and CRASH) to 3.4% (in severe patients in TARN), and was 
considerably smaller than the prognostic value of core predictors as age, GCS motor 
score and pupil reactivity.

Absolute risks

In CRASH and IMPACT, the increase in absolute risk on mortality associated with MEI was 
8% (6% vs. 14%) in mild, 4% (15% vs. 19%) in moderate and 1% (45% vs. 46%) in severe 
TBI patients. The prevalence of MEI in TBI patients was larger in TARN for all brain injury 
severities than in IMPACT and CRASH, as was the increase in absolute risks on mortality. 
The increase in absolute risk on mortality associated with MEI was 8% (7% vs. 15%) in 
mild, 9% (16% vs. 25%) in moderate and 16% (43% vs. 59%) in severe TBI patients in 
TARN (Table 3).

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

Mild patients Moderate patients Severe patients

R
2 

MEI MEI+age MEI+age+brain injury severity

Figure 2. The prognostic value of major extracranial injury (MEI), univariable and in combination with age 
and brain injury severity (GCS motor score and pupil reactivity), expressed in percentage explained vari-
ance (R2)
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Differences between CRASH, IMPACT and TARN

There was a significant interaction between MEI and brain injury severity in CRASH 
(p<0.001) and TARN (p=0.029) but not in IMPACT.

Since we found, also after stratification, a considerable difference in the prognostic 
effect of MEI between IMPACT-CRASH and TARN across all TBI severities, we excluded 
912 patients from TARN who died within 6 hours after injury since the majority of these 
patients would not have been included in IMPACT or CRASH. This resulted in decreased 
ORs of MEI for mortality: 2.4 in mild, 1.8 in moderate and 1.6 in severe TBI (IMPACT and 
CRASH: 2.1 in mild, 1.6 in moderate and 1.2 in severe TBI).

To assess the difference between IMPACT-CRASH and TARN further, we analyzed 14 
day mortality in CRASH. In low/middle income countries MEI was less strongly related to 
14 day mortality than to 6 month mortality (ORs 0.1-1 point lower for 14 day mortality). 
In high income countries however, effects were opposite (ORs 0.1 to 0.4 points higher 
for 14 day mortality).

We performed all analyses also in a subset of the TARN collected after 2005 (n=6078) 
and found similar results.

Discussion

Our study shows that MEI is a prognostic factor in patients with TBI. However, the effect 
varies by the population studied in two ways, which explains the disagreement in the 
literature. First the strength of the effect interacts with brain injury severity, with larger 
effects in milder TBI patient populations. Second the effect is dependent on the time of 
inclusion in a study. In TARN (a registry including all TBI patients form the time of injury) 
MEI is strongly associated with mortality after adjustment for age, GCS motor score and 
pupil reactivity. In IMPACT and CRASH (broadly selected observational studies and an 
RCT, including TBI patients surviving the early stage) the incremental prognostic value 
of MEI compared to known predictors of mortality is limited.

Table 3. Absolute risks of major extracranial injury and no and minor extracranial injury in different TBI 
severity groups on mortality in IMPACT& CRASH vs. TARN.

Mild TBI
patients

Moderate TBI
patients

Severe TBI
patients

IIMPACT & CRASH No major extracranial injury 5.5 (5.2-5.8) 14.8 (14.2-15.3) 44.8 (44.1-45.6)

Major extracranial injury 13.9 (12.6-15.2) 18.7 (17.7-19.8) 45.5 (44.5-46.6)

TARN No major extracranial injury 7.4 (7.2-7.4) 16.4 (15.8-17.1) 42.9 (42.2-43.6)

Major extracranial injury 15.3 (14.7-15.8) 24.8 (23.5-26.0) 59.1 (58.3-59.8)
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We found a large difference in prognostic effect between TARN and IMPACT / CRASH. 
The larger effect in TARN was largely explained by inclusion of patients who died before 
or shortly after admission. The ORs in IMPACT and CRASH thus could be interpreted as 
the effect of MEI when a TBI patient survives the early stage (first hours) after trauma. 
The effect in TARN could be interpreted as the effect of MEI in the unselected TBI popula-
tion. For example: a victim of a road traffic accident with severe TBI and MEI has an odds 
for mortality 2.14 fold that of a similar patient without MEI. When this patient survives 
the early stage, the prognostic effect of MEI is reduced to a 1.18 fold increased risk.

Our study shows thus that the magnitude of the effect of MEI on mortality depends on 
the study design. This is also an explanation for the disagreement in the literature about 
the prognostic effect of MEI. Studies demonstrating that outcome is not worsened by 
MEI only included (often severe) patients admitted to an intensive-care unit.(2, 7) These 
studies are mostly comparable to IMPACT and CRASH with regard to study population 
and results. The studies showing an effect of MEI in TBI patients, obtained the data from 
a Trauma Registry like TARN.(8-10)

This means that prognostic effect of MEI is also dependent on the application of a 
prognosis in a clinical setting. For counseling of relatives of severe TBI patients in the 
hospital for example, MEI is more likely to be a highly relevant prognostic factor in the 
Emergency Department than a few hours later if the patient has survived the immedi-
ate risk of death from haemorrhage caused by major extracranial injury and has been 
admitted to intensive care. Thus, this study demonstrates that it is important not only 
to formulate a clear research question but also to define the specific patient population, 
which is often not done in prognostic research. To interpret results of a prognostic study 
and to determine applicability to a particular setting it is important to be aware of the 
study population and design.

We reported absolute risks in the different studies and the different strata of patients, 
which further provide some relevant clinical insights. For example, patients with mild 
TBI & MEI have a similar risk on mortality to one with moderate TBI and no MEI. Absolute 
risks on mortality were higher in TARN than in IMPACT and CRASH across all TBI severities. 
This is probably partly due to the previously mentioned difference in patient population. 
Further, differences in mortality between the studies might be caused by differences in 
health care system and resources (low/middle income countries in CRASH). Also, the 
time of data collection varied between the studies (1984 for TCDB and 2009 for the most 
recent patients in TARN), which might be considered a limitation, but we found that the 
effect of MEI was constant over time in IMPACT and slightly decreasing in TARN.

It might be expected that MEI is more associated with early mortality than with late 
mortality. This is supported by our finding that ORs decrease when excluding early 
deaths in TARN. In CRASH we analyzed both 14 day and 6 month mortality, with incon-
sistent results. In high income countries the ORs for 14 day mortality were indeed higher 
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than those for 6 month mortality, in low/middle income countries it was the other way 
round. An explanation might be that within high income countries trauma deaths after 
14 days are rare, while lack of resources and also a greater level of underlying comorbid-
ity make late trauma deaths more prevalent in low/middle income countries. MEI will 
have an impact there because it will often cause immobility, resulting from e.g. limb 
and pelvic fractures, which may cause mortality in less resourced settings. In general, 
the prognostic effect of MEI was larger in low/middle income countries, which might be 
partly explained by structure and processes of care (e.g. longer times to admissions, less 
resources). These findings illustrate the necessity to take resources and post acute facili-
ties into account when including patients in TBI studies from regions where resources 
may be more limited. This is particularly important as a tendency has been noted for 
pharmaceutical companies and researchers to involve centers from other regions of the 
world in TBI studies, because of higher patient potential and lower cost.(18)

The unadjusted ORs were all smaller than adjusted ORs. This means that the effect of 
MEI on mortality was not explained by other predictors of mortality. Adjusting only for 
brain injury severity led to a small decrease in the effect of MEI, since patients with MEI 
have more severe brain injury, which is also related to mortality. Adjusting for age led to 
an increase of the effect of MEI since patients with MEI are younger on average, which is 
related to less mortality.

Hypotension explained a small part of the association between MEI and mortality. This 
was expected since systemic injuries can cause major bleedings and thus hypotension. 
The finding that the ORs of MEI change only very little after adjustment for hypotension 
and that hypotension is also a strong predictor of mortality independent of MEI sug-
gests that the threshold values for defining hypotension may be too restrictive, or that 
other mechanisms, such as inflammatory response to multiple injuries, play a role in the 
relationship between extracranial injury and mortality.

Previous studies have shown that TBI increases the risk of both mortality and morbid-
ity in the general trauma population.(3-5) We find that the presence of MEI is also associ-
ated with increased mortality in patients with TBI. Whether this effect may be greater or 
smaller than in the general trauma population cannot be answered from our study, since 
we only included patients with TBI. Within the TARN registry work is currently ongoing 
to analyse the effect of TBI in the general trauma population. It is however an artificial 
distinction between patients with TBI and patients with MEI. In clinical practice there are 
patients with trauma and they have often multiple injuries, both extracranial and intra-
cranial. Based on our results and findings from previous studies we would provisionally 
conclude that both MEI and TBI carry a high risk of mortality, and that a combination of 
both further increases this risk. The relation is however multidimensional and interac-
tion effects exist with the severity of brain injury.
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We used a very simple definition of MEI, since extracranial injury severity was reported 
differently in each dataset. Analysis of the prognostic value of the full AIS or Injury Sever-
ity Scale (ISS), and the different body parts in which the extracranial injury occurred may 
provide additional insights in the mechanism of effect. This would be of high interest, but 
unfortunately these data were not available in sufficient numbers to permit meaningful 
analysis. This represents a limitation of our study. On the other hand, the definition of 
AIS ≥ 3 we use is quite common, easy to use in practice and showed to discriminate well.

A second limitation of our study is the presence of missing values. We preformed 
imputation, which is better than deleting missing variables.(14-17) In TARN, where pupil 
reactivity was imputed in the majority of patients, we performed all analyses also in a 
subset of the TARN collected after 2005 (n=6078) with complete pupillary reactivity and 
found similar results.

It could be argued that another limitation is the heterogeneity between the three 
studies used in the meta-analysis, concerning patient population (enrollment criteria), 
setting and timing of outcome. However, this heterogeneity allowed us to disentangle 
the effects of MEI on mortality and to explain to some extent the conflicting results in 
the current literature. A strength of this study is obviously the many patients included in 
the study. Also, the meta-analysis is based on individual patient data.

In conclusion, this meta-analysis demonstrates that MEI is a prognostic factor for 
increasing mortality in patients with TBI. However, the strength of the effect is smaller in 
patients with more severe brain injury. Also, the strength of the effect decreases when 
only considering patients who survive the early phase after injury, instead of consider-
ing all patients, starting from the time of injury.



Prognostic value of major extracranial injury in TBI 59

References

	 1.	 Perel P, Arango M, Clayton T, et al. Predicting outcome after traumatic brain injury: practical prog-
nostic models based on large cohort of international patients. BMJ. 2008; 336(7642):425-429.

	 2.	 Heinzelmann M, Platz A, Imhof HG. Outcome after acute extradural haematoma, influence of 
additional injuries and neurological complications in the ICU. Injury. 1996;27(5):345-349.

	 3.	 McMahon CG , Yates DW, Campbell FM, Hollis S, Woodford M. Unexpected contribution of moder-
ate traumatic brain injury to death after major trauma. J Trauma. 1999;47(5):891-895.

	 4.	 Gennarelli TA , Champion HR, Sacco WJ, Copes WS, Alves WM. Mortality of patients with head 
injury and extracranial injury treated in trauma centers. J Trauma. 1989;29(9):1193-1202.

	 5.	 Gennarelli TA, Champion HR, Copes WS, Sacco WJ. Comparison of mortality, morbidity, and se-
verity of 59,713 head injured patients with 114,447 patients with extracranial injuries. J Trauma. 
1994;37(6):962-968.

	 6.	 Patel HC, Bouamra O, Woodford M, King AT, Yates DW, Lecky FE. Trends in head injury out-
come from 1889 to 2003 and the effect of neurosurgical care: an observational study. Lancet. 
2005;366(9496):1538-1544.

	 7.	 Sarrafzadeh AS, Peltonen EE, Kaisers U, Kuchler I, Lanksch WR, Unterberg AW. Secondary insults in 
severe head injury - do multiply injured patients do worse? Crit Care Med. 2001;29(6):1116-1123.

	 8.	 Lefering R, Paffrath T, Linker R, Bouillon B, Neugebauer EAM, Head injury and outcome – What 
influence do concomitant injuries have? J Trauma. 2008;65(5):1036-1044.

	 9.	 Jacobs B, Beems T, Stulemeijer M, et al. Outcome prediction in mild traumatic brain injury: age 
and clinical variables are stronger predictors than CT abnormalities. J Neurotrauma. 2010;27(4): 
655-668.

	 10.	 Ho KM, Burrell M, Rao S, et al. Extracranial injuries are important in determining mortality of 
neurotrauma. Crit Care Med. 2010;38(7):1562-1568.

	 11.	 Marmarou A, Lu J, Butcher I, et al. IMPACT database of traumatic brain injury: design and descrip-
tion, J Neurotrauma 2007;24(2):239-250.

	 12.	 Edwards P, Farrell B, Lomas G, et al. The MRC CRASH Trial: study design, baseline data, and out-
come in 1000 randomised patients in the pilot phase. Emerg Med J. 2002:19(6):510-514.

	 13.	 Lecky F, Woodford M, Yates DW. Trends in trauma care in England and Wales 1989-97, UK Trauma 
Audit and Research Network. Lancet. 2000;355(9217):1771-1775.

	 14.	 Steyerberg EW, Van Veen M. Imputation is beneficial for handling missing data in predictive 
models. J Clin Epidemiol. 2007; 60(9): 979.

	 15.	 Donders AR, Van der Heijden GJ, Stijnen T, et al. Review: A gentle introduction to imputation of 
missing values. J Clin Epidemiol. 2006; 59(10):1087-91.

	 16.	 Van der Heijden GJ, Donders AR, Stijnen T, et al. Imputation of missing values is superior to 
complete case analysis and the missing-indicator method in multivariable diagnostic research: a 
clinical example. J Clin Epidemiol. 2006; 59(10):1102-9.

	 17.	 Steyerberg EW, Mushkudiani N, Perel P, et al. Predicting outcome after traumatic brain injury: de-
velopment and international validation of prognostic scores based on admission characteristics. 
PLoS Med. 2008 5;5(8):e165.

	 18.	 Maas AIR, Roozenbeek B, Manley GT. Clinical trials in traumatic brain injury: past experience and 
current developments, Neurotherapeutics. 2010;7(1):115-126.





Chapter 4

Efficient design and analysis of 
randomized controlled trials in rare 
neurological diseases: an example in 
Guillain-Barré syndrome

Nikki van Leeuwen
Christa Walgaard
Pieter A van Doorn
Bart C Jacobs
Ewout W Steyerberg
Hester F Lingsma

PLoS One 2019



62 Chapter 4

Abstract

Introduction
Randomized controlled trials (RCTs) pose specific challenges in rare and heterogeneous 
neurological diseases due to the small numbers of patients and heterogeneity in disease 
course. Two analytical approaches have been proposed to optimally handle these issues 
in RCTs: covariate adjustment and ordinal analysis. We investigated the potential gain in 
efficiency of these approaches in rare and heterogeneous neurological diseases, using 
Guillain-Barré syndrome (GBS) as an example.

Methods
We analyzed two published GBS trials with primary outcome ‘at least one grade im-
provement’ on the GBS disability scale. We estimated the treatment effect using logistic 
regression models with and without adjustment for prognostic factors. The difference 
between the unadjusted and adjusted estimates was disentangled in imbalance (random 
differences in baseline covariates between treatment arms) and stratification (change 
of the estimate due to covariate adjustment). Second, we applied proportional odds 
regression, which exploits the ordinal nature of the GBS disability score. The standard 
error of the estimated treatment effect indicated the statistical efficiency.

Results
Both trials were slightly imbalanced with respect to baseline characteristics, which was 
corrected in the adjusted analysis. Covariate adjustment increased the estimated treat-
ment effect in the two trials by 8% and 18% respectively. Proportional odds analysis 
resulted in lower standard errors indicating more statistical power.

Conclusion
Covariate adjustment and proportional odds analysis most efficiently use the available 
data and ensure balance between the treatment arms to obtain reliable and valid treat-
ment effect estimates. These approaches merit application in future trials in rare and 
heterogeneous neurological diseases like GBS.
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Introduction

RCTs are the standard to investigate the effectiveness of medical interventions. How-
ever, RCTs are challenging in rare heterogeneous diseases. The randomization process 
in RCTs ensures that observed and unobserved patient characteristics on average are 
similar between treatment arms.(1) However, it does not ensure full balance.(1) Different 
baseline risks for outcome can arise between treatment arms, simply due to chance.(1) In 
diseases with large between-patient differences in natural disease course, severity and 
outcome, small imbalances in covariates between the treatment arms may, positively or 
negatively, affect the estimated treatment effect.

Sample sizes in RCTs in rare diseases are usually small. Small trials are a subject to a 
greater chance of imbalance than large trials.(1)( Moreover, small RCTs can easily fail to 
detect treatment benefits, due to lack of statistical power. In rare neurological disorders, 
such as inflammatory neuropathies like Guillain-Barré syndrome (GBS), Chronic Inflam-
matory Demyelinating Polyneuropathy (CIDP) and Multifocal Motor Neuropathy (MMN), 
this heterogeneity and rarity is a major challenge for conducting RCTs.

Two approaches to optimize RCT design and analysis that have been successfully 
applied in other acute neurological diseases such as stroke and traumatic brain injury 
are covariate adjustment and ordinal analysis.(2-4) (Table S1) Covariate adjustment is a 
statistical method that adjusts the treatment effect for baseline risk on poor outcome in 
the treatment arms. When the treatment arms are imbalanced, an unadjusted analysis 
is suboptimal to estimate the treatment effect. In addition, previous studies found 
that covariate adjustment could increase statistical power.(1, 5-9) Ordinal analysis is 
an approach to analyze a full ordinal outcome scale instead of a dichotomized version. 
Although these techniques already have been successfully applied in stroke and trau-
matic brain injury, it is still relevant to study this in other diseases like GBS, since the 
effect of the different approaches can work out differently in different study settings. 
The most commonly used outcome in GBS is the ordinal GBS disability score, consist-
ing of seven categories. Usually the scale is dichotomized into favorable or unfavorable 
outcome, or the improvement on the GBS disability score from admission calculated and 
dichotomized as minimal one grade improvement. In ordinal analysis the outcome is 
not dichotomized but analyzed as the full ordinal scale with proportional odds analysis, 
preventing loss of information.(10) Simulation studies and empirical validation studies 
in other fields have demonstrated that proportional odds analysis increases statistical 
power in RCTs.(10-13)

To test the applicability and value of these approaches in rare and heterogeneous 
neurological diseases, we use Guillain-Barré syndrome (GBS) as an example. GBS is a 
life-threatening acute immune-mediated polyradiculoneuropathy(14, 15), which re-
quires early diagnosis and hospital admission for accurate monitoring, treatment and 



64 Chapter 4

supportive care. Some patients may show spontaneous and full recovery, while others 
require ventilation at an ICU for months and remain severely disabled. Several RCTs have 
successfully been conducted in GBS.(16-18)

We aimed to explore the potential benefit of covariate adjustment and proportional 
odds analysis in rare and heterogeneous neurological diseases, compared to the con-
ventional statistical approaches. We hereto re-analyzed two RCTs in GBS.

Methods

Patient Population

We analyzed data from two RCTs in GBS, the Plasma Exchange (PE) vs Intravenous 
Immunoglobulin (IVIg) (PE vs IVIg) trial(17) and the IVIg and placebo versus IVIg and 
Methyl-Prednisolone (MP) (IVIg vs MP) trial(18), conducted between 1986 and 2000. In 
the PE vs IVIg trial, the control group received IVIg and the treatment group received PE. 
In the IVIg vs MP trial, the patients receiving IVIg and placebo were considered as control 
patients and the patients receiving IVIg and MP were considered as treated patients. 
The primary outcome in both trials was improvement (corresponding to lower GBS dis-
ability scores) by one or more grades on the GBS disability score after 4 weeks. The GBS 
disability score is an ordinal scale ranging from 0 = healthy to 6 = dead. However, in 
order to estimate treatment effects for a positive outcome for all the analyses, we used 
the reversed GBS disability score at 4 weeks, to keep the estimates easy to compare. For 
all the regression models used in this paper, higher numbers (in outcome) mean better 
health outcomes.

Statistical analysis

The predicted probabilities for one grade improvement on the GBS disability score 
were calculated and used as a measure for baseline risk to indicate potential unbalance 
between the treatment arms in baseline characteristics.

To estimate treatment effects, we used two commonly used primary (dichotomous) 
outcomes in GBS trials as reference; (1) favorable outcome (0-2) on the GBS disability 
scale at 4 weeks as outcome and (2) minimal one grade improvement on the GBS dis-
ability score between the moment of randomization and 4 weeks as outcome, both ana-
lyzed with binary logistic regression without covariate adjustment. Consequently, these 
references were compared with the two approaches under study: covariate adjustment 
and ordinal analysis.
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Covariate adjustment

With covariate adjustment, conditional treatment effects are estimated with regression 
models. Adjusting for GBS disability score at admission results in an estimated treatment 
effect for a patient with a given GBS disability score, while unadjusted analysis results in 
an average estimated treatment effect over all patients, irrespective of the GBS disability 
score. Unadjusted analysis is expressed by the following formula:

log odds (improvement) = α + β * treatment,
where improvement is by one or more grades on the GBS disability score, and treatment 
is an indicator for the randomization arm. The coefficients α and β indicate the intercept 
and regression coefficient for treatment. In logistic regression, exp(β) indicates the odds 
ratio (OR).

For adjusted analysis, we used three well-known predictors of outcome(19, 20): age, 
preceding diarrhea and GBS disability score at admission. The covariate adjusted model 
is expressed by the following formula:

log odds (improvement) = α + β * treatment + β1 * age + β2 * preceding diarrhea + β3 * 
GBS disability score at admission.

This results in an adjusted regression coefficient β for the estimated treatment effect. 
In the trial analysis, the observed difference of the unadjusted and adjusted regression 
coefficient for the treatment variable is a result of imbalance and stratification.(8) We 
hereto calculated the linear predictor based on age, diarrhea and GBS disability score at 
admission. We then calculated the difference in treatment effect that was attributable to 
imbalance as the difference between the mean value of the linear predictor between the 
treatment arms.(8) The remaining part of the difference between the unadjusted and 
the adjusted treatment effect was attributed to stratified estimation, i.e. conditioning 
on covariates.(8)

Proportional odds analysis

For ordinal analysis we used proportional odds logistic regression to exploit the ordinal 
nature of the GBS disability score. A proportional odds logistic regression model was 
fitted with the GBS disability score collapsed to a 5-point scale. We combined both 
healthy (0) and minor symptoms (1), as well as needs ventilation at least a part of the 
day (5) and dead (6) because of small numbers in these extreme categories. We used the 
reversed GBS disability scale to estimate treatment effects on a positive outcome, and 
to keep these estimates comparable to the estimates of the other logistic regression 
models on positive dichotomous outcomes (improvement and favorable outcome). The 
proportional odds model uses an ordinal outcome variable with more than two possible 
categories. It estimates a common OR over all possible cut-offs of the outcome scale. 
Next, we used the difference between the GBS disability score at admission and the GBS 
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disability score at four weeks as outcome. A proportional odds logistic regression model 
was used to analyse the difference in GBS disability score.

Treatment effect estimates

The coefficient β of the treatment effect and the corresponding standard error (SE) 
were calculated for the four approaches to analyse outcome, with and without covari-
ate adjustment. The SE of the treatment effect indicates the precision of the calculated 
treatment effect. The SEs in the proportional odds regression models are expected to be 
smaller than those in the logistic models. Both trials were analysed with complete case 
analysis, ignoring 1 and 4 patients with incomplete baseline data. Statistical analyses 
were performed in R Statistical Software version 2.15.3 using the rms package (R Foun-
dation for Statistical Computation, Vienna, Austria).

Results

Patient population and reference strategies

We analysed data from 146 patients in the PE vs IVIg trial and 221 patients in the IVIg vs 
IVIg+MP trial. Both trials were slightly imbalanced with regard to the baseline charac-
teristics. In the IVIg vs IVIg+MP trial the treatment group (with MP) had a probability of 
0.60 to improve at least one grade on the GBS disability score compared to a predicted 
probability of 0.64 in the control group (without MP). So without any treatment, the 
prognosis of the treatment arm was slightly better. An opposite distribution of baseline 
covariates between treatment arms is shown in the PE vs IVIg trial. The treatment group 
(PE) has a higher predicted probability (0.45) to improve at least one grade on the GBS 
disability score compared to the control group (IVIg; predicted probability 0.41, Table 1).

Regarding the actual outcome, 63 (57%) control patients treated with IVIg and placebo 
and 74 (67%) patients treated with IVIg and methylprednisolone improved minimal one 
grade on the GBS disability score after 4 weeks. In the other trial, 25 (34%) control pa-
tients treated with IVIg and 38 (52%) patients receiving PE improved minimal one grade 
on the GBS disability score after 4 weeks (Appendix 1).

The treatment under study in both trials had a positive effect on health outcomes. 
With the reference strategy of logistic regression on a favorable GBS disability scale (0 – 
2) at 4 weeks as outcome, the estimated treatment OR was 1.80 (95% confidence interval 
(CI) 0.84 – 3.85, SE 0.39, p = 0.13) in the PE vs IVIg trial and 1.69 (95% CI 0.93 – 3.08, SE 
0.31, p = 0.09) in the IVIg vs IVIg+MP trial. The treatment effect estimates on one grade 
improvement were slightly larger (Table 2).
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Covariate adjustment

With covariate adjustment, the estimated treatment effect was larger in the IVIg vs 
IVIg+MP trial, partly as a result of adjustment, which makes the estimates more extreme, 
and partly because of the imbalance at baseline. Poorer prognosis at baseline for the 
intervention (IVIg + MP) group implied a +31% increase in the adjusted treatment effect 
(Table 3). The stratification effect of adjustment was an additional 18% increase in the 
treatment effect (OR = 1.96). In contrast, the treatment effect was smaller with adjust-
ment for baseline characteristics in the PE vs IVIg trial. The stratification effect increased 
the treatment effect with 8%, but the better prognosis in the intervention (IVIg) group at 
baseline reduced the estimated treatment effect by -24%. The net effect was a difference 
in treatment effect of -16%. These results were similar for all binary and ordinal outcome 
analyses (Table 2).

Table 2. Treatment effect analysis: unadjusted and adjusted binary and proportional odds logistic regres-
sion.

PE vs IVIg trial
(n = 146)

IVIg + placebo vs IVIg + 
Methylprednisolon (IVIg vs MP) 
trial
(n = 221)

Unadjusted Adjusted* Unadjusted Adjusted*

Binary logistic 
regression –
GBS disability 3-6 vs 
0-2 **

OR (95% CI) 1.90 (0.93 – 3.87) 1.80 (0.84 – 3.85) 1.27 (0.75 – 2.15) 1.69 (0.93 – 3.08)

SE 0.36 0.39 0.27 0.31

P-value 0.08 0.13 0.38 0.09

Binary logistic 
regression – 
improvement on GBS 
disability score

OR (95% CI) 2.08 (1.07 – 4.06) 1.95 (0.96 – 4.00) 1.57 (0.91 – 2.71) 1.96 (1.08 – 3.56)

SE 0.34 0.36 0.28 0.31

P-value 0.03 0.06 0.11 0.03

Proportional odds 
logistic regression 
– reversed GBS 
disability score at 4 
weeks**

OR (95% CI) 1.76 (0.98 – 3.19) 1.76 (0.98 – 3.19) 1.12 (0.70 – 1.80) 1.41 (0.87 – 2.28)

SE 0.30 0.30 0.24 0.25

P-value 0.06 0.06 0.63 0.17

Proportional odds 
logistic regression – 
Δ GBS disability score 
(grades improvement 
between admission 
and 4 weeks)

OR (95% CI) 1.93 (1.07 – 3.49) 1.80 (0.99 – 3.27) 1.43 (0.89 – 2.30) 1.34 (0.89 – 2.32)

SE 0.30 0.30 0.24 0.25

P-value 0.03 0.05 0.14 0.14

*Adjustment for age, preceding diarrhea and GBS disability score at admission. ** 0 = Healthy / 1 = Minor symp-
toms / 2 = Able to walk 10m unassisted but not able to run / 3 = Able to walk over 10m open space with help / 4 = 
Bedridden or chair bound / 5 = Needs ventilation for at least a part of the day / 6 = Dead
** In order to estimate the treatment effect for a positive outcome, we used the reversed GBS disability score at 
4 weeks



Efficient design and analysis of RCTs in GBS 69

Proportional odds analysis

For illustration of the proportional odds analyses we calculated the treatment effect 
estimates (ORs) for each cut-off of the reversed ordinal scale. The common OR can be 
interpreted as the pooled estimate of these binary ORs. The treatment under study in 
both trials had a positive effect on health outcomes in all the ordinal analyses. In the 
PE vs IVIg trial the ORs over each cut-off were relatively similar (Figure 1c and 1d). The 
common OR was similar as well, but the SE and CI were smaller. In the IVIg vs IVIg+MP 
trial, the ORs were more variable (Figure 1a and 1b). The common OR was less extreme 
compared to ORs for the cut-off used in the reference approach (0-2 vs. 3-6 and minimal 
one grade improvement vs. no improvement). But again, the SE and CI were smaller. This 
can also be seen in table 2; in all analyses, the proportional odds analysis on the GBS 
disability score after four weeks and on the improvement on the GBS disability score 
resulted in lower SEs of the treatment effect compared to the binary approaches.

Table 3. Results of unadjusted and adjusted binary logistic regression analysis of the effect of treatment 
versus control on GBS disability score at four weeks in both PE vs IVIg trial (n = 146) and the IVIg + placebo 
vs IVIg + Methylprednisolon (IVIg vs MP) trial (n = 221).

OR Coefficient Absolute
difference
in treatment
effect between
adjusted and
unadjusted

Imbalance
between
treatment
arms

Relative 
difference 
in treatment 
effect between 
adjusted and 
unadjusted due 
to imbalance

Relative 
difference 
in treatment 
effect between 
adjusted and 
unadjusted due 
to stratification

PE vs IVIg trial

Unadjusted 2.08 0.73

Adjusted for age, 
preceding diarrhea 
and GBS disability 
score at admission

1.95 0.67 - 0.06^ -0.12 -16%* 8%#

IVIg vs MP trial

Unadjusted 1.57 0.45

Adjusted for age, 
preceding diarrhea 
and GBS disability 
score at admission

1.96 0.67 0.22^ 0.14 31%* 18%#

^ Adjusted coefficient – Unadjusted coefficient
* Imbalance between treatment arms / Unadjusted coefficient
# (Absolute difference in treatment effect between adjusted and unadjusted - Imbalance between treatment 
arms) / Unadjusted coefficient
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a

b

c

d

Figure 1. Treatment effect analysis: forest plots of the adjusted binary and proportional odds logistic re-
gression in the IVIg + placebo vs IVIg + Methylprednisolon (IVIg vs MP) trial (a and b) and PE vs IVIg trial (c 
and d) show smaller confidence intervals for the common odds ratio compared to the binary estimates.
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Discussion

In this study we assessed the potential benefit of the use of covariate adjustment and 
proportional odds analysis in RCTs compared to the conventional method, by reanalyz-
ing two GBS trials. We found that covariate adjustment increased the estimated treat-
ment effect in one trial, and decreased the estimated treatment effect in the other trial, 
due to imbalances in baseline characteristics between the treatment arms. Although 
such imbalances are fully due to chance if a proper randomization procedure is followed, 
our results illustrate that their impact on interpretability of treatment effect estimates 
can be substantial and can be different in several study settings. We found that the pro-
portional odds analysis resulted in lower standard errors and thus smaller confidence 
intervals of the treatment effect estimate compared to the conventional method of lo-
gistic regression on dichotomized outcome measures. Thus, dichotomization of ordinal 
outcome measures does not merit application. In future trials in rare and heterogeneous 
neurological diseases like GBS both covariate adjustment and proportional odds analy-
sis are advised.

Table 4. Characteristics of four methods of treatment effect analysis in GBS trials. Approach in BOLD is the 
recommended approach.

Takes into account
baseline 
imbalance

Takes into account
ordinal nature of the outcome 
measure

Unadjusted binary logistic regression
on cutoff for GBS disability score

NO NO

Adjusted binary logistic regression
on cutoff for GBS disability score

YES NO

Unadjusted binary logistic regression
on ≥ 1 grade improvement on GBS disability 
score

PARTLY* NO

Adjusted binary logistic regression
on ≥ 1 grade improvement on GBS disability 
score

YES NO

Unadjusted proportional odds logistic 
regression
on GBS disability score

NO YES

Adjusted proportional odds logistic 
regression
on GBS disability score

YES YES

Unadjusted proportional odds logistic 
regression
on ∆ GBS disability score

PARTLY* YES

Adjusted proportional odds logistic regression
on ∆ GBS disability score

YES YES

*Only baseline GBS disability score, no other covariates
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Covariate adjustment

On expectation, covariate adjustment leads to more extreme treatment effect estimates 
and larger standard errors for non-linear regression models.(21) The p values are a func-
tion of the treatment effect estimates and standard error. With covariate adjustment the 
increase in treatment effect estimate will outweigh increased in standard error and the 
p values will be lower compared to unadjusted analysis.(21)

Indeed, we found increased standard errors in all adjusted analyses compared to the 
unadjusted analyses. The better prognosis in the treatment group decreased the treat-
ment effect estimate β after covariate adjustment in the PE vs IVIg trial. In the IVIg vs MP 
trial, the treatment group had a lower probability of favorable outcome. Therefore, in the 
IVIg vs MP trial covariate adjustment led to a larger β and a smaller p value.

Covariate adjustment increases statistical power, despite the larger standard error.
(1, 7) When there are no baseline imbalances, the adjusted conditional estimates will 
be more extreme than the unadjusted marginal estimates.(22) However, the size and 
the direction of the difference between the unadjusted and adjusted estimates are 
dependent on the strength of the prognostic factors and the imbalance in baseline 
risk between the treatment- and control group in the specific trial and this is shown in 
our study. When investigating the effectiveness of a medical intervention in rare and 
heterogeneous neurological diseases, such as GBS, one has to deal with small sample 
sizes. We therefore recommend performing covariate adjustment in future trials in rare 
and heterogeneous neurological diseases. For GBS this covariate adjustment should 
be applied with known predictors for (functional) outcome, specifically age, preceding 
diarrhea, GBS disability score and MRC sum score.(19, 20)

The outcome ‘minimal one grade improvement’ implicitly involves a form of covari-
ate adjustment. The baseline disease severity of the patient is taken into account in 
the analysis by estimating improvement for each patient from his or her own starting 
position at admission (Table 4). This principle of a measure of change between baseline 
and follow up seems attractive to control for baseline imbalance. However, analyzing 
change does not control for baseline imbalance because of regression to the mean;(23, 
24) baseline values are negatively correlated with change because patients with high 
scores at baseline generally improve more than those with low scores.(25) Therefore 
covariate adjustment with the absolute baseline value is still preferable over implicitly 
taking into account baseline severity in the outcome measure ‘improvement’. Moreover, 
disease severity at baseline is not the only covariate we could adjust for. Especially, the 
age of the patient will be an important covariate in most neurological diseases.

Thus, in general, ignoring baseline imbalance between treatment arms in trials may 
cause invalid conclusions on both the magnitude and significance of the treatment effect 
estimate compared to analysis using covariate adjustment. The impact on interpretabil-
ity of treatment effect estimates can be substantial and can be different in several study 
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settings. When designing a trial, the analysis plan should be precisely pre-specified. Also, 
the covariates that will be used for adjustment should be pre-specified. Previous studies 
have shown that the stronger the relation of the covariates with outcome, the larger 
the increase in statistical power with covariate adjustment will be.(5, 26, 27) In GBS, 
predictors of outcome are relatively well known(19, 20) and therefore pre-specifying 
important baseline variables for covariate adjustment is possible in GBS trials.

Proportional odds analysis

It is evident that the GBS disability scale is not a linear scale. For example, improvement 
from “needs ventilation for at least a part of the day” to “bedridden or chair bound” is not 
the same improvement as the improvement from “able to walk over 10m open space 
with help” to “able to walk 10m unassisted but not able to run”. However, whether or 
not the ordinal outcome under study is a linear scale is not relevant for the validity of 
the proportional odds analysis. Proportional odds analysis merely requires ordering of 
outcomes. The proportional odds analysis estimates the treatment effect on each cut-
off of the scale, instead of estimating the treatment effect on the difference between 
the averages scores in the treatment arms, as linear regression. The proportional odds 
model results in a common OR, which is interpretable as a pooled OR over all ORs for 
the different cut-offs. The common OR is formally valid if the ORs for each cut-off are the 
same (the proportional odds assumption). We can, however, interpret the common OR 
as a summary measure of the treatment effect, even if the ORs differs slightly per cut-
off.(12, 28) The common OR can also be interpreted as the average shift over the total 
ordinal outcome scale caused by the treatment under study.(10-13) Moreover, simula-
tion studies have shown that ordinal analysis is more efficient than binary analysis, even 
if the proportional odds assumption is violated.(11) Because the ordinal analysis uses 
the full ordinal outcome scale instead of one dichotomy, the variability will be smaller 
compared to binary analysis. This was confirmed in our study, where the proportional 
odds resulted in lower standard errors compared to the binary approaches. Although 
the importance of applying proportional odds analysis already has been assessed in 
other diseases, it is still relevant to study this for specific cases like GBS. For example it 
is important to have more insight in the effect of treatment on the different cut-offs for 
the specific ordinal outcome measure, in this case the GBS disability score, and see if the 
proportional odds assumption holds.

In the PE vs IVIg trial, the ORs for each cut-off were very similar and as a result the com-
mon OR was also similar. Thus, with the smaller SE, the p value was lower. In contrast, 
in the IVIg vs IVIg+MP trial, the ORs were more scattered. One explanation is chance: 
the ORs for the different cut-offs are uncertain, especially at the tails of the outcome 
scale where numbers are usually small. However, almost all binary ORs have confidence 
intervals that overlap. Another explanation is that the effect is truly different for different 
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cut-offs, although this is clinically unlikely. The cut-off chosen in the reference approach 
in the analysis of improvement appeared to be the most optimal cut-off from a statistical 
perspective, since it was the only cut-off resulting in a significant treatment effect.

However, if we assume a relatively constant treatment effect across the different 
cut-offs of an ordinal outcome scale, it is unpredictable which cut-off will show the 
strongest effect. Therefore, the ordinal analysis is a ‘safe’ choice and the common OR is 
a fair representation of the effect of treatment on the ordinal outcome compared to the 
binary approach, because it takes into account improvement over all levels of the GBS 
disability score. Since it is also more efficient, we recommend the use of the full ordinal 
outcome scale in future trials in rare and heterogeneous neurological diseases. In obser-
vational studies, ordinal analyses could be combined with propensity score methods to 
maximize statistical power.

Limitations

Patients with missing covariate data were excluded from the analyses. Data from 367 pa-
tients were analyzed rather than 372 patients in the original analyses. We did not assess 
heterogeneous treatment effects according to baseline risk, which could influence the 
ability of covariate adjustment to improve the statistical power in an RCT. In this study 
we only investigated GBS which may not fully be representative for other neurological 
disorders, although covariate adjustment and proportional odds analysis have shown 
advantages in other fields, such as stroke and traumatic brain injury.(3, 4, 7, 12)

Conclusion and implications

Covariate adjustment corrects for baseline imbalance and increases power. Proportional 
odds analysis optimally exploits the ordinal nature of outcome scales. A combined ap-
proach is advised for reliable and efficient estimation of treatment effects in small RCTs 
in rare and heterogeneous diseases like GBS.
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Table S1. Overview of a selection of methodological studies considering covariate adjustment and ordinal 
analysis in RCTs.

First author Year Field Key findings and conclusions

Covariate adjustment

Robinson(21) 1991 - In classic linear regression, the adjustment for a non-confounding 
predictive covariate, results in improved precision, whereas such 
adjustment in logistic regression results in a loss of precision. 
However, when testing for a treatment effect in randomized studies, 
it is always more efficient to adjust for predictive covariates when 
logistic models are used, and thus in this regard the behavior of 
logistic regression is the same as that of a classic linear regression.

Hauck(22) 1991 - In the epidemiologic literature, one finds three criteria for 
confounding, which we will call the classical (marginal), 
operational (change-in-estimate) and conditional criteria. We 
define mavericks to be covariates that satisfy the operational 
criterion, but not the classical criterion. We present what is known 
about the problems of mavericks for estimating odds ratios and 
clarify the interpretation of oddsratios. Key results are: (1) 
omitting mavericks biases odds ratios towards 1; (2) omitting 
mavericks cannot artificially introduce an effect in contrast to 
omitting classical confounders; (3) the operational criterion 
for confounding corresponds to the conditional criterion 
when estimating odds ratios, but for relative risks, there are no 
mavericks (i.e. the classical and operational criterion correspond); 
and (4) the interpretation of odds ratios obtained from standard 
methods is that of comparing proportions, not of individual risk.

Pocock(27) 2002 - When reporting the trial’s findings baseline data can be used for 
i.a. covariate-adjusted analyses which aim to refine the analysis of 
the overall treatment difference by taking account of the fact 
that some baseline characteristics are related to outcome 
and may be unbalanced between treatment groups and 
baseline comparisons which compare the baseline characteristics 
of patients in each treatment group for any possible differences. 
This paper examines how these issues are currently tackled in 
the medical journals, based on a recent survey of 50 trialreports 
in four major journals. Key issues include: inconsistencies in 
the use of covariate-adjustment; the lack of clear guidelines 
on covariate selection; the overuse of baseline comparisons in some 
studies; the misuses of significance tests for baseline comparability, 
and the need for trials to have a predefined statistical analysis plan 
for all these uses of baseline data.

Hernandez(6) 2004 - Logistic regression analysis was applied to simulated data 
sets (n=360) with different treatment effects, covariate effects, 
outcome incidences, and covariate prevalence. Treatment 
effects were estimated with or without adjustment for a 
single dichotomous covariate. The power was highest with 
prespecified adjustment. The potential reduction in sample size 
was higher with stronger covariate effects (from 3 to 46%, at 50% 
outcome incidence and covariate prevalence) and independent 
of the treatment effect. At lower outcome incidences and/
or covariate prevalence, the reduction was lower.



78 Chapter 4

Table S1. Overview of a selection of methodological studies considering covariate adjustment and ordinal 
analysis in RCTs. (continued)

First author Year Field Key findings and conclusions

Hernandez(29) 2005 Traumatic 
brain injury

18 RCTs (n = 6439) were identified in a systematic review 
of therapeutic phase III RCTs, including adult patients with 
acute, moderate-to-severe TBI to assess actual reporting 
of covariate adjustment according to the Consolidated 
Standards of Reporting Trials (CONSORT) recommendations. 
Five RCTs reported covariate adjustment. The number of 
covariates was limited (<=5), most frequently including age. 
Many covariates were outcome predictors. Four RCTs reported 
only adjusted treatment effects as the main efficacy parameter. 
The reported covariate adjustment in TBI trials had several 
methodological shortcomings. Appropriate performance and 
reporting of covariate adjustment and subgroup analysis should be 
considerably improved in future TBI trials because interpretation of 
treatment benefits may be misleading otherwise.

Hernandez(5) 2006 Traumatic 
brain injury

Individual patient data from seven therapeutic phase III randomized 
clinical trials (RCTs; n = 6166) in moderate or severe TBI, and 
three TBI surveys (n = 2238) were used to calculate the potential 
sample size reduction obtained by adjustment of a hypothetical 
treatment effect for one to seven predictors with logistic regression 
models. The distribution of predictors was more heterogeneous 
in surveys than in trials. Adjustment of the treatment effect for the 
strongest predictors (age, motor score, and pupillary reactivity) 
yielded a reduction in sample size of 16-23% in RCTs and 28-35% 
in surveys. Adjustment for seven predictors yielded a reduction of 
about 25% in most studies: 20-28% in RCTs and 32-39% in surveys.

Optimizing the 
Analysis of Stroke 
Trials (OAST) 
Collaboration(5)

2009 Acute 
stroke

Data from 23 stroke trials (N = 25 674) 
assessing functional outcome were included. Unadjusted and 
adjusted ordinal logistic regression models were compared using 
simulated data from each trial (10 000 simulations per trial). Three 
levels of treatment effect were assessed with ORs of 0.95, 0.74, and 
0.57. Adjusting for prognostic factors in stroke trials can reduce 
sample size by at least 20% to 30% (the lower interquartile range) 
for a given power and is similar across all 3 treatment effects

Roozenbeek(7) 2009 Traumatic 
brain injury

Statistical modeling studies in three surveys and six randomized 
controlled trials were performed using individual patient data 
from the IMPACT database. Covariate adjustment reduced sample 
sizes by 30% in surveys and 16% in RCTs. Covariate adjusted 
analysis in a broadly selected group of patients is advisable if a 
uniform treatment effect is assumed, since there is no decrease in 
recruitment.

Steyerberg(8) 2010 Acute 
myocardial 
infarction

The effects of adjustment (correction for imbalance and 
stratification) were studied with logistic regression analysis in the 
GUSTO-I trial. When adjusted for 17 characteristics, the odds ratio 
was 0.820, an increase of 25% compared to the unadjusted odds 
ratio. The increase in effect estimate was largely explained by the 
stratification effect and only partly by imbalance of predictors. 
Adjustment for predictive baseline characteristics, even when 
largely balanced, may lead to clearly different estimates of the 
treatment effect on mortality rates.
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Table S1. Overview of a selection of methodological studies considering covariate adjustment and ordinal 
analysis in RCTs. (continued)

First author Year Field Key findings and conclusions

Ciolino(30) 2011 Acute 
ischemic 
stroke

Based on data from a clinical trial of acute ischemic stroke 
treatment, computer simulations were used to create scenarios 
varying from the best possible baseline covariate balance to the 
worst possible imbalance, with multiple balance levels between the 
two extremes. Our simulation results show that the worst possible 
imbalance is highly unlikely, but it can still occur under simple 
random allocation. Also, power loss could be nontrivial if balancing 
distributions of important continuous covariates were ignored even 
if adjustment is made in the analysis for important covariates. This 
situation, although unlikely, is more serious for trials with a small 
sample size and for covariates with large influence on primary 
outcome.

Turner(9) 2012 Traumatic 
brain injury

14-day mortality was analyzed in 9,497 TBI patients in the CRASH 
trial of corticosteroid vs.placebo. Adjustment was made using 
logistic regression for baseline covariates of two validated risk 
models (IMPACT and CRASH) derived from external data. The 
relative sample size (RESS) measure, defined as the ratio of the 
sample size required by an adjusted analysis to attain the same 
power as the unadjusted reference analysis, was used to assess 
the impact of adjustment. RESS of 0.79 and 0.73 were obtained 
by adjustment using the IMPACT and CRASH models, respectively, 
which, for example, implies an increase from 80% to 88% and 91% 
power, respectively.

Ciolino(31) 2013 Acute 
stroke

This article uses simulation to quantify the benefit 
of covariate adjustment in logistic regression. Results suggest that 
if adjustment is not possible or unplanned in a logistic setting, 
balance in continuous covariates can alleviate some (but never all) 
of the shortcomings of unadjusted analyses.

Garofolo(32) 2013 Acute 
stroke

Using a current stroke clinical trial and its pilot studies to guide 
simulation parameters, 1,000 clinical trials were simulated at 
varying sample sizes under several treatment effects to assess 
power and type I error. Covariate-adjusted and unadjusted logistic 
regressions were used to estimate the treatment effect under each 
scenario. Under various treatment effect settings, the operating 
characteristics of the unadjusted and adjusted analyses do not 
substantially differ. Power and type I error are preserved for both the 
unadjusted and adjusted analyses. 

Thompson(1) 2015 Stroke 
and acute 
myocardial 
infarction

In two large trial data sets GUSTO-I (N = 30,510) and IST (N = 18,372) 
random samples (500,000 times) of sizes 300 and 5,000 per arm 
were repeatedly drawn, and simulated each primary outcome 
using the control arms. The power gained from a covariate adjusted 
analysis for small and large samples was between 5% and 6%. 
Similar proportions of discordance with respect to statistical 
significance were noted irrespective of the sample size in both the 
GUSTO-I and the IST data sets.

Ordinal outcome analysis
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Table S1. Overview of a selection of methodological studies considering covariate adjustment and ordinal 
analysis in RCTs. (continued)

First author Year Field Key findings and conclusions

Valenta(10) 2006 - In this article conceptual and methodological aspects 
of employing proportional odds logistic regression for 
a three level ordinal factor as a suitable alternative to 
ordinary logistic regression when dealing with limited uncertainty 
in classifying clinical outcome as a binary variable are reviewed. 
Classifying a measurable clinical outcome as a dichotomous variable 
often involves difficulty with borderline cases that could fairly 
be assigned either of the two binary class memberships. In such 
situations the indicated class membership is often highly subjective 
and subject to, for instance, a measurement error. In other situations 
the intermediate level of a three-level ordinal factor may sometimes 
be explicitly reserved for cases which could likely belong to either of 
the two binary classes.

Optimizing the 
Analysis of Stroke 
Trials (OAST) 
Collaboration(3)

2007 Acute 
stroke

Data from 55 datasets (47 trials, 54,173 patients) from acute, 
rehabilitation and stroke unit trials studying the effects of 
interventions were used to asses which statistical approaches 
are most efficient in analyzing outcomes from stroke trials. The 
test results differed substantially so that approaches which use 
the ordered nature of functional outcome data (ordinal logistic 
regression, t test, robust ranks test, bootstrapping the difference 
in mean rank) were more efficient statistically than those which 
collapse the data into 2 groups (chi(2); ANOVA, P<0.001). The 
findings were consistent across different types and sizes of trial and 
for the different measures of functional outcome.

Saver(13) 2007 Acute 
stroke

Dichotomized, global statistic, responder, and shift analyses 
each offer distinctive benefits and drawbacks. Choice of 
primary end point analytic technique should be tailored to the 
study population, expected treatment response, and study purpose. 
Shift analysis generally provides the most comprehensive index 
of a treatment’s clinical impact. Shift analysis gauges change 
in outcome distributions over the full range of ascertained 
outcomes, incorporating benefit and harm at all health state 
transitions valued by patients and clinicians, and often increasing 
study power.

Senn(33) 2009 - Biostatisticians have frequently uncritically accepted the 
measurements provided by their medical colleagues engaged 
in clinical research, which often involve considerable loss of 
information. Particularly, unfortunate is the widespread use of the 
so-called ‘responder analysis’, which may involve not only a loss of 
information through dichotomization, but also extravagant and 
unjustified causal inference regarding individual treatment effects at 
the patient level, and, increasingly, the use of the so-called number 
needed to treat scale of measurement. Other problems involve 
inefficient use of baseline measurements, the use of covariates 
measured after the start of treatment, the interpretation of titrations 
and composite response measures. Statisticians should pay more 
attention to this aspect of their work.
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Table S1. Overview of a selection of methodological studies considering covariate adjustment and ordinal 
analysis in RCTs. (continued)

First author Year Field Key findings and conclusions

McHugh(11) 2010 Traumatic 
brain injury

This study was based on simulations, which were built around 
a database of patient-level data extracted from eight Phase 
III trials and three observational studies in traumatic brain injury. 
Two different putative treatment effects were explored, one which 
followed the proportional odds model, and the other which 
assumed that the effect of the intervention was to reduce the risk 
of death without changing the distribution of outcomes within 
survivors. The simulation results show substantial efficiency gains. 
Use of the sliding dichotomy allows sample sizes to be reduced by 
up to 40% without loss of statistical power. The proportional odds 
model gives modest additional gains over and above the gains 
achieved by use of the sliding dichotomy.

Roozenbeek(12) 2011 Traumatic 
brain injury

Two techniques for ordinal analysis were applied using 
data from the CRASH trial (n = 9,554): proportional 
odds analysis and the sliding dichotomy approach, where 
the GOS is dichotomized at different cut-offs according to 
baseline prognostic risk. These approaches were compared to 
dichotomous analysis. Ordinal analysis with proportional odds 
regression or sliding dichotomy showed highly statistically 
significant treatment effects, with 2.05-fold and 2.56-fold higher 
information density compared to the dichotomous approach 
respectively. Analysis of the CRASH trial data confirmed 
that ordinal analysis of outcome substantially increases statistical 
power.

Diaz(34) 2016 Acute 
stroke

A general method for estimating the effect of a treatment on an 
ordinal outcome in randomized trials is presented. The method is 
robust in that it does not rely on the proportional odds assumption. 
Our estimator leverages information in prognostic baseline 
variables, and has all of the following properties: (i) it is consistent; 
(ii) it is locally efficient; (iii) it is guaranteed to have equal or b;etter 
asymptotic precision than both the inverse probability-weighted 
and the unadjusted estimators. The estimator is demonstrated in 
simulations based on resampling from a completed randomized 
clinical trial of a new treatment for stroke; we show potential gains 
of up to 39% in relative efficiency compared to the unadjusted 
estimator.
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Appendix 1. Distribution of the GBS disability score at four weeks and improvement on the GBS disability 
score after four weeks in the IVIg + placebo vs IVIg + Methylprednisolon (IVIg vs MP) trial (a and c) and PE 
vs IVIg trial (b and d).
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Abstract

Introduction
In epidemiology the regression discontinuity design has received increasing attention 
recently and might be an alternative to a randomized controlled trial (RCT) to evaluate 
treatment effects. In RD treatment is assigned above a certain threshold of an assign-
ment variable for which the treatment effect is adjusted in the analysis.

Methods
We performed simulations and a validation study in which we used treatment effect 
estimations from an RCT as the reference for a prospectively performed regression 
discontinuity study. We estimated the treatment effect using linear regression with 
adjustment for the assignment variable both as linear terms and restricted cubic spline 
and using local linear regression models.

Results
In the first validation study the estimated treatment effect from a cardiovascular RCT was 
-4.0 mmHg blood pressure (95%CI -5.4;-2.6) at two years after inclusion. The estimated 
effect in regression discontinuity was -5.9 mmHg (95%CI -10.8; -1.0) with restricted cubic 
spline adjustment. Regression discontinuity showed different, local effects when ana-
lyzed with local linear regression. In the second RCT, regression discontinuity treatment 
effect estimates on total cholesterol level at three months after inclusion were similar to 
RCT estimates, but at least 6 times less precise.

Conclusion
Concluding, regression discontinuity may provide similar estimates of treatment effects 
to RCT estimates, but requires the assumption of a global treatment effect over the 
range of the assignment variable. In addition to a risk of bias due to wrong assumptions, 
researchers need to weigh better recruitment against the substantial loss in precision 
when considering a study with regression discontinuity versus RCT design.
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Introduction

Randomized controlled trials (RCTs) are the reference standard to demonstrate the ef-
ficacy of medical interventions. However, recruitment of sufficient numbers of patients is 
a challenge in RCTs, and becomes increasingly difficult due to regulatory requirements. 
Including participants is particularly challenging when the effect of an intervention on an 
outcome is of interest, but withholding treatment is considered unethical. Also, patients 
may not want to be randomized(1, 2) or physicians are not willing to include patients.(3) 
It is estimated that between only 3% and 5% of all eligible adult cancer patients in the 
United Stated and the United Kingdom enroll in RCTs, partly due to dislike of the concept 
of trials and the idea of randomization of both patient and clinician.(4) Low recruitment 
rates in trials are also common in other fields, especially in surgery(5-6) and elderly(7, 
8) research. Failure to achieve recruitment goals limits statistical precision, leads to an 
increase of costs, and decreases the efficiency of a RCT.(9) Even when investigators enroll 
an adequate number of participants, they rarely do so on schedule.(3, 10, 11)

Second, low recruitment rates threaten the generalizability of the findings in RCTs. 
Patients enrolled in trials may poorly represent the population of interest.(8, 12) Mostly 
women and elderly are underrepresented in RCTs.(8, 13)

An alternative epidemiologic design to assess effectiveness of medical treatment is 
the quasi-experimental “regression discontinuity” design. This design is common in the 
social sciences, and was introduced in public health and medicine in 1996.(14) Although 
in other fields regression discontinuity has been evaluated(15-20), recently Vandenb-
roucke et al.(21), Bor et al.(22) and O’Keeffe et al.(23) noted the importance of study-
ing the feasibility and robustness of this design in clinical settings. In the regression 
discontinuity design, treatment is not allocated randomly, but is assigned to a subset of 
patients, based on a threshold of a baseline characteristic. The control group consists of 
a subset of patients below the threshold, not receiving treatment. The threshold variable 
does not necessarily have to be prognostic for the outcome measure assessed in the 
study. E.g. all patients with a baseline blood pressure (BP) over 140 mmHg may receive 
treatment (intervention group) and patients with a baseline BP below 140 mmHg do not 
receive treatment (control group). Such treatment allocation closely resembles clinical 
practice and may thus facilitate easier recruitment of participants into a prospective, 
comparative study. Due to the assignment rule, regression discontinuity designs can 
achieve balance on unobserved factors, just like in an RCT. When estimating the treat-
ment effect, a regression analysis compares treated to control patients, while adjust-
ing for the assignment variable, in this example baseline BP. Regression discontinuity 
provides a possible opportunity for obtaining unbiased causal effect estimates, when 
experiments are not feasible or when we want to evaluate interventions under “real-life” 
circumstances.(24)
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The regression discontinuity design as a prospective quasi-experimental study might 
be attractive because the challenges of the randomization process are avoided. How-
ever, the estimates from a quasi-experimental regression discontinuity design might be 
different and substantially less efficient compared to an RCT. We aimed to assess validity 
of this design as a prospective quasi-experimental design compared to a traditional RCT, 
since this has not been discussed in detail in the epidemiologic literature. In this study 
we perform simulation studies and analyze data from two large cardiovascular RCTs as 
validation studies.

Methods

Monte Carlo Simulations

We used Monte Carlo simulations to compare regression discontinuity and RCT. One 
hundred patients were simulated with a hypothetical mean prognostic measurement 
of 10 and a standard deviation (SD) of 2. The mean outcome was 90 (SD 20) and was 
normally distributed. A treatment effect of -10 was simulated. Linear correlations of the 
prognostic measurement with outcome were varied (R2 0.0, 0.2, 0.5 and 0.8) to assess 
the importance of the prognostic strength of the adjustment model in the regression 
discontinuity design.

For the RCT, treatment was allocated at random, and sample size was 100 patients in 
total (50 per arm). In the regression discontinuity setting, treatment was assigned to 50 
patients with a prognostic measurement above 10; 50 patients with a prognostic mea-
surement below 10 were used as controls. For both the RCT and regression discontinuity 
settings, linear regression models were used to estimate the treatment effect, adjusted 
for the baseline variable both in a linear term and a restricted cubic spline term. The 
regression discontinuity setting was also analyzed with local linear regression analysis. 
In local linear regression, only patients around the threshold are used in the analysis to 
estimate a local treatment effect while normal regression uses all patients, resulting in 
a global, or average, treatment effect estimate. Treatment effect estimates were com-
pared in terms of bias (expressed as mean estimated treatment effect) and precision 
(expressed as mean squared error of the treatment effect estimate). The simulation code 
is provided in the Appendix.

Validation study

Two cardiovascular trials were used to validate the regression discontinuity design in 
empirical data. The “Prevention of Dementia by Intensive Vascular Care” study (preDIVA) 
is an ongoing cluster-randomized trial to assess the efficacy of a multicomponent, nurse-
led intervention targeting all cardiovascular risk factors in an elderly population (70-78 
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years). The study protocol has been approved by the medical ethical committee of the 
Academic Medical Centre.(25) The primary outcome of this RCT is incident dementia 
during 6 years of follow-up. Of 3533 patients enrolled, 1894 are in the intervention and 
1639 in the control group. As this RCT is ongoing we randomly sampled 3000 patients 
from the enrolled patients.

The second RCT was the “PROspective Study of Pravastatin in elderly (70 to 82 years) 
individuals at risk of vascular disease” (PROSPER). It was conducted between December 
1997 and May 1999 and enrolled 5804 patients, who were assigned to pravastatin 
(n=2891) or placebo (n=2913) to reduce the risk of coronary disease in elderly individu-
als.(26)

To validate the regression discontinuity design we used continuous measures col-
lected during follow-up, which were not the primary endpoints of the trials, as the 
outcome variable. To evaluate the influence of the choice of the assignment variable 
on the estimates we did multiple analyses using two different baseline measures. For 
preDIVA both age and the blood pressure (BP) at baseline were used as the assignment 
variable and the BP at 2-year intermediate follow-up as outcome. Both BP measures 
were calculated as the mean of two systolic blood pressure measurements during 
a visit (expressed in mmHg). BP data at 2 years were unavailable for part of the 3000 
randomly selected patients, mostly because they reached a clinical endpoint before 2 
years, or missed one study visit. We could hence include 2346 patients for analysis. For 
PROSPER, we considered total cholesterol level measured three months after inclusion 
(expressed in mmol/L) as the outcome and both age and total cholesterol at baseline as 
the treatment assignment variables. After exclusion of patients with missing 3-month 
total cholesterol we were able to analyze 5581 patients from PROSPER.

Statistical analysis

Baseline characteristics were described with standard descriptive statistics; median 
and interquartile range for continuous variables and frequencies and percentages for 
categorical variables.

To analyze the data as an RD design, we selected those patients with a value of the 
assignment variable above a certain threshold treated as the intervention group, and 
those with a value below that threshold and not treated as control group. This thus led 
to a sample of approximately half the trial population. In both trials we used a threshold 
of the assignment variable known to be used in clinical practice(27, 28) (e.g. BP > 140 
mmHg), or, if not available, a hypothetical threshold (e.g. age > 72 years). Histograms 
of the assignment variables in both preDIVA and PROSPER are shown in the eAppendix 
1. In this patient selection the treatment effect was estimated using a linear regression 
model, with adjustment for the assignment variable (Y ~ Tx + Baseline assignment vari-
able). We further analyzed a hypothetical different cut-off to assess the robustness of the 
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treatment effect estimate to the chosen cut-off. In other words, whether the treatment 
effect was global or local. Usually this would not be possible in regression discontinuity 
as the cut-off is determined in advance.

Analysis on these sets of patients was compared to a random sample (repeated 5,000 
times) of half of the of the RCT patients. To compare relative efficiency in terms of re-
quired sample size between the different approaches we used standard errors (SEs) of 
the estimated treatment effects in the following formula: (SE RD / SE RCT)2. This is the ratio 
of variances in both designs.

As the validity of the regression discontinuity design is dependent on proper adjust-
ment for the assignment variable we explored the relation between the assignment 
variable and outcome in detail. We assessed non-linearity with non-linear restricted 
cubic spline functions and interaction between the baseline assignment variable and 
the treatment effect. Both were presented graphically (Figure 1a and 1b). A restricted 
cubic spline function is a smooth function that consists of pieced-together cubic splines 
that are restricted to be linear in the tails.(29) We used the default setting for flexibility 
of the model with five knots.(30) Consequently we used the restricted cubic spline of 
the assignment variable in the adjustment model to obtain the optimal model fit for 
adjustment. This method was compared to local linear regression models for the ad-
justment of the baseline variable. All analyses (RCT and regression discontinuity) were 
adjusted for the assignment measurement that was used to assign treatment; both age 
and baseline BP in preDIVA and both age and baseline cholesterol in the PROSPER trial. 
R2 statistics were calculated to indicate the explained variance of the assignment model.

We further explored different assumptions on interaction between the assignment 
variable and treatment. We assumed no interaction between age and treatment in 
both studies. Therefore, we considered the treatment effect estimates in the regression 
discontinuity studies in which treatment was assigned on age, global treatment effects. 
We compared these treatment effect estimates to the global effect estimated in the 
RCT. The treatment effect estimates from the regression discontinuity studies, where 
treatment was assigned on baseline BP and baseline total cholesterol level, could be 
considered as local treatment effects, since we assumed interaction between treatment 
over both baseline BP and baseline cholesterol level. Therefore we compared these esti-
mates to the local effects in the RCT, estimated with restricted cubic spline adjustment. 
These estimates are the differences between the treated and untreated lines in figures 
1a and 1b. Treatment effects were estimated using linear regression and expressed as 
regression coefficients with 95% confidence Intervals (95% CIs) for blood pressure or 
cholesterol level in the treatment group compared to the controls.

All statistical analyses were performed in R statistical software version 2.15.3 (R Foun-
dation for Statistical Computation, Vienna, Austria) using the rdd package and Harrell’s 
rms package.
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a) Non-linear restricted cubic spline (rcs) function* of the interaction of the intervention effect over base-
line blood pressure in the preDIVA study. * The function fitted is: Two year blood pressure ~ Intervention * 
rcs(Baseline blood pressure).
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b) Non-linear restricted cubic spline (rcs) function* of the interaction of the treatment effect over base-
line total cholesterol in the PROSPER trial. * The function fitted is: Three month cholesterol ~ Treatment * 
rcs(Baseline cholesterol).

Figure 1. Non-linear restricted cubic spline functions of the interaction of the intervention effects over the 
assignment variables in both the preDIVA study (n = 2346) and the PROSPER trial (n = 5581).
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c) Non-linear restricted cubic spline (rcs) function* of the interaction of the intervention effect over baseline 
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d) Non-linear restricted cubic spline (rcs) function* of the interaction of the treatment effect over baseline 
age in the PROSPER trial. * The function fitted is: Three month cholesterol ~ Treatment * rcs(Baseline age).

Figure 1. Non-linear restricted cubic spline functions of the interaction of the intervention effects over the 
assignment variables in both the preDIVA study (n = 2346) and the PROSPER trial (n = 5581).



RD design: simulation and application with continuous outcomes 95

Results

Simulations

Simulations showed that under the ideal situation of a linear relation between the as-
signment variable and the outcome, no unmeasured confounders, and no treatment ef-
fect interaction, regression discontinuity provided unbiased treatment effect estimates 
all scenarios (Table 1). However, RD with linear adjustment resulted in substantially less 
precise effect estimates compared to the RCT. For instance, in the hypothetical setting 
with an R2 of 20% for the correlation of the assignment measurement with outcome, 
the mean squared error of the estimated treatment effect estimate in an RCT was 3.2 
compared to 9.0 in the RD design. In this example this means that when the regres-
sion discontinuity design is used and the analysis matches the underlying true model, 
triple the number of patients is required to obtain the same statistical precision as when 
using an RCT. This magnitude of (in)efficiency was consistent for all simulated correla-
tions between the assignment measurement and outcome. Regression discontinuity 
estimates adjusted with restricted cubic splines were 7 times less efficient than the RCT 
estimates analyzed with restricted cubic splines. When analyzing regression discontinu-
ity with local linear regression, the estimated were on average 1.4 times less efficient 
than analyzing regression discontinuity with restricted cub spline adjustment (Table 1).

Validation study

In the validation study we assessed blood pressure in 2346 patients from the preDIVA 
trial. The median age was 74 years (IQR: 72, 76) and the median BP at baseline was 153 
mmHg (IQR: 140, 168). We analyzed 5581 patients from the PROSPER trial, who had a 
median age of 74 years (IQR: 72 - 77 years) and a median total cholesterol level of 5.6 
mmol/L (IQR: 5.0, 6.3) at baseline (Table 2).

In the RCT design, the treatment effect estimate on BP at two years adjusted for base-
line BP was -4.0 mmHg (95% CI -5.4; -2.6) (Table 3).

Table 1. Simulations treatment effect over baseline in randomized control trial and regression discontinuity 
design, analyzed with linear regression, restricted cubic spline functions and local linear regression.

R2 (%)

Randomized 
controlled trial

Regression 
discontinuity design

0 20 50 80 0 20 50 80

Linear regression Mean squared error 4.2 3.2 2.0 0.8 11.1 9.0 5.6 2.3

Restricted cubic spline adjustment Mean squared error 4.3 3.3 2.1 0.8 29.5 23.3 14.9 6.0

Local linear regression Mean squared error NA NA NA NA 39.8 32.6 20.7 7.9
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The adjusted estimated effect was -5.9 mmHg (95% CI -10.8; -1.0) with the hypotheti-
cal regression discontinuity design, adjusted for BP as restricted cubic spline variable. 
Here, patients with a BP over a baseline BP of 140 mmHg would receive treatment and 
patients with a lower BP would not receive treatment. An additional analysis of a hypo-
thetical RD design in which patients with a BP of 160 mmHg would receive treatment 
and the higher baseline BP patients not, adjusted with a restricted cubic spline showed 
a treatment effect estimate of -5.9 mmHg (95% CI -11.4; -0.3) (Table 3).

In the preDIVA trial, there appeared to be a different treatment effect for patients with 
relative low baseline BP compared to high baseline BP, indicating statistical interaction 
(Figure 1a). This explains the different effect estimates in the regression discontinuity set-
ting with treated high-risk patients and low-risk controls compared to the RCT estimate. 
When the treatment effect was analyzed with local linear regression, the intervention 
effect estimates in the two regression discontinuity designs were more different than 
the RCT estimate: -9.3 mmHg (95% CI -18.5; -0.1) for the setting with the cut-off at 140 
mmHg and -10.2 mmHg (95% CI -21.0; 0.6) for the setting with the cut-off at 160 mmHg 
(Table 3).

In Figure 1c shows interaction between treatment and age. A global effect of treat-
ment over the age range was assumed. The estimates from the regression discontinuity 
design analyzed with restricted cubic splines showed more similar estimates for the 
different cut-offs and these were closer to the estimate from the RCT ( -0.66 (-6.44; 5.12) 
-2.71 (-7.16; 1.74) ).

In the PROSPER trial, the estimated treatment effect on total cholesterol level at three 
months in the RCT, adjusted for baseline total cholesterol level was -1.31 mmol/L (95% CI 
-1.35; -1.27). In a hypothetical regression discontinuity, we used a threshold of 5.0 mmol/L 
for treatment assignment. The treatment effect estimate in PROSPER was beneficial over 
the whole range of baseline total cholesterol level, but differed in magnitude (Figure 
1b). Analysis with local linear regression showed different treatment effect estimates: 
-1.04 mmol/L (95% CI -1.16; -0.93) with the cut-off at baseline BP of 5.0 mmol/L and 
-1.29 mmol/L (95% CI -1.40; -1.18) with the cut-off at baseline BP of 5.5 mmol/L, Table 4). 

Table 2. Patient characteristics of preDIVA (n=2346) and PROSPER (n=5581). Numbers are the median (IQR) 
or frequency (%)

Characteristic preDIVA PROSPER

Age, years 74 (72, 76) 74 (72, 77)

Sex, male 1071 (46) 2708 (49)

Baseline blood pressure in mmHg 153 (140, 168) -

2-year blood pressure in mmHg 148 (136, 162) -

Baseline cholesterol in mmol/L - 5.6 (5.0, 6.3)

Three month cholesterol in mmol/L - 4.9 (4.2, 5.7)
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Analysis with restricted cubic spline adjustment in regression discontinuity in PROSPER 
showed only slightly different treatment effect estimates compared to the results from 
the regression discontinuity setting analyzed with local linear regression (Table 4).

In the hypothetical regression discontinuity design in PROSPER with assignment on 
the age variable, both analyses with local linear regression and normal linear regression 
with adjustment for age as a restricted cubic spline variable showed similar treatment 
effect estimates compared to the estimates from the RCT (Table 4). This is consistent 
with Figure 1d, which shows a constant effect of treatment over the whole range of age.

In terms of statistical precision, the regression discontinuity with restricted cubic 
spline adjustment was 1 to 4 times less efficient than the adjusted RCT for the local 
effects estimated, and 6 to 12 times less efficient for the global effects estimated in 
regression discontinuity compared to the RCT. (Table 5)

Discussion

In this study we performed simulation studies and analyzed data from two large 
cardiovascular RCTs with the aim to assess the validity of the regression discontinuity 
design as a prospective quasi-experimental design compared to a traditional RCT. In the 

Table 5a. Relative efficiency of global treatment effect estimates in RD design in terms of required sample 
size (compared to global treatment effect estimate in RCT design) for different validation studies in preDIVA 
and PROSPER*.

preDIVA PROSPER

RCT (linear adjustment) vs RD (RCS adjustment) 6.25 1 9.0 1

RCT (linear adjustment) vs RD (RCS adjustment) 8.45 2 11.52 2

*Formula: (SE RD / SE RCT )2

1 Patient selection age ≤ 72 Tx- and BP > 72 Tx+
2 Patient selection age ≤ 74 Tx- and BP > 74 Tx+

Table 5b. Relative efficiency of local treatment effect estimates in RD design in terms of required sample 
size (compared to local treatment effect estimate in RCT design) for different validation studies in preDIVA 
and PROSPER*.

preDIVA PROSPER

RCT (RCS adjustment) vs RD (local linear regression) 3.56 1 1.04 3

RCT (RCS adjustment) vs RD (local linear regression) 3.78 2 0.72 4

*Formula: (SE RD / SE RCT )2

1 Patient selection BP ≤ 140 Tx- and BP > 140 Tx+
2 Patient selection BP ≤ 160 Tx- and BP > 160 Tx+
3 Patient selection cholesterol ≤ 5.0 Tx- and cholesterol > 5.0 Tx+
4 Patient selection cholesterol ≤ 5.5 Tx- and cholesterol > 5.5 Tx+
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simulations studies we found unbiased but substantially less precise treatment effect 
estimates from an regression discontinuity design compared to an RCT design.

In the two validation studies we found somewhat different results. In the case of the 
treatment assignment on baseline BP and baseline cholesterol level we assumed treat-
ment effect heterogeneity over the baseline assignment variable. Therefore we assumed 
the treatment effect estimates in these regression discontinuity designs to be local. The 
estimates from the analyses with local linear regression are not comparable with the 
RCT estimates in terms of bias since these effects are local, in contrast to the global RCT 
estimates. In terms of statistical precision, the regression discontinuity with restriction 
cubic spline adjustment was 1 to 4 times less efficient than the adjusted RCT for the local 
effects estimated.

When treatment was assigned on the age variable, we assumed no interaction be-
tween age and treatment. Therefore, the treatment effect estimate for the regression 
discontinuity analysis was assumed to be a global treatment effect. Estimates from the 
analyses with flexible functions (restricted cubic splines) to obtain an optimal fit of the 
adjustment model were comparable to the RCT estimate. In PROSPER the treatment 
effect estimates were consistent over the different cut-offs, which confirms the assump-
tion of no interaction. In preDIVA, the estimates were quite different over the different 
cut-offs. This gives the impression that there is interaction and that the treatment effects 
are local over the baseline age range. Further, we found that sample size needs to be at 
least 6 times larger to make regression discontinuity as precise as an RCT to estimate 
global treatment effect estimates.

Position of regression discontinuity design in epidemiology

The main goal of our study was to assess the regression discontinuity design as a pro-
spective design, and compare it with an RCT design. The regression discontinuity design 
could be implemented as an observational study design, but we focused on the situa-
tion of prospective enrollment of patients, with a predefined cut-off. While estimation of 
treatment effects with retrospectively collected data is could be hampered by selection 
bias and confounding by indication, which is difficult to fully control for since unmea-
sured confounding cannot be accounted for (‘residual confounding’), in the prospective 
application of the regression discontinuity design the confounding variable is measured 
and controlled for by design.

Local or global treatment effect and model specification

A very important question in designing a regression discontinuity study is whether a 
global or a local treatment effect should be assumed. The assignment variable in an 
RCT is random allocation and therefor would not interact with treatment in an RCT. This 
results in a global or average treatment effect. In contrast, the assignment variable in 
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regression discontinuity could interact with treatment. Therefor the estimated effect is 
not always a global effect, but a local treatment effect estimate. Only when the assump-
tion of no interaction between the baseline assignment variable and treatment can be 
made, the estimated effect of regression discontinuity can be interpreted as a global 
treatment effect. Our analyses with normal linear regression models with restricted 
cubic spline adjustment assume such a global treatment effect. In our RCT data we could 
test the assumption of no interaction as we had treatment and control patients across 
the complete range of the assignment variable. In practice, however, this assumption 
cannot be tested in regression discontinuity designs, as treatment and control patients 
have no overlap in the assignment variable.

When the aim is to estimate the treatment effect on a certain threshold value of the 
assignment variable, local linear regression should be used. This estimate will be unbi-
ased for that certain cut-off, but it is only valid for a small subset of patient around the 
cut-off and is not generalizable for the whole population.

Thus, if one aims to estimate an overall treatment effect from RD, using a normal 
regression models is preferred over local linear regression, as supported by our finding 
that the treatment effect estimates from regression discontinuity with restricted cubic 
splines more were more similar to the RCT estimate than the local linear regression 
estimates. However, this could be expected because local linear regression uses only 
data around the cut-off while normal regression uses all data, as happens in the RCT. In 
fact the local linear regression and restricted cubic splines estimates cannot be judged 
as more or less biased. They estimate a different effect (global or local) and their validity 
is dependent on the assumptions made.

In our case of blood pressure the assumption of no interaction was not met: graphical 
inspection showed qualitative treatment effect heterogeneity (Figure 1a). The inter-
vention is a multi-component intervention tailored according to patients’ risk profile, 
and the intensity of the intervention (both medical and lifestyle) is thus higher for 
participants with a higher risk profile.(25) This difference in intensity might explain the 
interaction of treatment with baseline risk for outcome, i.e. a stronger effect in patients 
with higher baseline risk. This led to a different treatment effect when we misspecified 
the adjustment model.

Optimal modeling of the effect of the assignment variable is extremely important 
in regression discontinuity. We used restricted cubic spline functions and local linear 
regression. Restricted cubic spline functions are attractive for their flexibility with low 
degrees of freedom. They and not driven by extreme values in both ends of the fit, which 
is an advantage over ordinary cubic spline functions.(29) We suggest that flexible func-
tions should be used for optimal adjustment since this function accounts for differential 
effects of the baseline variable that is used as the assignment variable, on outcome.
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Choice of regression discontinuity versus randomized clinical trials

Requirements for informed consent for clinical trials are often more stringent than for 
treatment outside of the setting of an RCT.(31) Patient enrollment may hence be easier 
due to avoidance of the randomization process. More lenient inclusion criteria and 
easier enrollment when using the RD design most likely will result in more representa-
tive cohorts for analysis.

A regression discontinuity design is attractive when random assignment of treatment 
is problematic or not possible. This may occur when a medical intervention is already 
standard practice for a part of the patients in clinic but the effectiveness has not yet been 
assessed. For instance, the effect of blood pressure and cholesterol lowering on incident 
dementia has only been studied in randomized controlled trials using dementia as a 
secondary outcome and with inconclusive results.(32) At present performing such RCTs 
is no longer considered ethical, as there is a clinical imperative to treat those with high 
blood pressure and cholesterol. However, there is circumstantial evidence that there is 
a beneficial effect of BP reduction on dementia risk, which is not translated to clinical 
guidelines in the absence of evidence to substantiate this claim. In this situation RD 
could be a solution to assess a treatment effect using less affected patients for whom an 
intervention is not deemed indicated as control patients. In fact, because this strategy 
already closely resembles clinical practice, it may well be feasible to include a number of 
participants in such a trial that is 6-12 fold higher than in a classical RCT. Adherence to 
assignment of treatment according to the threshold value is crucial, and both participat-
ing clinicians and patients should therefore be well aware that they are participating in 
a comparative study. A possible threat when using a regression discontinuity design is 
selection bias near the threshold value. When physicians selectively treat patients just 
below the threshold value and vice versa, selection bias occurs due to confounding by 
indication. It is thus very important to avoid such protocol violations in a prospective 
regression discontinuity study.

Strengths and limitations

A limitation of this study is that in the simulation study we assumed the ideal condition 
of a linear treatment effect and no residual confounding, which may not reflect real life 
practice. However, we showed that even in such an ideal setting regression discontinuity 
is less efficient than RCT. Further, we only studied continuous outcomes and therefore 
cannot draw conclusions on the performance of the regression discontinuity design for 
dichotomous outcome parameters. The relative inefficiency may be different for such 
settings. Furthermore, we assessed the regression discontinuity design in RCT data, in 
which we artificially set the threshold. This results in perfect adherence to the defined 
threshold, which is unlikely to occur in real life.
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On the other hand, the possibility to change the cut-off was a major strength in our 
study. We were able to study interaction by varying the cut-off, which would be impos-
sible in a ‘real’ regression discontinuity design. Moreover, with the RCT data we were 
able to study the effect of different hypothetical variables to assign treatment, which is 
a unique feature of this study.

There might be measurement error in the assignment variable. Many claim that regres-
sion to the mean caused by such measurement error is a possible threat to the validity of 
regression discontinuity.(14). A high baseline measurement will on expectation regress 
down to a lower value and a low baseline measurement will on expectation regress up 
to a higher value. However, as this will occur equally on both sides of the cut-off in the 
assignment variable, the measurement error will in the end be irrelevant for the correct 
estimation of the treatment effect.(21)

Conclusion

We conclude that the regression discontinuity design has perfect theoretical validity 
and may have reasonable validity in real life situations compared to RCT. Regression 
discontinuity may provide similar estimates of treatment effects to RCT estimates, but 
requires the assumption of a global treatment effect over the range of the assignment 
variable. Controlling for the assignment variable is essential and may be achieved by an 
optimal fit of the adjustment model, with for example restricted cubic splines when the 
assumption of a global treatment effect over the range of the assignment variable can 
be made. Regression discontinuity is, however inefficient, requiring sample sizes which 
are over 6 times higher than for conventional RCTs to obtain the same statistical preci-
sion for a global treatment effect estimate. When considering a study with regression 
discontinuity versus RCT design, in addition to a risk of bias due to wrong assumptions, 
researchers need to weigh better recruitment against the substantial loss in precision.
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Appendix 1: R code.

# Activation of required libraries
library(rms)
library(mvtnorm)
library(arm)
library(rdd)

# Hypothetical dataset
n_patients	 <- 100
R2	 <- 0.0
corr	 <- sqrt(R2)
treatment_effect	 <- -10
n_sim	 <- 10000
Est_Effect	 <- matrix(nrow = n_sim, ncol=6)
Std_error	 <- matrix(nrow = n_sim, ncol=6)
DF	 <- matrix(nrow = n_sim, ncol=6)

# Variance of prognosis (sigma1), outcome (sigma2)
sigma1	 <- 4
sigma2	 <- 100
#Covariantie prognosis and outcome
sigma12	<- corr * sqrt(sigma1) * sqrt(sigma2)

# Mean of prognosis and outcome
mu	 <- c(10, 90)
# Covariance Matrix
sigma	 <- matrix(c(sigma1, sigma12, sigma12, sigma2), nrow = 2, byrow = TRUE)

for(i in 1:n_sim){

dataset	 <- rmvnorm(n_patients, mean = mu, sigma = sigma)

dataset	 <- as.data.frame(dataset)
names(dataset)	 <- c(“prognosis”, “outcome”)

## Randomized Controlled Trial, all patients randomized

# Treatment “Randomize all patients”
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dataset$T_RCT	 <- as.numeric(runif(n_patients) <= 0.5)

# Outcome “Randomize all patients”
dataset$O_RCT	 <- dataset$outcome
dataset$O_RCT[dataset$T_RCT == 1] <- dataset$outcome[dataset$T_RCT == 1] + treat-
ment_effect

## Regression discontinuity, good prognosis control, poor prognosis treatment

#Treatment “Regression discontinuity design”
dataset$T_RDC	 <- as.numeric(dataset$prognosis>10)

#Outcome “Regression discontinuity design”
dataset$O_RDC	 <- dataset$outcome
dataset$O_RDC[dataset$T_RDC == 1] <- dataset$outcome[dataset$T_RDC == 1] + 
treatment_effect

fit_RCT	 <- lm(O_RCT ~ prognosis + T_RCT, data = dataset)
fit_RDC	 <- lm(O_RDC ~ prognosis + T_RDC, data = dataset)

fit_RCT_rcs	 <- ols(O_RCT ~ rcs(prognosis) + T_RCT, data = dataset, x=T, y=T)
fit_RDC_rcs	 <- ols(O_RDC ~ rcs(prognosis) + T_RDC, data = dataset, x=T, y=T)

fit_RCT_llr	 <- RDestimate(O_RCT ~ prognosis, cutpoint = 10, data = dataset)
fit_RDC_llr	 <- RDestimate(O_RDC ~ prognosis, cutpoint = 10, data = dataset)

Est_Effect[i, ]	 <- c(fit_RCT$coefficients[3], fit_RDC$coefficients[3], fit_RCT_
rcs$coefficients[6], fit_RDC_rcs$coefficients[6], fit_RCT_llr$est[1], fit_RDC_llr$est[1])

}

#Mean Effect estimate of treatment
colMeans(Est_Effect)
#Mean squared error of effect estimate treatment
colMeans((Est_Effect - treatment_effect)^2)
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a) Histogram of mean systolic blood pressure (mmHg) at baseline in PreDIVA.
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b) Histogram of age (years) at baseline in PreDIVA.
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Total cholesterol level (mmol/L) at baseline
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c) Histogram of total cholesterol level (mmol/L) at baseline in PROSPER.
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d) Histogram of age (years) at baseline in PROSPER.

Appendix 2. Histogram of the assignment variable in both preDIVA and PROSPER in RCT data.
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Abstract

Introduction
Regression discontinuity (RD) is a quasi-experimental design that may provide valid 
estimates of treatment effects in case of continuous outcomes. We aimed to evaluate 
validity and precision in the RD design for dichotomous outcomes.

Methods
We performed validation studies in three large RCTs (CRASH, GUSTO and PROSPER). To 
mimic the RD design, we selected patients above and below a cut-off (e.g. age 75 years) 
randomized to treatment and control respectively. Adjusted logistic regression mod-
els using restricted cubic splines (RCS) and polynomials, and local logistic regression 
models estimated the odds ratio (OR) for treatment, with 95% confidence intervals to 
indicate precision.

Results
In CRASH, treatment increased mortality with OR 1.22 [95% CI 1.06; 1.40] in the RCT. The 
RD estimates were 1.42 [0.94; 2.16] and 1.13 [0.90; 1.40] with RCS adjustment and local 
regression respectively. In GUSTO, treatment reduced mortality (OR 0.83 [0.72; 0.95]), 
with more extreme estimates in the RD analysis (OR 0.57 [0.35; 0.92] and 0.67 [0.51; 0.86] 
respectively). In PROSPER, similar RCT and RD estimates were found, again with less 
precision in RD designs.

Conclusion
We conclude that the RD design provides similar but substantially less precise treatment 
effect estimates compared to an RCT, with local regression being the preferred method 
of analysis.
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Introduction

Randomized clinical trials (RCTs) provide the most reliable evidence of effectiveness of 
medical interventions.(1) Nevertheless, recruitment of sufficient numbers of patients is 
a challenge in RCTs; it is estimated that less than 50% of the RCTs meet their recruit-
ment targets.(2, 3) Patients’ treatment preferences and clinicians equipoise are often 
cited as barriers to recruitment in RCTs.(2, 4-7) Patients participating in trials may poorly 
represent the population of interest.(8, 9) Especially, under-representation of older 
participants and women is well known in RCTs.(8, 10)

The quasi-experimental “regression discontinuity” (RD) design is an alternative 
epidemiological design to assess effectiveness of treatment. It has been suggested that 
RD is the observational design that most resembles an RCT.(11, 12) In the RD design, 
treatment is not assigned randomly, but is allocated to a subset of patients, based on a 
baseline assignment variable, often related to the outcome. The control group consists 
of a complementary subset of patients, not receiving treatment. E.g. all patients with 
an age over 75 years receive treatment and patients with an age below 75 years do not 
receive treatment and are considered as the control group. Such treatment assignment 
method may closely resemble clinical practice and may thus facilitate patient inclusion. 
In the analysis of the treatment effect, a regression model is used to compare treat-
ment to the control group, while adjusting for the treatment assignment variable, in this 
example age.

The RD design is attractive because some of the challenges of the randomization 
process are avoided. However, the estimates from this quasi-experimental design may 
be substantially less efficient compared to an RCT.(13) The validity of RD estimates on 
continuous outcomes are well studied(13-15), but the validity of the RD design with 
binary outcomes is less known. Only a few examples have been described before(16, 17), 
while many health outcomes are dichotomous. Moreover, the efficiency of modeling 
approaches is unclear, i.e. the precision of estimated treatment effects. The aim of this 
study was to assess validity and precision of the RD design in studies with dichotomous 
outcome compared to an RCT. We hereto analyzed data from three large RCTs.

Methods

Patients

Three trials were used to validate the RD design in empirical data. To assess the internal 
validity of the RD design we compared RD estimates with the estimates resulting from 
the RCT data. For the RD design we used a continuous baseline variable as assignment 
variable and the dichotomous endpoints of the RCTs.
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The “Corticosteroid Randomisation After Significant Head injury” (CRASH) trial studied 
the effect of corticosteroids on death and disability after head injury.(18) CRASH enrolled 
10,008 patients between 1999 and 2005. The primary outcome in CRASH was 14-day 
mortality. We included 9,554 patients with complete outcome data of whom 2,323 died 
before 14 days (24%). The median age was 33 years (IQR: 23 – 47 years).

Second, we analyzed 30,510 patients from “The Global Utilization of Streptokinase 
and Tissue plasminogen activator for Occluded coronary arteries” trial (GUSTO). Patients 
were entered between 1990 and 1993. 10,348 patients were assigned to treatment (ac-
celerated tissue plasminogen activator, t-PA) and 20,162 patients were used as control 
patients receiving streptokinase.(19) The primary outcome was 30-day mortality. The 
median age was 61 (IQR: 52 – 69) and mortality occurred in 2,128 (7%). For both CRASH 
and GUSTO, age was used as the treatment allocation variable.

Third, we analyzed data from “PROspective Study of Pravastatin in elderly individuals 
at risk of vascular disease” (PROSPER).(20) This study enrolled 5,804 patients between 
December 1997 and May 1999, who were assigned to pravastatin (n = 2,891) or placebo 
(n = 2,913) to reduce the risk of coronary disease in elderly individuals. The outcome was 
a composite endpoint of coronary death, non-fatal myocardial infarction and fatal or 
non-fatal stroke at 3.2 years on average after randomization. 881 (15%) of the patients 
experienced the composite endpoint. The median total cholesterol level was 5.6 mmol/L 
(IQR: 5.0 – 6.3 mmol/L) at baseline (Table 1). For PROSPER, we considered baseline total 
cholesterol as the treatment allocation variable.

Statistical analysis

To analyze the data as an RD design, we selected those patients with a baseline value 
above the median of the assignment variable, who were assigned to treatment in the 
original RCT as the intervention group, and those with a baseline value below the me-
dian and not assigned to treatment in the RCT as control group. Histograms of the base-
line assignment variables for each study were plotted, as well as binned scatterplots for 

Table 1. Patient characteristics of CRASH (n = 9554), GUSTO (n = 30,510) and PROSPER (n = 5804).

Characteristic CRASH GUSTO PROSPER

N in treatment arm (%) 4800 (50) 10348 (34) 2891 (50)

N in control arm (%) 4454 (50) 20162 (66) 2913 (50)

Median (IQR) of baseline variable for 
treatment assignment*

33 (23 - 47) years 61 (52 – 69) years 5.6 (5.0 – 6.3) mmol/L

N outcome (%)** 2323 (24) 2128 (7) 881 (15)

* Baseline measurement is age in years in CRASH and GUSTO and total cholesterol in mmol/L in PROSPER.
** Outcome is 14-day all-cause mortality in CRASH, 30-day all-cause mortality in GUSTO and a composite end-
point of coronary death, non-fatal myocardial infarction and fatal or non-fatal stroke at 3.2 years on average 
in PROSPER.
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outcome means for treated and controls at each baseline assignment value. The analysis 
was based on the intention-to-treat principle. This led to inclusion of approximately 
half of the RCT patients. The treatment effect was expressed as odds ratios (OR) with 
95% confidence intervals (95% CI), with adjustment for the baseline variable in a logistic 
regression model. To compare the RD estimates to the RCT estimates in comparable 
sample sizes, random samples of 50% from the complete RCT data were drawn (5000 
times). To compare the designs in terms of efficiency we calculated the ratio of variances 
between both designs based on estimated standard errors (SEs) of the estimated treat-
ment effects: ( SE design 2 / SE design 1 ) 2 .

Previous work has shown that the validity of the RD design is highly dependent on the 
quality of the adjustment in the analysis phase, and on assumptions of a local or global 
effect of the treatment.(13) All analyses (RCT and RD) were adjusted for the baseline vari-
able that was used to attribute treatment; age in both CRASH and GUSTO and baseline 
cholesterol in the PROSPER trial. We assessed non-linearity of the effect of the baseline 
variable with non-linear restricted cubic splines (RCS) functions. An RCS function is a 
smooth function that consists of pieced-together cubic splines that are restricted to be 
linear in the tails. We used three knots for adequate flexibility.(21) Consequently we used 
the RCS of the baseline variable in the adjustment model for optimal adjustment. To 
consider a different approach to estimate RD estimates, we also used polynomials of the 
baseline variables in the adjustment model. R2 statistics were calculated to indicate the 
explained variance of the adjustment model.

The approach described above assumes a global treatment effect. It has been argued 
that this assumption is hard to make and can never be proven.(11) We therefore also 
analyzed the RD design with local logistic regression models. In local logistic regression, 
only patients around the cut-off were used in the analysis to estimate the treatment 
effect. For the local estimations, the gam package in R was used, in which a default span 
of 0.5 is set. Gaussian kernel was used for the local logistic regression analysis. Using this 
kernel, the observations outside the span have lower influence on the estimation, but 
all the data are used in the analysis. To assess differential treatment effects, we studied 
interaction between the baseline variable and the treatment in the RCT data. For all 
three trials we assessed treatment effect heterogeneity in the complete RCT data, using 
interaction terms between treatment and the assignment variable. Moreover, to study 
the stability of the estimates for all three validation studies, we added RD analyses on an 
additional cut-off.

All statistical analyses were performed in R statistical software version 2.15.3 (R Foun-
dation for Statistical Computation, Vienna, Austria) using the rms and gam package.
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Results

In CRASH the treatment was harmful. The adjusted OR was 1.22 [95% CI: 1.06; 1.40] for 
the effect of treatment on mortality in the 50% subset of the RCT. For the hypothetical 
RD design, the estimated OR was 1.42 [0.94; 2.16], with RCS adjustment for age. When 
analyzed with polynomial adjustment the OR for treatment was 1.09 [0.81; 1.46]. The 
alternative method to analyze this hypothetical RD design, local logistic regression, 
resulted in an estimated OR of 1.13 [0.90; 1.40] (Table 2).

In GUSTO the estimated OR for mortality was 0.83 [0.72; 0.95] in a subset of 50% of the 
patients. The estimated OR, in the RD scenario was 0.57 [0.35; 0.92] adjusted with RCS for 
age. The OR for treatment from RD estimated with polynomial adjustment for age was 
0.82 [0.63; 1.07]. The analysis with local logistic regression resulted in an estimated OR 
of 0.67 [0.51; 0.86] (Table 3).

In the PROSPER trial, the adjusted OR for the composite endpoint of coronary death, 
non-fatal myocardial infarction and fatal or non-fatal stroke was 0.85 [95% CI; 0.69; 1.04] 
when assessed in the subset of 50% of the RCT. The estimated OR was 0.80 [0.46; 1.38] 
in the hypothetical RD design adjusted for baseline cholesterol with RCS. The OR for 
treatment from RD estimated with polynomial adjustment for age was 0.81 [0.56; 1.16]. 
The RD design analyzed with local logistic regression showed an OR for treatment of 
0.79 [0.56; 1.13] (Table 4).

In none of the RCTs we found statistically significant interaction between treatment 
and the assignment variable. However, this interaction test has limited statistical power. 
In all three trials there appeared to be a differential treatment effect over the range of 

Table 2. RCT and RD analyses in the CRASH trial (n = 9554).

Analysis N total R2 (%)
OR (95% CI) for 14-day 
mortality

Standard error (SE) of 
treatment effect estimate

RCT

Linear* adjustment 4777 7 1.22 (1.06; 1.40) 0.071

RD – assignment: age ≤ 33 Tx-, age > 33 Tx+

RCS* adjustment 4844 10 1.42 (0.94; 2.16) 0.212

Polynomial* adjustment 4844 10 1.09 (0.81; 1.46) 0.151

Local logistic regression 4844 NA 1.13 (0.90; 1.40) 0.112

RD – assignment: age ≤ 40 Tx-, age > 40 Tx+

RCS* adjustment 4806 10 1.04 (0.68; 1.60) 0.218

Polynomial* adjustment 4806 10 0.94 (0.72; 1.23) 0.138

Local logistic regression 4806 NA 1.02 (0.80; 1.32) 0.129

*Linear, RCS or polynomial adjustment means that baseline age was used as a linear, RCS or polynomial term in 
the regression analysis to control for age.
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the assignment variable, (Figure 1d, 2d and 3d). This is confirmed in the additional RD 
analysis with treatment assignment based on a different cut-off (Table 2, 3 and 4). In 
these validation studies we see slightly different RD estimates between the two different 
assignment approaches in all three studies.

In terms of efficiency, the RD with adjustment was 7.2 to 12.1 times less efficient than 
the adjusted RCT, compared to 3.1 to 4.5 less efficient estimates from RD with polyno-
mial adjustment. The RD design analyzed with local logistic regression was 2.5 to 3.5 
times less efficient than the adjusted RCT (Table 5).

Table 3. RCT and RD analyses in the GUSTO trial (n = 30,510).

Analysis N total R2 (%)
OR (95% CI) for 30-day 
mortality

Standard error (SE) of 
treatment effect estimate

RCT

Linear* adjustment 15255 12 0.83 (0.72; 0.95) 0.071

RD – assignment: age ≤ 62 Tx-, age > 62 Tx+

RCS* adjustment 15423 11 0.57 (0.35; 0.92) 0.246

Polynomial* adjustment 15423 11 0.82 (0.63; 1.07) 0.133

Local logistic regression 15423 NA 0.67 (0.51; 0.86) 0.132

RD – assignment: age ≤ 70 Tx-, age > 70 Tx+

RCS* adjustment 17846 10 0.94 (0.72; 1.22) 0.133

Polynomial* adjustment 17846 10 0.95 (0.75; 1.21) 0.121

Local logistic regression 17846 NA 0.90 (0.74; 1.10) 0.102

*Linear, RCS or polynomial adjustment means that baseline age was used as a linear, RCS or polynomial term in 
the regression analysis to control for age.

Table 4. RCT and RD analyses in the PROSPER trial (n = 5804).

Analysis N total R2 (%)
OR (95% CI) for 
composite endpoint

Standard error (SE) of 
treatment effect estimate

RCT

Linear adjustment 2902 0.4 0.85 (0.69; 1.04) 0.104

RD – assignment: cholesterol ≤ 5.6 Tx-, cholesterol > 5.6 Tx+

RCS adjustment 2919 0.7 0.80 (0.46; 1.38) 0.279

Polynomial adjustment 2919 0.7 0.81 (0.56; 1.16) 0.185

Local logistic regression 2919 NA 0.79 (0.56; 1.13) 0.181

RD – assignment: cholesterol ≤ 6.2 Tx-, cholesterol > 6.2 Tx+

RCS adjustment 2969 0.7 1.30 (0.71; 2.40) 0.311

Polynomial adjustment 2969 0.6 1.03 (0.69; 1.53) 0.205

Local logistic regression 2969 NA 1.07 (0.75; 1.56) 0.187

*Linear, RCS or polynomial adjustment means that baseline cholesterol level was used as a linear, RCS or polyno-
mial term in the regression analysis to control for cholesterol level.



118 Chapter 6

Discussion

This validation study, with data from three large RCTs, showed that the treatment ef-
fect estimates from the hypothetical RD were similar to the treatment effect estimates 
from the RCTs, either with RCS and polynomial adjustment or local logistic regression. 
In all three studies the confidence interval of all RD estimates overlapped with the point 
estimate of the RCT. However, RD estimates were substantially less precise.

Causality in regression discontinuity design

The advantage of a quasi-experimental, prospective, RD design over an observational 
study is the controlled assignment of treatment. This property is shared with an RCT. 
As Labrecque et al. stated, in both an RCT as in an RD design, we have good knowledge 
of the assignment mechanism.(11) In RCTs, treatment is randomly allocated and in RD 
treatment is assigned to patients using a baseline assignment variable. The treated and 
untreated patients in an RCT are unconditionally exchangeable. Therefore, RCTs are ac-
cepted to make causal inference. In an RD design the treated and the control patients 
are not exchangeable across the whole baseline range since they have a systematically 
different baseline characteristic. In RD the treated and untreated are only exchange-
able close to the cut-off of the baseline assignment variable.(11, 12) Therefore, causal 
inference can only be made around the cut-off in an RD design, where patients can be 
considered to be exchangeable. The causal treatment effect estimated in RD is a local 
treatment effect estimate. This means that comparing estimates from RCT and RD may 
not be completely straightforward, even with comparable RCT and RD data.(11) Therefor 
it may not be entirely fair to interpret the concordance between local RD estimates and 
global RCT estimates as a measure of validity of RD estimates. The overall RCT estimate 
is the average treatment effect in the whole RCT population, although we can condition 
on the assignment variable for more efficient analysis.(22-25) An RD estimate is a local 
treatment effect among patients at the cut-off and may vary dependent on the cut-off 
chosen.(13) At the end of the day, it is the RCT estimate that is the average of local 
estimates across the distribution of the assignment variable.

Table 5. Relative efficiency in terms of required sample size for different designs in CRASH, GUSTO 
and PROSPER*.

CRASH GUSTO PROSPER

RCT adjusted vs RD RCS adjustment 8.9 12.1 7.2

RCT adjusted vs RD polynomial adjustment 4.5 3.5 3.1

RCT adjusted vs RD local logistic regression 2.5 3.5 3.0

*Formula: (SE design 2 / SE design 1) 2
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a Linear function of the baseline variable over the outcome variable in RCT data. The space between both 
lines indicates the main treatment effect in the RCT.
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b Linear interaction function of the treatment effect over the baseline variable in RCT data.
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c Linear function of the baseline variable over the outcome variable in RD design. The space between both 
lines at the cut-off value indicates the treatment effect in the RD design.
Figure 1. CRASH
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Global vs. local treatment effects

Only when treatment does not interact with the baseline assignment variable the es-
timate from an RD design can be interpreted as a global treatment effect estimate.11 
In order to estimate a global treatment effect estimate in RD, one would have to feel 
confident modeling the relationship between the assignment variable and the outcome 
even where it is not observed in the data.(11, 26, 27) In other words, the model for the 
assignment variable-outcome relationship in both the treated and untreated groups 
would have to be extrapolated to the side of the cutoff where they were not observed.
(11)

20 30 40 50 60 70 80 90

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Age

Lo
go

dd
s 

of
 m

or
ta

lit
y

treatment
control

d RCS interaction function of the treatment effect over the baseline variable in RCT data.
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a Linear function of the baseline variable over the outcome variable in RCT data. The space between both 
lines indicates the main treatment effect in the RCT.
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When using RCS or polynomial adjustment, the treatment effect in CRASH was slightly 
different compared to the RCT. Graphical inspection showed qualitative interaction 
between treatment and the adjustment variable age (Figure 1d). At the cut-off (age 33 
years) the treatment effect – the difference between the plotted line for the control pa-
tients and the plotted line for the treated patients – was larger than the global RCT effect 
which is shown in Figure 1a. This explains the difference between the RD estimate and 
the RCT. The presence of a heterogeneous treatment effect over the range of age was 
confirmed in the RD analysis with treatment based on a different cut-off, resulting in less 
similar treatment estimates compared to the RCT estimates. Qualitative interaction was 
also observed in GUSTO (Figure 2d), and could have led to more extreme RD estimates 
(0.57 and 0.67) compared to the OR estimated in the RCT (0.83). At the cut-off of 62 years 
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d RCS interaction function of the treatment effect over the baseline variable in RCT data.
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b Linear interaction function of the treatment effect over the baseline variable in RCT data.
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Figure 3. PROSPER
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in Figure 2d a larger treatment effect is shown compared to the global treatment effect 
in Figure 2a. However, in RD with polynomial adjustment for age, the treatment effect 
is similar (0.82) to the RCT estimate. A smaller treatment effect was estimated when the 
cut-off for treatment assignment was set at 70 years. This is also confirmed in Figure 2d; 
after the age of 62 the treatment effect decreases.

In PROSPER, also qualitative interaction was found and shown in Figure 3d. However, 
RD with treatment assignment set at cholesterol 5.6 mmol/L, RD estimates (0.80, 0.81 
and 0.79) and the RCT estimate (0.85) were quite similar. When the treatment assign-
ment rule was set at cholesterol 6.2 mmol/L for RD, the RD estimates were slightly differ-
ent from the RCT estimate. These results confirm that the RD estimate is not equal to the 
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d RCS interaction function of the treatment effect over the baseline variable in RCT data.
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global RCT treatment effect estimate when the treatment effect is heterogeneous across 
the baseline assignment variable.

In a prospective RD design, it is hard to know whether the baseline assignment variable 
interacts with treatment. It can be formally tested but since the treatment groups each 
have data on only one side of the cut-off, the result only represents possible interaction 
at a small range of the assignment variable, around the cut-off. Thus, the assumptions 
required to estimate the global treatment effect are not verifiable within the RD design. 
This is why it has been suggested that global treatment effect estimates from RD designs 
should only be presented secondary to local average treatment effect estimates and 
never as the primary parameter of interest.(11, 12)

In this study we also assessed and compared RCS and polynomials for adjustment 
in RD. The advantage of an RCS function over polynomial adjustment is the restriction 
of the function to be linear in the tails. This is important when using this for optimal 
adjustment in for example RCTs, to estimate global effects over the whole range of the 
population studied. However, in RD we are primarily interested in local estimates and 
thus optimal adjustment around the cut-off for treatment assignment. So the advantage 
of RCS spline functions over polynomial adjustment in for example RCTs, may be less 
applicable to optimal adjustment in RD.

Our results suggest when there is no interaction between the assignment variable 
and treatment – and thus a global treatment effect can be estimated – the results from 
the RCS and polynomial adjusted analyses and local logistic regression are more similar 
to each other than when there is interaction. If there was some interaction between the 
assignment variable and treatment, the results from local logistic regression and the 
RCS and polynomial adjusted analyses were less similar. So, the comparison of both RD 
estimates could be a way to have more information on the assignment variable – treat-
ment relationship.

Efficiency of RD design

The RD estimates with adjustment appeared to be substantially less efficient than the 
RCT estimates. An RD design analyzed with adjusted logistic regression using RCS ad-
justment implies that 7.2 to 12.1 times more patients need to be included in the study 
compared to an RCT design. RD with polynomial adjustment would need 3.1 to 4.5 more 
patients compared to an RCT. If one would analyze the RD design with local logistic 
regression, this study would need about 2.4 to 3.6 times more patients than an RCT. 
So, the local regression approach was more efficient compared to the adjusted logistic 
regression. Also in terms of efficiency, local logistic regression would be preferred to 
analyze an RD design.

In absolute numbers an RD design needs more patients to obtain similar efficiency, 
compared to an RCT to estimate global treatment effect estimates. Although RD is de-
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scribed as less efficient than RCT in identifying the global average causal effect, it may be 
nearly as good in identifying the local causal effect, which may be of interest depending 
on the context. From a power perspective, it would be a fair comparison if the RCTs were 
powered to estimate treatment effects in the assignment variable subgroups around the 
discontinuity and compare these with the local RD treatment effect estimates. However, 
in our study we focus on the comparison between global RCT estimates and estimates 
from an RD design, and the efficiency of an RD design to estimate global treatment 
effect estimates.

Also, an RD design could facilitate patient recruitment, especially when the cut-off 
for treatment assignment closely resembles clinical practice. In these specific cases an 
RD design may be cheaper and less-time intensive than an RCT. Besides, RD designs 
could be conducted in different settings than RCTs; one can assume that RD design have 
less stringent inclusion criteria. This would be especially the case in a retrospective RD 
design when data from (clinical) registries are used. Therefore, some argue that data 
used in RD designs could lead to more external validity.(28, 29)

Linear versus logistic models in RD

In this study we specifically assess the performance of RD vs RCT in the context of di-
chotomous outcomes and logistic regression, which is not the standard in RD designs, 
but is common in health research. RD is underused with logistic regression models; only 
a few examples are described before.(16, 17) RD can be easily extended to generalized 
linear models like logistic regression.(30) When using dichotomous endpoints in RD 
it is straightforward to obtain more interpretable parameters like risk differences and 
risk ratios even in the logistic regression context, because the predicted probabilities at 
the threshold can be obtained directly from the model. The only barrier using logistic 
models in RD would be the absence of a data driven optimal bandwidth selector for the 
logistic model, like Imbens-Kalyanamaran(31) optimal bandwidth calculation is avail-
able for local linear regression models. For the local estimations in this study the gam 
package in R was used, in which a default span a 0.5 proportion of the observations 
over the assignment range is included. This can be adjusted specifying “span” in the 
gam function, for example span=0.2. When one is interested in a local treatment effect 
estimate, extending the span will in theory decrease validity but also increase reliability.

Strengths and limitations

We used RCT data to evaluate a hypothetical RD design, in which we artificially set the 
cut-off to “assign” treatment. This resulted in perfect adherence to the defined cut-off. 
This is unlikely to be the case in real life where which patients are prospectively assigned 
to treatment. A strength of this study is the use of data from three large RCTs to be 
able to compare the RD results with the RCT estimates. Moreover, because of the RCT 
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data we were able to carefully assess interaction between the assignment variable and 
treatment.

Conclusion and recommendations

Our findings for dichotomous outcomes are in line with previous work on RD for con-
tinuous outcomes.(13) The RD design may provide similar treatment effect estimates 
compared to RCT estimates for dichotomous outcome measures, but has some strong 
disadvantages that should be carefully considered when choosing an RD design to assess 
the effectiveness of a medical intervention. First, to be able to estimate the same global 
treatment effect in an RD design as in an RCT, the assumption of a global treatment ef-
fect over the range of the assignment variable is required. In prospectively collected RD 
data this assumption of a global treatment effect cannot be proven. Global treatment 
effect estimates from RD designs should therefore only be reported secondary to local 
treatment effect estimates. Second, the RD design is substantially less efficient than an 
RCT, requiring sample sizes at least three times higher than for the conventional RCT to 
obtain the same precision for the treatment effect estimate. In this study we found local 
logistic regression would be most efficient to analyze an RD design. Future research on 
the RD design should focus on more efficient application of the RD design, considering 
different approaches to estimate treatment effects from an RD design and examining 
their properties.
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Abstract

Introduction
The quasi-experimental regression discontinuity (RD) design may provide valid treat-
ment effect estimates but is inefficient compared to a randomized controlled trial (RCT). 
We aimed to compare different assignment approaches to increase the statistical ef-
ficiency of the RD design.

Methods
In Monte Carlo simulations, a random (R2=0), low (R2=7%) and highly (R2=31%) correlat-
ing variable with outcome was used for treatment assignment. Patients were sampled 
from the CRASH trial, with a dichotomous outcome simulated. The treatment effect was 
analyzed with both local logistic regression and logistic regression with spline adjust-
ment. To assess the relative statistical efficiency, standard errors (SE) of the different 
treatment assignment strategies were compared with an RCT of the same total sample 
size. This procedure was repeated in CRASH (n=9,554) as a case study.

Results
In the simulations, treatment effect estimates were unbiased. To obtain the same ef-
ficiency as an unadjusted RCT, RD required 2.8 times as many patients when using an 
assignment variable not correlating with outcome, and approximately 3.3 times as many 
patients when using an assignment variable highly correlating with outcome, using lo-
cal regression. Compared to an adjusted RCT, the relative efficiency was not dependent 
on the correlation between the assignment variable and outcome since the adjustment 
affects the efficiency of an RCT as well. In the case study similar results were found.

Conclusion
The relative efficiency of the RD design is not dependent on the correlation between 
the assignment variable and outcome. We recommend researchers to use assigment 
variables that are feasible in clinical practice.
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Introduction

The regression discontinuity (RD) design is a quasi-experimental design to study ef-
fectiveness of treatment. In the RD design, treatment is assigned to a subset of patients 
based on a baseline variable; e.g. older patients receive treatment. The RD design has 
been described as the next best design after a randomized controlled trial (RCT)(1): it 
enables causal inference of the treatment effect without randomizing patients to a treat-
ment- or control group. The crucial feature of the RD design compared to observational 
designs is the exchangeability of patients around the cut-off of the assignment variable, 
making causal inference between treatment and outcome possible.(2-4) In some cases, 
the RD design might be attractive because randomization is avoided and the RD strategy 
closely resembles clinical practice.

A substantial drawback is that it requires far larger numbers of patients compared to 
an RCT.(5-7) Goldberger proved that this reduced precision stems from the correlation 
between the assignment variable and (binary) treatment indicator. This is because the 
treatment indicator is itself a function of the assignment variable and both must be 
included to model the outcome in RD.(7, 8) Different assignment variables can be used 
for treatment allocation in an RD design. Bor et al. suggested that “the assignment vari-
able could be any continuous pretreatment measure including the outcome measure at 
baseline, or another measure of risk; a baseline covariate that is loosely correlated with 
the outcome; or even a random number, in which case regression discontinuity is identi-
cal to an RCT”.(9) Since it is known that an RCT is more efficient than RD, we hypothesize 
that RD based on a poorly correlating assignment variable with outcome - thus more 
similar to treatment allocation in an RCT – results in more efficient treatment effect es-
timates compared to treatment effect estimates from an RD with treatment assignment 
based on a variable highly correlating with outcome.

In this study, we aim to compare different assignment approaches to increase the 
statistical efficiency of the RD design. We hereto performed a simulation study and 
analyzed data from a large RCT.

Methods

Simulation study set up

According to the key steps and decisions in simulation studies described by Morris et 
al.(10), we performed Monte Carlo simulations to compare the efficiency of different 
assignment strategies in RD. For 5,000 patients, baseline prognostic characteristics were 
drawn from the “Corticosteroid Randomisation After Significant Head injury” (CRASH) 
trial.(11) A dichotomous outcome measure was simulated for each patient, with odds 
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ratios for treatment of 0.8 and 1.0, corresponding to a small true effect and no effect 
respectively. We evaluated three approaches to assign treatment in RD. A random (R2 
= 0%), low (R2 = 7%) - and a higher (R2 = 31%) correlating variable with outcome was 
used to assign treatment. For all three strategies, treatment was assigned to the 50% of 
patients above the median value of the assignment variable. RD was analyzed with local 
logistic regression analysis to estimate a local treatment effect for the area around the 
cut-off for treatment assignment. Also, logistic regression models were used to estimate 
the treatment effect, adjusted for the assignment variable in a restricted cubic spline 
(RCS) term. Simulations were repeated 10,000 times. The standard errors (SEs) of the 
effect estimates from the RCT and the different RD approaches were compared as a mea-
sure of efficiency. The ratio of variances between an RCT and different RD assignment 
approaches were calculated with the following formula: (SE RD / SE RCT) 2. The simulation 
code is provided in the Appendix.

Case study

The CRASH trial(11) was also used to illustrate the potential effect of different assign-
ment approaches on the efficiency of the RD design in empirical data. The CRASH trial 
assessed the effect of corticosteroids on death and disability after head injury. CRASH 
enrolled patients between 1999 and 2005, of which 9,554 patients had complete 
outcome data. Of 10,008 patients included, 5,007 patients were allocated to treatment 
and 5,001 patients were control patients. To resemble the RD design, we used patients’ 
baseline measures as assignment variable and the primary dichotomous endpoint (14-
day all-cause mortality) of CRASH as outcome measure.

Efficient RD assignment approach

Nagelkerke R2 statistics for all baseline characteristics and the full prediction model with 
outcome were calculated. The R2 statistic between treatment allocation - which was 
completely at random in CRASH - and outcome, in the absence of a treatment effect, 
would be 0. Next, we assessed three hypothetical treatment assignment variables. First, 
RD based on a hypothetical completely random assignment variable was performed. 
In the second assignment strategy, a poorly correlating variable with outcome, age, 
was used to assign treatment. Finally, in the last setting, the linear predictor of a full 
prediction model highly correlating with outcome was used to assign treatment. This 
hypothetical assignment variable was constructed with a logistic regression model 
containing the most important known predictors for 14-day mortality, namely age, 
pupillary reactivity and motor score.(12-14) The medians of the assignment variables 
were used as the cut-off for treatment assignment. To imitate an RD design within the 
RCT data, we selected treated patients with a value of the assignment variable above the 
cut-off, and control patients with a value of the assignment variable below the cut-off. 
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So, for example, in the first RD assignment strategy, treated patients with an age > 33 
years and control patients with an age ≤ 33 years, were selected to analyze the data as 
if it was an RD design.

In each scenario, the treatment effect was estimated with both local logistic regres-
sion(15) and a logistic regression model with treatment and adjusted for the assignment 
variable in an RCS term. The treatment effect was expressed as ORs with 95% confidence 
intervals (95% CI). Analyses were repeated 5,000 times. Random samples of 50% from 
the complete RCT data were drawn (5,000 times), to calculate the treatment effect from 
the RCT as a reference estimate. In this way we were able to compare the RD and RCT 
estimates in the same sample sizes.

To assess the heterogeneity of the treatment effect over the baseline assignment vari-
able, we fitted a model with an interaction term between treatment and the different 
assignment models to the complete RCT data.

All statistical analyses were performed in R statistical software version 2.15.3 (R Foun-
dation for Statistical Computation, Vienna, Austria) using the rms and gam packages.

Results

Monte Carlo simulations

Simulations showed that treatment assignment based on a random or poorly correlating 
variable with outcome, resulted in higher relative efficiency compared to an unadjusted 
RCT, than RD with treatment assignment based on a higher correlating variable with 
outcome (Table 2). To obtain the same efficiency as an unadjusted RCT, RD required 
2.8 times as many patients when using an assignment variable not correlating with 
outcome, and approxiamately 3.3 times as many patients  when using an assignment 
variable highly (R2 31%) correlating with outcome, when RD was analyzed with local 
regression. The relative efficiency was up to approximately 10 times as low with the 
strongly correlating assignment variable compared to an unadjusted RCT, when using 
logistic regression using adjustment. However, compared to an adjusted RCT, the rela-
tive efficiency was not dependent on the correlation between the treatment assignment 
variable and outcome. With local logistic regression, RD required at most 2.8 times as 
many patients compared to an adjusted RCT in all three assignment strategies (Table 
2). In all three treatment assignment approaches, the estimated treatment effects were 
similar to the simulated treatment effect.

Case study

The median age in CRASH was 33 years (inter quartile range (IQR) 23-47), 2323 (24%) pa-
tients died within 14-days after injury. The correlation between the assignment variable 
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age and 14-day mortality was low (R2 7%). The correlation between the full model for 
treatment assignment including age, pupillary reactivity and motor score and mortality 
was stronger (R2 31%) (Table 3).

In CRASH treatment had a negative effect on outcome overall. The mean unadjusted 
OR for treatment on 14-day mortality over in 5,000 subsets of 50% of the RCT was 1.20 
[95% CI; 1.05-1.37] and 1.27 [1.08; 1.48] adjusted for the linear predictor defined by age, 
motor score and pupil reactivity. In the RCT data we found no statistically significant 
interaction between treatment and both of the assignment variables. However, non-
linear RCS functions of the treatment effect over the assignment variable were plotted 
and showed in Figure 1 and suggests some interaction over the range of the assign-
ment variable. The (local) estimates of the treatment effect in RD varied according to 
the assignment variable and corresponding cut-off. RD based on a random treatment 
assignment variable resulted in similar point estimates as the RCT, with and without RCS 
adjustment and with local logistic regression. The RD estimates were more similar to the 
global RCT estimates in the approach with assignment based on a poorly correlating 
variable with outcome compared to RD assignment based on a highly correlated vari-
able with outcome; with assignment based on only age the adjusted ORs for treatment 
were 1.44 [0.95; 2.19] and 1.13 [0.91; 1.41] estimated with RCS adjusted logistic regres-
sion and local logistic regression respectively. In the RD design with assignment based 
on the higher correlating assignment variable, the estimates were less similar to the 
RCT effect estimate for treatment; the adjusted OR for treatment estimated with logistic 
regression was 1.69 [1.01; 2.82]. The estimated OR with local logistic regression was 1.41 
[1.12; 1.76]) (Table 4).

Table 2. Relative efficiency in terms of required sample size in an RD design for different baseline risk as-
sessments compared to an RCT*.

Assignment based on 
random variable

Assignment based on 
low (R2=7%) correlating 
variable with outcome

Assignment based 
on high (R2 =31%) 

correlating variable 
with outcome

Simulated Odds Ratio 0.8 1.0 0.8 1.0 0.8 1.0

Compared to an unadjusted RCT

RD no adjustment 1.00 1.00 - - - -

RD RCS adjustment 6.39 6.39 9.78 9.99 10.04 10.12

RD local logistic regression 2.75 2.76 2.79 2.76 3.27 3.32

Compared to an adjusted RCT

RD no adjustment 1.00 1.00 - - - -

RD RCS adjustment 6.38 6.39 9.31 9.48 8.34 8.42

RD local logistic regression 2.74 2.75 2.65 2.62 2.72 2.77

*Formula used to calculate the relative efficiency: ( SE RD / SE RCT )2
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Discussion

We investigated the impact on efficiency of different associations of the treatment as-
signment variable with the outcome under study in the RD design. When assignment in 
RD was close to at random, or based on a variable that poorly correlates with outcome, 
estimates were more efficient than RD based on a variable highly correlating with 
outcome. These comparisons were made with the unadjusted treatment effect estimate 
from a similarly-sized RCT. However, compared to an adjusted treatment effect estimate 
from an RCT, the (in)efficiency of the RD design is independent of the correlation be-
tween assignment variable and outcome measure. In the case study, RD estimates from 
assignment based on a random variable or variable poorly correlating with outcome 
were more similar to the global RCT estimates than the RD estimates from assignment 
based on a variable highly correlating with outcome. These findings show that the 
relative efficiency of the RD design is not dependent on the correlation between the 
treatment assignment variable and outcome.

Table 3. Patient characteristics and explained variance with 14-day mortality in the CRASH trial (n = 9,554)

Characteristic N (%) R2 #

Random treatment allocation 4800 (50) 0^

Age, median (IQR) 33 (23 - 47) 7

Motor score* 22

1 785 (8) 

2 515 (5) 

3 659 (7) 

4 1181 (12) 

5/6 6414 (67) 

Pupillary reactivity 19

Both responsive 8100 (85) 

One responsive 597 (6) 

Both unresponsive 857 (9) 

Predicted probability from full prediction 
model**, median (IQR)

0.15
(0.08 – 0.31)

31

14-day mortality 2323 (24) NA

# Explained variance with 14-day mortality for CRASH
^ independent of the treatment effect (in the absence of treatment effect)
* 1 Makes no movements, 2 Extension to painful stimuli, 3 Abnormal flexion to painful stimuli, 4 Flexion/with-
drawal to painful stimuli, 5/6 Localizes painful stimuli / Obeys commands
**Age, motor score and pupillary reactivity
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Efficiency of different RD assignment strategies

First, the simulation study shows higher relative efficiency of RD based on a random or 
poorly correlating variable than RD based on a higher correlating assignment variable, 
when compared to an unadjusted RCT. We found that RD based on a random variable 
needs 2.75 times as many patients to have the same statistical power as in an unadjusted 
RCT, which is similar to what has been described in other studies on the efficiency of RD 
compared to RCTs.(7, 8, 16, 17)

We note that treatment effect estimates in RD are conditional on the assignment 
variable. Thus, comparing RD estimates with conditional estimates from an RCT with 
adjustment for the assignment variable would be the more appropriate comparison. 
A feature of covariate adjustment with nonlinear models, such as logistic regression, 
is an increase of the standard error of the conditional treatment effect estimate from 
an RCT.(18-20) The increase in relative efficiency of RD based on a higher correlating 
assignment variable is eliminated when the standard errors of estimates are compared 
to the increased standard errors of the treatment effect estimate from the adjusted RCT, 

Table 4. RCT and RD analyses in the CRASH (n=9 554), repeated 5000 times.

Analysis Adjustment Covariate for adjustment N total OR (95% CI) for 
14-day mortality

Standard
error

Randomized controlled trial (50% subset)

Logistic regression - 4777 1.20 (1.05-1.37) 0.07

Logistic regression Linear Age 4777 1.22 (1.06-1.40) 0.07

Logistic regression RCS Age 4777 1.22 (1.07-1.40) 0.07

Logistic regression Linear Linear predictor full model 4777 1.27 (1.09-1.48) 0.08

Logistic regression RCS Linear predictor full model 4777 1.27 (1.09-1.48) 0.08

Regression discontinuity: assignment based on random variable with no correlation with outcome

Logistic regression - 4777 1.20 (1.05-1.37) 0.07

Logistic regression RCS Random 4777 1.21 (0.86-1.69) 0.17

Local logistic regression - 4777 1.20 (0.97-1.50) 0.11

Regression discontinuity: assignment based on low (R2 = 0.07) correlating assignment model with 
outcome*

Logistic regression RCS Age 4777 1.44 (0.95-2.19) 0.21

Local logistic regression - 4777 1.13 (0.91-1.41) 0.11

Regression discontinuity: assignment based on high (R2 = 0.31) correlating assignment model with 
outcome**

Logistic regression RCS Linear predictor full model 4777 1.69 (1.01-2.82) 0.26

Local logistic regression - 4777 1.41 (1.12-1.76) 0.11

* The median age was used as a cut-off for treatment assignment. Age ≤ 33 receiving no treatment and age > 
33 receiving treatment.
**Assignment based on the linear predictor of age, pupillary reactivity and motor score as predictors for out-
come. The median linear predictor was used as a cut-off for treatment assignment.
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since the increase of standard error of the treatment effect estimated in an adjusted RCT 
is higher in case of a high correlating assignment variable. In other words, when the RCT 
estimates are conditioned on the same covariates as used in the RD design, the relative 
efficiency is independent of the correlation between the assignment variable and the 
outcome.
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A) Nonlinear rcs function (the function fitted is 14 day mortality ~ treatment * rcs [age]) of the interaction of the 
treatment effect over the range of age in the CRASH trial. Interaction test of age * treatment was not significant 
(p = 0.17).

−3 −2 −1 0 1 2 3 4

−
4

−
3

−
2

−
1

0
1

2
3

Linear predictor of full model

Lo
go

dd
s 

of
 m

or
ta

lit
y

treatment
control

B) Nonlinear rcs function (the function fitted is 14 day mortality ~ treatment * rcs [linear predictor of the full 
model]) of the interaction of the treatment effect over the range of the linear predictor in the CRASH trial. Interac-
tion test of the linear predictor * treatment was not significant (p = 0.99).

Figure 1. Density plot of the assignment variables and nonlinear restricted cubic spline functions of the 
interaction of the treatment effects over the range of the assignment variables in the CRASH trial (n=9,554).
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In the simulations and in the case study two different methods for the analysis of the 
treatment effect estimate were used: local logistic regression and logistic regression 
with adjustment for the assignment variable using restricted cubic splines (RCS). The 
two methods both provided valid treatment effect estimates. However, estimation of the 
treatment effect using local logistic regression would be the preferred method to use in 
an RD design since both in the simulations and the case study this method resulted in 
lower standard errors; local logistic regression provides more efficient estimations.

Validity of different RD assignment strategies

The treatment effects estimated in RCTs can be interpreted as global treatment effects. 
Interpreting RD estimates as global treatment effect estimates requires the assumption 
of an identical treatment effect over the full range of the assignment variable. This implies 
that treatment does not interact with the baseline assignment variable.(2) However, the 
treatment effect could vary over de range of the assignment variable, as is shown in 
Figure 1. We were able to plot this effect since we had the RCT data available. In contrast, 
in a prospective RD design, the assumption of no interaction between treatment and 
the assignment variable cannot be tested, since the treatment groups each have data 
on only one side of the cut-off. The RD estimates should thus primarily be interpreted 
as local treatment effects at the assignment cut-off.(9) This is also illustrated in our case 
study in CRASH. As expected, RD based on a random treatment assignment variable 
resulted in the same treatment effect estimates as in the RCTs. The estimates from RD 
based on a poorly correlating variable with outcome were more similar to the global RCT 
estimates, compared to the RD estimates with assignment based on a variable highly 
correlating with outcome. Indeed, the treatment effect varied over the range of the 
higher correlating variable (Figure 1b). This might reflect a more general explanation 
that treatment effect heterogeneity over the range of the baseline assignment variable 
is less likely when an assignment variable has a no correlation with outcome. When 
treatment assignment is based on a random or poorly correlating variable with outcome 
in RD, it may be more acceptable to assume a global treatment effect over the range of 
the assignment variable and the estimates from RD can be interpreted as an average 
treatment effect.

Implications

We can debate the applicability of a prospective RD design and choosing a variable 
for treatment assignment. There might be more clinical support to assign treatment 
to high-risk patients, because these patients have the highest absolute benefit of 
treatment, when the relative benefit is similar over the whole range of the assignment 
variable.(21) In an RD design this approach would not increase efficiency. Thus, in RD 
we do not necessarily have to aim for an assignment variable that strongly correlates 
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with outcome, such as a prognostic model that combines multiple predictors. It could 
be more practical to apply RD on a single baseline measurement, such as blood pres-
sure, cholesterol level or age. The simplicity of this approach is an advantage. Besides, 
compared to an unadjusted RCT this approach is more efficient. In clinical practice, it 
is not uncommon that treatment is assigned based on a single baseline measurement; 
this treatment assignment strategy highly resembles treatment assignment in an RD de-
sign. For example, intensified medical treatment given to very low-birth-weight-babies 
(weighing less than 1,500 g).(4, 22) Also a CD4 count threshold is used in HIV patients 
to determine treatment assignment for immediate vs. deferred antiretroviral therapy.(4, 
9) In traumatic brain injury, it is recommended to treat patients with intracranial pres-
sure monitoring above 22 mmHg.(23) These are examples of treatment assignment in 
daily clinical practice that resemble a ‘natural’ application of the RD design. In theory, 
observational data of these examples could be used to assess the (local) effectiveness 
of treatment. Thus, RD based on one single measure as an assignment variable may be a 
good trade-off between efficiency and feasibility in clinical practice.

Conclusion and recommendations

In conclusion, compared to an unadjusted analysis, the efficiency of an RD design could 
be increased by using an assignment variable with a low correlation with the outcome 
of interest. However, the relative efficiency compared to an adjusted analysis of the 
treatment effect in an RCT, was not dependent on the correlation between the treat-
ment assignment variable and outcome since the adjustment affects the efficiency of an 
RCT as well. We recommend researchers to use assignment variables that are feasible in 
clinical practice but do not necessarily have a high correlation with outcome, to facilitate 
patient inclusion and optimize efficiency in a prospective RD design.
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Appendix 1

## Activation of required libraries
library(rms)
library(foreign)
library(gam)

set.seed(100)

n_patients	 <- 5000
treatment_effect	 <- 0
n_sim	 <- 10000
Est_Effect	 <- matrix(nrow = n_sim, ncol=24)
colnames(Est_Effect)	 <- c(“Tx-effect RCT1”, “se RCT1”,
	 “Tx-effect RCT2”, “se RCT2”,
	 “Tx-effect RCT3”, “se RCT3”,
	 “Tx-effect RCT4”, “se RCT4”,
	 “Tx-effect RCT5”, “se RCT5”,
	 “Tx-effect RDrandom1”, “se RDrandom1”,
	 “Tx-effect RDrandom2”, “se RDrandom2”,
	 “Tx-effect RDrandom3”, “se RDrandom3”,
	 “Tx-effect RDlow1”, “se RDlow1”,
	 “Tx-effect RDlow2”, “se RDlow2”,
	 “Tx-effect RDhigh1”, “se RDhigh1”,
	 “Tx-effect RDhigh2”, “se RDhigh2”)

for(i in 1:n_sim){
index	 <- sample(1:nrow(data), replace = TRUE, size = n_patients)
data$motor	 <- as.factor(data$motor)
data$pupils_i	 <- as.factor(data$pupils_i)
data$random	 <- rnorm(10008, 50, 12.5)
CRASH_sim <- data[index, c(“age”, “motor”,”pupils_i”, “random”)]
CRASH_sim$pupils_i1	 <- CRASH_sim$pupils_i==1
CRASH_sim$pupils_i2	 <- CRASH_sim$pupils_i==2
CRASH_sim$motor1	 <- CRASH_sim$motor==2
CRASH_sim$motor2	 <- CRASH_sim$motor==3
CRASH_sim$motor3	 <- CRASH_sim$motor==4
CRASH_sim$motor4	 <- CRASH_sim$motor==5
CRASH_sim$lp1	 <- with(CRASH_sim, 0)
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CRASH_sim$lp2	 <- with(CRASH_sim, 0.0289 * age)
CRASH_sim$lp3	 <- with(CRASH_sim, 0.0336 * age + 0.7878 * motor1 + 0.2312 * motor2 
+ -0.2916 * motor3 + -1.3765 * motor4 + 0.9090 * pupils_i1 + 1.7841 * pupils_i2)

## Randomized controlled trial
# Treatment “Randomize all patients”
CRASH_sim$T_RCT	 <- as.numeric(runif(n_patients) <= 0.5)
# Outcome “Randomize all patients”
CRASH_sim$O_RCTlp1	 <- with(CRASH_sim, plogis(-1.1355 + lp1 + treatment_effect 
* T_RCT)> runif(nrow(CRASH_sim)))
CRASH_sim$O_RCTlp2	 <- with(CRASH_sim, plogis(-2.2671 + lp2 + treatment_effect 
* T_RCT)> runif(nrow(CRASH_sim)))
CRASH_sim$O_RCTlp3	 <- with(CRASH_sim, plogis(-1.9675 + lp3 + treatment_effect 
* T_RCT)> runif(nrow(CRASH_sim)))
## Regression discontinuity, assignment with random variable
#Treatment “Regression discontinuity design”
CRASH_sim$T_RDD_R	 <- as.numeric(median(CRASH_sim$random)<CRASH_
sim$random)

#Outcome “Regression discontinuity design”
CRASH_sim$O_RDD_R	 <- with(CRASH_sim, plogis(-1.1355 + lp1 + treatment_effect 
* T_RDD_R)> runif(nrow(CRASH_sim)))

## Regression discontinuity, assignment with low correlating variable
#Treatment “Regression discontinuity design”
CRASH_sim$T_RDD_L	 <- as.numeric(median(CRASH_sim$lp2)<CRASH_sim$lp2)

#Outcome “Regression discontinuity design”
CRASH_sim$O_RDD_L	 <- with(CRASH_sim, plogis(-2.2671 + lp2 + treatment_effect 
* T_RDD_L)> runif(nrow(CRASH_sim)))

## Regression discontinuity, assignment with high correlating variable
#Treatment “Regression discontinuity design”
CRASH_sim$T_RDD_H	 <- as.numeric(median(CRASH_sim$lp3)<CRASH_sim$lp3)

#Outcome “Regression discontinuity design”
CRASH_sim$O_RDD_H	 <- with(CRASH_sim, plogis(-1.9675 + lp3 + treatment_effect 
* T_RDD_H)> runif(nrow(CRASH_sim)))
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#fit RCT
fit_RCT1	<- lrm(O_RCTlp1 ~ T_RCT, data = CRASH_sim, x=T, y=T)
fit_RCT2	<- lrm(O_RCTlp2 ~ T_RCT, data = CRASH_sim, x=T, y=T)
fit_RCT3	<- lrm(O_RCTlp2 ~ T_RCT + lp2, data = CRASH_sim, x=T, y=T)
fit_RCT4	<- lrm(O_RCTlp3 ~ T_RCT, data = CRASH_sim, x=T, y=T)
fit_RCT5	<- lrm(O_RCTlp3 ~ T_RCT + lp3, data = CRASH_sim, x=T, y=T)
#fit RD with assignment based on random variable
fit_RDD_random1	 <- lrm(O_RDD_R ~ T_RDD_R, data = CRASH_sim, x=T, y=T)
fit_RDD_random2	 <- lrm(O_RDD_R ~ rcs(random) + T_RDD_R, data = CRASH_
sim, x=T, y=T)
fit_RDD_random3	 <- gam(O_RDD_R ~ lo(random) + T_RDD_R, family = bino-
mial, data = CRASH_sim)
#fit RD with assignment based on low correlating variable
fit_RDD_low1	 <- lrm(O_RDD_L ~ rcs(lp2) + T_RDD_L, data = CRASH_sim, x=T, y=T)
fit_RDD_low2	 <- gam(O_RDD_L ~ lo(lp2) + T_RDD_L, family = binomial, data = 
CRASH_sim)
#fit RD with assignment based on high correlating variable
fit_RDD_high1	 <- lrm(O_RDD_H ~ rcs(lp3) + T_RDD_H, data = CRASH_sim, x=T, y=T)
fit_RDD_high2	 <- gam(O_RDD_H ~ lo(lp3) + T_RDD_H, family = binomial, data = 
CRASH_sim)

Est_Effect[i, ]	 <- c(fit_RCT1$coefficients[“T_RCT”],
	 sqrt(fit_RCT1$var[“T_RCT”, “T_RCT”]),

	 fit_RCT2$coefficients[“T_RCT”],
	 sqrt(fit_RCT2$var[“T_RCT”, “T_RCT”]),

	 fit_RCT3$coefficients[“T_RCT”],
	 sqrt(fit_RCT3$var[“T_RCT”, “T_RCT”]),

	 fit_RCT4$coefficients[“T_RCT”],
	 sqrt(fit_RCT4$var[“T_RCT”, “T_RCT”]),

	 fit_RCT5$coefficients[“T_RCT”],
	 sqrt(fit_RCT5$var[“T_RCT”, “T_RCT”]),

	 fit_RDD_random1$coefficients[“T_RDD_R”],
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	 sqrt(fit_RDD_random1$var[“T_RDD_R”, “T_RDD_R”]),

	 fit_RDD_random2$coefficients[“T_RDD_R”],
	 sqrt(fit_RDD_random2$var[“T_RDD_R”, “T_RDD_R”]),

	 fit_RDD_random3$coefficients[“T_RDD_R”],
	 (sqrt(diag(vcov(fit_RDD_random3)))[“T_RDD_R”]),

	 fit_RDD_low1$coefficients[“T_RDD_L”],
	 sqrt(fit_RDD_low1$var[“T_RDD_L”, “T_RDD_L”]),

	 fit_RDD_low2$coefficients[“T_RDD_L”],
	 (sqrt(diag(vcov(fit_RDD_low2)))[“T_RDD_L”]),

	 fit_RDD_high1$coefficients[“T_RDD_H”],
	 sqrt(fit_RDD_high1$var[“T_RDD_H”, “T_RDD_H”]),

	 fit_RDD_high2$coefficients[“T_RDD_H”],
	 (sqrt(diag(vcov(fit_RDD_high2)))[“T_RDD_H”]))
	
}

#Mean Effect estimate of treatment and standard error
colMeans(Est_Effect,na.rm=T)
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The overall aim of the thesis is to investigate how to optimize the design and analysis 
of randomized and non-randomized therapeutic studies, in order to increase the valid-
ity and reliability of causal treatment effect estimates, specifically in heterogeneous 
diseases.

Two specific research questions were addressed:
1)	 What are the benefits of more advanced statistical analyses to estimate treatment 

effects from RTCs in heterogeneous diseases?
a.	 What is the heterogeneity in acute neurological diseases with regard to baseline 

severity and further course of the disease?
b.	 What is the potential gain in efficiency of covariate adjustment and proportional 

odds analysis in RCTs in Guillain-Barré syndrome (GBS)?

We found substantial heterogeneity in the clinical severity and course in the acute stage 
and during follow-up of two well-defined acute neurological diseases (both GBS and 
traumatic brain injury (TBI)). Also, we found that covariate adjustment and proportional 
odds analysis most efficiently use available RCT data in such heterogeneous diseases 
and ensure balance between the treatment arms to obtain reliable and valid treatment 
effect estimates in RCTs in GBS.
2)	 What is the validity and reliability of the RD design compared to an RCT to estimate 

causal treatment effects?
a.	 What are threats to the validity of the RD design to estimate treatment effects com-

pared to an RCT?
b.	 How efficient is the RD design to estimate treatment effects compared to an RCT?
c.	 What are the potential benefits of an alternative assignment approach in an RD 

design?

For the second research question we found that the RD design may provide similar 
but substantially less precise treatment effect estimates compared to an RCT. Most 
important threats to validity of the RD design include misspecification of the functional 
form of the relationship between the assignment variable and outcome measure in the 
analysis and wrong assumptions on the heterogeneity of the treatment effect over the 
range of the assignment variable. We found that the RD design may provide similar but 
substantially less precise treatment effect estimates compared to an RCT. An RD design 
requires at least 2.75 times as many patients compared to an RCT to estimate the same 
precise treatment effects. Compared to an unadjusted analysis, the efficiency of an RD 
design could be increased by using an assignment variable with a low correlation with 
the outcome of interest. However, the relative efficiency compared to an adjusted analy-
sis of the treatment effect in an RCT, was not dependent on the correlation between the 
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treatment assignment variable and outcome since the adjustment affects the efficiency 
of an RCT as well.

In this chapter, the results of the studies are discussed with their implications. We also 
make recommendations and draw some overall conclusions.

Randomized controlled trials

RCTs are the reference standard to study the efficacy of medical interventions. However, 
especially in heterogeneous and rare neurological diseases it is a challenge to include a 
sufficient number of patients in an RCT to reach a sufficient statistical power to be able 
to detect statistically significant treatment effects. Moreover, due to the heterogeneity 
in clinical severity and outcome, small differences in baseline risk on outcome between 
the treatment arms may influence the estimated treatment effect.

Heterogeneity in Guillain-Barré syndrome
In chapter 2 we found that hospital admissions highly varied between patients with 
GBS, especially with regard to the number of hospital transfers and disease-related 
costs. GBS is a complex disorder because of the various stages in the disease course 

Table 1. Main research findings

Question Answer

What is the heterogeneity in acute 
neurological diseases with regard to 
baseline severity and further course of the 
disease?

We found substantial heterogeneity in the clinical severity and 
course in the acute stage and during follow-up of two well-defined 
acute neurological diseases (both GBS and traumatic brain injury 
(TBI)).

What is the potential gain in efficiency of 
covariate adjustment and proportional 
odds analysis in RCTs in Guillain-Barré 
syndrome (GBS)?

We found that covariate adjustment and proportional odds 
analysis most efficiently use available RCT data in such 
heterogeneous diseases and ensure balance between the 
treatment arms to obtain reliable and valid treatment effect 
estimates in RCTs in GBS.

What are threats to the validity of the 
RD design to estimate treatment effects 
compared to an RCT?

Most important threats to validity of the RD design include 
misspecification of the functional form of the relationship 
between the assignment variable and outcome measure in the 
analysis and wrong assumptions on the heterogeneity of the 
treatment effect over the range of the assignment variable.

How efficient is the RD design to estimate 
treatment effects compared to an RCT?

We found that the RD design may provide similar but substantially 
less precise treatment effect estimates compared to an RCT. An RD 
design requires at least 2.75 times as many patients compared to 
an RCT to estimate the same precise treatment effects.

What are the potential benefits of an 
alternative assignment approach in an RD 
design?

Compared to an unadjusted analysis, the efficiency of an RD 
design could be increased by using an assignment variable with a 
low correlation with the outcome of interest. However, the relative 
efficiency compared to an adjusted analysis of the treatment effect 
in an RCT, was not dependent on the correlation between the 
treatment assignment variable and outcome since the adjustment 
affects the efficiency of an RCT as well.
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that require different health care facilities, ranging from an intensive care unit in the 
progressive phase and a rehabilitation unit in the recovery phase. Moreover, the clinical 
course and related need of these facilities highly varies between patients, ranging from 
short term admissions at medium care units to admissions to intensive care units and 
rehabilitation units for months to even years. The complexity is reflected in the high 
frequency of transfers between departments and hospitals, especially shortly after 
initial admission. Transfers within and between hospitals were frequent: 40% of the 
patients were transferred at least one time and half of them were transferred within 
two days of initial admission. Moreover, in 25% of the cases, the admission may have 
been suboptimal form a cost-effectiveness perspective, including admission to other 
than (pediatric) neurology departments or ICUs, admission of mildly affected patients 
to ICUs and transfers shortly after the initial admission. The related costs were highly 
variable between patients and mainly associated with the severity of disease (Figure 
1). These findings are important with regard to designing future GBS studies. The large 
heterogeneity should be taken into account when designing an RCT in GBS.

Table 2. The pros and cons of RCTs and RD designs.

Challenge RCT RD Recommendation

Selection of patients Well-defined; still 
heterogeneous

Observational; focus 
on cut-off point

Selection in RCT based on subject 
knowledge; in RD based on 
treatment guidelines

Numbers of patients Relatively small Larger, but small 
around the point of 
interest

In RCTs covariate adjustment and 
more powerful statistical analyses; 
in RD using assignment variables 
that are feasible in clinical practice 
to facilitate patient inclusion

Comparability Causal inference possible 
by randomization, but 
differences may occur in 
baseline risk by chance

Causal inference 
possible around 
the cut-off point; 
more speculative for 
patient further from 
the cut-off point

Interpret treatment effect estimates 
from RCTs as global estimates; 
interpret treatment effect estimates 
from RD designs primarily as local 
estimates

Treatment effect 
heterogeneity

Both treatment arms 
available over the full 
range of the population; 
treatment effect 
heterogeneity can be 
tested, sample size may 
be insufficient to detect 
significant treatment 
effect heterogeneity

Treatment groups 
each have data 
on only one side 
of the cut-off, 
the assumptions 
required to estimate 
the global treatment 
effect cannot be 
tested

Interpret treatment effect estimates 
from RCTs as global estimates; 
in RD, global treatment effect 
estimates from RD designs should 
only be presented secondary to 
local treatment effect estimates
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Heterogeneity in traumatic brain injury
It is known that the TBI patient population is highly heterogeneous with regard to base-
line severity and outcome. This hampers TBI research, especially estimation of treatment 
effects in RCTs. To choose the best prognostic variables to use in covariate adjustment 
in RCTs, studies on the prognostic value of a baseline variable on outcome should be 
used. We studied the prognostic value of major extracranial injury (MEI) on mortality in 
TBI patients. Our results in chapter 3 show that MEI is an important prognostic factor for 
mortality in TBI patients. However, the prognostic effect is dependent on the population 
studied. First the strength of the effect is heterogeneous over the range of the brain 
injury severity. The prognostic effect of MEI is larger in patients with mild TBI. Moreover, 
we found that the effect is dependent on the time of inclusion in a study. In the registry 
we used in our study, MEI is strongly associated with mortality after adjustment for age, 
Glasgow Coma Scale motor score and pupil reactivity. In broadly selected observational 
studies and an RCT, including TBI patients surviving the early stage after their injury, 
the incremental prognostic value of MEI compared to known predictors of mortality 
was limited. These results are important for example to identify prognostic variables 

Figure 1. Interquartile ranges (grey boxes), 95% confidence intervals (whiskers) and median (dark lines in 
middle of the boxes) of costs of hospital admission for different maximal GBS disability scores.
Excluded was one patient who died. Circles are (extreme) outliers. Maximal GBS disability score during hospital 
admission: 1 = minor symptoms, 2 = able to walk 10m unassisted but unable to run, 3 = able to walk over 10m 
open space with help, 4 = bedridden or chair bound, 5 = needs ventilation for at least a part of the day.
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for covariate adjustment, in the design of future TBI trials. The meta-analysis in chapter 
3 implicates specifically that MEI is an important prognostic factor to correct for when 
studying the effect of pre-hospital interventions, including all patients starting from the 
time of injury. In contrast it would be less urgent to consider MEI in studies assessing 
in-hospital interventions, including mainly patients with more severe brain injury and 
patients who survived the early phase after injury.

With regard to research question 1a we conclude in that hospital admissions for GBS 
patients are highly heterogeneous, with frequent transfers and higher costs for those 
with more severe disease. Also, MEI is an important prognostic factor for mortality in TBI 
patients; however, the effect varies by population.

To assess the benefits of more advanced statistical analyses to estimate treatment 
effects from RCTs in heterogeneous populations, we studied covariate adjustment and 
proportional odds analysis in GBS in chapter 4.

Covariate adjustment
Covariate adjustment is a statistical method that adjusts the treatment effect for base-
line risk on poor outcome in the treatment and control arms. When the treatment arms 
are unbalanced, the unadjusted estimate of the treatment effect may be different than 
when treatment arms are fully balanced. Also, when there are no differences in baseline 
risk, the adjusted estimates will be more extreme than the unadjusted estimates.(1) On 
expectation, covariate adjustment leads to more extreme treatment effect estimates 
(further away from β = 0 or odds ratio = 1) and larger standard errors for non-linear 
regression models.(2) Although the standard error is larger when covariate adjustment 
is applied, the statistical power increases.(3, 4) The p-values are a function of the treat-
ment effect estimates and standard error. The increase in treatment effect estimate 
will outweigh increased in standard error and the p-values will be lower compared to 
unadjusted analysis.(2)

Indeed, in chapter 4, we found increased standard errors in all adjusted analyses 
compared to the unadjusted analyses. The better prognosis in the treatment group 
decreased the treatment effect estimate β after covariate adjustment in the Plasma 
Exchange (PE) vs Intravenous Immunoglobulin (IVIg) (PE vs IVIg) trial in patients with 
GBS. In the IVIg and placebo versus IVIg and Methyl-Prednisolone (MP) (IVIg vs MP) trial 
in patients with GBS, the treatment group had a lower probability of favorable outcome. 
Therefore, in the IVIg vs MP trial covariate adjustment led to a larger β and a smaller p 
value.

When investigating the effectiveness of a medical intervention in rare and heteroge-
neous neurological diseases, such as GBS, one has to deal with limited sample sizes. In 
GBS trials, the outcome ‘minimal one grade improvement’ on the GBS disability score, 
is often used as primary endpoint and implicitly involves a form of covariate adjust-
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ment. The baseline disease severity of the patient is taken into account in the analysis 
by estimating improvement for each patient from his or her own starting position 
at admission. This principle of a measure of change between baseline and follow up 
seems attractive to control for baseline imbalance. However, analyzing change does not 
control for baseline imbalance caused by regression to the mean(5, 6); baseline values 
are negatively correlated with change because patients with high scores (more severely 
affected patients) at baseline generally improve more than those with low scores.(7) 
Therefore covariate adjustment with the absolute baseline value is still preferable over 
implicitly taking into account baseline severity in the outcome measure ‘improvement’ 
(Table 3). Moreover, disease severity at baseline is not the only relevant covariate. For 
example, age will be an important covariate in most diseases.

When designing a trial, the analysis plan should be precisely pre-specified, including 
the covariates that will be used for adjustment. Previous studies showed that the stron-
ger the effect of the covariates on outcome, the larger the increase in statistical power 
with covariate adjustment will be.(8-10) In GBS, predictors of outcome are relatively well 
known(11, 12) and therefore pre-specifying important baseline variables for covariate 
adjustment is possible in GBS trials.

Proportional odds analysis
Another, more advanced statistical method for analyses of outcome in RCTs is propor-
tional odds analysis. Proportional odds analysis optimally exploits the ordinal nature of 
outcome scales, which are frequently used as primary outcome measures in RCTs. The 
proportional odds analysis estimates the treatment effect on each cut-off of the ordinal 
outcome scale, instead of estimating the treatment effect on the difference between 
the averages scores in the treatment arms, as in linear regression. The proportional odds 
model results in a common OR, which is interpretable as a pooled or overall OR for the 
different cut-offs. The common OR can be interpreted as the average shift over the total 
ordinal outcome scale caused by the treatment under study.(13-16) Because the ordinal 
analysis uses the full ordinal outcome scale instead of one dichotomy, the variance will 
be smaller compared to binary analysis. This was confirmed in our study in chapter 4, 
where the proportional odds resulted in lower standard errors compared to the binary 
approaches.

In the PE vs IVIg trial in patients with GBS, the ORs for each cut-off were very similar 
and as a result the common OR was also similar. Thus, with a smaller SE, the p-value 
was lower. In contrast, in the IVIg vs IVIg+MP trial in patients with GBS, the ORs for each 
cut-off were more scattered. One explanation is chance: the ORs for the different cut-offs 
are uncertain, especially at the tails of the outcome scale where numbers are usually 
small. However, almost all binary ORs have confidence intervals that overlap. Another 
explanation is that the treatment effect is truly different for different cut-offs, although 
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this is considered unlikely for a disorder like GBS. In hindsight, the cut-off chosen in the 
reference approach (more than the other possible cut-offs) improvement appeared to 
be the optimal cut-off from a statistical perspective, since it was the only cut-off result-
ing in a significant treatment effect.

Proportional odds assumption
The common OR from a proportional odds analysis is formally valid if the ORs for each 
cut-off are the same. This is called the proportional odds assumption. We can, however, 
interpret the common OR as a summary measure of the treatment effect, even if the ORs 
differ per cut-off.(13, 17) In a recent RCT on decompressive craniectomy for traumatic 
intracranial hypertension, the common OR from the proportional odds model was not 
presented because the proportional odds assumption was violated; surgery strongly 
reduced mortality but at the cost of more vegetative state and severe disability.(18) In-
stead, the authors reported a descriptive analysis, ignoring the ordering in the outcome. 
The overall trial result was difficult to interpret. However, it is not the violation of the 
proportional odds assumption that complicates the interpretation of a proportional 
odds ratio, but the lack of consensus on the value judgment on the ordering of dead, 
vegetative state and severe disability in the ordinal scale. If there is agreement that each 
score on a certain scale is more favorable than a one point lower score, statistical test-
ing of the proportional odds assumption is redundant.(19) Proportional odds analysis 

Table 3. Characteristics of different methods of treatment effect analysis in GBS trials. Approach in BOLD is 
the recommended approach.

Takes into account 
baseline imbalance

Takes into account ordinal 
nature of the outcome measure

Unadjusted binary logistic regression on cutoff for 
GBS disability score

NO NO

Adjusted binary logistic regression on cutoff for 
GBS disability score

YES NO

Unadjusted binary logistic regression on ≥ 1 grade 
improvement on GBS disability score

PARTLY* NO

Adjusted binary logistic regression on ≥ 1 grade 
improvement on GBS disability score

YES NO

Unadjusted proportional odds logistic regression 
on GBS disability score

NO YES

Adjusted proportional odds logistic regression 
on GBS disability score

YES YES

Unadjusted proportional odds logistic regression 
on ∆ GBS disability score

PARTLY* YES

Adjusted proportional odds logistic regression on 
∆ GBS disability score

YES YES

*Only baseline GBS disability score, no other covariates
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allows sample sizes to be reduced substantially, even when the proportional odds as-
sumption is not met.(15) We encourage the use of proportional odds analysis for the 
primary analysis of treatment effect in RCTs with an ordinal outcome. For transparency, 
the binary odds ratios for each cut-off of the ordinal outcome should be presented, as 
in Figure 2 and chapter 4. If there is consensus on the ordering, the common OR can be 
presented and interpreted as a summary estimate of the treatment effect, regardless of 
violation of the proportional odds assumption.

In summary, covariate adjustment and proportional odds analysis most efficiently 
use the available RCT data and ensure balance between the treatment arms to obtain 
reliable and valid treatment effect estimates. These approaches merit application in 
future trials in rare and heterogeneous neurological diseases like GBS. For GBS, covariate 
adjustment should be applied with known predictors for (functional) clinical outcome, 
specifically age at diagnosis, presence of preceding diarrhea, GBS disability score and 
MRC sum score.(11, 12) Although covariate adjustment and proportional odds analysis 
increase statistical power, it is not advised to lower the sample size of the study, since in 
practice most trials are underpowered.

Regression discontinuity design

In some situations, an RCT might be complicated to perform, due to regulatory require-
ments, patients’ treatment preferences or (perceived) lack of equipoise. In such situa-
tion, data from observational studies may be used to estimate a treatment effect by 
comparing the clinical course in subgroups of patients receiving different treatments. 

Figure 2. Treatment effect analysis: forest plots of the adjusted binary and proportional odds logistic re-
gression in the IVIg + placebo vs IVIg + Methylprednisolon (IVIg vs MP) trial
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A major challenge in such observational studies of the effectiveness of treatment is 
to correct for unmeasured confounders. Estimating the causal relation between treat-
ment and outcome is often hampered by confounding by indication. It is stated that 
the quasi-experimental RD design is a promising design to assess the causal inference 
between a medical intervention and outcome.(20) The second part of this thesis focused 
on the validity and reliability of this alternative study design.

Causality in a regression discontinuity design
The controlled allocation of treatment is the most important advantage of a prospective 
RD design over an observational study. This characteristic of the design is similar to an 
RCT. In both an RCT as in a (prospective) RD design, we have good understanding of the 
mechanism of assignment of treatment.(21) In RCTs, treatment allocation is at random 
and in RD the assignment of treatment is based on a baseline assignment variable. 
Treatment effect estimates from an RCT can be interpreted as a causal relation between 
treatment and the outcome, because the treated and the control patients are exchange-
able. In an RD design the treated and the control patients are not exchangeable over the 
complete range of the assignment variable since they have a systematically different 
baseline value. In RD the treated and control patients are only replaceable around the 
cut-off of the assignment variable.(21, 22) Therefore, in an RD design, causal inference 
can only be made around the cut-off. This assumption can be tested, by showing a 
histogram of the treatment assignment variable, like is presented in the supplementary 
figures of chapter 6. Hahn et al.(23) shows that without this area of overlap, continuity in 
the assignment variable near the cut-off is sufficient to obtain unbiased estimates of the 
treatment effect. Visual inspection of the data can confirm that the assignment variable 
is continuous at the cut-off.(24)

Global vs. local treatment effect estimates
RD may provide similar estimates of treatment effects to RCT estimates, but it requires the 
assumption of a global treatment effect over the full range of the assignment variable. 
However, the causal treatment effect estimated in RD should be primarily interpreted as 
a local treatment effect estimate, around the cut-off. Even with comparable RCT and RD 
data, it might not be completely straightforward to compare estimates from an RCT and 
an RD design.(21) The overall RCT estimate is the average treatment effect in the whole 
RCT population.(2, 8, 25, 26) An RD estimate is a local treatment effect among patients 
at the cut-off and may vary dependent on the cut-off for treatment assignment.(27) Only 
when the treatment effect is constant over the full range of the assignment variable, the 
treatment effect estimate from an RD design can be interpreted as a global treatment 
effect estimate, and is comparable to the global RCT estimate.(21) In order to estimate 
a global treatment effect estimate in RD, one would have to feel confident modeling 
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the relationship between the assignment variable and the outcome even where it is not 
observed in the data.(21, 28, 29) In a prospective RD design, it is not possible to assess 
whether there is heterogeneity of the treatment effect over the range of the baseline 
assignment variable, since the treatment groups each have data on only one side of the 
cut-off. So, the assumptions required to estimate the global treatment effect cannot be 
tested in a prospective RD design. Therefore, we suggest that global treatment effect 
estimates from RD designs should only be presented secondary to local treatment effect 
estimates and not as the primary parameter of interest.

This thesis shows that when there is no interaction between the assignment variable 
and treatment – and thus a global treatment effect can be estimated – the results from 
the RCS or polynomial adjusted analyses and local logistic regression are more similar 
to each other than when there is treatment effect heterogeneity over the assignment 
variable. For example, in chapter 5 and 6, we found no interaction between treatment 
and the assignment variable in one of the validation studies and the results from both 
logistic regression with RCS adjustment and local logistic regression were similar in 
this example. In the other two validation studies in chapter 6, non-linear restricted 
cubic spline functions of the interaction of the intervention effects over the assignment 
variables showed interaction between the assignment variable and treatment, and the 
results from the analysis with local logistic regression and the RCS adjusted analyses 
were less similar.

In conclusion, RD may provide similar estimates of treatment effects to RCT estimates 
but requires the assumption of a global treatment effect over the full range of the as-
signment variable. This assumption is not verifiable within the RD design.

Efficiency of the RD design compared to an RCT
The RD estimates appeared to be substantially less efficient than RCT estimates. In 
chapter 5 and 6, we assessed the difference in efficiency of RD compared to an RCT for 
both continuous and dichotomous outcome parameters. For continuous outcomes, in 
terms of statistical precision, the RD with RCS adjustment was 1 to 4 times less efficient 
than an RCT for the local effects estimated. An RD design analyzed with adjusted logistic 
regression using RCS adjustment implies that 7 to 12 times more patients need to be 
included in the study compared to an RCT design. If one would analyze the RD design 
with local logistic regression, this study would need about 3 times more patients than 
an RCT. So, the local regression approach was more efficient compared to the adjusted 
logistic regression. In terms of efficiency, local logistic regression would be preferred to 
analyze an RD design.

In summary, the RD design provides substantially less precise treatment effect es-
timates compared to an RCT. When considering a prospective RD design, researchers 
need to weigh better recruitment against the substantial loss in precision.



General discussion 165

Efficient assignment approach in RD
In chapter 7 we assessed the potential efficiency of an alternative treatment assign-
ment strategy. When assignment in RD was close to at random, or based on a variable 
that poorly correlates with outcome, estimates were more efficient than RD based on 
a variable highly correlating with outcome. These comparisons were made with the 
unadjusted treatment effect estimate from a similarly-sized RCT. However, compared to 
an adjusted treatment effect estimate from an RCT, the (in)efficiency of the RD design is 
independent of the correlation between assignment variable and outcome measure. In 
the case study, RD estimates from assignment based on a random variable or variable 
poorly correlating with outcome were more similar to the global RCT estimates than 
the RD estimates from assignment based on a variable highly correlating with outcome. 
These findings show that the relative efficiency of the RD design is not dependent on the 
correlation between the treatment assignment variable and outcome. We recommend 
researchers to use assignment variables that are feasible in clinical practice but do not 
necessarily have a high correlation with outcome, to facilitate patient inclusion and 
optimize efficiency in a prospective RD design.

Fuzzy RD
So far, we have discussed a sharp RD; an RD design with full adherence to the cut-off for 
treatment assignment. There could be cases in which assignment to treatment does not 
adhere fully to the cut-off. This could especially be the case in settings where retrospec-
tive data would be available to estimate treatment effectiveness with an RD design. This 
may result in what is called a fuzzy RD.(30) If the threshold is fuzzy(31), this means that 
other considerations to allocate treatment came into play that leads to the suspicion of 
confounding by indication.(20) If the range of miss-assignment is confined around the 
threshold score to a narrow range, then patients within that range can be excluded. This 
solution may work well only if the range being excluded is narrow, otherwise it will be 
difficult to accurately model the regression line near the threshold.(30) Fuzzy RD shows 
similarities with instrumental variable (IV) analysis; some say fuzzy RD is a form of IV.(35) 
In IV analysis an instrument is used to mimic randomization. In fuzzy RD the adherence 
of treatment assignment according to the cut-off can be used as an instrument; the 
analysis of the treatment effect would in this case be similar to IV analysis in which two-
stage least squares (2SLS) regression analysis.

Potential applications of RD
Although RD with treatment assignment based on poorly correlating values with out-
come could result in more valid and efficient effect estimates, one can debate about 
the feasibility of such a prospective RD design. In clinical practice there would be more 
support to assign treatment to the patients with a high risk on poor outcome, because 
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these patients would have more absolute benefit of being treated, when the relative 
benefit is similar over the whole range of the assignment variable. However, an RD 
design with treatment assignment for high risk patients would be inefficient. Moreover, 
application of a prospective RD design on a single baseline measurement, like blood 
pressure or age, which would have in general a lower correlation with outcome than a 
complete prognostic model, could be more practical. In clinical practice, it is common 
that treatment is assigned based on a single baseline measurement, and this highly re-
sembles the RD design. A few examples (Table 4) could be thought of and are described 
in literature. For example eligibility of medical interventions that are assigned based 
on a low birth weight (babies weighing less than 1,500 g) cut-off.(24, 32) In TBI, it is 
recommended to treat patients with more aggressive therapy when intracranial pres-
sure rises above 22 mmHg.(33) In HIV patients, a CD4 count threshold rule is used to 
determine treatment assignment for immediate vs. deferred antiretroviral therapy.(24, 
31) Another example could be treatment assignment based on time, like is included in 
stroke guidelines. Patients with an onset-to-door time below six hours are treated with 
intravenous thrombolysis. Patients outside this timeframe are refrained from treatment. 
These are examples of treatment assignment in daily clinical practice that resemble a 
‘natural’ application of the RD design. Observational data of these examples could be 
used to assess the (local) effectiveness of treatment with a retrospective application of 
the RD design. Based on the studies in this thesis the recommendation would be to 
select an assignment variable that resembles clinical practice, but not to strive for a high 
correlation of the assignment variable with outcome by combining multiple variables in 
an assignment model.

There is also potential for RD to be used in public health.(20) Often public health in-
terventions are applied below or above a certain threshold. For example, public health 
interventions could be applied to a population below or above a certain age or income 
level. The effectiveness of such public health interventions could be assessed using an 
RD design.

Table 4. Examples of potential applications of the RD design.

Disease / condition Assignment variable Cut-off for treatment

Babies with low birth weight Birth weight < 1,500 g

TBI Intracranial pressure > 22 mmHg

HIV CD4 count < 350 cells/mm3

Acute ischemic stroke Onset-to-door time < 6 hours

High blood pressure Systolic blood pressure > 140 mmHg
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An example of application of the RD design in pediatric oncology care
The potential application of the RD design can furthermore be illustrated in the following ex-
ample/application. We aimed to assess the effectiveness of treatment in a specialized pediat-
ric oncology care compared to treatment in a regular hospital in pediatric oncology patients 
using an RD approach. Since 2018, all Dutch pediatric oncology patients are treated in one 
specialized pediatric oncology center in the country.(34) However, there is little evidence on 
whether treatment of pediatric oncology patients in specialized pediatric oncology centers is 
beneficial compared to treatment in a regular hospital. An RD approach was used to estimate 
the causal effect of being treated in a pediatric oncology center (treatment) on mortality 
compared to being treated with regular hospital care (control). Observational data between 
2004 and 2013 of all Dutch leukemia patients and patients with an astrocytoma with age at 
diagnosis between 0 and 24 years was available in the nationwide Netherlands Cancer Reg-
istry. Baseline age was used as assignment variable. A (fuzzy) cut-off value of an age at diag-
nosis below 17 years was used for treatment assignment in a specialized pediatric oncology 
center (Figure 3). The treatment effect on mortality in this RD design was analyzed using Cox 
regression with RCS adjustment for age. A sensitivity analysis using two-stage least squares 
(2SLS) regression analysis was performed correcting the fuzzy treatment assignment. Pre-
liminary results showed a significant beneficial effect of being treated in a pediatric oncology 
center compared to being treated with regular hospital care (Figure 4). A hazard ratio (HR) 
of 0.54 (95% Confidence Interval (CI): 0.34-0.88) for treatment on mortality was estimated, 
with RCS adjustment for age. 2SLS Cox regression showed an HR for treatment on mortality 
of 0.50 (95% CI: 0.29-0.86). Although this study using an RD design does not provide defi-
nite evidence on the effectiveness of treatment in specialized pediatric oncology centers, we 
can conclude that treatment of pediatric oncology patients in specialized pediatric oncology 
centers might be beneficial on mortality compared to regular hospital care.
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Figure 3. Histogram of the distribution of baseline age of patients treated in either pediatric oncology 
center or with regular hospital care.



168 Chapter 8

Implications, recommendations and practical guidelines

In summary, when it is feasible to randomize (enough) patients, a randomized design is 
preferred over a non-randomized design, to study the effectiveness of a medical inter-
vention. Based on this thesis, implications and specific recommendations can be made 
when designing a future RCT in a heterogeneous disease.
•	 Covariate adjustment and proportional odds analysis most efficiently use the avail-

able trial data and ensure balance between the treatment and control group to 
obtain reliable and valid treatment effect estimates. Both covariate adjustment and 
proportional odds analysis merit application in future trials in rare and heteroge-
neous neurological diseases like GBS.

•	 To apply covariate adjustment in future trials good knowledge of the prognostic 
value of baseline characteristics is crucial to pre-specify the covariate adjustment. 
These variables can be identified based on clinical experience and past literature on 
the prognostic value of baseline characteristics.

•	 The common OR from a proportional odds analysis is a fair representation of the 
overall effect of treatment on the (ordinal) outcome. Moreover, this approach is more 
efficient compared to the binary approach. Therefore, we recommend the use of the 
full ordinal outcome scale in future trials in rare and heterogeneous neurological 
diseases. The binary odds ratios for each cut-off of the ordinal outcome should be 
reported as well. The common OR can be presented and interpreted as a summary 
estimate of the treatment effect, regardless of violation of the proportional odds 
assumption, when there is consensus on the ordering of the outcome scale.
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Figure 4. Scatterplot of the probability on 5-year mortality (ignoring censoring) per age.
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However, when an RCT is impossible, an RD design can be considered and is (when 
applicable) preferred over an observational design to assess effectiveness of a medical 
intervention. Based on this thesis the following implications and recommendations for 
the use of RD in both epidemiologic and clinical research can be made:
•	 In an RD design we have full understanding of the allocation of treatment, in contrast 

to other observational studies. The treated and control patients are exchangeable 
around the cut-off of the assignment variable and this enables local causal inference.

•	 The RD design may result in similar treatment effect estimates compared to an RCT 
but showed to be substantially less efficient than the RCT estimates. The assump-
tion, of exchangeability of both treatment arms around the cut-off, can be tested, 
by showing a histogram of the treatment assignment variable. Without an area of 
overlap, continuity in the assignment variable near the cut-off is sufficient to obtain 
unbiased local estimates of the treatment effect.

•	 If it is possible to design a prospective RD design, we need sample sizes far larger than 
achievable in RCTs. Otherwise, large observational registry data should be available 
to apply a retrospective RD. Observational data of treatment assignment strategies 
in daily clinical practice that resemble a ‘natural’ application of the RD design could 
be used to assess the (local) effectiveness of treatment.

•	 With an RD design, cautious conclusions should be drawn with respect to treatment 
effectiveness. RD estimates should primarily be interpreted as local treatment ef-
fects since causal inference can most reasonably be drawn at the cut-off for treat-
ment assignment. Global treatment effect estimates from RD designs should only 
be presented secondary to local treatment effect estimates and not as the primary 
parameter of interest.

•	 The relative efficiency compared to an adjusted analysis of the treatment effect in an RCT, 
was not dependent on the correlation between the treatment assignment variable and 
outcome since the adjustment affects the efficiency of an RCT as well. When designing a 
prospective RD study, we recommend researchers to use assignment variables that are 
feasible in clinical practice but do not necessarily have a high correlation with outcome, 
to facilitate patient inclusion and optimize efficiency in a prospective RD design.

In conclusion, neurologic diseases are highly heterogeneous with regard to pathogenesis 
and natural disease course, severity and outcome. Both heterogeneity and small sample 
sizes can cause insufficient statistical power to detect true treatment effect in RCTs. 
Covariate adjustment and proportional odds analysis are solutions for these challenges.

Based on our findings it is recommended to consider an RD design only when it is 
infeasible to design randomized studies to assess the effect of treatment. The RD design 
may be a valid alternative to estimate local treatment effects, although this design is 
substantially less efficient than an RCT and only cautious conclusions can be drawn.
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Chapter 1, the general introduction, gives an overview of the background and aims 
addressed in this thesis. Randomized clinical trials (RCTs) provide the most reliable 
evidence of effectiveness of medical interventions. Specific challenges with regard to ef-
ficiency arise when conducting RCTs in rare diseases in heterogeneous populations are 
challenging. Despite the random allocation between treatment- and control group, dif-
ferences in baseline risk on outcome can arise between the treatment arms, simply due 
to chance. Also, in diseases with large heterogeneity in natural disease course, severity 
and outcome, small differences in baseline risk on outcome between the treatment arms 
may have influence on the treatment effect estimated.

When performing an RCT is impossible, the quasi-experimental “regression disconti-
nuity” (RD) design is an alternative epidemiological design to study effectiveness of a 
medical intervention. In the RD design, treatment is not assigned randomly like in an 
RCT, but is allocated to a subset of patients, based on a cut-off of a baseline assignment 
variable. A subset of patients below the cut-off, not receiving a medical intervention, 
is considered as the control group. Due to the controlled treatment assignment, an RD 
design achieves balance on unobserved factors between the treatment- and control 
group, just like in an RCT. RD may thus provide an opportunity to obtain unbiased causal 
treatment effect estimates, when an RCT is not feasible.

The aim of this thesis was to assess the benefits of more advanced statistical analyses 
to estimate treatment effects from RTCs in heterogeneous diseases (part I; chapter 2, 
3 and 4). Besides, the validity and reliability of the RD design compared to an RCT to 
estimate causal treatment effects was studied (part II; chapter 5, 6 and 7).

In chapter 2 we found that hospital admissions for Guillain Barré syndrome (GBS) pa-
tients were heterogeneous, especially with regard to number of transfers and costs. GBS 
is a complex disorder because of the various stages in the clinical course and diversity 
in clinical course between patients. The complexity is reflected in the high frequency of 
transfers between departments and hospitals, especially shortly after initial admission. 
Transfers within and between hospitals were frequent: 40% of the patients were trans-
ferred at least one time and half of them were transferred within two days of admission. 
Moreover, in 25% the admission may have been suboptimal form a cost-effectiveness 
perspective, including admission to other than (pediatric) neurology departments or 
ICUs, admission of mildly affected patients to ICUs and transfers shortly after the initial 
admission. The related costs were highly variable between patients and mainly associ-
ated with the severity of disease. The large heterogeneity should be taken into account 
when designing an RCT in GBS.

In chapter 3, we studied the prognostic value of major extracranial injury (MEI) on 
mortality in traumatic brain injury (TBI) patients. Our results show that MEI is an im-
portant prognostic factor for mortality in TBI patients. However, the prognostic effect is 
dependent on the population studied. First the strength of the effect is heterogeneous 
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over the range of the brain injury severity. The prognostic effect of MEI is larger in pa-
tients with mild TBI. Moreover, we found that the effect is dependent on the time of 
inclusion in a study. In the registry we used in our study, MEI is strongly associated with 
mortality after adjustment for age, Glasgow Coma Scale motor score and pupil reactivity. 
In broadly selected observational studies and an RCT, including TBI patients surviving 
the early stage after their injury, the incremental prognostic value of MEI compared to 
known predictors of mortality was limited. These results are important for example to 
identify prognostic variables for covariate adjustment, in the design of future TBI trials. 
Our meta-analysis implicates specifically that MEI is an important prognostic factor to 
correct for when studying the effect of pre-hospital interventions, including all patients 
starting from the time of injury. In contrast it would be less urgent to consider MEI in 
studies assessing in-hospital interventions, including mainly patients with more severe 
brain injury and patients who survived the early phase after injury.

In chapter 4 the benefits of both covariate adjustment and proportional odds analy-
sis in RCTs in GBS were assessed. On expectation, covariate adjustment leads to more 
extreme (further away from β = 0 or odds ratio = 1) treatment effect estimates and larger 
standard errors. Indeed, we found increased standard errors in all adjusted analyses 
compared to the unadjusted analyses. The better prognosis in the treatment group 
decreased the treatment effect estimate β after covariate adjustment in the Plasma 
Exchange vs Intravenous Immunoglobulin (PE vs IVIg) trial. In the IVIg and placebo 
versus IVIg and Methyl-Prednisolone (MP) (IVIg vs MP) trial, the treatment group had 
a lower probability of favorable outcome. Therefore, in the IVIg vs MP trial covariate 
adjustment led to a larger β and a smaller p value. The potential gain of proportional 
odds analysis was also assessed. The proportional odds analysis estimates the treatment 
effect on each cut-off of the ordinal outcome scale, instead of estimating the treatment 
effect on the difference between the averages scores in the treatment arms, as in linear 
regression. Because the ordinal analysis uses the full ordinal outcome scale instead of 
one dichotomy, the variability will be smaller compared to binary analysis. This was 
confirmed in our study, where the proportional odds resulted in lower standard errors 
compared to the binary approaches.

Chapter 5 describes simulations and a validation study to assess the validity and ef-
ficiency of the RD design with continuous outcomes, compared to an RCT. In both the 
simulations and the validation study the treatment effect estimates from an RCT were 
used as the reference for a prospectively performed RD. We estimated the treatment 
effect using linear regression adjusting for the assignment variable both as linear terms 
and restricted cubic spline (RCS) and using local linear regression models. In the first 
validation study, the estimated treatment effect β from a cardiovascular RCT was −4.0 
mmHg blood pressure (95% confidence interval (CI): −5.4, −2.6) at 2 years after inclusion. 
the estimated effect in RD was −5.9 mmHg (95% CI: −10.8, −1.0) with RCS adjustment. 
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RD showed different, local effects when analyzed with local linear regression. In the 
second RCT, RD treatment effect estimates on total cholesterol level at 3 months after 
inclusion were similar to RCT estimates, but at least six times less precise. We concluded 
that RD may provide similar estimates of treatment effects to RCT estimates but requires 
the assumption of a global treatment effect over the range of the assignment variable. 
In addition to a risk of bias due to wrong assumptions, researchers need to weigh better 
recruitment against the substantial loss in precision when considering a study with RD 
versus RCT design.

In Chapter 6, we aimed to evaluate validity and efficiency in the RD design for di-
chotomous outcomes compared to an RCT. We hereto performed validation studies 
in three large RCTs. To mimic the RD design, we selected patients above and below a 
cutoff (e.g., age 75 years) randomized to treatment and control, respectively. Adjusted 
logistic regression models using RCS and polynomials and local logistic regression mod-
els estimated the odds ratios (ORs) for treatment, with 95% CIs to indicate precision. 
In the first RCT, treatment increased mortality with OR 1.22 [95% CI 1.06e1.40] in the 
RCT. The RD estimates were 1.42 (0.94 - 2.16) and 1.13 (0.90 - 1.40) with RCS adjustment 
and local regression, respectively. In the second RCT, treatment reduced mortality (OR 
0.83 [0.72 - 0.95]), with more extreme estimates in the RD analysis (OR 0.57 [0.35 - 0.92] 
and 0.67 [0.51 - 0.86]). In the third RCT, similar RCT and RD estimates were found, again 
with less precision in RD designs. We concluded that the RD design provides similar but 
substantially less precise treatment effect estimates compared with an RCT.

Although we know that the RD design may provide valid treatment effect estimates, 
the design is inefficient. In chapter 7 we aimed to compare different assignment ap-
proaches to increase the statistical efficiency in RD. In Monte Carlo simulations, a random 
(R2=0), low (R2=7%) and highly (R2=31%) correlating variable with outcome was used for 
treatment assignment. Patients were sampled from the CRASH trial, with a dichotomous 
outcome simulated. The treatment effect was analyzed with both local logistic regres-
sion and logistic regression with spline adjustment. To assess the relative statistical 
efficiency, standard errors (SE) of the different treatment assignment strategies were 
compared with an RCT of the same total sample size. This procedure was repeated in 
CRASH (n=9,554) as a case study. In the simulations, treatment effect estimates were 
unbiased. To obtain the same efficiency as an unadjusted RCT, RD required 2.8 times as 
many patients when using an assignment variable not correlating with outcome, and 
approximately 3.3 times as many patients  when using an assignment variable highly 
correlating with outcome, using local regression. Compared to an adjusted RCT, the rela-
tive efficiency was not dependent on the correlation between the assignment variable 
and outcome since the adjustment affects the efficiency of an RCT as well. In the case 
study similar results were found.
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Chapter 8, focusses on implications and recommendations when designing an RCT or 
RD to study the effectiveness of a medical intervention. When designing a future RCT in 
heterogeneous diseases we recommend de following:
-	 Covariate adjustment and proportional odds analysis most efficiently use the avail-

able trial data and ensure balance between the treatment and control group to ob-
tain reliable and valid treatment effect estimates. These methods merit application 
in future trials in rare and heterogeneous neurological diseases like GBS.

-	 To apply covariate adjustment in future trials good knowledge of the prognostic 
value of baseline characteristics is crucial to pre-specify the variables for covariate 
adjustment. These variables can be identified based on clinical experience and past 
literature on the prognostic value of baseline characteristics.

-	 The common OR from a proportional odds analysis is a fair representation of the 
effect of treatment on the (ordinal) outcome. Moreover, this approach is more ef-
ficient compared to the binary approach. Therefore, we recommend the use of the 
full ordinal outcome scale in future trials in rare and heterogeneous neurological 
diseases.

However, when an RCT is impossible, an RD design can be considered and is preferred 
over an observational design to assess effectiveness of a medical intervention. Summary 
implications and recommendations to use RD in epidemiologic and clinical research can 
be made:
-	 In an RD design we have full understanding of the allocation of treatment, in contrast 

to observational studies. The treated- and control patients are replaceable around 
the cut-off of the assignment variable. This enables local causal inference.

-	 The RD design may result in similar treatment effect estimates compared to an RCT 
but are substantially less efficient than the RCT estimates. A prospective RD design 
needs much higher patient inclusion than RCTs. Otherwise, large observational 
registry data should be available to apply a retrospective RD.

-	 RD estimates should primarily be interpreted as local treatment effects and global 
treatment effect estimates should only be presented secondary to local treatment 
effect estimates.

-	 The relative efficiency compared to an adjusted analysis of the treatment effect in 
an RCT, was not dependent on the correlation between the treatment assignment 
variable and outcome since the adjustment affects the efficiency of an RCT as well.

-	 When designing a prospective RD study, we recommend researchers to use assign-
ment variables that are feasible in clinical practice but do not necessarily have a high 
correlation with outcome, to facilitate patient inclusion and optimize efficiency in a 
prospective RD design.
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In hoofdstuk 1, de algemene inleiding, wordt de achtergrond van het onderzoek 
uiteengezet en worden het doel en de onderzoeksvragen die in dit proefschrift wor-
den beantwoord beschreven. Gerandomiseerde klinische studies (RCT’s) bieden het 
meest betrouwbare bewijs van de effectiviteit van medische interventies. Specifieke 
uitdagingen met betrekking tot efficiëntie doen zich voor bij het uitvoeren van RCT’s bij 
zeldzame ziekten in heterogene populaties. Ondanks de willekeurige toewijzing tussen 
de behandel- en controlegroep in een RCT, kunnen door toeval verschillen in baseline 
risico op de uitkomst optreden tussen de behandelarmen. Ook kunnen bij ziekten met 
grote heterogeniteit in natuurlijk ziekteverloop, ernst en uitkomst, kleine verschillen 
in baseline risico op de uitkomst tussen de behandelarmen van invloed zijn op het 
geschatte behandeleffect.

Wanneer het uitvoeren van een RCT onmogelijk is, is het quasi-experimentele 
“regression discontinuity” (RD) design een alternatief epidemiologisch design om de 
effectiviteit van een medische interventie te onderzoeken. In het RD design wordt de 
behandeling niet willekeurig toegewezen, zoals in een RCT, maar wordt deze toegewe-
zen aan een subgroep van patiënten, op basis van een afkapwaarde van een baseline 
variabele. Een subgroep van patiënten onder de cut-off, die geen medische interventie 
krijgt, wordt beschouwd als de controlegroep. Vanwege de gecontroleerde toewijzing 
van behandeling in een RD design zijn de niet gemeten factoren tussen de behandel- en 
controlegroep in evenwicht, net als in een RCT. Een RD design biedt daarom de moge-
lijkheid om valide schattingen van het behandeleffect te krijgen, wanneer een RCT niet 
haalbaar is.

Het doel van dit proefschrift was om te onderzoeken wat de voordelen zijn van ge-
avanceerde statistische analyses, om behandeleffecten met RTC’s in heterogene ziektes 
te schatten (deel I, hoofdstuk 2, 3 en 4). Daarnaast werd de validiteit en betrouwbaar-
heid van het RD design om causale behandeleffecten te schatten, in vergelijking met 
een RCT, onderzocht (deel II, hoofdstuk 5, 6 en 7).

In hoofdstuk 2 wordt beschreven dat ziekenhuisopnames voor patiënten met de 
Guillain Barré-syndroom (GBS) heterogeen zijn, met name wat betreft het aantal trans-
fers en kosten. GBS is een complexe aandoening vanwege de verschillende stadia in het 
klinische beloop en de diversiteit in klinisch beloop tussen patiënten. De complexiteit 
wordt weerspiegeld in de hoge frequentie van overplaatsingen tussen afdelingen en 
ziekenhuizen, vooral kort na de initiële opname. Overplaatsingen binnen en tussen 
ziekenhuizen kwamen frequent voor: 40% van de patiënten werd ten minste één keer 
overgeplaatst en de helft daarvan werd binnen twee dagen na opname overgeplaatst. 
Bovendien was de ziekenhuisopname in 25% mogelijk suboptimaal vanuit een perspec-
tief van kosteneffectiviteit, vanwege opname op een andere afdeling dan (pediatrische) 
neurologie of IC, opname van mild aangedane patiënten op IC’s en overplaatsingen kort 
na de initiële opname. De gerelateerde kosten waren zeer variabel tussen patiënten en 
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vooral geassocieerd met de ernst van de ziekte. Bij het ontwerpen van een RCT in GBS 
moet rekening gehouden worden met de heterogeniteit van de populatie.

In hoofdstuk 3 bestudeerden we de prognostische waarde van groot extracranieel 
letsel (MEI) op mortaliteit bij patiënten met traumatisch hersenletsel (TBI). Onze 
resultaten tonen aan dat MEI een belangrijke prognostische factor is voor mortaliteit 
bij TBI patiënten. Het prognostische effect is echter afhankelijk van de TBI populatie 
die bekeken wordt. Ten eerste is de sterkte van het effect afhankelijk van de ernst van 
het hersenletsel. Het prognostische effect van MEI is groter bij patiënten met een mild 
TBI. Bovendien vonden we dat het effect afhankelijk is van de tijd van inclusie in een 
onderzoek. In de registratie data die we in onze studie hebben gebruikt, is MEI sterk ge-
associeerd met mortaliteit na correctie voor leeftijd, Glasgow Coma Scale motorscore en 
pupilreactiviteit. In breed geselecteerde observationele studies en een RCT, waaronder 
TBI patiënten die het vroege stadium na hun letsel overleefden, was de incrementele 
prognostische waarde van MEI in vergelijking met bekende voorspellers van mortaliteit 
beperkt. Deze resultaten zijn bijvoorbeeld belangrijk om prognostische variabelen voor 
‘covariate adjustment’ te selecteren, bij het ontwerpen van toekomstige TBI trials. Onze 
meta-analyse impliceert dat MEI een belangrijke prognostische factor is om voor te cor-
rigeren als het effect van pre-ziekenhuisinterventies wordt onderzocht, omdat in deze 
studies patiënten geïncludeerd worden direct vanaf het moment van het optreden van 
het letsel. Daarentegen zou het minder noodzakelijk zijn om MEI te overwegen mee te 
nemen in onderzoeken waarin interventies in ziekenhuizen worden beoordeeld, waarin 
voornamelijk patiënten geïncludeerd zijn met ernstig hersenletsel die de vroege fase na 
letsel overleefden.

In hoofdstuk 4 werden de voordelen van zowel ‘covariate adjustment’ als ‘propor-
tional odds analyse’ in RCT’s in GBS onderzocht. In theorie leidt het toepassen van 
‘covariate adjustment’ tot extremere (verder weg van β = 0 of odds ratio = 1) schattingen 
van behandeleffecten en grotere standaard errors. Inderdaad vonden we verhoogde 
standard errors in alle analyses met ‘covariate adjustment’ vergeleken met ongecorri-
geerde analyses. De betere prognose in de behandelgroep verkleinde de schatting van 
het behandeleffect β na ‘covariate adjustment’ in de Plasma Exchange vs Intravenous 
Immunoglobulin (PE vs IVIg) trial. In de IVIg and placebo versus IVIg and Methyl-Predni-
solone (MP) (IVIg vs MP) studie had de behandelgroep een lagere kans op een gunstige 
uitkomst. Daarom leidde ‘covariate adjustment’ in de IVIg vs MP studie tot een grotere 
schatting van het behandeleffect β en een kleinere p-waarde. De potentiële winst van 
‘proportional odds analyse’ werd ook onderzocht. ‘Proportional odds analyse’ schat het 
behandeleffect op elke afkappunt van de ordinale uitkomstschaal, in tegenstelling tot 
bij lineaire regressie waar het behandeleffect wordt geschat op het verschil tussen de 
gemiddelde scores in de beide behandelingsarmen. Omdat de ordinale analyse de vol-
ledige ordinale uitkomstschaal gebruikt in plaats van één dichotomie, zal de variabiliteit 
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kleiner zijn in vergelijking met binaire analyse. Dit werd bevestigd in onze studie, waar 
de ‘proportional odds analyse’ resulteerde in lagere standaard errors in vergelijking met 
de binaire aanpak.

Hoofdstuk 5 beschrijft simulaties en een validatiestudie om de validiteit en efficiëntie 
van het RD design te onderzoeken met continue uitkomsten, vergeleken met een RCT. 
In zowel de simulaties als de validatiestudie werden de schattingen van het behandelef-
fect van een RCT gebruikt als referentie voor een prospectief uitgevoerd RD design. We 
hebben het behandeleffect geschat met lineaire regressie gecorrigeerd voor de baseline 
variabele waarop behandeling is toegewezen. Dit deden we zowel met lineaire termen 
als met ‘restric cubic splines’ (RCS). Ook gebruikten we lokale lineaire regressiemodellen. 
In de eerste validatiestudie was het geschatte behandeleffect β van een cardiovasculaire 
RCT -4.0 mmHg (95% betrouwbaarheidsinterval (CI): -5.4, -2.6) op bloeddruk na 2 jaar. 
Het geschatte effect in RD was -5.9 mmHg (95% CI: -10.8, -1.0) met RCS adjustment. RD 
liet verschillende, lokale effecten zien wanneer lokale lineaire regressie werd gebruikt 
in de analyse. In de tweede RCT waren de RD schattingen van het behandeleffect op 
het totale cholesterolniveau na 3 maanden vergelijkbaar met de RCT schattingen, maar 
waren minstens zes keer minder nauwkeurig. We concludeerden dat RD vergelijkbare 
schattingen van het behandeleffect kan geven in vergelijking met een RCT, maar dit 
vereist de aanname van een globaal behandeleffect over het de gehele range van de 
variabele waarop behandeling wordt toebedeeld in RD. Naast een risico van bias in 
schattingen van het behandeleffect als gevolg van verkeerde aannames, moeten on-
derzoekers een makkelijkere inclusie van patiënten in een RD design afwegen tegen het 
aanzienlijke verlies aan precisie bij het overwegen van een onderzoek met RD versus 
RCT design.

In hoofdstuk 6 evalueerden we de validiteit en efficiëntie van het RD design voor 
dichotome uitkomsten in vergelijking met een RCT. We voerden validatie studies uit in 
drie grote RCT’s. Om het RD design na te bootsen, selecteerden we patiënten boven en 
onder een afkapwaarde (bijv. leeftijd 75 jaar) die in de RCT gerandomiseerd waren naar 
respectievelijk de behandel- en controlegroep. Met zowel logistische regressiemodellen 
gecorrigeerd met RCS en ‘polynomial’ termen, als lokale logistische regressiemodellen 
schatten we de odds ratio’s (ORs) en bijbehorende CI voor de behandeling. In de eerste 
RCT verhoogde de behandeling de mortaliteit met OR 1.22 (95% CI 1.06 -1.40) in de 
RCT. De schattingen in de RD designs waren 1.42 (0.94 – 2.16) en 1.13 (0.90 – 1.40) met 
respectievelijk RCS adjustment en lokale regressie. In de tweede RCT verminderde de 
behandeling mortaliteit (OR 0.83 (0.72 – 0.95)), met extremere schattingen in de RD 
analyse (OR 0.57 (0.35 – 0.92) en 0.67 (0.51-0.86)). In de derde RCT werden vergelijkbare 
RCT- en RD schattingen gevonden, opnieuw met minder precisie in RD designs. We 
concludeerden dat het RD design vergelijkbare maar aanzienlijk minder nauwkeurige 
schattingen van het behandeleffect oplevert in vergelijking met een RCT.
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Hoewel het RD design valide schattingen van het behandeleffect kan opleveren, is het 
design inefficiënt. In hoofdstuk 7 vergeleken we verschillende manieren om behande-
ling toe te wijzen om de statistische efficiëntie in RD te vergroten. In Monte Carlo simu-
laties, een random (R2=0), laag (R2=7%) en hoog (R2=31%) gecorreleerde variabele met 
uitkomst werd gebruikt om behandeling toe te wijzen. Dichotome uitkomsten werden 
gesimuleerd voor patienten gesampeled uit de CRASH trial. Het behandeleffect werd 
geanalyseerd met zowel locale logistische regressie en logistische regressie met splie 
correctie. Om de relatieve statisische efficientie te bepalen, werden standard errors (SE) 
van de verschillende behandeleffect schattingen vergeleken met een schatting uit een 
RCT met vergelijkbare sample size. Deze procedure werd herhaald in CRASH (n = 9,554), 
als case study. In de simulaties waren de behandeleffecten unbiased. Om dezelfde 
efficiëntie als een niet-gecorrigeerde RCT te verkrijgen, vereiste RD 2,8 keer zoveel pa-
tiënten bij gebruik van een toewijzingsvariabele die niet correleerde met de uitkomst, 
en ongeveer 3,3 keer zo veel patiënten bij gebruik van een toewijzingsvariabele die 
sterk correleerde met de uitkomst, gebruik makende van lokale regressie. Vergeleken 
met een gecorrigeerde RCT was de relatieve efficiëntie niet afhankelijk van de correlatie 
tussen de toewijzingsvariabele en de uitkomst, aangezien ‘covariate adjustment’ ook 
de efficiëntie van een RCT beïnvloedt. In de case study werden vergelijkbare resultaten 
gevonden.

Hoofdstuk 8, richt zich op de implicaties en aanbevelingen bij het ontwerpen van 
een RCT of RD om de effectiviteit van een medische interventie te onderzoeken. Bij het 
ontwerpen van een toekomstige RCT in heterogene ziektes bevelen we het volgende 
aan:
-	 Met behulp van ‘covariate adjustment’ en ‘proportional odds analyse’ worden de 

beschikbare onderzoeksgegevens het meest efficiënt gebruikt en wordt voor even-
wicht tussen de behandel- en controlegroep gezorgd om betrouwbare en valide 
schattingen van het behandeleffect te krijgen. Beide methoden dienen worden 
toegepast in toekomstige trials met zeldzame en heterogene neurologische aandoe-
ningen zoals GBS.

-	 Om ‘covariate adjustment’ toe te passen in toekomstige studies is een goede ken-
nis van de prognostische waarde van baseline karakteristieken van cruciaal belang, 
zodat het mogelijk is de variabelen voor ‘covariate adjustment’ van tevoren te 
specificeren. Deze variabelen kunnen worden geïdentificeerd op basis van klinische 
ervaring en de wetenschappelijke literatuur over de prognostische waarde van 
baseline karakteristieken.

-	 De common OR van een ‘proportional odds analyse’ is een juiste weergave van het 
effect van de behandeling op een ordinale uitkomst. Bovendien is deze methode ef-
ficiënter dan logistische regressie op een dichotomie van de ordinale schaal. Daarom 
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raden we aan om de volledige ordinale uitkomstschaal te gebruiken in toekomstige 
onderzoeken met zeldzame en heterogene neurologische aandoeningen.

Wanneer een RCT niet mogelijk is, kan een RD design worden overwogen. Als de effecti-
viteit van een medische interventie wordt onderzocht heeft een RD design de voorkeur 
boven een observationele studie. Samenvattende implicaties en aanbevelingen om RD 
te gebruiken in epidemiologisch en klinisch onderzoek kunnen worden gemaakt:
-	 In een RD design hebben we volledig inzicht in het mechanisme van toewijzing van 

de behandeling, in tegenstelling tot in observationele studies. De behandelde en 
controlepatiënten zijn uitwisselbaar rond de afkapwaarde van de variabele die ge-
bruikt wordt om behandeling toe te wijzen. Dit maakt lokale causale gevolgtrekking 
mogelijk.

-	 Het RD design kan vergelijkbare schattingen van het behandeleffect opleveren in 
vergelijking met een RCT, maar zijn aanzienlijk minder efficiënt dan de RCT schat-
tingen. Een prospectief RD design vereist veel hogere patiëntaantallen dan RCT’s. 
Een alternatief kan zijn om grote observationele registratiegegevens te gebruiken 
om een ​​retrospectief RD toe te passen.

-	 RD schattingen moeten in de eerste plaats worden geïnterpreteerd als lokale behan-
deleffecten. Schattingen van het globale behandeleffect dienen alleen secundair te 
worden gepresenteerd aan lokale schattingen van het behandeleffect.

-	 De relatieve efficiëntie in vergelijking met het behandelingseffect in een RCT met 
‘covariate adjustment’ was niet afhankelijk van de correlatie tussen de behandelings-
variabele en de uitkomst, omdat ‘covariate adjustment’ ook de efficiëntie van een 
RCT beïnvloedt.

-	 Bij het opzetten van een prospectieve RD studie bevelen we onderzoekers aan om 
toewijzingsvariabelen te gebruiken die haalbaar zijn in de klinische praktijk, maar 
die niet noodzakelijkerwijs een hoge correlatie met de uitkomst hebben, om de 
patientinclusie te vergemakkelijken en de efficiëntie van het RD design te optimali-
seren.
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Alle CMB-ers bedankt voor de samenwerking en gezelligheid! Veel dank ben ik verschul-
digd aan al het ondersteunende personeel op MGZ. Heren van de ICT helpdesk, bedankt 
voor jullie hulp als ik weer eens een apparaat had laten vastlopen. En speciale dank aan 
Sanne, Farsia en Judith, jullie zijn top!
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Jitske, Astrid, Elise, Kirsten, Linda en Nanda, volgens mij ben ik nu de laatste van ons 
groepje die promoveert, of hebben jullie nog plannen Jits en Elis? ;-) Bedankt voor alle 
koffie, gezelligheid, en het delen van alle life-events!

Esther, vanaf dag één dat we elkaar leerden kennen in het Erasmus MC waren we maatjes. 
Regelmatig kwam het voor dat we in dezelfde outfit op het werk verschenen. Ondanks 
dat we geen collega’s meer zijn ben ik blij dat we nu bevriend zijn.

De eerste jaren dat ik aan dit proefschrift werkte, was ik veel op de atletiekbaan te 
vinden. Alle atletiekvrienden, van binnen en buiten Rotterdam, die ik aan deze periode 
over heb gehouden, bedankt voor alle zware trainingen, trainingsstages, wedstrijden, 
toernooien, feestjes. Het was, mede dankzij jullie, een mooie periode in mijn leven!

De Prethoek mag natuurlijk niet ontbreken in mijn dankwoord. Michiel de Boer lag niet 
alleen ten grondslag aan mijn interesse in onderzoek en statistiek, maar ook aan onze 
naam. Lieve Malou, An, Kris en Marjo, bedankt voor jullie aanmoedigingen en interesse 
in mijn proefschrift, en voor het aanhoren van mijn eindeloze gezeur… En voor het 
bedenken van de naam van mijn eenmanszaak: N = 1. Onze etentjes zijn altijd een groot 
feest en ik verheug me nu al op onze volgende reis.

Eva en Marije, bedankt voor jullie onvoorwaardelijke vriendschap. Jullie zijn schatten!

Lieve Jas, waar moet ik beginnen, al heel lang zijn we vriendinnen. Interrailen door Italië, 
op safari in Tanzania, vele andere mooie tripjes, samen op de bank op de Statenweg, 
afzien op de atletiekbaan, samen NK medailles winnen, en ga zo maar door. Aan een 
half woord hebben wij genoeg. Inmiddels ben je samen met Daan je eigen gezin aan 
het bouwen, en daar geniet ik met volle teugen van mee. Bedankt dat je altijd voor me 
klaar staat. Ik kijk er naar uit nog veel mooie momenten in onze levens samen te delen! 
En misschien schrijven we toch ooit nog wel eens een paper samen?

Lieve Es, wat hebben we al veel meegemaakt samen: lief en leed gedeeld op de Staten-
weg, trainingsstages, wedstrijden, vele vakanties (Ensjoi!), ontelbaar veel legendarische 
(huis)feestjes, en nog heel veel andere avonturen... Ik bewonder en geniet van je open 
blik op het leven, niks is voor jou te gek. Bedankt dat je mijn paranimf wil zijn!

Lieve pap en mam,  van jullie heb ik geleerd om altijd door te zetten: “als je ergens aan 
begint, moet je het ook afmaken”. Mijn proefschrift is zeker een resultaat van deze instel-
ling die ik van jullie heb meegekregen. Ik kan altijd op jullie onvoorwaardelijke steun en 
liefde rekenen, niets is jullie te veel. Bedankt voor alles. Jullie zijn geweldig!



Dankwoord 193

Sam, mijn lieve broer, en paranimf. Van jongs af aan zijn wij twee handen op een buik. Ik 
bewonder je talent om te genieten van het leven, naar je gevoel te luisteren en buiten 
de gebaande paden te gaan. Ik ben super trots op je!

Lieve Bob, ik heb heel veel zin in de toekomst samen met jou!
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