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Abstract
In 2006, Narum published a paper in Conservation Genetics emphasizing that Bonferroni correction for multiple testing can 
be highly conservative with poor statistical power (high Type II error). He pointed out that other approaches for multiple 
testing correction can control the false discovery rate (FDR) with a better balance of Type I and Type II errors and suggested 
that the approach of Benjamini and Yekutieli (BY) 2001 provides the most biologically relevant correction for evaluating 
the significance of population differentiation in conservation genetics. However, there are crucial differences between the 
original Benjamini and Yekutieli procedure and that described by Narum. After carefully reviewing both papers, we found 
an error due to the incorrect implementation of the BY procedure in Narum (Conserv Genet 7:783–787, 2006) such that 
the approach does not adequately control FDR. Since the incorrect BY approach has been increasingly used, not only in 
conservation genetics, but also in medicine and biology, it is important that the error is made known to the scientific com-
munity. In addition, we provide an overview of FDR approaches for multiple testing correction and encourage authors first 
and foremost to provide effect sizes for their results; and second, to be transparent in their descriptions of multiple testing 
correction. Finally, the impact of this error on conservation genetics and other fields will be study-dependent, as it is related 
to the number of true to false positives for each study.

Keywords  Multiple testing correction · False discovery rate · Family-wise error · Benjamini Hochberg · Benjamini 
Yekutieli

Introduction

In 2006, Narum published a paper in Conservation Genet-
ics pointing out the conservative nature of the Bonferroni 
approach to correct for multiple testing when considering 
a set of statistical inferences and the potential for higher 
Type II errors (Narum 2006). He suggested that alternative 
approaches, such as the use of false discovery rate (FDR) 
to correct for multiple testing can be very effective and can 
provide a better balance between Type I and Type II errors 
(Type I error is a false positive, incorrectly rejecting a true 
null hypothesis; whereas Type II error is a false negative, 
a failure to reject a false null hypothesis). Further, Narum 
(2006) argued that tests to correct for multiple testing should 
be chosen on a case-by-case basis depending on the priority 
of potential Type I and Type II errors. Finally, he proposed 
the FDR approach of (Benjamini and Yekutieli 2001) as 
an alternative approach and potentially more biologically 
relevant for conservation genetics.
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His paper, “Beyond Bonferroni: Less conservative analyses 
for Conservation Genetics,” has been cited over 600 times to 
date. The article has not only been cited in the field of con-
servation genetics, but also has been increasingly cited in the 
fields of biology and medicine. These studies apply the equa-
tion described by Narum (2006) attributed to the Benjamini 
and Yekutieli (2001) procedure for multiple testing correction 
(BY-FDR). However, a careful review of the published BY 
method and what Narum describes as the BY method shows 
crucial differences. Close examination of the two works shows 
that not all steps were included in calculating the BY-FDR 
procedure in Narum (2006), and thus this implementation of 
BY is incorrect and cannot be guaranteed to control the FDR. 
Thus, we believe that this error has created confusion about the 
BY procedure and the misimplementation is being propagated 
along an increasing number of studies.

Within this context, we have three goals of this paper: The 
first is to provide an overview of the Bonferroni method, the 
original (Benjamini and Hochberg 1995) FDR (BH-FDR), 
and the Benjamini and Yekutieli (2001) method (BY-FDR); 
the second goal is to describe the incorrect implementation 
of the BY-FDR approach described by Narum, which we 
will henceforth label as the BY-mis (short for BY-Misimple-
mentation) approach; and the third is to assess the potential 
impact of this error using 30 of the most recent publica-
tions that cite the Narum (2006) paper. However, with the 
large number of papers that have applied this approach, the 
specific impact within the fields of conservation genetics, 
biology, and medicine will need to be evaluated by experts 
within each of the domains or sub-domains of research in 
these fields. We will demonstrate that using the BY-mis 
approach for multiple testing correction results in higher 
rates of false positives, especially when a large number of 
multiple tests are performed. However, as pointed out by 
Narum (2006), false negatives can also be a concern and 
specific situations may require approaches that limit Type II 
errors. Typically larger sample sizes are needed to confirm 
true negatives. In situations where sample sizes are low, as 
is often the case in conservation genetics (e.g., low number 
of sampled individuals and/or populations, low number of 
loci in non-model species) decisions based on false nega-
tives could lead to less productive conservation management 
strategies (Narum 2006). Thus, we also provide simulations 
to demonstrate the rates of false negatives using different 
approaches for multiple testing correction in two specific 
scenarios.

Theory

We first review the different multiple testing approaches 
discussed by Narum (2006) using his notation as closely as 
possible. We start with a collection of k tests, each with a 

corresponding p value, pi , i = 1,…,k. A multiple testing pro-
cedure identifies a subset of the k tests as significant while 
controlling some measure of false positive risk that takes 
into account the number of tests performed. The Bonferroni 
method controls the family-wise error (FWE), the chance 
of one or more false positives, by using a fixed threshold of:

where αFWE is the desired FWE level: All tests with pi ≤ αBonf 
can be declared significant while controlling the FWE.

Benjamini and Hochberg (1995) introduced the false dis-
covery rate (FDR) for multiple testing correction. In describ-
ing the FDR it is useful to first define the false discovery 
proportion (FDP): FDP is the ratio of the number of false 
positive tests to total number of significant tests, defined as 
0 if no tests are significant. The FDR is the expected value 
of FDP; put another way, FDR is the expected proportion 
of false positives among positives. To find FDR-significant 
tests, denote the ordered p-values p(1) ≤ p(2) ≤ ··· ≤ p(k) . Then 
for a desired αFDR, let the index i* be found as

and the tests with pi ≤ p(i∗) can be declared significant while 
controlling FDR at αFDR.

The assumptions of this BH-FDR procedure (BH-FDR) 
are independence among the test statistics (Benjamini and 
Hochberg 1995). However, Benjamini and Yekutieli (2001) 
found that weaker assumptions could be used, allowing a 
general form of positive dependence among the test statis-
tics. They proposed another method for controlling FDR 
that makes no assumptions about the dependence among the 
tests, as long as a more stringent criterion was used (Theo-
rem 1.3, BY), with the index i∗

BY
 computed:

With this approach, the tests with pi ≤ p(i∗
BY

) are marked sig-
nificant and FDR is controlled at αFDR under any form of 
dependency. Note that 

∑k

i
�
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i
� ≈ log (k) + �  , where 

� ≈ 0.57721 is Euler–Mascheroni constant. This is the 
method we refer to by BY-FDR.

We can now make a quick comparison of three methods 
on the basis of the smallest p-value p(1) : Bonferroni has the 
fixed threshold αFWE/k, while BH-FDR will compare p(1) 
to αFDR/k and BY-FDR will compare p(1) to approximately 
αFDR/(k log (k)). Of course, BH-FDR and BY-FDR are adap-
tive and thus the comparison for each p-value within a test 
set has successively more lenient thresholds. However, as 
BH-FDR and BY-FDR use the same inequality except for 
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the ≈ 1/log (k) term, BY-FDR can only be more stringent 
than BH-FDR.Now, in Narum (2006), the author incorrectly 
states that the BY-FDR threshold is fixed and equal to:

This is a fundamental error, as a key feature of FDR 
methods is that they are adaptive. The error arose from 
neglecting that this expression was just one component of 
the BY procedure [to be substituted for q in BY Eq. (1) on 
pp. 1167 (Benjamini and Yekutieli 2001)]. This incorrect 
application of the BY approach (BY-mis) results in a fixed 
threshold for a specific k.

Since a fixed threshold specifies the average or per com-
parison error rate (PCE), we have taken several approaches 
to assess the impact of this error. Assuming the complete 
null, i.e. no signal for any test, k × PCE is the expected num-
ber of false positives. For the threshold at the 0.05 level, 
for k = 105, BY-mis has k × PCE ≈ 1, while for k = 1590, 
k × PCE ≈ 10. This demonstrates that the BY-mis approach 
can be assured to produce an increasing number of false pos-
itives for an increasing k. In contrast, for Bonferroni k × PCE 
is exactly αFWE, i.e. always less than 1, and every valid FWE 
or FDR level α procedure is guaranteed to produce no false 
positives with probability 1−α (again, in this complete null 
setting). While the BY-mis approach does asymptote to zero 
as k approaches infinity, it approaches zero extremely slowly. 
For example, with 10 million tests performed, the BY-mis 
p-value threshold is 0.003, in contrast to the Bonferroni 
threshold of 0.000000005.

To evaluate the rate of significant p-values found with the 
Bonferroni, BH, BY, BY-mis, and uncorrected approaches 
we conducted a simulation using the Python programming 
language version 2.7.13 (Zope Corporation and a cast of 
thousands;www.pytho​n.org); the code used for all simula-
tions is available in the supplement.. We performed sim-
ulations using k values ranging from 1 to 100 tests. For 
each k, we created 50,000 random realizations where null 
p-values were computed from test statistics generated as a 
standard normal distribution. Thus, for k = 1 we had a total 
of 50,000 independent p-values and in this case the four 
approaches were identical. For k > 1 we generated k inde-
pendent p-values and applied each of the four methods. A 
nominal αFWE = αFDR = 0.05 was used for all methods. In this 
null setting, any “discovery” is a false discovery and so the 
measured FDR and FWE are the same. We computed the 
proportion of realizations where any p-values were found 
significant, representing a FWE error and a FDP of 1. Fig-
ure 1a shows the FDR and FWE as a function of the number 
of tests, showing that Bonferroni and BH-FDR both control 
false positives as expected (as an aside, while Bonferroni is 
often regarded as conservative, in this setting of small k and 
independent tests, it is essentially exact). The FDR/FWE of 

1
∑k

i=1

1

i

�FDR .

BY-FDR becomes increasing conservative while the BY-mis 
has inflated false positives with a near linear increase with 
increasing k.

In addition, we performed simulations using python to 
measure both false negative rates for the Bonferroni, BH, 
BY, and the BY-mis approaches for multiple testing correc-
tion. These simulations were creating 50,000 realizations of 
sets of k tests, 1 to 100, but in this simulation we included a 
mix of null and non-null tests. We performed two classes of 
simulations, one with 1 non-null test and one with 25 non-
null tests. For example, with k = 50 and the situation of 1 
non-null test, there were 49 random p-values computed from 
a standard Normal distribution test statistic, and 1 p-value 
that was generated with from a non-null Normal with mean 
set to give a test with 80% power at the uncorrected level 
α = 0.05. The same situation with k = 50 for the case with 
25 non-null tests, where 25 p-values were generated from 
null test statistics and 25 non-null p-values were generated 
to have 80% power to reject the null. This can be seen in 
Fig. 1b, c where the probability of a false negative for uncor-
rected comparisons remains at 0.2. These simulations show 
that the BY-FDR, has the highest probability of a Type II 
error with one simulated non-null result, whereas the BH-
FDR and Bonferroni are very similar.

To illustrate these simulations with an example, say that 
a study was conducted in which 50 tests were performed 
(k = 50) with half of the tests actually being significant. 
Thus, there are 25 tests in which there is a possibility of 
false positive, and 25 tests in which there is a possibility of 
a false negative. Since Fig. 1c models the case of 25 out of 
k = 25 to 100 significant tests, the probability of a false nega-
tive for k = 50 is approximately 0.4 for the BH-FDR, 0.43 
for the BY-mis, 0.68 for the BY-FDR, and 0.72 for the Bon-
ferroni approach. The probability of a false positive for 25 
non-significant tests can be determined from Fig. 1a. With 
k = 25, the FDR and FWE rate would be at approximately 
5% and below for the Bonferroni, BH-FDR, and BY-FDR, 
but the false discovery rate would be approximately 30% for 
the BY-mis (Fig. 1a). Figure 1b, c shows that for all methods 
used to correct for multiple testing, the risk of Type II error 
increases with the number of tests k. However, there is a dra-
matic difference between the performance of BY-FDR and 
the BY-mis. Note the advantage of the BH-FDR approach 
in minimizing both false positive and false negative errors, 
while still controlling FDR.

We also consider the specific set of 15 p-values used in 
Narum (2006) to tabulate the p-value thresholds for the Bon-
ferroni, BH, BY, and the BY-mis approaches. Table 1 shows 
the thresholds used for each of the 15-exemplar p-values, 
with significant tests marked in bold. It can be seen that the 
BY-FDR and the BY-mis are not the same. Narum (2006) 
reported four significant tests as compared to the correct 
BY-FDR’s having two significant tests.

http://www.python.org
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Fig. 1   Probability of Type I 
and Type II errors compared 
to the number of independent 
tests performed. a False positive 
rates under the complete null 
setting, showing false discov-
ery and family-wise error rate 
(here, identical) plotted against 
the number of tests performed 
using five different approaches: 
Bonferroni, Benjamini–Hoch-
berg (BH-FDR), Benjamini 
and Yekutieli (BY-FDR), the 
BY-misimplementation (BY-
mis), and no correction. It is 
demonstrated in this simulation 
that the FDR and FWE rise 
dramatically with k (the number 
of tests) for BY-mis. b Type II 
error rates for a one non-null 
test out of a total of k tests 
(k = 1–100). c Average Type 
II error rate over 25 non-null 
tests out of k tests (k = 25–100). 
Type II error rates rise with k 
for all multiple testing methods, 
but BY-mis has dramatically 
different rates than BY-FDR. A 
total of 50,000 iterations were 
done for each simulation and 
the python code is provided in 
the supplement



931Conservation Genetics (2019) 20:927–937	

1 3

The example in Table 1 also demonstrates one of the 
challenges in finding a balance between Type I and Type 
II errors and the choice for multiple testing correction. The 
probability that 12 of 15 independent tests would show an 
uncorrected p-value less than 0.05 is very low. Thus, Bon-
ferroni, having only two significant tests, is likely overly 
conservative and would result in a higher type II error rate. 
The BH-FDR approach, however, shows that 10 of the 15 
tests are identified as significant, which in this situation may 
be more plausible, although it would be helpful to know 
the covariance structure between the different variables, as 
statistical dependence between variables is not uncommon. 
Figure 1c demonstrates type II error rates for the simulation 
of 25 true positives (80% chance of being less than p < 0.05) 
and the notable differences between the Bonferroni and BH-
FDR for k = 1–100 independent tests.

Finally, we used Scopus to identify the 30 most recent 
publications (search date: February, 9, 2019) that cite Narum 
(2006) to sample the impact of this error on the literature 
(Table 2). Of these 30 articles, nine articles (30%) were spe-
cifically related to conservation genetics; ten articles were 
in the fields of biology, mostly involving genetic analyses 
(33.3%); nine articles (30%) were in the field of medicine, 
most commonly in psychiatry; and the two additional arti-
cles were in the fields of statistics and anthropology. In 20 
of these articles (67%) we could confidently determine that 
BY-mis was used (2006), while it was unclear in six articles 

(20%), and one article cited Narum (2006), but did not use 
the BY-mis approach. None of the papers described using 
a standard statistical software package to calculate the BY-
FDR. Eight of the twenty articles that applied the BY-mis 
approach also cited the Benjamini and Yekutieli (2001) 
article. Of the 28 relevant articles [excluding Hauser et al. 
(2018) and Stepien et al. (2018) as these papers cited but did 
not apply the BY-mis approach], only eight articles (29%) 
provide enough information to calculate the alternate mul-
tiple testing corrections for the data provided for the spe-
cific study. Four of these eight articles show an reduction 
in the number of significant tests when BY-mis is replaced 
with BY-FDR, whereas the other four have tests that either 
are negative (one article) or are so strongly significant that 
all the tests also pass Bonferroni correction (three articles). 
Also noteworthy, eight of the twenty articles that applied 
the BY-mis approach (40%) applied independent levels of 
multiple testing, rather than applying multiple testing to all 
tests in the article.

Discussion

In 1995, Benjamini and Hochberg proposed the FDR met-
ric and a method to control FDR. Benjamini and Yekutieli 
in 2001 proposed a method to control FDR with weaker 
assumptions, but more stringent correction than the BH 
approach. Narum’s (2006) paper provided an overview 
and examples of the BY-FDR procedure, however, did not 
include all steps of the BY algorithm (shown above). A 
careful reading of Benjamini and Yekutieli (2001) reveals 
that the equation for multiple testing from Narum (2006) 
(from Theorem 1.3 on pp. 1169 of BY) should be entered 
as the α in the B-H equation (Eq. (1) on pp. 1167 in BY), 
producing an adaptive threshold. Further, based on a series 
of p-values taken from the Narum (2006) paper (Table 1), 
different results are obtained comparing the Narum (2006) 
description of the BY approach and the BY-FDR described 
by Benjamini and Yekutieli (2001).

Direct calculation shows that BY-mis has expected num-
ber of false positives that increases nearly linearly with 
number of tests k, and that this increasing false positive rate 
differs dramatically from the BY-FDR approach (Fig. 1a). 
We believe that a large percentage of the over 600 publica-
tions are liable to have this inflated rate of false positives 
in their results, notably since results arising from Type I 
errors are much easier to publish than those from Type II 
errors. We found that at least 40% of a sample of the 30 most 
recent papers that cite Narum (2006) article also cite Ben-
jamini and Yekutieli (2001) and that they have applied the 
BY approach, but actually apply the BY-mis-FDR approach 
(Table 2).

Table 1   A set of p-values from 15 significance testing taken from the 
Narum 2006 paper (column labeled ‘p-value examples’) and compari-
son with four approaches to multiple testing (critical p-values for sig-
nificance)

Numbers in bold reflect the ‘p-value examples’ that are significant 
based on each of the four critical p-value columns

p-value exam-
ples

Bonferroni Benjamini 
and Hoch-
berg

Benja-
mini and 
Yekutieli

BY-
misimple-
mentation

0.0001 0.0033 0.0033 0.0010 0.0151
0.0010 0.0033 0.0067 0.0020 0.0151
0.0062 0.0033 0.0100 0.0030 0.0151
0.0101 0.0033 0.0133 0.0040 0.0151
0.0214 0.0033 0.0167 0.0050 0.0151
0.0227 0.0033 0.0200 0.0060 0.0151
0.0273 0.0033 0.0233 0.0070 0.0151
0.0292 0.0033 0.0267 0.0080 0.0151
0.0311 0.0033 0.0300 0.0090 0.0151
0.0323 0.0033 0.0333 0.0100 0.0151
0.0441 0.0033 0.0367 0.0111 0.0151
0.0490 0.0033 0.0400 0.0121 0.0151
0.0573 0.0033 0.0433 0.0131 0.0151
0.1262 0.0033 0.0467 0.0141 0.0151
0.5794 0.0033 0.0500 0.0151 0.0151
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We do agree with Narum that the Bonferroni approach 
can be highly conservative in some situations of multiple 
testing correction, especially with dependent data. However, 
there has also been a growing concern that many studies fail 
to replicate (Ioannidis 2005; Open Science Collaboration 
2015; Nichols et al. 2017; Gelman 2018). In the past, analy-
ses were performed without adequately controlling for the 
numbers of tests performed (Carp 2012) which resulted in 
numerous Type I errors but also likely fewer Type II errors. 
We also agree with Narum that the individual studies should 
determine the balance between Type I and Type II errors, as 
there are some situations in many fields where researchers 
want to limit Type II errors. Examples include situations 
in conservation genetics where a failure to show a positive 
effect could direct conservation management strategies that 
are counter to the survival of a species (Narum 2006). Spe-
cies in which there is concern over extinction often have 
smaller populations and lower rates of reproduction (Lynch 
and Lande 1998) and decisions based on false negatives in 
some populations could lead to less productive conserva-
tion management strategies. Examples in medicine with 
concerns over false negatives include the presurgical use of 
functional magnetic resonance imaging to identify eloquent 
cortex (Durnez et al. 2013). In such cases, a false negative 
could result in the removal of eloquent cortical regions and 
thus stringent correction for multiple testing would not be 
indicated. Thus, in conservation genetics, biology, medicine, 
and other fields, individual studies may shift the choice of 
limiting either Type I or Type II errors and providing the 
rationale for the choice of (or lack of) multiple testing cor-
rection should always be provided.

Our attempt to extract vital information to assess the mul-
tiple testing correction within each of the 30 most recent 
articles that cite the Narum (2006) paper highlights the need 
in the literature for greater transparency regarding the use of 
multiple testing correction. Over two-thirds of these papers 
did not provide enough information to replicate the authors 
approach for multiple testing correction nor to compare the 
different methods. Further, a minority of these papers pre-
sented effect sizes or confidence intervals for their findings, 
and omission of these data been shown to be a problem in 
many fields of science (Chavalarias et al. 2016). None of the 
authors described using statistical software packages, (i.e. 
R or SAS) to calculate the BY-FDR, which, if performed 
correctly, would have resulted in an accurate calculation 
of multiple testing correction. It is likely that the BY-mis 
approach, which provides a single critical p-value and is 
trivial to calculate, was easier than the use of statistical soft-
ware. There is currently discussions regarding moving away 
from the use of the p ≤ 0.05 approach (American Statistical 
Association 2016), we would recommend that if p-values are 
presented, they should always be the full, unadjusted p-value 
and should be accompanied by effect sizes or confidence 

intervals. Effect sizes or confidence intervals provide greater 
details regarding hypothesis testing compared to p-values 
(Smith 2018) and will enhance replication, as studies evalu-
ating small effects in the wake of considerable noise are 
likely false positives (Gelman 2018), considering a system 
rewarded by positive findings.

In summary, so long as p-values remain one of the top 
methods of choice to report statistical results, we agree with 
the Narum (2006) that researchers should carefully consider 
the different tests for multiple testing correction and should 
make a priori decisions based on Type I and Type II errors 
within their specific study. Further, we provide an overview 
of FWE and FDR correction approaches and several simula-
tions to show both type I and type II errors. We point out an 
error in Narum’s (2006) paper describing the BY approach 
and show that the BY-mis does not adequately control for 
FDR when used for multiple testing correction. Finally, we 
recommend that authors be transparent in reporting the num-
ber of tests, the number of clusters of tests, and method used 
when performing multiple testing correction. Authors should 
also present effect sizes or confidence intervals is also key.
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