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Recent studies have demonstrated that autonomous robots can outperform 
the task they are programmed for, but are limited in their ability to adapt to 
unexpected situations (Ingrand and Ghallab, 2017). This limitation is due to 
the lack of generalization, i.e., the robot can not transfer knowledge across 
multiple situations. Even the application of modern artificial intelligence (AI) 
techniques does not support a robust generalization when the range of 
probable inputs is infinite (Yang et al., 2018; Mnih et al., 2015; Cai et al., 2017; 
Kober et al., 2013). As a matter of fact, AI methods can interpolate knowledge 
but not extrapolate it, i.e., they can adapt on new, unseen data that are within 
the bounds of their experience, but not on data that are outside the bounds. 
So far, robots have been mostly treated as stand-alone systems in a vacuum, 
while the real world is more complex and includes continuous interaction 
with external entities. Accordingly, the design of a generalized robotic con-
troller is not trivial, in particular when the dynamical condition are unknown.

From the observation of nature, it is possible to deduct the level of compe-
tence that animals have when interacting with the environment. The study 
and understanding of the central nervous system (CNS), which is the main 
responsible of the body complex movements during the interaction with 
the environment (Wolpert and Ghahramani, 2000; D’Angelo and Wheeler-
Kingshott, 2017), may give new insights about the artificial replication of the 
animals’ interactive and adaptive behaviour. As a matter of fact, the CNS 
is constituted by different regions which role, relation and distribution are 
important for the optimal execution of complex tasks (see (Caligiore et al., 
2017) for a review).

This investigation has its foundation in the Human Brain Project (Markram  
et al., 2011), which is trying to achieve a more clear understanding of the 
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brain’s capabilities. Here, we propose the initial design of a distributed and 
modular bio-inspired control architecture that aims to artificially replicate the 
CNS areas involved in planning and executing voluntary movements (figure 1).

The distribution of the architecture is based on the “divide and conquer” 
concept, where the whole system is decomposed into separated and spe-
cialized components. The modularity refers to the independence of each 
component and its interdependence to the other structures of the architec-
ture. The malfunctioning of each module only affects its contribution to the 
system and not to the operating state of the other modules. The design of the 
architecture is specific for gross motor skills involved in the coordination of a 
robotic arm during the interaction with an external system, such as dynamical 
target reaching and object manipulation. The control system will be tested 
mainly on virtual robots in the physical simulation environment offered by the 
Neurorobotics Platform (NRP) (Falotico et al., 2017). The NRP not only includes 
a variety of robot and environments, but also a detailed physics simulator. 
The architecture follows the guidelines from different studies (Caligiore et al., 
2017; Houk and Wise, 1995; Casellato et al., 2012; Tomita and Yano, 37 2007; 
Ryczko et al., 2016; Santos and Matos, 2011) and includes CNS regions such 
as the brain stem (action regulation), the cerebellum (motor adaptation), the 
spinal cord (motor pattern generation), the basal ganglia (action selection), 
and the motor cortex(Initiation, planning, procedure of motion ). The CNS 
areas will be modeled combining classical control and robotics methods 
together with bio-inspired AI techniques.

This study does not only aim to artificially mimic the connectivity and func-
tionality of the CNS (as seen in previous studies (Floreano et al., 2014; Prescott 
et al., 2016; Mitchinson and Prescott, 2016)), but to also analyze, with practical 
evidence, how different brain regions map context-sensitive motor skills as 
proposed by Wolpert and Kawato (Wolpert and Kawato, 1998). This is because 
we believe that the modularity of each brain region is fundamental for the 
extrapolation of valuable information from heterogeneous dynamical stimuli. 
This extrapolation could facilitate the motor prediction and adaptation in 
changing or unknown conditions.

Among these CNS regions, it is well known the pivotal role of the cerebellum 
in motor learning and adaptation (Ito, 2008; Dean et al., 2010; Verduzco-
Flores and O’Reilly, 2015; D’Angelo, 2014). Several robots have been already 
endowed with cerebellar-like control architectures with promising results 
(Garrido Alcazar et al., 2013; Tolu et al., 2012, 2013; Vannucci et al., 2016; 
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Casellato et al., 2015). However, these studies mostly focused on the func-
tionality of a specific CNS region, keeping the contribution and dependency 
with other brain structures neglectable. Moreover, the experiments were run 
in simplified conditions with marginal dynamics, absent interaction with the 
environment, and relative goal, i.e., goal not related to an external reference 
or exteroceptive sensors.

Our investigation will firstly focus on the cerebellum. The way the cerebellum 
maps and processes the sensory information in relation to the execution 
of complex dynamical tasks is not totally clear. We assume that an answer 
could be found in the regular and modular structure of the cerebellum, 
where distinct functional units can be observed (Ruigrok, 2011). In 2006, Ito 
claimed that in each unit a forward or an inverse internal model is captured 
for representing the relation between action and outcome (Ito, 2006). In 
addition to Ito’s internal models theory, there is also evidence that the human 
cerebellum can be modeled by a combination of both inverse and forward 
internal models (Wolpert and Kawato, 1998). Nonetheless, this mixed model 
has not widely been used in robotic control in particular when the charac-
teristics of the robot and/or the environment change. The secondary aspect 

FIGURE 1: The proposed bio-inspired architecture aims to solve the problem of robotic agent  

(in grey) adaptation during the interaction with an external system (in green). The system is 

modelled to control the coordination of a robotic arm during dynamical target reaching and 

object manipulation. The illustration shows only the high-level connections and distribution. 

Each building block will contains bio-inspired structures and classic control theory algorithms. 

Tbe main idea, respect to the literature, is to focus on how the CNS regions internally specialize 

and map heterogeneous motor skills.
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to be investigated is the reciprocal interaction between the cerebellum and 
other CNS areas (Houk and Wise, 1995). The cerebellum will be integrated 
in the distributed architecture shown in figure 1.

Starting from the theory that the cerebellum is decoupled into sub-units, we 
are going to analyze how the specialization of each unit and their coopera-
tion influences the mapping of heterogeneous dynamical information onto 
motor skills. From this analysis, we expect to comprehend how the mal-
functioning of a specific unit can influence the final corrective action of the 
cerebellum. At the same time, this could help to understand which feature 
is not mapped correctly inside the internal model and consequentially cor-
rect this lack. Thereafter, from a macro-level perspective, we will investigate 
how the learned experience is exchanged and utilized across different CNS 
regions for planning and executing context-related motor commands. This 
study could give new guidelines for modeling a more robust and distributed 
robotic control architecture. As matter of fact, the CNS demonstrated that 
the malfunctioning of one system component does not preclude the oper-
ating state of the whole architecture, which is a beneficial aspect for modern 
autonomous robot. On the other hand, the application of neuro-scientific 
assumptions on practical experiments could give a feedback and open new 
lines of research.

To conclude, the outcome of the present investigation will provide the state-of 
the-art for more complex bio-inspired control architectures for neuro-robots 
that learn from experiences under varying dynamical conditions.
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