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ABSTRACT Quality management and independent assessment of high-throughput
sequencing-based virus diagnostics have not yet been established as a mandatory
approach for ensuring comparable results. The sensitivity and specificity of viral
high-throughput sequence data analysis are highly affected by bioinformatics pro-
cessing using publicly available and custom tools and databases and thus differ
widely between individuals and institutions. Here we present the results of the
COMPARE [Collaborative Management Platform for Detection and Analyses of (Re-)
emerging and Foodborne Outbreaks in Europe] in silico virus proficiency test. An ar-
tificial, simulated in silico data set of Illumina HiSeq sequences was provided to 13
different European institutes for bioinformatics analysis to identify viral pathogens in
high-throughput sequence data. Comparison of the participants’ analyses shows that
the use of different tools, programs, and databases for bioinformatics analyses can
impact the correct identification of viral sequences from a simple data set. The iden-
tification of slightly mutated and highly divergent virus genomes has been shown to
be most challenging. Furthermore, the interpretation of the results, together with a
fictitious case report, by the participants showed that in addition to the bioinformat-
ics analysis, the virological evaluation of the results can be important in clinical set-
tings. External quality assessment and proficiency testing should become an impor-
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tant part of validating high-throughput sequencing-based virus diagnostics and
could improve the harmonization, comparability, and reproducibility of results. There
is a need for the establishment of international proficiency testing, like that estab-
lished for conventional laboratory tests such as PCR, for bioinformatics pipelines and
the interpretation of such results.

KEYWORDS high-throughput sequencing, external quality assessment, next-
generation sequencing, proficiency testing, virus diagnostics

High-throughput sequencing (HTS) has become increasingly important for virus
diagnostics in human and veterinary clinical settings and for disease outbreak

investigations (1–3). Since the introduction of the first HTS platform only about 1
decade ago, sequencing quality and output have been increasing exponentially, and
costs per base have decreased. Thus, HTS has become a standard method for molecular
diagnostics in many virological laboratories. The relatively unbiased approach of HTS
not only enables the screening of clinical samples for common and expected viruses
but also allows an open view without preconceptions about which virus might be
present. This approach has led to the discovery of novel viruses in clinical samples, such
as Bas-Congo virus, associated with hemorrhagic fever outbreaks in Central Africa (2);
Lujo arenavirus in southern Africa (3); and a bornavirus-like virus, the causative agent
of several cases of encephalitis with fatal outcomes in Germany (4). Considering the
potential of HTS to complement or even replace existing “gold-standard” diagnostic
approaches such as PCR and quantitative PCR (qPCR), quality assessment (QA) and
accreditation processes need to be established to ensure the quality, harmonization,
comparability, and reproducibility of diagnostic results. While the computational anal-
ysis of the immense amount of data produced requires dedicated computational
infrastructure, as well as bioinformatics knowledge or software developed by (bio)in-
formaticians, the interpretation of the results also requires evaluation by an experi-
enced virologist or physician. In many cases, true-positive results may be difficult to
discern among large numbers of false-positive results or may be entirely missing from
result sets due to false-negative results. Interpretation of results also requires knowl-
edge of anomalies that may arise through sequencing artifacts or contamination.

Proficiency testing (PT) is an external quality assessment (EQA) tool for evaluating
and verifying sequencing quality and reliability in HTS analyses. The pioneer in EQA and PT
for infectious disease applications of HTS has been the Global Microbial Identifier (GMI)
initiative, which has been organizing annual PTs since 2015, focusing on sequencing
quality parameters, including the detection of antimicrobial resistance genes, multilocus
sequence typing, and phylogenetic analysis of defined bacterial strains (https://www
.globalmicrobialidentifier.org/workgroups/about-the-gmi-proficiency-tests) (5). Subse-
quently, the concept was similarly established regionally for U.S. FDA field laboratories
(6, 7).

COMPARE (Collaborative Management Platform for Detection and Analyses of (Re-)
emerging and Foodborne Outbreaks in Europe (http://www.compare-europe.eu/) is a
European Union-funded program with the vision of improving the identification of
(novel) emerging diseases through HTS technologies. Participating institutions have
hands-on experience in viral outbreak investigation. One of the ambitious goals is to
establish and enhance quality management and quality assurance in HTS, including
external assessment and interlaboratory comparison.

In this study, we present the results of the first global PT offered by the COMPARE
network to assess bioinformatics analyses of simulated in silico clinical HTS virus data.
The viral sequence data set was accompanied by a fictitious case report providing a
realistic scenario to support the identification of the simulated virus included in the
data set.

Tools and programs for bioinformatics analysis. In recent years, numerous tools,
programs, and ready-to-use workflows have been established, making metagenomics
sequence analyses accessible to scientists from all research fields. Workflows for the
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typical analysis of HTS data and for the identification of viral sequences are based on
the same general tasks and tools, including quality trimming, background/host sub-
traction, de novo assembly, and sequence alignment and annotation. Sequence pro-
cessing usually starts with obligatory quality assessment and trimming, using programs
such as FastQC or Trimmomatic, including the removal of technical and low-complexity
sequences or the filtering of poor-quality reads (8, 9). Following these initial steps, many
workflows include the subtraction of background reads, e.g., host and bacteria, to
reduce the total amount of data and increase specificity, using tools such as BWA
(Burrows-Wheeler Alignment Tool) or Bowtie 2 (10, 11). De novo assembly of HTS reads
into longer, contiguous sequences (contigs), followed by reference-based identification,
has been shown to improve the sensitivity of pathogen identification. Such analyses
depend heavily on the use of assemblers, such as SPAdes or VELVET, which make use
of specific assembly algorithms, such as overlap-layout-consensus graph or de Bruijn
graph algorithms (12, 13). Alignment tools such as BLAST, DIAMOND (double-index
alignment of next-generation sequencing [NGS] data), Kraken, and USEARCH are
among the most important components in bioinformatics workflows for pathogen
identification and taxonomic assignment of viral sequences (14–17). Since command-
line tools for HTS require specific knowledge in bioinformatics, complete workflows and
pipeline approaches have been developed, including ready-to-use Web-based tools,
such as RIEMS (reliable information extraction from metagenomic sequence data sets),
PAIPline (PAIPline for the automatic identification of pathogens), Genome Detective,
and others (18–20). Since the COMPARE in silico PT focuses on comparing different tools
and software programs for bioinformatics analyses, an overview of frequently used
programs is given in Table 1. A more extensive overview of virus metagenomics
classification tools and pipelines published between 2010 and 2017 can be found at
https://compare.cbs.dtu.dk/inventory#pipeline.

MATERIALS AND METHODS
Organization. The virus PT was initiated by the COMPARE network and organized by the Robert

Koch Institute. Participation was free of charge for research groups experienced in analyzing HTS data
sets, and the opportunity was announced through email and the COMPARE website.

Participants were asked to analyze an in silico HTS data set; the main goal was to identify the viral
reads with their bioinformatics tools and workflows of choice and to interpret the results obtained,
including final diagnostic conclusions.

An artificial, simulated in silico data set of �6 million single-end 150-bp Illumina HiSeq sequences
derived from viral genomes, human chromosomes, and bacterial DNA was provided to 13 different
European institutes for bioinformatics analysis toward the identification of viral pathogens in high-
throughput sequence data. In order to assess how different levels of experience and/or bioinformatics
methodologies affect the outputs and interpretation, participants were allowed to use their bioinfor-
matics tools and workflows of choice. Participants were invited to report the PT results via an online
survey within 8 weeks (from 16 September 2016 until 16 November 2016). Overall results were
anonymized by the organizers, but each participant was provided with the identifier for its own results.

In silico HTS data set. The simulated in silico data set consisted of a total of 6,339,908 reads (Table
2), based on a single-end 150-bp Illumina HiSeq 2500 system run with an empirical read quality score
distribution of Illumina-specific base substitutions. The artificial data set was simulated with the ART
program (21). Sequences were generated from the Human Genome Reference Consortium Build 38
(GRCh38; NCBI accession numbers CM000663 to CM000686), Acinetobacter johnsonii (NCBI accession
number NZ_CP010350.1), Propionibacterium acnes (NCBI accession number NZ_CP012647.1), and Staph-

TABLE 2 Composition of the simulated sequence data seta

Organism No. of reads
Nucleotide sequence identity
with reference (%)

Human 4,834,491 100
Acinetobacter johnsonii 500,000 100
Propionibacterium acnes 500,000 100
Staphylococcus epidermidis 500,000 100
Torque teno virus 1,917 100
Human herpesvirus 1 2,000 100
Measles virus 1,000 82
(Novel) avian bornavirus 500 55
aThe total number of reads is 6,339,908.
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ylococcus epidermidis (NCBI accession number NZ_CP009046.1). In addition to human and bacterial reads,
simulated sequences of four viruses, Torque teno virus (TTV; NCBI accession number NC_015783.1),
human herpesvirus 1 (also called herpes simplex virus 1 [HSV-1]; NCBI accession number NC_001806.2),
measles virus (MeV; NCBI accession number NC_001498.1), and a novel avian bornavirus (nABV; NCBI
accession number JN014950.1) were included in different numbers and with different levels of similarity
to known viruses present in databases (Table 2). TTV and HSV-1 were included in the panel as the easiest
sequences to identify (with 1,917 and 2,000 reads, respectively, and 100% nucleotide identity with the
reference sequences), followed by a slightly altered MeV (1,000 reads, with 82% nucleotide identity to the
reference genome) and, as the likely most difficult taxon, nABV (only 500 reads and 55% nucleotide
identity to reference sequence JN014950.1).

Participants. Thirteen participants applied for the COMPARE virus PT and completed the survey
within the given time frame. Participants were registered from Belgium (n � 1), Denmark (n � 1), France
(n � 1), Germany (n � 4), Greece (n � 1), Italy (n � 1), The Netherlands (n � 2), Portugal (n � 1), and the
United Kingdom (n � 1). The 13 participants represented 13 different institutes or organizations. Infor-
mation about the participants’ backgrounds is given below (see Table 4).

Case report. To simulate clinical relevance and to set the background for evaluation of the
bioinformatics results, the following fictitious case report was provided with the data set:

Recently, a 14-year-old boy from Berlin, Germany, was hospitalized with sudden blindness, re-
duced consciousness and movement disorders. The patient’s mother reported developmental
disorders starting 1 year ago, with concentration problems, uncontrolled fits of rage, overall
decreasing performance in school and occasional compulsive head nods. Unfortunately, the
patient had received neither medical examination nor treatment, but had attended psycho-
logical treatment, assuming behavioral problems.

Magnetic resonance tomography of the patient’s brain showed white and gray matter lesions
and gliosis. Soon after hospitalization, the patient showed a persistent vegetative state and
died.

A sample of the boy’s brain tissue was sequenced using the Illumina HiSeq 2500 platform, re-
sulting in approximately 6 million single end reads of 150 bp each.

This case of subacute sclerosing panencephalitis (SSPE) can be caused by a persistent infection with
a mutated MeV (22). However, the symptoms described could also be caused by HSV-1 or bornavirus-like
viruses (4, 23).

Reported PT results. Results were collected using the Robert Koch Institute’s online survey software
VOXCO. The survey contained 23 questions, including general participant information and specifications
about the programs used, parameter settings, and computer specifications, as well as the final results of
the PT, including an evaluation of the case (see Table S1 in the supplemental material). The responses
were collected as single or multiple options from a multiple-choice questionnaire with additional free
text for remarks and comments.

Analysis of PT results. The results were evaluated based on sensitivity (true-positive rate, i.e., the
fraction of true virus reads that were identified), specificity, and the total time of the bioinformatics
analysis (Table 3). The time of analysis was evaluated based on the computational time only, without
including the time for preparation and discussion of the bioinformatics results. Correlation of the time
of analysis with computer and server specifications was based only on the use of online analysis, a
personal computer, a server, and a high-performance virtual machine. Although pathogen identification

TABLE 3 Sensitivity for identified reads of the COMPARE virus proficiency test

Participanta

Sensitivity

No false-positive
resultb

Time of
analysis (h)

Torque teno
virus

Human
herpesvirus

Measles
virus

Avian
bornavirus

1 1 0.99 0.21 0 � 3
2 1 1.01 0.46 0 � 15.5
3 0.96 0.96 1 1 � 60
4 0 0.10 0 0 � 216
5 1 0.98 1 1 � 26
6 1 0.84 1 1 – 12
7 0.94 4.00 1.41 0 � 6
8 1 1.04 0.99 0 � 7
9 0.29 0.84 0.49 0 � 5
10 1 1 1 0 � 48
11 1 1 1 0 � 14
12 1 1 1.02 0.23 � 18
13 1.02 0.90 0.34 0 � 48
aNumbered randomly.
b�, no false-positive result; –, false-positive result(s).
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by HTS-related metagenomics should naturally involve experienced qualified health professionals,
participants were challenged to attempt an interpretation regardless of the background of the team
performing bioinformatics. Given this context, no qualitative or quantitative scoring was performed in
this part.

Availability of data. The data set used in this study has been uploaded to the European Nucleotide
Archive with the study accession number PRJEB32470.

RESULTS
PT results. The results of the PT were evaluated based on sensitivity, specificity,

total turnaround time, and interpretation of results (Table 3). HSV-1 was identified by
all participants (Tables 3 and 4; Fig. 1). For most of the participants, the identified read
numbers for HSV-1 were complete or nearly complete (actual HSV-1 read count, 2,000).
One participant identified more reads of HSV-1 than were present in the data set
(participant 7; 8,361 reads identified).

TTV (actual read count, 1,917) and MeV were identified by all participants except for
one (participant 4) (Tables 3 and 4; Fig. 1). For TTV, the read numbers identified were
complete or almost complete for all participants, with the exception of participant 9,
who was able to identify only 29% of the TTV reads. For the mutated MeV (actual read
count, 1,000), 7 of the 13 participants were able to identify complete or almost
complete read numbers (participants 3, 5, 6, 8, 10, 11, and 12), whereas 4 partici-
pants (participants 1, 2, 9, and 13) identified only 21%, 46%, 49%, and 34% of the
total number of 1,000 reads, respectively (Table 3). Participant 4 was unable to
identify MeV, and participant 7 assigned too many reads (1,411) as originating from
the mutated MeV.

The divergent nABV (actual read count, 500) proved to be the most challenging
target and was identified by only four of the participants (participants 3, 5, 6, and 12)
(Tables 3 and 4; Fig. 1). The overall specificity for all bioinformatics workflows was high,
with only participant 6 identifying 43 reads as a chordopoxvirus, a false-positive result.

The total times of analysis differed widely, from 3 h (participant 1) to 216 h (15 h of
online analysis, with an additional 201 h waiting for server availability; participant 4)
(Table 5). Most workflows were calculated on a server system; two participants used a
personal computer, and two used a virtual machine. One calculation was executed
through an external public server.

Most of the workflows used in the COMPARE virus PT were quite similar, with the
same basic tasks applied in different orders (Fig. 2). Most workflows started with
trimming and quality filtering, followed by the subtraction of background reads, the
assembly of remaining reads, and a final reference-based viral read assignment (Fig. 1).
The databases used were custom-made or full databases from NCBI nt/nr GenBank
(participants 1 to 4, 6 to 11, and 13). Participants 5 and 12 used viral sequences from

TABLE 4 Interpretation of bioinformatics results

Participant

Results of:

Participant’s backgroundBioinformaticsa Diagnostics

1 TTV, HSV-1, MeV HSV-1 Bioinformatics
2 TTV, HSV-1, MeV HSV-1 Food and environmental health
3 TTV, HSV-1, MeV, nABV SSPE/HSV-1 Veterinarian, virology
4 HSV-1 HSV-1 University, virology
5 TTV, HSV-1, MeV, nABV nABV Virology
6 TTV, HSV-1, MeV, nABV nABV Medical research
7 TTV, HSV-1, MeV SSPE Animal and plant health
8 TTV, HSV-1, MeV SSPE Veterinarian, virology
9 TTV, HSV-1, MeV SSPE Public health
10 TTV, HSV-1, MeV SSPE Public health
11 TTV, HSV-1, MeV SSPE Public health and environment
12 TTV, HSV-1, MeV, nABV SSPE/HSV-1 Diagnostics, virology
13 TTV, HSV-1, MeV SSPE Virology
aAbbreviations: TTV, Torque teno virus; HSV-1, human herpesvirus 1; MeV, measles virus; nABV, novel avian
bornavirus; SSPE, subacute sclerosing panencephalitis.

Brinkmann et al. Journal of Clinical Microbiology

August 2019 Volume 57 Issue 8 e00466-19 jcm.asm.org 6

 on A
ugust 21, 2019 by guest

http://jcm
.asm

.org/
D

ow
nloaded from

 

https://www.ebi.ac.uk/ena/data/view/PRJEB32470
https://jcm.asm.org
http://jcm.asm.org/


NCBI GenBank only, while participant 7 also included a database for human-pathogenic
viruses (ViPR) (https://www.viprbrc.org/brc/home.spg?decorator�vipr).

All groups were also asked to correlate the results based on the bioinformatics
analysis with the clinical symptoms described in the case report (Table 4). HSV-1 was
suspected as the disease-causing agent by three groups, and MeV was identified by six
groups. An MeV infection with HSV-1 possibly affecting the course of disease was named
by two groups. nABV was interpreted as the single causative agent by two groups.

DISCUSSION

HTS-based virus diagnostics requires complex multistep processing, including lab-
oratory preparation, assessment of the quality of sequences produced, computationally
challenging analytic validation of sequence reads, and postanalytic interpretation of
results. Therefore, not only comprehensive technical skills but also bioinformatic,
biological, and medical knowledge is of paramount importance for proper analyses of
HTS data for virus diagnostics.

HTS data can comprise several hundred thousand to many millions of reads from a
single sequenced sample. Handling and analyzing such amounts of data pose compu-
tational challenges and currently require know-how and expertise in bioinformatics.
Depending on the laboratory procedure, identification of viral reads from clinical
metagenomics data is negatively affected by low virus-to-host sequence ratios and
high viral mutation rates, making reference-based sequence assignments for highly
divergent viruses challenging (24).

In silico bioinformatics analysis of HTS data can be separated into an analytic and a
postanalytic step. The analytic step includes the processing of sequence reads with
software tools or scripts assembled into workflows and pipelines. The postanalytic step

FIG 1 Numbers of Torque teno virus (TTV), human herpesvirus 1 (HSV-1), measles virus (MeV), and novel
avian bornavirus (nABV) reads identified by participants 1 to 13.

TABLE 5 Total time of computational analysis, maximum computer/server specifications, and reference databases useda

Participant Time of analysis (h) Database Operating system CPU CPU MHz RAM (GB)

1 3 NCBI nt UNIX VM VM VM
2 15.5 NCBI nt Ubuntu 16.04 LTS 56 1,270 378
3 60 NCBI nt/nr CentOS 6 24 2,400 64
4 216 NCBI nt Windows XP Intel core i5 2,300 8
5 26 NCBI viral db OS X 2 NA NA
6 12 NCBI nr Ubuntu 14.04 32 2,000 503
7 6 ViPR and NCBI nt BioLinux Ubuntu 14.04 8 3.6 16
8 7 NCBI nt CentOS 6.5 64 2,300 250
9 5 NCBI nr Ubuntu 12.04.5 NA 3,800 50
10 48 NCBI nt CentOS 6.5 2 � AMD Opteron 2,200 32
11 14 NCBI nt/nr RHEL VM, variable VM, variable VM, variable
12 18 NCBI viral db Linux Mint Intel Xenon X5650 6 � 2.67 Ghz 25
13 48 NCBI nt Ubuntu 14.04.4 LTS 2 � AMD Opteron 6174 24 � 2.2 GHz 128
anr, nonredundant; nt, nucleotide; db, database; VM, virtual machine; NA, not available.
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is evaluation of the results obtained from the bioinformatics analysis with regard to
pathogen identification, often involving interpretation by an experienced, qualified
health professional to correlate bioinformatics results with clinical and epidemiological
patient information.

FIG 2 Simplified comparison of different bioinformatics workflows for virus identification used in the COMPARE virus proficiency test. Colored plus signs indicate
the identification of human herpesvirus (turquoise), Torque teno virus (turquoise), measles virus (blue), or avian bornavirus (red).

Brinkmann et al. Journal of Clinical Microbiology

August 2019 Volume 57 Issue 8 e00466-19 jcm.asm.org 8

 on A
ugust 21, 2019 by guest

http://jcm
.asm

.org/
D

ow
nloaded from

 

https://jcm.asm.org
http://jcm.asm.org/


The bioinformatics analysis and the technical identification of viral reads from the
HTS data set were shown to have decreasing success as sequences became more
divergent from reference strains, as exemplified by MeV, with 82% identity on the
nucleotide level to its closest relative, and nABV, with just 52% identity on the
nucleotide level to other bornaviruses, which was identified by only 4 of the 13
participants. MeV and TTV were missed by participant 4, whose analysis was based on
the Kraken tool and an in-house workflow. Kraken is known to align sequence reads to
reference sequences with high specificity and low sensitivity, making the alignment of
mutated and divergent virus reads difficult (15). Since Kraken employs a user-specific
reference database, TTV may have been absent from the custom database; Kraken was
also used by participant 7, which was able to identify both MeV and TTV. It is noted that
the use of different databases is an obstacle in bioinformatics analysis of HTS data. To
date, there have been unified, curated virus reference databases only for influenza
viruses (EpiFlu) (25), HIV (26) and human-pathogenic viruses (ViPR) (27). Recently, viral
reference databases for bioinformatics analysis of HTS data have been developed
(https://hive.biochemistry.gwu.edu/rvdb, https://rvdb-prot.pasteur.fr/) (28). NCBI offers
the most extensive collection of viral genomes, but the lack of curation and verification
of submitted sequences often leads to false-positive and false-negative results. To
overcome such problems, reference-independent tools for virus detection in HTS data
have been developed, making the discovery of novel viruses feasible without any
knowledge of the reference genome (29). All of the participants that were able to
identify the divergent nABV used workflows based on protein alignment approaches,
including BLASTx/p, USEARCH, and DIAMOND, which are known to be highly sensitive
(14, 17). The identification of such highly divergent viruses is still challenging and
cannot be accomplished by workflows with nucleotide-only reference-based alignment
approaches. DIAMOND, which became available in 2015, was specifically designed for
such sensitive analysis of HTS data at the protein level and is as much as 20,000 times
faster than BLAST programs. Compared to other alignment tools, which seem to have
a trade-off between speed and sensitivity, DIAMOND offers superior sensitivity for the
detection of mutated and divergent viral sequences (14). However, the detection of
such highly divergent viral sequences in patient samples is rare, and virus discovery is
not a routine part of clinical virus diagnostics.

In terms of specificity, all workflows were highly specific; only workflow 6 showed
the identification of a chordopoxvirus that was not present in the data set. Such
false-positive results, as well as the excessive number of HSV-1 and MeV reads found by
participant 7 (8,361 of 2,000 reads and 1,411 of 1,000 reads, respectively), can derive, for
example, from low-complexity reads in the data set that are aligned to low-complexity
or repetitive sequences of the viral reference genomes, from inappropriate matching
score limits during filtering, or from inappropriate algorithm parameters. Furthermore,
custom databases and viral references from NCBI can include sequences of human
origin that can lead to false-positive results, resulting, in some cases, in nonreporting of
other matches due to default algorithm reporting limits.

The total times of all workflows differed widely, from only 3 h to 216 h (15 h for the
analysis and 201 h waiting for available servers). One of the fastest participants was
participant 1, which needed only 3 h to perform the calculations on a scalable high-
performance national virtual machine, whereas the slowest workflow (participant 4;
216 h) involved calculation on a personal computer through an external public server
where bioinformatics software jobs are queued among many other users (Fig. 1; Table
5). However, participant 5 also performed analysis on a notebook but within a much
shorter time (26 h). Overall, workflows exclusively specified for virus detection or using
only a viral or RefSeq database did not clearly correlate with shorter times than
workflows with full metagenomics analyses. However, the specific composition of each
database was not provided. To finally evaluate the performance of each bioinformatics
workflow with regard to the time of analysis, all workflows should be run on the same
computer system, but such standardization was not practical for this PT evaluation.

The COMPARE virus PT has further shown that both analytic work and postanalytic
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evaluation are of importance, since similar analytic results can be interpreted very
differently, depending on the analyzing participant. Unlike standard routine virus
diagnostic approaches such as PCR, where a medical hypothesis of relevance tests
either positive or negative, HTS offers an extensive and largely unbiased catalogue of
results. The etiological agent of a patient sample can be masked by false-positive
results, sequencing contaminants, commensal viruses of the human virome, or viruses
of yet unknown importance. Furthermore, the causative viral agent of a disease may be
present in very low read numbers, because viral loads may be low, depending on the
timing of sampling and the sample matrix. RNA viruses, among which are the most
pathogenic human viruses, usually have smaller genomes than DNA viruses (30, 31).
Therefore, low read numbers from an RNA virus might be dismissed, resulting in a
false-negative result. To assess sequencing results, some workflows and pipelines use
cutoffs for read numbers so as to reduce false-positive results, but they may in the
process make the detection of low-read-number matches less likely.

Since the analysis of HTS data for virus diagnostics requires bioinformatics as well as
virological knowledge, collaboration between the two disciplines has been emphasized
(32). Furthermore, automated pipelines for HTS-based virus diagnostics with unbiased
evaluation of the pathogenicity and relevance of the pathogen detected have been
implemented; these can help harmonize the analysis and interpretation of HTS se-
quence results (33).

A robust approach to viral diagnostics using HTS requires further refinement and
validation. The COMPARE in silico PT is limited by the low complexity of the simulated
data set. In vivo sequence data sets can comprise a highly diverse background and
microbiome of the host, further increasing the difficulty of identifying viral reads.
Further proficiency schemes with in vivo data sets and samples and wider collaboration
are required to make progress. A second in silico PT organized by the COMPARE
network has focused on the interpretation of the significance of foodborne pathogens
in a simulated data set (unpublished data). Again, the interpretation of the results was
shown to be one of the most diverse and critical points in HTS data analysis. Further-
more, third-generation sequencing technologies, such as MinION from Oxford Nano-
pore Technologies, are becoming available in many laboratories and field settings due
to low cost and short sequencing times (34–36). However, analysis tools developed for
second-generation sequencing technologies, such as the Illumina system, may not be
applicable for third-generation sequencing data, due to the low sequencing accuracy
of approximately 85% and the length of the sequences, which can be as long as 2 Mbp
(37–39). Consequently, future PTs should also include the use of third-generation
sequencing technologies, since those are likely to become part of routine laboratory
diagnostics in the future.

Conclusion. The present availability of external quality assessment for HTS-based

virus identification is limited. The COMPARE in silico virus PT has shown that numerous
tools and different workflows are used for virus analysis of HTS data and that the results
of such workflows differ in sensitivity and specificity. At present, there are no standard
procedures for virome analyses, and the sharing, comparison, and reliable production
of the results of such analyses are difficult.

Finally, there is a clear need for creating updated, highly curated, free, publicly
available databases for harmonized identification of viruses in virome data sets, as well
as mechanisms for conducting continuous ring trials to ensure the quality of virus
diagnostics and characterization in clinical diagnostic and public and veterinary health
laboratories.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/JCM
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