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addhaz: Contribution of Chronic Diseases
to the Disability Burden Using R
by Renata Tiene de Carvalho Yokota, Caspar WN Looman, Wilma Johanna Nusselder, Herman Van
Oyen and Geert Molenberghs

Abstract The increase in life expectancy followed by the burden of chronic diseases contributes to
disability at older ages. The estimation of how much chronic conditions contribute to disability can be
useful to develop public health strategies to reduce the burden. This paper introduces the R package
addhaz, which is based on the attribution method (Nusselder and Looman, 2004) to partition disability
into the additive contributions of diseases using cross-sectional data. The R package includes tools to
fit the additive hazard model, the core of the attribution method, to binary and multinomial outcomes.
The models are fitted by maximizing the binomial and multinomial log-likelihood functions using
constrained optimization. Wald and bootstrap confidence intervals can be obtained for the parameter
estimates. Also, the contribution of diseases to the disability prevalence and their bootstrap confidence
intervals can be estimated. An additional feature is the possibility to use parallel computing to obtain
the bootstrap confidence intervals. In this manuscript, we illustrate the use of addhaz with several
examples for the binomial and multinomial models, using the data from the Brazilian National Health
Survey, 2013.

Introduction

The increase in longevity observed worldwide is usually followed by the burden of chronic diseases,
which are among the leading causes of disability late in life (Beard et al., 2016). Disability has become
a public health priority due to its adverse effects on health outcomes and quality of life, resulting in
increased costs of health care (Yang et al., 2014). Therefore, the identification of which chronic diseases
are the main contributors to the disability burden plays an important role in the formulation of public
health response to population aging (Klijs et al., 2011).

Although prospective studies are better suited to establish the causal relationship between chronic
diseases and disability, they are costly and usually with limited sample size. Alternatively, cross-
sectional data has been widely used to investigate the association of chronic diseases and disability.
Among the methods based on cross-sectional data, the attribution method proposed by Nusselder
and Looman (2004) has the advantage of partitioning the disability prevalence into the additive
contributions of chronic diseases, taking into account multimorbidity and that disability can be present
even in the absence of chronic diseases. The method was originally proposed for binary outcomes, but
it was recently extended to multicategory response variables (Yokota et al., 2017) and it is based on
the binomial and multinomial additive hazard models, respectively. The use of non-canonical link
functions in the models imposes a constraint on the linear predictor, which limits the use of standard
statistical software to fit the models, such as glm in R or proc GLM in SAS (SAS Institute Inc., 2008).
Despite this practical difficulty, the attribution method for binary outcomes has been widely used
previously with data from the Netherlands (Nusselder and Looman, 2004; Klijs et al., 2011), Belgium
(Nusselder et al., 2005; Yokota et al., 2015b), Germany (Strobl et al., 2013), China (Chen et al., 2013), and
Brazil (Yokota et al., 2016), owing to the development of the software in R to fit the binomial model
and to estimate the contribution of diseases to the disability prevalence by Nusselder and Looman
(2010) for non-R users, which is available upon request to the authors (w.nusselder@erasmusmc.nl).

In this manuscript we present the R package addhaz, which is an extension of the R software
developed by Nusselder and Looman (2010), offering an open-source implementation of the binomial
and multinomial additive hazard models. The R functions can also be used to calculate the contribution
of chronic diseases to the disability burden for both models.

This paper is structured as follows. In Section 2, a brief description of the attribution method
is presented, followed by the definition of the binomial and multinomial additive hazard models.
Section 3 introduces some features and options of addhaz. The existing alternative software to fit the
binomial and multinomial models is discussed in Section 4. Examples of how to use the R functions to
fit the models and to estimate contributions are shown in Section 5, using the data of the 2013 Brazilian
National Health Survey (BNHS). The main advantages and disadvantages of the attribution method
and addhaz are discussed in Section 6. Finally, conclusions and recommendations for future research
are outlined in Section 7.
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Attribution method

Analogous to the mortality analysis, in which a single disease is assigned as underlying cause of death
in the death certificate, the attribution method aims to assess the probability that a single reported
disease was the cause of disability in a survey, taking into account that individuals can report more
than one disease (multimorbidity) and that disability can be present without any reported diseases
(Nusselder and Looman, 2004, 2010).

In the attribution method, the disability that is not associated with any disease included in the
analysis is attributed to “background". The background can represent the effect of age-related losses in
functioning; underreporting and underdiagnosed diseases; and other causes of disability that were not
included in the survey or analysis. More details about the attribution method can be found elsewhere
(Nusselder and Looman, 2004, 2010).

The following assumptions are required to fit the binomial and multinomial additive hazard
models to cross-sectional data: (i) disability is caused by the diseases that are still present in the
time of the survey and the background; (ii) the estimated cross-sectional cumulative rates reflect the
transition rates that would have been estimated with longitudinal data (stationarity assumption); (iii)
the recovery rate is zero; (iv) the ratio of the cause-specific cumulative rates to the overall cumulative
rate is constant over time (proportionality assumption); (v) the start of the time (age) at risk to become
disabled is the same for all diseases; (vi) individuals from the same age group are exposed to the
same cumulative rate of disability for background; (vii) diseases and background act as independent
competing causes of disability (Nusselder and Looman, 2004, 2010).

Binomial additive hazard model

For binary outcomes, the binomial additive hazard model is defined as:

yi ∼ Bernoulli(πi)
πi = 1− exp(−ηi)

ηi = αai +
m

∑
d=1

βdXdi

(1)

where yi is the binary disability outcome; πi is the disability probability for individual i; ηi is the linear
predictor representing the overall cumulative rate (or cumulative hazard) of disability for individual i;
ai denotes the age group of individual i (with f age groups, ai can only get values between 1, . . . , f ); αa
is the cumulative rate of disability for background by age group a (a = 1, . . . , f ); βd is the cumulative
rate of disability (or disabling impact) for disease d(1, . . . , m); and Xdi is the indicator variable for
disease d and individual i.

A linear inequality constraint is applied to the linear predictor (ηi ≥ 0) to ensure that πi lies
between (0, 1). The standard errors (SE) for the regression coefficients are estimated based on the
inverse of the observed information matrix. The 95% Wald confidence intervals (Wald CI) can be
obtained using the standard errors described above (Wald CI) as showed in 2 or via bootstrapping
(Efron and Tibshirani, 1994).

95% Wald CI = α̂a ± 1.96(ŜE)
95% Wald CI = β̂d ± 1.96(ŜE)

(2)

Multinomial additive hazard model

The multinomial additive hazard model is an extension of the binomial model:

yij ∼ Multinomial(1, Πi)

πij =

[
1− exp(−

c
∑

q=1
ηiq)

] ηij
c
∑

q=1
ηiq


ηij = αai j +

m

∑
d=1

βdjXdi

(3)

where yij is the multinomial response variable (disability) with one independent observation and
vector of disability probabilities Πi = (πi0, . . . , πij, . . . , πic) per individual i; πij is the probability of
disability category j for individual i; ηij is the linear predictor (overall cumulative rate) for disability
category j and individual i; ai denotes the age group of individual i (with f age groups, ai can only
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get values between 1, . . . , f ); αaj is the cumulative rate of disability category j for background by age
group a (a = 1, . . . , f ); βdj is the cumulative rate of disability category j or disabling impact for disease
d(1, . . . , m); and Xdi is the indicator variable for disease d and individual i.

Besides the inequality constraint in the linear predictor ηij ≥ 0, an additional constraint is required:
∑c

j=1 πij < 1, to ensure that all πij > 0. Similar to the binomial case, the standard errors are estimated
by the inverse of the observed information matrix and the 95% Wald CI and bootstrap percentile
confidence intervals (bootstrap CI) can be obtained using addhaz.

Contribution of chronic diseases and background to the disability prevalence

The attribution of disability to chronic diseases depends on the disease prevalence (Xd) and the
disabling impacts of the diseases (βd and βdj) (Nusselder and Looman, 2004, 2010). The contribution
of chronic diseases and background to the disability prevalence can be calculated in five steps for both
binary and multicategory response variables.

Binary case

For the binary case, the cause-specific disability probabilities for individual i and each chronic condition
(D̂di) and the background (B̂i) are estimated based on the proportionality assumption, analogous to
the competing risks setting in mortality analysis (Manton and Stallard, 1984; Chiang, 1991):

D̂di = π̂i

(
β̂d Xdi

η̂i

)

B̂i = π̂i

(
α̂ai
η̂i

) (4)

Next, the number of disabled individuals by each disease (N̂d) and background (N̂b) are estimated
as:

N̂d =
n

∑
i=1

D̂di

N̂b =
n

∑
i=1

B̂i

(5)

The absolute contribution of each disease (ÂCd) and background (ÂCb) to the total disability
prevalence is obtained by:

ÂCd = N̂d
n

ÂCb = N̂b
n

(6)

The absolute contribution of background and diseases defined above sum to the disability preva-
lence (P̂):

P̂ = ÂCb +
m

∑
d=1

ÂCd (7)

Finally, the relative contribution of diseases (R̂Cd) and background (R̂Cb) to the disability preva-
lence is estimated by:

R̂Cd = ÂCd
P̂

R̂Cb = ÂCb
P̂

(8)

The relative contributions (R̂Cd and R̂Cb) sum to 1.

Multinomial case

Analogous to the binomial case, the contribution of chronic diseases to the disability prevalence for
multinomial outcomes can be obtained in five steps for each category j of the outcome:
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1. Cause-specific disability probabilities for each disease (D̂dij) and background (B̂ij) for individual
i:

D̂dij = π̂ij

(
β̂dj Xdi

η̂ij

)

B̂ij = π̂ij

(
α̂ai j

η̂ij

) (9)

2. Number of disabled individuals by each disease (N̂dj) and background (N̂bj):

N̂dj =
n

∑
i=1

D̂dij

N̂bj =
n

∑
i=1

B̂ij

(10)

3. Absolute contribution of each disease (ÂCdj) and background (ÂCbj) to the total disability
prevalence:

ÂCdj =
N̂dj
n

ÂCbj =
N̂bj
n

(11)

4. Total disability prevalence (P̂j):

P̂j = ÂCbj +
m

∑
d=1

ÂCdj (12)

5. Relative contribution of diseases (R̂Cdj) and background (R̂Cbj) to the disability prevalence:

R̂Cdj =
ÂCdj

P̂j

R̂Cbj =
ÂCbj

P̂j

(13)

The absolute contributions defined in equations 11 sum to the prevalence of disability for each
category j and the relative contributions defined in equations 13 sum to 1 for each disability category j.
The confidence intervals for the absolute and relative contributions for the binary and multinomial
cases can be estimated via bootstrapping (Efron and Tibshirani, 1994) in addhaz.

Features of addhaz

In this section, a brief explanation about the constrained optimization, the parallel option to obtain the
bootstrap CI for the parameter estimates, and the option to perform the likelihood ratio test for model
selection is provided.

Constrained optimization

The binomial and multinomial additive hazard models are generalized linear models with non-

canonical link functions ηi = log
(

1
1−πi

)
for the binomial model and ηij = [−log(1−∑c

q=1 πiq)]

(
πij

∑c
q=1 πiq

)
for the multinomial model. For both models, the model parameters are estimated using maximum
likelihood. The use of non-canonical link functions requires a constraint in the linear predictors (ηi ≥ 0
and ηij ≥ 0) to ensure that the disability probabilities (πi and πij) are valid, i.e., the probabilities lie
between 0 and 1. In addhaz, this constraint is implemented in the optimization procedure, with an
adaptive barrier algorithm (Lange, 2010), by calling constrOptim in R.

Parallel computing for the bootstrap CI

Besides the option to estimate the confidence intervals for the parameter estimates based on the
standard errors obtained by the inverse of the information matrix for the binomial and multinomial
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models (Wald CI), addhaz also offers the user the option to obtain the bootstrap CI based on empirical
percentiles of the replicates (Efron and Tibshirani, 1994).

To reduce computation time, parallel computing can be used to obtain the bootstrap CI. By default
R does not use all the cores available on a computer. The basic idea of parallel computing is to split
the work to more than one core of the computer, to execute it in parallel, and then to collect the results.
Several R packages can be used to implement parallel computation. In addhaz it is implemented by
calling the functions boot and boot.ci in the boot package (Canty and Ripley, 2016; Davison and
Hinkley, 1997).

Likelihood ratio test

The package also includes a function to perform the likelihood ratio test to compare two binomial or
multinomial nested models that can be used for model selection.

The likelihood ratio test is defined as -2*log(likelihood model 1/likelihood model 2).The resulting
test statistic is assumed to follow a χ2 distribution, with degrees of freedom (df) equal to the difference
of the df between the models. If the test is statistically significant, the model with more variables fits
the data significantly better than the model with less variables.

Alternative software

The original software for the attribution method (Nusselder and Looman, 2004, 2010) was developed
in R, but it is not available as an R package, since it focuses on non-R users: an Excel file is used to
input the model arguments and this file is called in the R code. This software is restricted to binary
outcomes and it is freely available upon request to the authors. Different from addhaz, a penalty
term is added to the binomial likelihood function when πi ≤ 0, to ensure that valid probabilities
are obtained. The original software also allows the user to obtain the bootstrap CI for the model
parameters and contributions. Additionally, it offers the options: (i) reduced rank regression (RRR)
(Yee, 2014) to reduce the number of parameters when interactions between diseases and age groups
are of interest; and (ii) model selection, using the likelihood ratio test.

Besides the original software, the parameter estimates of the binomial additive hazard model can
be obtained using the R packages stats with glm and logbin with the function logbin (Donoghoe, 2016).
In both packages, the log-binomial model, i.e., πi = exp(ηi), used to estimate relative risks (Marschner
and Gillett, 2012), can be fitted to a transformed version of the response variable y∗ = 1− y, with the log
link function. The estimated model parameters should be multiplied by −1, since 1− πi = exp(−ηi).
However, care should be taken with glm: by specifying the option family = binomial(link = log)
to fit the log-binomial model, convergence failure may occur with the iterative weighted least squares
(IWLS) algorithm when the maximum likelihood estimates (MLE) lie on the boundary of the parameter
space. In glm, the IWLS is modified so that if constraints are violated, step-halving is used iteratively
until they are respected. Although this should not result in invalid estimates, it may cause difficulty
in convergence. An advantage of logbin is that it includes constrained optimization as an option to
optimize the binomial log-likelihood function (method = "ab"). This is done by calling constrOptim
in R to constrain the parameter space.

Since addhaz was developed with focus on the attribution method, apart from estimating the
model parameters for the binomial additive hazard model, it also gives the user the option to obtain
the contribution of diseases to the disability prevalence and to obtain bootstrap CI for the parameter
estimates and the contributions, using parallel computing to reduce computation time.

To our knowledge, there is no other package available to fit the multinomial additive hazard
model. Although it is possible to fit the log-multinomial model (Blizzard and Hosmer, 2007), i.e., πij =
exp(ηij), with the function vglm in VGAM (Yee, 2016), different from the binomial case, no simple
transformation of the outcome can be applied to obtain the parameter estimates of the multinomial
additive hazard model using the log-multinomial model.

Using the package addhaz

In this section, the use of the functions BinAddHaz, MultAddHaz, and LRTest in addhaz are illustrated
using a subset of the 2013 BNHS available in the package. A selected output of the results is shown.
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Data description

The Brazilian National Health Survey (BNHS) (“Pesquisa Nacional de Saúde") was a nationally
representative survey of the Brazilian adult population (≥ 18 years) with approximately 60,000
individuals, conducted in 2013. A multistage sampling design with simple random sampling (census
tracts) and clustering (households and adults) was used. The response rate was 77%. Survey weights
were included to take into account the complex design of the sample. Detailed information about the
BNHS can be found in previous publications (Szwarcwald et al., 2014; Yokota et al., 2016).

In addhaz, a subset of the BNHS data is available, with women aged ≥ 60 years (n = 6,294) and
the following variables: disability as binary and multinomial outcomes, survey weight, age, diabetes,
arthritis, and stroke (Table 1).

Variable name Definition Type Categories
wgt survey weight continuous -

age age group binary 0: 60-79 years
1: ≥80 years

diab diabetes binary 0: no
1: yes

arth arthritis binary 0: no
1: yes

stro stroke binary 0: no
1: yes

dis.bin binary disability outcome binary 0: no disability
1: disabled

dis.mult multinomial disability outcome categorical
0: no disability
1: mild disability
2: severe disability

Table 1: Description of the variables included in the analysis. Brazilian National Health Survey, 2013.

The binomial and multinomial disability outcomes were defined based on five instrumental
activities of daily living (IADL): shopping, handling finances, taking own medications, going to the
doctor, and using transportation. Participants were asked about the degree of difficulty in performing
IADL tasks, with possible answers: “1. Unable", “2. A lot of difficulty", “3. Some difficulty", or “4. No
difficulty". The definition of the binary and multinomial outcomes is shown in Table 2. The reference
category “No disability" represents answer “4" to all IADL questions.

Outcome Outcome category Answer to at least one IADL question
Binary Disabled 1, 2 or 3

Multinomial Mild disability 3
Severe disability 1 or 2

Table 2: Definition of the binary and multinomial disability outcomes. Brazilian National Health Survey, 2013.
“IADL" refers to instrumental activities of daily living.

A summary of the characteristics of the study population is shown in Table 3. A higher proportion
of older women (≥80 years), diabetes, arthritis, stroke, and the disease pairs was observed in women
with mild and severe disability compared to women without disability.

Examples with binary outcomes

The function BinAddHaz fits the binomial additive hazard model and estimates the contribution of
diseases to the disability burden for binary outcomes in addhaz. To illustrate the use of BinAddHaz, five
models were fitted with the binary disability outcome: model 1 - with three diseases (no background
and diseases by age); model 2 - with only background by age, with bootstrap CI; model 3 - with only
diseases by age; model 4 - with background and diseases by age, with bootstrap CI; model 5 - with
two-way interaction between diseases. To illustrate how the LRTest function can be used for model
selection, models 2 and 4 are compared.
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Characteristic Total No disability Mild disability Severe disability
N % N % N % N %

Age (years)
60-79 5379 85.5 3946 93.5 642 78.3 791 63.0
≥80 915 14.5 273 6.5 178 21.7 464 37.0

Diseases
Diabetes 1243 19.7 697 16.5 190 23.2 356 28.4
Arthritis 1428 22.7 819 19.4 211 25.7 398 31.7
Stroke 286 4.5 100 2.4 41 5.0 145 11.6
Diabetes and arthritis 298 4.7 135 3.2 53 6.5 110 8.8
Diabetes and stroke 91 1.4 31 0.7 13 1.6 47 3.7
Arthritis and stroke 79 1.3 28 0.7 7 0.9 44 3.5

Table 3: Characteristics of the study population. Brazilian National Health Survey, 2013. The percentages refer
to unweighted proportions, i.e., without taking into account the survey weights.

Model 1 - Binomial model with three diseases

Before fitting model 1, addhaz and the data can be loaded and the names of the variables can be
checked using:

library("addhaz")
data("disabData")
names(disabData)

[1] "dis.bin" "dis.mult" "wgt" "age" "diab" "arth" "stro"

The first binomial model can be fitted with:

model1 <- BinAddHaz(dis.bin ~ diab + arth + stro , data = disabData, weights = wgt,
attrib = TRUE, type.attrib = "both", collapse.background = FALSE,
attrib.disease = FALSE)

Since no attribution variable such as age was included in the model, the arguments collapse.background
and attrib.disease were set to FALSE. The results of the model were stored as an object called model1,
which can be checked with the summary function:

summary(model1)

$`call`
BinAddHaz(formula = dis.bin ~ diab + arth + stro, data = disabData,

weights = wgt, attrib = TRUE, collapse.background = FALSE,
attrib.disease = FALSE, type.attrib = "both")

$bootstrap
[1] FALSE

$coefficients
Estimate StdErr t.value p.value

(Intercept) 0.2970833 0.009426403 31.516082 1.498823e-202
diab 0.1331831 0.023821666 5.590838 2.354697e-08
arth 0.1306445 0.022203662 5.883917 4.212860e-09
stro 0.5927519 0.075697633 7.830521 5.663378e-15

attr(,"class")
[1] "summary.binaddhazmod"

The first element of the output call is the formula used to fit the model. The bootstrap, indicates
if the bootstrap CI was requested. Since it was not requested, its value is FALSE.

Next, the coefficients are printed, with their estimates, standard errors (calculated based on the
inverse of the observed information matrix), the t value (value of the t statistic), and the p value.
The intercept represents the background. According to this output, all diseases were significant in
the model. To identify the most disabling diseases, i.e., the diseases with highest cumulative rate of
disability, the coefficients can be sorted in decreasing order using:
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sort(model1$coefficients, decreasing = TRUE)

stro (Intercept) diab arth
0.5927519 0.2970833 0.1331831 0.1306445

Stroke was the most disabling disease, while arthritis was the least disabling disease. The 95%
Wald CI can be obtained by:

model1$ci

CI2.5 CI97.5
(Intercept) 0.27860754 0.3155590
diab 0.08649261 0.1798735
arth 0.08712532 0.1741637
stro 0.44438455 0.7411193

Both the relative and absolute contributions were requested (attrib = TRUE,type.attrib =
"both") and can be assessed with:

model1$contribution

$`att.rel`
att.rel

(Intercept) 0.80405374
diab 0.06938567
arth 0.07451155
stro 0.05204903

$att.abs
att.abs

disab 0.30853338
(Intercept) 0.24807742
diab 0.02140780
arth 0.02298930
stro 0.01605886

In the above output, the relative contribution (att.rel: the contributions sum to 1) is shown at
the top and the absolute contribution (att.abs: the contributions sum to the disability prevalence) is
presented at the bottom. No confidence intervals are provided for the contributions, as they can only
be calculated via bootstrapping and this option was not requested.

In the output for the absolute contribution, the disability prevalence (disab) was 30.9%. The
absolute contribution can be sorted in decreasing order using:

model1$contribution$att.abs[order(model1$contribution$att.abs[, 1], decreasing = TRUE), ]

disab (Intercept) arth diab stro
0.30853338 0.24807742 0.02298930 0.02140780 0.01605886

The background (Intercept) was the main contributor to the disability burden in this population.
In this case, it can represent other causes not included in the model such as dementia or back pain,
which are important causes of disability in the older population, but were not included in the analysis.
Among the three diseases, arthritis was the main contributor to the disabilitiy burden in older Brazilian
women.

It is interesting to note that, although stroke was the most disabling disease, it showed the lowest
contribution to the total disability prevalence. This low contribution can be a consequence of the low
occurrence of stroke in this population - 4.5% (Table 3) - as the contribution of chronic conditions to
the disability prevalence depends on both, the disease occurrence and the disabling impact (Nusselder
and Looman, 2010).

Model 2 - Binomial model with only background by age, with bootstrap CI

In model 2, the background is modelled by age group, but the diseases are not. The model can be
fitted by:
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model2 <- BinAddHaz(dis.bin ~ factor(age) -1 + diab + arth + stro , data = disabData,
weights = wgt, attrib = TRUE, type.attrib = "both",
collapse.background = FALSE, attrib.disease = FALSE, seed = 111,
bootstrap = TRUE, conf.level = 0.95, nbootstrap = 1000,
parallel = TRUE, type.parallel = "snow", ncpus = 4)

Since the background is modelled by age group, factor(age) is included in the model. The
-1 is included in the model.formula to obtain the coefficients for both age groups, including the
reference category. Since the background is modelled by age, it should not be collapsed by age
(collapse.background = FALSE). As no interaction between diseases and age were included in the
model, the argument attrib.disease is FALSE. The option seed = 111 allows the user to specify a
random number to make the results of the bootstrapping reproducible. In the example above, the
random number used was 111. The bootstrap CI for the regression coefficients and the contributions
was requested (bootstrap = TRUE), with confidence level = 0.95 (conf.level = 0.95). The bootstrap
CI was based on 1000 replicates (nbootstrap = 1000) and it was obatined with parallel computing
(parallel = TRUE) on Windows (type.parallel = "snow") with 4 CPUS (ncpus = 4).

The summary of the model can be assessed with:

summary(model2)

$`call`
BinAddHaz(formula = dis.bin ~ factor(age) - 1 + diab + arth + stro, data = disabData,

weights = wgt, attrib = TRUE, type.attrib = "both",
collapse.background = FALSE, attrib.disease = FALSE, seed = 111,
bootstrap = TRUE, conf.level = 0.95, nbootstrap = 1000,
parallel = TRUE, type.parallel = "snow", ncpus = 4)

$bootstrap
[1] TRUE

$coefficients
Estimate CILow CIHigh

factor(age)0 0.22345184 0.19892365 0.2529054
factor(age)1 1.10472873 0.95279272 1.2705886
diab 0.12935797 0.06191508 0.2044457
arth 0.08531865 0.02375110 0.1513319
stro 0.52453664 0.28688675 0.8509963

$conf.level
[1] 0.95

attr(,"class")
[1] "summary.binaddhazmod"

Since the bootstrap CI was requested, bootstrap is TRUE. The coefficients show that age and all
diseases were significant (the null value, i.e. 0, is not included in the bootstrap CI). The factor(age)0
and factor(age)1 represents the background cumulative rates for age groups 0 and 1, respectively.
The contributions can be checked with:

model2$contribution

$att.rel
Contribution CILow CIHigh

factor(age)0 0.53992912 0.51937657 0.56054196
factor(age)1 0.29842186 0.27575265 0.32163433
diab 0.06702577 0.06162503 0.07256112
arth 0.04869951 0.04513817 0.05269298
stro 0.04592374 0.03666781 0.05519789

$att.abs
Contribution CILow CIHigh

disab 0.30902546 0.30227641 0.31623119
factor(age)0 0.16685185 0.16405831 0.16947954
factor(age)1 0.09221995 0.08372162 0.10131428
diab 0.02071267 0.01906935 0.02254047
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arth 0.01504939 0.01396744 0.01628476
stro 0.01419161 0.01127267 0.01727091

The contributions and the 95% bootstrap CI are shown. The background is the main contributor to
the disability prevalence. Note that by allowing the background to vary by age does not change the
disability prevalence (30.9%), as compared to model 1.

Model 3 - Binomial model with only diseases by age

In Model 3, we allow only the diseases to vary by age group by including interactions between age
and diseases in the model. Before fitting model 3, a matrix with the diseases to be included in the
model can be defined by:

disease <- as.matrix(disabData[, c("diab", "arth", "stro")])

The first six elements of the matrix created can be checked using:

head(disease)

diab arth stro
36 1 0 0
98 0 0 0
113 0 1 1
347 1 0 0
352 1 0 0
436 0 0 0

The binomial additive hazard model can be fitted with the function:

model3 <- BinAddHaz(dis.bin ~ disease:factor(age), data = disabData, weights = wgt,
attrib = TRUE, attrib.var = age, type.attrib = "abs",
collapse.background = FALSE, attrib.disease = TRUE)

summary(model3)

$`call`
BinAddHaz(formula = dis.bin ~ disease:factor(age), data = disabData, weights = wgt,

attrib = TRUE, attrib.var = age, collapse.background = FALSE,
attrib.disease = TRUE, type.attrib = "abs")

$bootstrap
[1] FALSE

$coefficients
Estimate StdErr t.value p.value

(Intercept) 0.29425017 0.009339432 31.5062168 1.991333e-202
diseasediab:factor(age)0 0.07487954 0.022708458 3.2974294 9.811601e-04
diseasearth:factor(age)0 0.01218173 0.020156904 0.6043454 5.456358e-01
diseasestro:factor(age)0 0.44896271 0.072553106 6.1880563 6.474653e-10
diseasediab:factor(age)1 0.83733434 0.128901534 6.4959223 8.884711e-11
diseasearth:factor(age)1 1.32865873 0.143790133 9.2402636 3.299325e-20
diseasestro:factor(age)1 1.60530144 0.373531351 4.2976351 1.752351e-05

attr(,"class")
[1] "summary.binaddhazmod"

The (Intercept) represents the background, which was not modelled by age. The diseases with
factor(age)0 and factor(age)1 represent the regression coefficients for age 0 (60-79 years) and
age 1 (≥80 years). The output above shows that arthritis was not significant for the reference age
category (60-79years) (diseasearth:factor(age)0). Only the absolute contribution was requested
(type.attrib = "abs") and it can be assessed with:

model3$contribution

att.abs
disab.0 0.277835632
backgrnd.0 0.251005540
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diseasediab:factor(age)0.0 0.012575547
diseasearth:factor(age)0.0 0.002220039
diseasestro:factor(age)0.0 0.012034506
disab.1 0.493678649
backgrnd.1 0.206353130
diseasediab:factor(age)1.1 0.089832332
diseasearth:factor(age)1.1 0.158378063
diseasestro:factor(age)1.1 0.039115125

The attribution is presented by level of the attribution variable (attrib.var), which in this example
is age. The first five rows show the results for attribution variable level 0, which in this case represents
age group 60-79 years and the last five rows represent the results for attribution variable level 1 (≥80
years). The results indicate that the disability prevalence in the older women (49.4%) was much larger
than in the younger age group (27.8%). While the three diseases included in the model showed a low
contribution to the disability prevalence in women aged 60-79 years (<1.5%), arthritis was by far the
most important disease contributing to the disability prevalence in the oldest women (15.9%).

Model 4 - Binomial model with background and diseases by age, with bootstrap CI

The same matrix of diseases defined for model 3 will be used in model 4. This model can be fitted
with the function:

model4 <- BinAddHaz(dis.bin ~ factor(age) - 1 + disease:factor(age), data = disabData,
weights = wgt, attrib = TRUE, attrib.var = age, type.attrib = "abs",
collapse.background = FALSE, attrib.disease = TRUE, seed = 111,
bootstrap = TRUE, conf.level = 0.95, nbootstrap = 1000,
parallel = TRUE, type.parallel = "snow", ncpus = 4)

The -1 in the model.formula is used to obtain a different parameterization than the default: here
we obtain the parameter estimates for all the age groups, including the reference category. Since we
want to estimate the contributions for background by age, the argument collapse.background is set to
FALSE. If this argument would be set to TRUE, only one background, common to all age groups, would
be estimated. Since the contributions of diseases should be estimated by age group, the argument
attrib.disease was set to TRUE. The parallel option for the bootstrap CI was used (parallel = TRUE)
on a Windows computer (type.parallel = "snow") with 4 cores (ncpus = 4). The option seed = 111
allows the user to specify a random number (in this case 111) to make the results of the bootstrapping
reproducible. The summary of the model can be checked with:

summary(model4)

$call
BinAddHaz(formula = dis.bin ~ factor(age) - 1 + disease:factor(age), data = disabData,

weights = wgt, attrib = TRUE, attrib.var = age, collapse.background = FALSE,
attrib.disease = TRUE, type.attrib = "abs", seed = 111, bootstrap = TRUE,
conf.level = 0.95, nbootstrap = 1000, parallel = TRUE,
type.parallel = "snow", ncpus = 4)

$bootstrap
[1] TRUE

$coefficients
Estimate CILow CIHigh

factor(age)0 0.22661055 0.201218693 0.2568179
factor(age)1 0.94910725 0.784733478 1.1292937
factor(age)0:diseasediab 0.12749849 0.056516120 0.2036685
factor(age)1:diseasediab 0.24124648 -0.181208625 0.7471999
factor(age)0:diseasearth 0.06884402 0.009035558 0.1345238
factor(age)1:diseasearth 0.75879140 0.349882903 1.2234047
factor(age)0:diseasestro 0.48788899 0.255772550 0.8331633
factor(age)1:diseasestro 1.13333515 0.426477637 2.2240599

$conf.level
[1] 0.95
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attr(,"class")
[1] "summary.binaddhazmod"

The output with the results of the model is shown for factor(age)0, which represents the age
group of 60-79 years, and factor(age)1, representing the age group of ≥80 years. Diabetes was not
significant for age group 1, as the bootstrap CI includes the null value, i.e. 0. To identify the most
disabling diseases, two objects (coef.age0 and coef.age1) with the coefficients for each age group
can be created and sorted in decreasing order using:

coef.age0 <- model4$coefficients[seq(1, length(model4$coefficients), 2)]
coef.age1 <- model4$coefficients[seq(0, length(model4$coefficients), 2)]

sort(coef.age0, decreasing = TRUE)
factor(age)0:diseasestro factor(age)0 factor(age)0:diseasediab

0.48788899 0.22661055 0.12749849
factor(age)0:diseasearth

0.06884402

sort(coef.age1, decreasing = TRUE)
factor(age)1:diseasestro factor(age)1 factor(age)1:diseasearth

1.1333352 0.9491072 0.7587914
factor(age)1:diseasediab

0.2412465

Stroke was the most disabling disease in both age groups. Arthritis and diabetes showed the
lowest disabling impact in women aged 60-79 years and ≥80 years, respectively.

Since only the absolute contribution was requested (type.attrib = "abs"), the results for the
absolute contribution can be assessed with:

model4$contribution

att.abs CILow CIHigh
disab.0 0.24442949 0.24102940 0.24813627
backgrnd.0 0.19743946 0.19694283 0.19790210
factor(age)0:diseasediab.0 0.02141352 0.01956557 0.02342391
factor(age)0:diseasearth.0 0.01253887 0.01153068 0.01363192
factor(age)0:diseasestro.0 0.01303764 0.01003208 0.01636211
disab.1 0.69484947 0.68537515 0.70574268
backgrnd.1 0.54868976 0.53993448 0.55643174
factor(age)1:diseasediab.1 0.02637877 0.02080951 0.03249654
factor(age)1:diseasearth.1 0.09137348 0.07746954 0.10759760
factor(age)1:diseasestro.1 0.02840746 0.01932950 0.03894183

The CILow and CIHigh refers to the 2.5th and 97.5th percentiles of the 1,000 bootstrap replicates,
since the bootstrap CI was requested (bootstrap = TRUE) with conf.level = 0.95. To identify the
main contributors to the disability burden, two objects (one for each age group) can be defined with
the absolute contribution and bootstrap CI using:

cont.age0 <- model4$contribution[c(1:5), ]
cont.age1 <- model4$contribution[c(6:10), ]
cont.age0[order(cont.age0[, 1], decreasing = TRUE), ]

att.abs CILow CIHigh
disab.0 0.24442949 0.24102940 0.24813627
backgrnd.0 0.19743946 0.19694283 0.19790210
factor(age)0:diseasediab.0 0.02141352 0.01956557 0.02342391
factor(age)0:diseasestro.0 0.01303764 0.01003208 0.01636211
factor(age)0:diseasearth.0 0.01253887 0.01153068 0.01363192

cont.age1[order(cont.age1[, 1], decreasing = TRUE), ]

att.abs CILow CIHigh
disab.1 0.69484947 0.68537515 0.70574268
backgrnd.1 0.54868976 0.53993448 0.55643174
factor(age)1:diseasearth.1 0.09137348 0.07746954 0.10759760
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factor(age)1:diseasestro.1 0.02840746 0.01932950 0.03894183
factor(age)1:diseasediab.1 0.02637877 0.02080951 0.03249654

According to the results, the disability prevalence in the oldest women (69.5%) was 2.8 times larger
than in women aged 60-79 years (24.4%). The background was the main contributor to the disability
prevalence in both age groups. Among the chronic conditions, diabetes was the main contributor to
the disability prevalence in women aged 60-79 years (2.1%) while arthritis contributed most to the
disability burden in older women (9.1%).

Model 5 - Binomial model with two-way interaction between diseases

In model 5, the independence assumption (assumption vii) is violated and two-way interactions
between diseases are included in the model. In total, 6 parameters and the intercept will be estimated
in model 5. The model can be fitted by:

model5 <- BinAddHaz(dis.bin ~ (diab + arth + stro)^2, data = disabData, weights = wgt,
attrib = TRUE, collapse.background = FALSE, attrib.disease = FALSE,
type.attrib = "both")

summary(model5)

$`call`
BinAddHaz(formula = dis.bin ~ (diab + arth + stro)^2, data = disabData, weights = wgt,

attrib = TRUE, collapse.background = FALSE, attrib.disease = FALSE,
type.attrib = "both")

$bootstrap
[1] FALSE

$coefficients
Estimate StdErr t.value p.value

(Intercept) 0.2988163 0.009586541 31.1703950 1.803828e-198
diab 0.1178815 0.026104065 4.5158287 6.422107e-06
arth 0.1101293 0.023712731 4.6443118 3.481543e-06
stro 0.8145107 0.116867992 6.9694938 3.505379e-12
diab:arth 0.1563155 0.067097034 2.3296932 1.985387e-02
diab:stro -0.5072111 0.154344770 -3.2862213 1.020980e-03
arth:stro -0.1494752 0.176853232 -0.8451937 3.980349e-01

attr(,"class")
[1] "summary.binaddhazmod"

The main effects of all the diseases were significant, but only the interaction between diabetes
and arthritis and between diabetes and stroke were significant. The negative disabling impact of the
interaction term between diabetes and stroke should be carefully interpreted, as it is based on a small
sample size (n = 91) (Table 3).

Likelihood ratio test for model selection

To illustrate the use of the function LRTest to perform the likelihood ratio test (LRT) for model selection,
models 2 (model2) and 4 (model4) are compared. The LRT can be performed with:

LRTest(model4, model2)

Likelihood ratio test
Model 1:
dis.bin ~ factor(age) - 1 + disease:factor(age)
Model 2:
dis.bin ~ factor(age) - 1 + diab + arth + stro
Res.df Res.Dev df Deviance Pr(>Chi)

1 6286 6916.818
2 6289 6946.224 3 29.405 1.8407e-06

The output shows the models that are being compared: Model 1 is the model with the interactions
with diseases and age (previous model 4) and Model 2 is the model without the interactions between
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diseases and age (previous model 2). The degrees of freedom for each model (Res.df), the residual
deviance, i.e. the 2*log-likelihood of each model (Res.Dev), the difference in the degrees of freedom
between the models (df), the difference between the 2*log-likelihood of the models, i.e. the value
of the likelihood ratio test statistic (Deviance), and the p-value of the test statistic, based on the χ2

distribution (Pr(>Chi)) are presented. Since the test was statistically significant at 0.05 significance
level, model 4, which includes interaction between diseases and age, fits the data better than model 2.

Examples with multinomial outcomes

To fit the multinomial additive hazard model and to estimate the contribution of chronic conditions
to the disability burden for multinomial outcomes, the function MultAddHaz can be used. As an
illustration, two models were fitted: model 6 - with only background by age; and model 7 - with
background and diseases by age, with bootstrap CI.

Model 6 - Multinomial model with only background by age

Model 6 can be fitted with the function:

model6 <- MultAddHaz(dis.mult ~ factor(age) - 1 + diab + arth + stro, data = disabData,
weights = wgt, attrib = TRUE, seed = 111, collapse.background = FALSE,
attrib.disease = FALSE, type.attrib = "both")

The results of the model can be visualized using:

summary(model6)

$`call`
MultAddHaz(formula = dis.mult ~ factor(age) - 1 + diab + arth +

stro, data = disabData, weights = wgt, attrib = TRUE, seed = 111,
collapse.background = FALSE, attrib.disease = FALSE, type.attrib = "both")

$bootstrap
[1] FALSE

$coefficients
Estimate StdErr t.value p.value

factor(age)0.y1 0.117959944 0.006083174 19.3911842 2.109290e-81
factor(age)1.y1 0.285541582 0.022330639 12.7869869 5.585601e-37
diab.y1 0.002717701 0.011329960 0.2398685 8.104400e-01
arth.y1 0.015602747 0.011534798 1.3526675 1.762105e-01
stro.y1 0.024923984 0.025498946 0.9774515 3.283833e-01
factor(age)0.y2 0.107643802 0.005969496 18.0323096 6.503330e-71
factor(age)1.y2 0.817043178 0.043161129 18.9300697 9.103853e-78
diab.y2 0.124326766 0.017245323 7.2093036 6.283854e-13
arth.y2 0.063767963 0.014095689 4.5239336 6.181719e-06
stro.y2 0.499262854 0.064799754 7.7047030 1.514581e-14

attr(,"class")
[1] "summary.multaddhazmod"

In the above output, the results identified with y1 refer to the outcome (dis.mult) = 1 (mild
disability) and the results with y2 refer to the outcome (dis.mult) = 2 (severe disability). For mild
disability only the background (factor(age)0.y1) and (factor(age)1.y1) was significant while all
the diseases and the background were signifcant for women with severe disability. Similar to the
binomial model, the most disabling diseases can be identified by:

coef.mild <- model6$coefficients[1:5, ]
coef.sev <- model6$coefficients[6:10, ]

sort(coef.mild, decreasing = TRUE)
factor(age)1.y1 factor(age)0.y1 stro.y1 arth.y1 diab.y1

0.285541582 0.117959944 0.024923984 0.015602747 0.002717701

sort(coef.sev, decreasing = TRUE)
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factor(age)1.y2 stro.y2 diab.y2 factor(age)0.y2 arth.y2
0.81704318 0.49926285 0.12432677 0.10764380 0.06376796

Background and stroke showed the highest disabling impact for mild and severe disability. The
relative and absolute contributions can be checked with:

model6$contribution

$`att.rel`
att.rel

factor(age)0.y1 0.804099194
factor(age)1.y1 0.164283693
diab.y1 0.003665546
arth.y1 0.023317949
stro.y1 0.004633619
factor(age)0.y2 0.426874738
factor(age)1.y2 0.336655536
diab.y2 0.105566151
arth.y2 0.058984332
stro.y2 0.071919244

$att.abs
att.abs

disab.y1 0.1265087428
factor(age)0.y1 0.1017255781
factor(age)1.y1 0.0207833234
diab.y1 0.0004637236
arth.y1 0.0029499244
stro.y1 0.0005861933
disab.y2 0.1901766667
factor(age)0.y2 0.0811816147
factor(age)1.y2 0.0640240276
diab.y2 0.0200762187
arth.y2 0.0112174436
stro.y2 0.0136773621

It is interesting to note that the severe disability prevalence (19.0%) was 1.5 times higher than the
mild disability prevalence (12.7%). The results for the relative contribution can be sorted in decreasing
order by:

rel.cont.mild <- model6$contribution$att.rel[1:5, ]
rel.cont.sev <- model6$contribution$att.rel[6:10, ]

sort(rel.cont.mild, decreasing = TRUE)
factor(age)0.y1 factor(age)1.y1 arth.y1 stro.y1 diab.y1

0.804099194 0.164283693 0.023317949 0.004633619 0.003665546

sort(rel.cont.sev, decreasing = TRUE)
factor(age)0.y2 factor(age)1.y2 diab.y2 stro.y2 arth.y2

0.42687474 0.33665554 0.10556615 0.07191924 0.05898433

The background was the main contributor to the disability burden, representing 96.8% (0.80 + 0.16)
and 76.4% (0.43 + 0.34) of the mild and severe disability prevalence, respectively. Arthritis (2.3%) was
the main contributor to the mild disability prevalence while diabetes (10.6%) contributed most to the
severe disability prevalence.

Model 7 - Multinomial model with background and diseases by age, with bootstrap CI

The matrix with the diseases (disease) defined for model 3 is used to fit model 7:

model7 <- MultAddHaz(dis.mult ~ factor(age) -1 + disease:factor(age),
data = disabData, weights = wgt, attrib = TRUE, attrib.var = age,
seed = 111, collapse.background = FALSE, attrib.disease = TRUE,
type.attrib = "both", bootstrap = TRUE, conf.level = 0.95,
nbootstrap = 1000, parallel = TRUE, type.parallel = "snow",
ncpus = 4)
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The -1 was added to the model.formula to obtain the parameter estimates for the background
for all age groups, including the reference category. Since the background should be estimated by
age, collapse.background is set to FALSE. Additionally, attrib.disease is set to TRUE, as interactions
between age and diseases were included in the model and the contribution of diseases should be
estimated by age. The seed argument in MultAddHaz is used to obtain reproducible results for the
starting values used in the constrained optimization, which are randomly generated, and for the
bootstrap CI. Besides the summary function, the disabling impacts and the bootstrap CI can also be
assessed with:

cbind(model7$coefficients, model7$ci)

Coefficients CILow CIHigh
factor(age)0.y1 0.117255379 0.10064630 0.13689281
factor(age)1.y1 0.277818866 0.20558349 0.37304023
factor(age)0:diseasediab.y1 0.005926107 -0.03440926 0.04770883
factor(age)1:diseasediab.y1 -0.027900849 -0.16964726 0.15898841
factor(age)0:diseasearth.y1 0.012814735 -0.02467113 0.05156243
factor(age)1:diseasearth.y1 0.110733103 -0.08447433 0.30975351
factor(age)0:diseasestro.y1 0.032163873 -0.03657685 0.14572706
factor(age)1:diseasestro.y1 -0.028504716 -0.22807053 0.22952796
factor(age)0.y2 0.109165655 0.09146724 0.13167070
factor(age)1.y2 0.672941316 0.53792263 0.83185332
factor(age)0:diseasediab.y2 0.121508443 0.06618176 0.17864913
factor(age)1:diseasediab.y2 0.282986455 -0.09742139 0.80712949
factor(age)0:diseasearth.y2 0.054335292 0.01095538 0.09957643
factor(age)1:diseasearth.y2 0.635463641 0.31671319 1.05424237
factor(age)0:diseasestro.y2 0.456594023 0.24959719 0.72863913
factor(age)1:diseasestro.y2 1.233578243 0.49988818 2.27216717

In the output, factor(age)0 and factor(age)1 refers to the age groups 60-79 years and≥ 80 years,
respectively. y1 refers to disability category 1, which here represents mild disability and y2 refers to
disability category 2, representing severe disability.

Two coefficients (for diabetes and stroke in women aged ≥ 80 years with mild disability) were
negative. This suggests a “protective" effect of these conditions. However, these results should be
carefully interpreted as they were not statistically significant.

To identify the most disabling diseases for mild and severe disability by age group, the following
code can be used:

mild.age0 <- model7$coefficients[seq(1, length(model7$coefficients), 2), ][1:4]
sev.age0 <- model7$coefficients[seq(1, length(model7$coefficients), 2), ][5:8]
mild.age1 <- model7$coefficients[seq(0, length(model7$coefficients), 2), ][1:4]
sev.age1 <- model7$coefficients[seq(0, length(model7$coefficients), 2), ][5:8]

mild.age0[order(mild.age0, decreasing = TRUE)]
factor(age)0.y1 factor(age)0:diseasestro.y1

0.117255379 0.032163873
factor(age)0:diseasearth.y1 factor(age)0:diseasediab.y1

0.012814735 0.005926107

sev.age0[order(sev.age0, decreasing = TRUE)]
factor(age)0:diseasestro.y2 factor(age)0:diseasediab.y2

0.45659402 0.12150844
factor(age)0.y2 factor(age)0:diseasearth.y2

0.10916565 0.05433529

mild.age1[order(mild.age1, decreasing = TRUE)]
factor(age)1.y1 factor(age)1:diseasearth.y1

0.27781887 0.11073310
factor(age)1:diseasediab.y1 factor(age)1:diseasestro.y1

-0.02790085 -0.02850472

sev.age1[order(sev.age1, decreasing = TRUE)]
factor(age)1:diseasestro.y2 factor(age)1.y2

1.2335782 0.6729413
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factor(age)1:diseasearth.y2 factor(age)1:diseasediab.y2
0.6354636 0.2829865

Stroke was the most disabling disease in women with severe disability in both age groups and in
women aged 60-79 years with mild disability while arthritis was the most disabling disease in women
aged ≥ 80 years with mild disability.

The main contributors to the disability burden, based on the absolute contribution can be assessed
with:

cont.mild.age0 <- model7$contribution$att.abs[1:5, ]
cont.sev.age0 <- model7$contribution$att.abs[6:10, ]
cont.mild.age1 <- model7$contribution$att.abs[11:15, ]
cont.sev.age1 <- model7$contribution$att.abs[16:20, ]

cont.mild.age0[order(cont.mild.age0[, 1], decreasing = TRUE), ]
att.abs CILow CIHigh

disab.0.y1 0.1146399721 0.1142911352 0.115027470
backgrnd.0.y1 0.1103973843 0.1103736506 0.110418787
factor(age)0:diseasearth.0.y1 0.0024598331 0.0022352202 0.002706063
factor(age)0:diseasediab.0.y1 0.0010238914 0.0009230407 0.001137036
factor(age)0:diseasestro.0.y1 0.0007588633 0.0005256459 0.001035586

cont.sev.age0[order(cont.sev.age0[, 1], decreasing = TRUE), ]
att.abs CILow CIHigh

disab.0.y2 0.137612800 0.133986991 0.14160126
backgrnd.0.y2 0.095139459 0.094884399 0.09537052
factor(age)0:diseasediab.0.y2 0.020450103 0.018538859 0.02259582
factor(age)0:diseasestro.0.y2 0.012179369 0.009234356 0.01571648
factor(age)0:diseasearth.0.y2 0.009843869 0.008984070 0.01077563

cont.mild.age1[order(cont.mild.age1[, 1], decreasing = TRUE), ]
att.abs CILow CIHigh

disab.1.y1 0.2532173709 0.248985442 0.257917633
backgrnd.1.y1 0.2408954310 0.240163632 0.241550122
factor(age)1:diseasearth.1.y1 0.0170621273 0.012596001 0.022104725
factor(age)1:diseasestro.1.y1 -0.0006391061 -0.001067613 -0.000299713
factor(age)1:diseasediab.1.y1 -0.0041010813 -0.005510841 -0.002757878

cont.sev.age1[order(cont.sev.age1[, 1], decreasing = TRUE), ]
att.abs CILow CIHigh

disab.1.y2 0.52797382 0.51474229 0.54101616
backgrnd.1.y2 0.38747404 0.38073529 0.39414511
factor(age)1:diseasearth.1.y2 0.07581147 0.06237721 0.09017923
factor(age)1:diseasestro.1.y2 0.03293044 0.02088364 0.04734430
factor(age)1:diseasediab.1.y2 0.03175788 0.02394332 0.04002170

The severe disability prevalence (60-79 years = 13.8%; ≥80 years = 52.8%) was larger than the
mild disability prevalence (60-79 years = 11.5%; ≥80 years = 25.3%) in both age groups. Arthritis was
the main contributor to the mild disability prevalence in both age groups and to the severe disability
prevalence in women aged ≥80 years, while diabetes was the main contributor to the severe disability
prevalence in women aged 60-79 years.

Discussion

In this paper we introduced the R package addhaz developed to fit the binomial and multinomial
additive hazard models to estimate the contribution of diseases to the disability prevalence using
cross-sectional data.

The R package addhaz was developed based on the R functions developed by Nusselder and
Looman (Nusselder and Looman, 2010) for binomial disability outcomes and for non-R users. The
main advantages of addhaz compared to the original R functions are: (i) option to use the attribution
method for multinomial responses using the function MultAddHaz; and (ii) option to do parallel
computing for the calculation of the bootstrap percentile confidence intervals. However, the possibility
to use reduced rank regression (Yee, 2014) to estimate the cause-specific disability rates by age group,
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for example, which is available in the original R functions (Nusselder and Looman, 2010), is not
available in addhaz. Nonetheless, in addhaz these interactions can be estimated by including full
interaction terms between chronic conditions and age groups.

Although the parameter estimates of the binomial additive hazard model can also be obtained
with the R package logbin, the contribution of diseases to the disability prevalence is not provided,
since logbin was not developed with focus on the attribution method. Therefore, for analysis aimed at
the attribution of disability to diseases, we recommend the use of addhaz. For multinomial outcomes,
no other software is available to fit the multinomial additive hazard model and to calculate the
contributions, to our knowledge.

One could argue that instead of using the multinomial model, two binomial models could be fitted:
(i) no x mild disability; and (ii) no x severe disability. Although this is indeed possible, with a minor
loss of precision (larger standard errors) for the parameter estimates when the reference category (“no
disability", in our example) is the most frequent category in the population (which is the case for
the subset of the BNHS used here, as 67% were not disabled, 13% reported mild disability, and 20%
were severely disabled) (Agresti, 2002), the prevalence of the various disability categories do not sum
to 100%, as can be observed in a previous study that assessed the difference in the mild and severe
disability burden using two binomial models (Yokota et al., 2015a).

Different models with different options were presented using addhaz, showing a wide possibility
of application to the users. One example is the investigation of the role of multimorbidity on the
disability prevalence, which was assessed by the inclusion of two-way interactions between diseases
in the model, as presented in model 2. Even though the examples only included the combination
of two diseases, higher order interactions can also be included in the models, with the sample size
being the limiting factor. In addition, since the prevalence of chronic conditions tends to increase over
age, the model parameterization to include interactions between diseases and age groups was also
shown for the binary (models 3 and 4) and multinomial disability outcomes (model 7). Although age
group was used as the stratification variable to estimate the disabling impacts of the diseases and
background, other variables can be used, such as education attainment and sex.

Furthermore, we illustrated how the likelihood ratio test (LRT) can be performed for model
selection using the function LRTest. The LRT can be also performed for model selection with the
multinomial additive hazard model.

The attribution method has some limitations that should be considered. The main limitation of the
method is the causality assumption. Although a causal relationship between diseases and disability is
plausible and has been proposed in several disability models (Verbrugge and Jette, 1994), it cannot be
assessed with cross-sectional data. As a consequence, disability is incorrectly attributed to diseases
when disability occurred before the diseases. Although the parallel option reduces significantly
computation time for calculating bootstrap confidence intervals, fitting the multinomial model to high
dimensional data can still be time-consuming. For example, the computational time to fit model 7, in a
Windows computer Intel(R) Core (TM) i7-4600 CPU with 2.1GHz and 2.7GHz, 8GB (RAM), using the
parallel option with 4 cores, was 23.04 hours.

Summary

In conclusion, addhaz is a publicly available tool to assess the contribution of chronic conditions to
the disability prevalence, using cross-sectional data. The results produced by the tool can be used by
policymakers to reduce the disability burden. Future areas of interest to improve the package include
the extension of the multinomial model to ordinal responses and alternatives to reduce computation
time for high dimensional data.
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