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An artificial pancreas based on simple
control algorithms and physiological insight

John Bagterp Jgrgensen, Dimitri Boiroux, Zeinab Mahmoudi

Department of Applied Mathematics and Computer Science,
Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

Abstract: We present a simple control algorithm for a single-hormone artificial pancreas (AP).
The AP consists of a continuous glucose monitor (CGM) measuring the interstitial glucose
concentration, a control algorithm computing the insulin to administer, and an insulin pump
dosing the insulin. The control algorithm is based on insights into the underlying dynamics
of the glucose-insulin dynamics in people with type 1 diabetes. The main components in this
control system are 1) an insulin bolus calculator to compensate for carbohydrates in meals, 2)
a run-to-run algorithm for adjusting the basal insulin to long-term metabolic variations, and
3) a micro-bolus correction of the basal insulin to compensate for short-term variations in the
endogenous insulin production and insulin sensitivity.

© 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

The single-hormone artificial pancreas (AP) for people
with type 1 diabetes (T1D) consists of a continuous glucose
monitor (CGM), a control algorithm and supporting safety
algorithms, and a pump for administration of a fast acting
insulin analogue. The control algorithm may reside on a
smart-phone as in most research prototypes of an artificial
pancreas. However, for commercial systems the control
algorithms will most likely be embedded on a chip in the
pump hardware, even if the pump is a patch pump. The
miniaturization of this hardware would benefit from simple
easily implementable control algorithms. In this paper,
we use insight in the pharmaco-kinetics and pharmaco-
dynamics (PK-PD) of meal carbohydrates (CHO) and
subcutaneously (SC) injected fast acting insulin to suggest
simple high-performing control algorithms for the artificial
pancreas.

1.1 Single-hormone artificial pancreas

The research literature has reported single-hormone AP
control algorithms based on linear model predictive con-
trol (Boiroux et al., 2018; Schmidt et al., 2013; Messori
et al., 2014; Magni et al., 2009; Gondhalekar et al., 2016;
Grosman et al., 2010), adaptive linear model predictive
control (Boiroux et al., 2017; Eren-Oruklu et al., 2009;
Turksoy et al., 2014; Turksoy and Cinar, 2014), nonlinear
model predictive control (Boiroux et al., 2010a,b, 2016;
Boiroux and Jgrgensen, 2017), adaptive nonlinear model
predictive control (Hovorka et al., 2004), PID control tech-
nology (Steil et al., 2004; Marchetti et al., 2008; Palerm,
2011), and fuzzy-logic technology that is branded as MD-
logic (medical doctor logic) technology (Atlas et al., 2010).
However, the classification of controllers according to the
algorithm (MPC, PID, fuzzy logic) does not address the
more important question related to the structure and

function of the control algorithm. Due to the PK-PD of
SC injected fast acting insulin in relation to meal CHO, it
is beneficial to structure the control algorithm into a bolus
algorithm, a basal algorithm, and a micro bolus correction
algorithm.

1.2 Bolus algorithm

The bolus algorithm is a feedforward algorithm that com-
putes the insulin injection based on the estimated and
announced CHO in the meal to compensate for the blood
glucose (BG) excursion due to the actual CHO in the
meal (Walsh et al., 2011; Schmidt and Ngrgaard, 2014;
Ziegler et al., 2017; Herrero et al., 2017). Since even faster
acting subcutaneously injected insulin is absorbed slower
than meal CHO, it is nearly optimal to administer the
meal compensating insulin as a bolus (Boiroux et al.,
2010c¢). Using an insulin pump and no administration of
long acting insulin, the post prandial performance can be
improved by suspending the basal insulin for 2-4 hours
after the meal and giving the equivalent basal insulin as
part of the bolus in a so-called super bolus (Bondia et al.,
2009; Boiroux et al., 2010c; Herrero et al., 2015). The
bolus algorithm may also provide correction boluses, based
on the measured glucose concentration. In that case the
correction bolus needs to be adjusted for the insulin that
is already on board (Palerm, 2011).

1.3 Basal algorithm

The determination of the correct basal insulin level is
called insulin titration. In classical feedback control, the
insulin level giving zero offset in the glucose level from
its setpoint would be determined by an integral-controller
(Franklin et al., 1997; Astréom and Murray, 2008; Seborg
et al., 2010; Astrom and Hégglund, 2005). As large post
prandial glucose concentration excursions are unavoidable,
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a classical integral controller is not well-suited for determi-
nation of the basal insulin level. It would be better to run
the integral controller at fasting conditions and determine
the basal insulin level such that the glucose setpoint was
reached. In everyday daily life, nighttime resembles a fast-
ing period the most. Nighttime could be from say 22:00 -
6:00, where it is assumed that breakfast is consumed at or
after 6:00. The run-to-run (R2R) algorithm for iterative
learning has been suggested as an alternative to integral
control for basal insulin adjustment (Palerm et al., 2008;
Wang et al., 2009; Wang and amd Francis J. Doyle, III,
2010; Toffanin et al., 2014, 2017a,b; Tuo et al., 2015). The
run-to-run algorithm is motivated by clinical practice. In
clinical practice, insulin titration is conducted by adjusting
the basal insulin rate (long acting insulin if a pen system is
used) according to the pre-prandial glucose concentration
measured by a self monitoring blood glucose (SMBG)
device (Arnolds et al., 2013). Many clinical approaches to
basal insulin titration increases the basal insulin dose by
one unit per day if the average of the 3 last morning pre-
prandial glucose concentrations exceeds the target range.
The basal insulin dose is reduced if any hypoglycemic
events occur.

1.4 Micro bolus correction algorithm

Most control algorithms described in the literature are in
reality micro bolus correction controllers, but does not
directly address the large glucose concentration distur-
bances associated with meals. In MPC based micro bolus
algorithms for an AP, a number of research groups use low
order models (van Heusden et al., 2012; Boiroux et al.,
2018; Toffanin et al., 2018). As an optimal controller de-
signed using internal model control (IMC) is the inverse of
the transfer function, the optimal controllers are also low
order transfer functions that are often equivalent to PID-
controllers (Rivera et al., 1986; Morari and Zafiriou, 1989).
Accordingly, this observation suggests that these micro
bolus correction controllers based on MPC technology can
equivalently be implemented based on PID technology. In
this paper, we use physiological insight to design simple
controllers that has approximately the same performance
as MPC based controllers. This controller design provides
insight into the fundamental principles and limitations of
glucose control using subcutaneoulsy (SC) administered
fast acting insulin and may also have lower hardware
requirements than an MPC.

1.5 Paper organization

This paper is organized as follows. Section 2 describes the
hardware configuration and control structure in a single-
hormone artificial pancreas for controlling blood glucose
by administering insulin. In Section 3, the control algo-
rithm is developed, and Section 4 presents an illustrative
simulation using this simple control algorithm. Section 5
summarizes the conclusions of this paper.

2. CONTROL SYSTEM ARCHITECTURE

The insight about the insulin pharmaco-kinetics and
pharmaco-dynamics may be used to in several ways to
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structure the functions of a control algorithm for a single-
hormone AP. In this section, we present the hardware con-
figuration for a single-hormone AP and the corresponding
structure of a control algorithm. Fig. 1 illustrates a single-
hormone AP and the corresponding main functionality of
a control system based on simple control algorithms.

2.1 Hardware configurations

Fig. la shows a single-hormone AP. The single-hormone
AP constists of 1) a CGM that continuously (e.g. every 5
min) provides a filtered signal of the IG concentration, 2)
a control algorithm residing on a smart phone computes
the dose of fast acting insulin to administer; and 3) an
insulin pump that delivers the insulin dose computed by
the control algorithm. The control algorithm computes
the insulin concentration to deliver every 5 min based on
meal information from the user and the IG concentration
measured by the CGM. The high-frequency adjustment
of the insulin injection allows the single-hormone AP
to adjust the basal insulin profile based on feedback
from the CGM. Additionally, a self monitoring blood
glucose (SMBG) device may be used to calibrate the
CGM. In the configuration described in this paper, we
assume that the SMBG information is given directly to the
CGM and thus only indirectly interfere with the control
algorithm. Similarly, the described hardware configuration
does mnot receive physical activity related inputs from
accelerometers nor heart rate measurement devices.

2.2 Controller configuration

Fig. 1b shows the key elements in the control algorithm
for a single hormone AP that we propose in this paper.
The algorithm receives the CGM signal every 5 minutes
and filters this signal using a low pass filter. The fil-
tered CGM signal that represents the measured intersti-
tial glucose concentration is used by a) the meal bolus
controller, b) the basal R2R controller, and ¢) the micro
bolus proportional-derivative (PD) controller. Switch logic
related to among other things a super bolus as well as
safety rules are applied to the insulin signal from the
controller before the actual insulin delivery command is
sent to the insulin pump.

The meal bolus calculator uses an estimate of the meal
CHO content, d, to compute the meal bolus insulin dosage.
This meal bolus may be adjusted according to a bolus
correction factor and the insulin-on-board as in traditional
pen based insulin therapy. In addition, the basal and micro
bolus insulin delivery may be switched off for a period
after the meal. The basal insulin that would have been
administered in that period is administered together with
the bolus in a so-called super bolus.

The R2R algorithm uses a weighted average of the glu-
cose concentration during the previous night to adjust the
nominal basal insulin injection rate. The primary purpose
of the basal insulin algorithm is to compute the average
basal insulin requirements by titration. Due to the large
unavoidable glucose concentration excursions in associa-
tion with meals, only the night glucose concentrations until
breakfast are included in the titration as these glucose
concentrations resemble fasting glucose concentrations the
best.
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Fig. 1. Diabetes technology for a single-hormone AP. The single-hormone AP use fast acting insulin to compensate
for both meals (bolus insulin) and endogenous glucose production (basal insulin). (a) The realization of a single-
hormone AP using a glucose sensor (CGM), a smart phone with the control algorithm, and an insulin pump
administering fast acting insulin. (b) The structure of the control algorithm in a single-hormone AP. This structure
is motivated by the large size of meal disturbances and that meals are absorbed faster than sc injected fast acting

insulin.

The micro bolus controller adjusts the micro boluses such
that they are adapted to the IG concentration measured
continuously by a CGM. This is needed as the basal insulin
requirements in a patient during say a night may vary
significantly, i.e. the intra patient basal insulin variability
is non-negligible and one of the reasons that a feedback sys-
tem such that an AP is needed for better and safer glucose
concentration control in people with T1D. The basal R2R
algorithm adjusts the nominal basal insulin infusion rate
around which the micro bolus controller varies the insulin
infusion rate. In this paper, we suggest a PD controller for
the micro bolus correction algorithm, as this is the simplest
reasonable algorithm. Other possibilities such as a linear
MPC or an IMC algorithm exist.

3. CONTROL ALGORITHM

The amount of insulin administered by the insulin pump
at each discrete time, t, is

U(tk) = Ubolus (tk) + Usuper—bolus (tk) + ubasal(tk)7 (1)
where upoiys(tr) is the bolus, i.e. the amount of insulin
administered to compensate for the estimated amount of
carbohydrates in a meal, Usyper—boius (tx) is the amount of
basal insulin given along with the bolus to compensate for
subsequent suspension of the basal insulin, and upgsai(tx)
is the amount of insulin in a micro-bolus, i.e. the insulin
mimicing basal insulin to compensate for the endogenous
glucose production. The basal insulin amount, upgsar(tx),
is computed as

Upasal (tr) = Aty (Upasar (tr) + u(tr)) (2)
where At is the time interval for which the dose will be
applied (administered either at a constant rate distributed
over the interval or in an impulsive way at the beginning
of the interval). Typically, Aty = T, where Ts = 5 min is
the sample rate of the CGM and the the sample time of
the digital control algorithm. The injection rate of basal
insulin consists of two parts: 1) a nominal basal injection
rate, Upgsal(tr), that is intended to compensate for an

average long-term endogeneous glucose production; and 2)
u(t) that denotes the rate of basal insulin that adjusts the
basal insulin rate to compensate for short-term metabolic
variations.

It should be noted that uporus(tr) and upgsqr(tx) in our
algorithm are complementary in the sense that they are
never both non-zero.

3.1 Filter

The signal provided by the CGM is already a filtered signal
of the raw measurement signal. However, for the calcu-
lation of the basal insulin rate, we filter the meaasured
interstitial glucose concentration, Y (s), provided by the
CGM using a first-order filter

Yr(s) = F(s)Y (s), !

R 3

TFs+ 1 )
in which Yr(s) is the filtered interstitial glucose concen-
tration. In the time-domain, this filter can be represented
by the differential equation

WE (1) =~ (u(t) ~ (1)

TF

F(s) =

(4)

3.2 Bolus algorithm

The bolus calculator in insulin pumps are typically given
as (Walsh et al., 2011; Schmidt and Ngrgaard, 2014;
Ziegler et al., 2017)

d(t)

yr(t) — y(t)
carbF

— IOB
corrF aroplOB(t) (5)

Ubolus(t) = corr
When administered subcutaneously, even faster-acting in-
sulin has an absorption time that is longer than the meal
absorption time. In this case, it is optimal to administer
the insulin in advance of the meal. For safety reasons,
we only allow the insulin to be administered when the

meal is started. In simple bolus calculators, the amount
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of bolus insulin, upeys(t), is proportional to the estimated
carbohydrate content, d(t), in the meal

Upolus (t) = KICRJ(ﬂ- (6)
In this formula, we do not use a correction bolus (eorr =
0) and the associated insulin-on-board (ajop = 0), as

we assume that the frequent adjustment of the basal
insulin using micro-boluses compensates for errors in the
estimated bolus insulin. An empirical relation for K;cg is
(Walsh et al., 2011)

1 TDD(U/day)
carbF 5.7- BW (kg)

Kor(U/gCHO) = (7)

Super bolus:  As even fast acting insulin is absorbed
slower than meal CHO, the post prandial glucose concen-
tration peak is lowered by giving some of the basal insulin
in the post prandial period as bolus insulin (Bondia et al.,
2009; Boiroux et al., 2010c; Herrero et al., 2015). This
super bolus is

usuper—bolus (t) - abasal(t)Tsp7 (8)
where Upqsq; is the nominal basal insulin injection rate and
T,y is the suspension period for the basal insulin delivery.

The suspension period is meal size dependent and patient
dependent. For one patient, we compute it as

T‘?p,cw d S d(La
Ts - Ts a
Top =< Topa + %(d do), dg <d<dy, (9)
b
Tsp,ba d > dba

where Ty, = 90 min, d, = 20 g, Tspp = 180 min, and
dy = 100 g. In addition we have limits on the maximal
allowable total bolus insulin to administer. The micro
bolus controller is able to handle small meal disturbances.
Therefore, we do not suspend it for small meals, i.e. in this
case meals smaller than 20 g CHO.

Insulin on board:  The insulin PK-model presented by
Hovorka et al. (2004) is

St
S Ti—— 1
Sy =1 g (10a)
gy = =% (10b)
Ts
. 52
I, = W —kelp, (10c¢)

such that the IOB is
IOB = 51+ 52+ Vi1,
The corresponding steady-state values are

Slb = TSUbasals (12&)
Sav = S1b = TsUpasals (12b)
Sap Upasal

I, = = 12

P sV RV (12)
and
275ke + 1

IOBy = S1p + Sop + Vil = Lubasab (13)

ke
The suspension period, T, and the amount of super bolus
insulin, Ugyper—bolus, May be related to the IOB in relation
to the basal IOB. Instead of the 3rd order insulin PK

model, a 2nd order PK model can also be used (Palerm,
2011).

3.8 Run-to-run algorithm for basal insulin

In conventional insulin therapy, the nominal basal insulin
requirement is determined by a process called insulin
titration. In this paper, we use a R2R algorithm for
insulin titration. The novelty in this R2R algorithm is
the penalty function, which penalizes occurrence of hy-
poglycemia more than occurrence of hyperglycemia. This
penalty function is similar to the penalty function used in
some MPC algorithms for APs (Boiroux et al., 2018).

Consider the penalty functions

o 1 _
ply.9) =5 (y - 9)7°, (14a)
_ 1, . _
pmin(yv ymin) = 5 (mln{O, Yy — ymin})2 y (14b)
_ 1 _
pmax(y7 ymax) = 5 (maX{O7 Yy — ymax})2 s (140)
that have the derivatives
0
oy YY) =y—9=—(J—vy), (15a)
9 Y = Umin, Y < Umin,
mll’l mlIl 15b
8 ay" y y { y = > ym1n7 ( )
6 y < yma)u
max max) = 15¢
a ay” (y y ) {y — Ymaxs Y = Ymax- ( )
Then we can define the penalty function
p(y) = ﬁ(y7 ﬂ) + KPmin (y7 gmin) + )‘pmax(y7 gmax)a (16)
which has the derivative
0 0
=-0(y) = 2-p(y,Y)
Jy Jy
9 P (17)
a_ 7min B 7min A 7max ) 7max .
+rg," (Y, Ymin) + ay” (Y, Ymax)
Define the integral
—w(t) 5. p(yr(t))dt
j—— ll (18)

it w(tydt
such that a run-to-run algorithm for the basal insulin can
be expressed as

Upasal(Tk) = Upasat(Th—1) + Krl. (19)
Using a PI-control parameterization for K, we have that
K; = Kp/7;. The integral time, 77, can be tuned to
determine the rate at which tipqsq; is adjusted. Ty 1 and T},
are specified pre-prandial times in the previous and current
day, while w(t) are weights that can used include only
nighttime filtered IG concentrations, yr(¢), in the integral
(18).Then in the current day, the nominal basal insulin
rate is

abasal(t) = Upasal (Tk); Tk § t < Tk+1- (20)

3.4 PD-controller for the micro bolus algorithm

The micro-bolus corrections for fast variations in the
glucose concentration are governed by a PD-controller,

(1) = Kp(p(t) ~ yr (1)) ~ Kp 220
P (1)
= Kp(y(t) —yr(t)) - ;(y(t) —yr(t)),

on the filterered interstitial glucose concentration, yp(t).
y(t) is the glucose concentration (IG and BG) set point.
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Fig. 2. A closed-loop simulation using the AP for basal
titration in the first day and control to meal challenges
the next two days.

-
proportional term, @p(t) = Kp(g(t) — yr(t)), may be
regarded as a micro-bolus correction term. Accordingly,
an empirical expression for Kp related to the total daily
insulin dose is (Walsh et al., 2011)

109 mmol/L
TDD (U/day)

Kp = Kprp such that If—lf’ = KPT—[F’. Notice that the

Kp = —corrF = (22)

I0B modification:  As an additional safety measure and
to avoid activating the micro bolus correction algorithm
when a lot of bolus insulin is still on board, the micro bolus
insulin correction is adjusted by the formula (Palerm,
2011)

(ty) = u(ty) — ymax (0, IOB(ty) — IOBy) . (23)

3.5 Parameters

The main adjustable parameters for the single-hormone
AP control algorith are: 1) the total daily insulin dosage
(T'DD) and the body weight (BW); 2) the time constant
for the filtering algorithm (77), the R2R algorithm (77),
and the micro bolus PD algorithm (7p); and 3) the
suspension period parameters (Ty,, Tp, dg, dp). Typically,
the following parameters are fixed: 1) The weights (x and
A) for the penalty function in the R2R algorithm; 2) the
insulin micro bolus modification parameter (); 3) the
parameters for the IOB, i.e. the insulin PK parameters (7g,
ke, Vi = Vi-BW); 4) the parameters a o and ajop in the
bolus calculator; and 5) the sampling time (7). The gains
are computed according to K;jcr = TDD/(5.7 - BW),
Kp = 109/’T.DD7 KD = KP’TD, and K[ = KP/T].

4. ILLUSTRATIVE SIMULATION

Fig. 2 illustrates the performance of the AP based on
simple control algorithms presented in this paper.

5. CONCLUSION

A single-hormone AP control system can be divided into
a meal bolus compensation algorithm, an R2R basal titra-
tion algorithm, and a micro bolus correction algorithm.
The control algorithm is based on the following key physi-
ological insights: 1) due to the insulin PK, the micro bolus

John Bagterp Jorgensen et al. / IFAC PapersOnLine 52-1 (2019) 1018—1023

algorithm should be suspended in period after a meal
bolus and a super bolus given at meal time; and 2) the
R2R algorithm should be updated based on measured glu-
cose concentrations in the night time. Such an algorithm
provides nearly optimal performance and is simple, yet
different than standard PID control technology.
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