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Optimal open loop wind farm control 

J.A. Vitulli, G.C. Larsen, M.M. Pedersen, S. Ott and M. Friis-Møller 

Technical University of Denmark, Department of Wind Energy 

E-mail: gula@dtu.dk 

Abstract. This paper presents a general purpose platform for optimal open loop control of wind 

power plants as seen from a power production perspective. The general idea is to change the 

controller design criteria from greedy individual wind turbines to a controller design facilitating 

cooperative and interdependent elements of a wind power plant, with the overall aim to improve 

the wind power plant power production conditioned on ambient mean wind speed and mean wind 

direction.  

The flow within the wind power plant, including all essential interactions between the wind 

turbines, is modelled using a very fast linearized CFD RANS solver. The wind turbines are 

modelled as actuator discs, and two design variables per wind turbine - collective pitch, α, and 

tip speed ratio, λ - are initially defined for the optimization problem. However, a priory we expect 

one design variable to suffice - i.e. the unique set of (α, λ) representing the lowest thrust 

coefficient, CT, for a given power coefficient Cp. The conjectured collapse of the design space is 

justified in this paper. 

Optimized control schemes for the Lillgrund offshore wind farm are derived conditioned on 

ambient mean wind direction and wind speed. Aggregated over a year, using the site sector 

Weibull distributions, an increase in the annual energy production of 1% is demonstrated. 

1.  Introduction 

Cost of energy (COE) is the most important single factor for the development of renewables in the 

energy system. Reduction of COE is, among other things, directly related to operational control of Wind 

Power Plants (WPP) as a whole as well as the individual wind turbines (WT) within them. 

The aim of the present paper is to describe a recently developed general purpose platform for optimal 

open loop control of WPP’s as seen from a power production perspective taking a WT de-rating 

approach. The general idea is to change the controller design criteria from “greedy” individual WT’s to 

a controller design facilitating cooperative and interdependent behaviour of the WPP WT’s for mutual 

benefit. 

The WPP flow, including all essential interactions between the WPP WT’s, is modelled using the 

linearized CFD RANS solver Fuga [1]. Fuga is taking advantage of the linearization to formulate the 

solution of the Navier Stokes equations in a mixed spectral domain, whereby the computational speed 

is reduced to a fraction of what is characteristic for traditional RANS solvers. This feature makes Fuga 

ideally suited as “working horse” in an optimization context.  

The WT’s are modelled as actuator discs, and two design variables per WT - collective pitch, α, and 

tip speed ratio, λ - are initially defined for the optimization problem. However, a priory we expect one 

design variable to suffice - i.e. the unique set of (α, λ) representing the lowest thrust coefficient, CT, for 

a given power coefficient Cp different from maximum Cp.  The conjectured collapse of the design space 

is justified in the paper. 

For the optimization approach, we use a re-vitalized version of the WPP topology optimization 

platform TOPFARM [2], [3], with the objective function restricted to power production, and with the 
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original two WT position coordinates spanning the design space replaced by WT design sets (αi , λi), 

where “i” refers to the i’th WT. The actuator discs defined for the Fuga WPP flow field modelling are 

based on power- and thrust coefficients, Cp (U ǀ α ,λ) and Ct (U ǀ α ,λ), both conditioned on (α, λ), and with 

U denoting the mean wind speed. In the optimization loop, Cp (U ǀ α ,λ) and Ct (U ǀ α ,λ) are obtained from 

surrogate models based on full aerodynamic simulations of the WT rotors assuming stiff blades and 

tower which, however, can be relaxed to fully flexible rotors if requested. 

The control platform offers optimized WPP control schemes, conditioned on ambient mean wind 

speed and mean wind direction (i.e. essentially the WPP layout topology).  

This is not the first attempt to develop such optimized open loop control strategies, as others have 

also conducted works on this innovative topic. An optimized pitch-based control strategy was examined 

in [4] yielding an annual energy production (AEP) gain of 0.33 % on the Princess Amalia Wind farm. 

Proposing a methodology that considered optimizing only the pitch setting of each turbine by using a 

genetic algorithm (GA) to navigate through the design space, it was shown in [5] that proper pitch angle 

selection could in fact improve overall farm performance. Furthermore, based off the work of Lee [5], 

an optimization procedure founded on a two-parameter design space for a given wind speed and wind 

direction was further developed in [6] that improved the global AEP by 1.56 % when applied onto an 

80-WT wind farm in a rectangular grid arrangement compared to normal operation settings (variable 

speed configuration). All previous studies are based on simple engineering wake models, and most of 

these operate with only one design variable per WT. An exception is [6], which operates with the same 

two design parameters per WT as used in the present study. However, contrary to the this study, the 

present study is based on a consistent CFD based flow model to resolve the complex wind field inside a 

WPP, and further a consistent collapse of the two-parameter design space to a one-parameter design 

space per WT is introduced for improved computational performance. 

The paper is structured as follows: First the platform is described in some detail in Section 2; then 

follows in Section 3 a sanity check of the platform performance. Section 4 describe and justify a collapse 

of the WPP control design space from two to one design parameters for each WT, which significantly 

increase the computational speed. The one-parameter tool is then used to develop sets of optimized 

control schedules for the Lillgrund offshore WPP in Section 5, and conclusions are finally drawn in 

Section 6. 

2.  The platform 

The optimization platform consists of 4 key elements: 1) A flow model capable of describing the steady 

flow within a wind farm; 2) An aerodynamic model which, based on a detailed aerodynamic description 

of the rotor and its operational conditions (i.e. tip speed ratio and collective pitch setting), model the 

rotor power- and thrust, respectively; 3) A fast and accurate surrogate model of the detailed aerodynamic 

model; and 4) An optimization platform which, based on an objective function (i.e. WPP production) 

and selected WT specific constraints (i.e. upper and lower limits on α and λ), compute optimal WPP 

control schedules conditioned on the ambient inflow conditions (i.e. mean wind speed and mean wind 

direction). 

A basic assumption is that steady flow modeling suffices when only power production is considered. 

This was investigated in [7], where production predictions from both Fuga and the medium-fidelity non-

steady DWM model [8], [9], [10] were successfully compared to full-scale measurements.  

2.1.  The flow model 

Computational speed is of crucial importance, since the WPP flow field needs to be re-computed in each 

iterative optimization step until convergence. Typically, the required number of iterations are of the 

range 200 - 1000 for a specific mean wind direction and mean wind speed, and this process then needs 

to be conducted for typically 10 mean wind speeds (mainly below rated wind speed) and 360 mean wind 

directions. 

Fuga is a linear CFD RANS model ideally suited for this purpose. The governing Navier Stokes 

equations are consistently linearized and conveniently formulated in a mixed spectral domain, which 
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facilitates extremely fast solutions as based on a “system” of look-up tables, where some are general 

and some are WT specific. These tables are used to determine the velocity field behind a single solitary 

WT. Due to the linearity of the model, multiple wakes from many turbines can be constructed from the 

wake dictated velocity perturbation of a single turbine. These are in turn constructed from Fourier 

components by a fast Fourier integral transform.  

The WT’s are modelled as actuator discs, and the wind field conditions at each WT location inside 

the WPP will depend on wakes from neighboring upstream WT’s. For a given wind direction the 

turbines locations are therefore first sorted according to their upwind distance, and subsequently the 

local wind speed, the thrust coefficient and the power production are evaluated starting with the 

undisturbed upwind turbines locations and progressively evaluating WT locations in the downwind 

direction. Finally, when the thrust of all turbines is known for the specified ambient wind conditions, 

we can evaluate the combined wake velocity deficit at any position – i.e. the complete WPP flow field. 

This process is handled by PyWake [11], an open source python framework for calculating AEP 

including wake effects. For more details, we refer to [1]. 

2.2.  The WT aerodynamic model 

For calculating the aerodynamic performance of the rotor, the linearized aeroservoelastic HAWCStab2 

code [12] for steady state computation and stability analysis of WT’s is used. The aerodynamic model 

in this code is based on a variant of the traditional BEM code [13], meaning that detailed aerodynamic 

description of the rotor is needed (i.e. blade twist and blade profiles with their respective aerodynamic 

coefficients). Although the code allows for fully flexible description of the WT main components, we 

have for our application assumed no elastic deformation of WT components, because such are not 

considered to influence the WPP flow field, the static WT thrust and the static WT production 

significantly. It is, however, straight forward to include equilibrium static WT deformations conditioned 

on the mean wind speed. 

In the present framework, the WT’s are represented by uniformly loaded actuator discs characterized 

by their individual power- and thrust coefficients (i.e. Cp (U ǀ α ,λ) and Ct (U ǀ α ,λ), respectively), 

conditioned on the WT operational conditions expressed in terms of the mean hub height wind speed, 

U, the collective pitch setting, α, and the tip speed ratio, λ, defined as (assuming zero yaw error)  

𝜆 ≡
𝑅Ω

𝑈
 

(1) 

where R denotes the rotor radius, and Ω is rotor rotational speed. The WT dimensionless power- and 

thrust coefficients are defined by respectively 

𝐶𝑝(𝑈|𝛼, 𝜆) ≡
𝑃𝑊𝑇(𝑈|𝛼, 𝜆)

½𝜌𝐴𝑈3
 

(2) 

and  

𝐶𝑡(𝑈|𝛼, 𝜆) ≡
𝑇𝑊𝑇(𝑈|𝛼, 𝜆)

½𝜌𝐴𝑈2
 

(3) 

in which ρ is the air density, PWT denotes WT power production, and TWT is the along wind rotor thrust 

force. The latter two result from the aerodynamic model. A is the rotor area and, accounting for both 

rotor tilt (θt) and rotor coning (θc), it may be expressed as 

𝐴 = 𝜋(𝑅 cos𝜃𝑐 cos 𝜃𝑡)
2 (4) 

Using the HAWCStab2 code, example contour curves of respectively Cp and Ct surfaces are computed 

and shown as function of tip speed ratio and collective pitch in Figure 1 for a hub mean wind speed 

equal to 8m/s. 
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Figure 1. Contour curves of Cp and Ct surfaces. 

2.3.  The aerodynamic surrogate 

In analogy with the flow field computations, computational speed is important for the aerodynamic 

model when used for optimization purposes. Therefore, a surrogate is developed, which, based on the 

aerodynamic model described in Section 2.2, mimic the requested data created from this model in a 

fast and efficient way with sufficient accuracy.  

First the steady state performance values of respectively Cp (U ǀ α ,λ) and Ct (U ǀ α ,λ) are calculated for 

every combination of tip speed ratio, pitch angle, and mean wind speed, from a suitable user-defined 

grid of sample points. Next multi-dimensional polynomial representations of respectively Cp (U ǀ α ,λ) 

and Ct (U ǀ α ,λ) are fitted to the computed grid values, whereby continuous C1-surfaces are obtained for 

the surrogates. As the surrogates are to be used in combination with gradient-based optimization 

algorithms, it is important that the partial derivatives of the constructed continuous multi-dimensional 

surfaces are continuous. In the present work a spline-interpolation was applied.    

2.4.  Synthesis and optimization 

With modeling of the WPP flow field and the aerodynamic performance of the WPP WT’s in place, the 

next step is to synthesize these in an optimization objective function. Without a WPP controller 

functionality, each individual WT will operate at maximum Cp below rated wind speed. The goal for the 

present optimization process is to find the optimal balance between individual WT de-ratings, which 

result in maximum WPP power production. The optimal WT de-rating settings will clearly depend on 

the WPP topology and thereby the mean inflow wind direction, θ. It will, moreover, depend on the mean 

wind speed as long as one or more WT’s operates below rated power. Consequently, the optimal WPP 

operation is formulated as a set control schedules, conditioned on the WPP mean inflow wind speed and 

the WPP mean inflow wind direction.  

The objective function is accordingly defined as 

𝑃(𝑈, 𝜃) =∑𝑃𝑖(𝜆𝑖, 𝛼𝑖ǀ𝑈, 𝜃)

𝑁

𝑖=1

 (5) 

where N denotes the number of WT’s in the WPP, and lower indices, i, refer to WT no. i. The 

optimization problem to be solved is defined in terms of the objective function (5) accompanied by two 

sets of constraints given by 

𝜆𝑚𝑖𝑛(𝑈) ≤ 𝜆 ≤ 𝜆𝑚𝑎𝑥(𝑈) 

𝛼𝑝,𝑚𝑖𝑛 ≤ 𝛼𝑝 ≤ 𝛼𝑝,𝑚𝑎𝑥 

(6) 

The relevant values for the Siemens SWT-2.3-93 WT used in the example calculations are: λmin(U) = 

36ms-1/U; λmax(U) = 75.15ms-1/U; αp,min = -2°; and αp,max = 90°.  
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The workflow in the resulting optimization platform is illustrated in Figure 2. The optimization 

“module” is based on a re-developed version of TOPFARM [2], [3]. A genetic optimization algorithm 

(GA) is used for first pass of the solution supplemented by a gradient based method (SLSQP) for final 

refinement. Finally, it should be noted that for simplicity, it was initially assumed that all rotors are 

identical and with identical hub heights. 

 

 

 

Figure 2. Platform workflow. 

3.  Sanity check of the platform 

The two-parameter workflow presented in Section 2 is tested for its functionality using a simple three-

WT case. The WPP layout is shown in Figure 3, where three WT’s are placed 300m apart and in a single 

row. In the sanity check the “no-wake” inflow direction (0 degrees) case will be compared to an inflow 

case, where wakes are indeed present (90 degrees inflow direction).  

 

Figure 3. Topology of the three WT test case. 

The optimized WPP control schedule for the three WT test case is shown in Figure 4. The WT Cp 

surface is represented by contour curves in the λ-α plane and, for each of the three WT’s, the optimized 

operation settings are illustrated by the red- and black lines in this plane, respectively. The red line 

represents optimal settings for the 90-degree inflow case, whereas the black line represents optimal 

settings for the zero-degree inflow case.     
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From the optimization results, it is clear that WT de-rating is indeed happening for the 90-case. 

Firstly, the most downstream turbine (WT1) is operating at “greedy” settings for both tested directions. 

The middle turbine (WT2) and the most upstream turbine (WT3) are operating at both higher pitch 

values, and lower tip speed ratio (i.e. rotational speeds) values in the 90-degree case. This shows that 

both the middle and the most upstream turbines are in fact sacrificing power to increase the available 

wind resource to the last turbine, who is allowed to operate at its best settings. 

 

Figure 4. Optimized WPP control schedule for the three WT test case. 

Further investigation into the power curves of each WT reveals how production is improved by 

changing the operational settings. The resulting optimized settings from the two-parameter test (i.e. the 

λ-α design space) of the 90-degree case are compared to a reference “greedy” power curve, which was 

obtained by running the optimization tool with only one WT implying that no wake effects are present. 

This “greedy” curve is imposed on all three of the wind turbines in this row for that exact same direction, 

wind speed range, and spacing. 

  

 Figure 5. Power for each WT associated with greedy and optimal control settings in the 90-

degree case as a function of local (left) and WPP ambient wind speed (right), respectively. 

Figure 5 shows the power and the local wind speeds that each turbine is producing/witnessing for 

each global inflow wind speed tested. Two things are noticeable. Firstly (cf. Figure 5; left), the upstream 

turbine (WT3) and middle turbine (WT2) have both reduced power curves compared to the “greedy” 

settings at wind speeds below rated wind speed. This implies de-rating is taking place, as shown before. 

Secondly (cf. Figure 5; right), increased local wind speed, relative to the “greedy” settings case, as well 

as an increase in the actual power produced are observed for the middle turbine (WT2). Even though 

this WT is de-rated, the increased local wind speed, made possible by de-rating the upstream turbine 

(WT3), leads to better production compared to the “greedy” settings for the same global inflow wind 

speed. Furthermore, the most downstream turbine (WT1) benefits even more, as it not only continue to 
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operate in “greedy” settings but also at a much higher local wind speed. This highlights the effect of 

mitigating wakes and the cubic relationship between power and velocity. 

4.  Collapse of design space 

In this section the conjectured collapse of the design space from two design parameters (i.e. α and λ) to 

one design parameter representing unique set of (α, λ), representing the lowest thrust coefficient for a 

given power coefficient, is justified. We will base this investigation on the the 3-WT case study analysed 

in Section 3, and in particular determine if the optimization tool is implementing one particular strategy 

below rated wind speed – i.e. the “minimum Ct strategy”. Figure 6 shows the α- and λ-values that for 

given Cp values produce the lowest Ct.  

 

Figure 6. Pitch- and tip speed values, which for given Cp values, produce the lowest WT thrust. 

By applying these settings to the middle and upstream turbines of the verification case described in 

Section 3, it can be seen from Figure 7, that the optimized settings, referring to respectively the two-

parameter and one-parameter approach, align very well.  

Figure 7. Optimized de-rating settings using respectively one- and two parameter optimization. 

This realization made it possible to collapse the design space by implementing the minimum Ct 

curves onto the workflow of Section 2. Hence, in this way, each individual turbine’s operation settings 

are controlled uniquely through a Cp value. In this constrained design space, the GA solver was no longer 

needed, as similar results could be obtained using only the gradient based SLSQP solver.  
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5.  The Lillgrund case study - results and discussion 

A full-scale WPP control analysis of the offshore Lillgrund WPP is carried out using the one-parameter 

tool. The Lillgrund WF consists of 48 Siemens SWT-2.3-93 WT’s with a layout as shown in Figure 8. 

The layout of the Lillgrund WPP is characterized by very small WT inter spacing's – i.e. down to 3.3 

rotor diameters – and consequently with pronounced wake effects, which makes this WPP ideally suited 

for WPP control. 

 

Figure 8. Layout of the Lillgrund WF. 

The AEP for the WPP is calculated using the optimized control schedules and compared to the AEP 

resulting from the traditional “greedy” WT control strategy using site wind characteristics. The complete 

wind rose is resolved in 30° sectors, and for each of these the sector probability as well as the mean 

wind speed Weibull parameters (i.e. shape and strength parameter) are given and shown in Table 1. 

Table 1: Lillgrund site wind characteristics. 

 

The WPP energy production is computed for both control strategies conditioned on mean wind speed 

(1m/s resolution) and mean wind direction (1° resolution), respectively, and subsequently convoluted 

with mean wind speed distributions and the mean wind direction distribution to obtain the AEP estimate. 

An example of a resulting control schedule – conditioned on a mean WPP inflow speed of 10m/s and 

a mean inflow wind direction of 240° (cf. equation (5)) – is given in Figure 9. For each and every WT, 

the resulting de-rating percentage is indicated by the WT de-rating colour code. The WPP flow field 

characteristics are illustrated by the blue wind speed colour code. As seen, optimal de-ratings are, as 

expected, more pronounced for the upstream WT’s affecting the downstream WT’s the most, whereas 

downstream WT’s deep into the WPP are either not affected or only affected to a minor extend. 
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The aggregated AEP results are shown in Figure 10. The left plot of this figure shows the AEP gains 

conditioned on the inflow mean wind direction and with reference to the mean wind speed regime 

[4m/s;25m/s]. The gain is obviously highly dependent on the inflow direction, with the largest potential 

gains obtain in cases with massive wake effects as expected. The right plot of Figure 10 shows the AEP 

gain conditioned on mean wind speed. As expected the largest gains are obtained in the WPP mean 

inflow wind speed regime, where all WT’s are operated below rated wind speed. With increasing WPP 

inflow wind speed, more and more WP’s are successively operating above rated wind speed, thus 

gradually reducing the possible AEP gain. 

In total the WPP AEP gain referring to all wind speeds (i.e. 4-25m/s) is approximately 1.0%. If one 

were only to consider wind speeds between 4m/s to 11m/s, where increased production is possible 

applying optimized settings, then this gain rises to 1.5%. 

 
Figure 9. Optimal WT de-ratings associated with mean wind speed 10m/s and wind direction 

240°. WPP power gain associated with this specific case is 1.2%. 

 

  

Figure 10. AEP gain obtained using optmized control schedules. 
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6.  Conclusion 

A platform for open-loop WPP control optimization has been developed using aggregated WPP 

production as metric and with a design space spanned by two parameters for each WT - the tip speed 

ratio and the collective pitch angle. 

 The functionality of the platform has been “verified” using a simple three WT WPP for simple sanity 

checks. Using the same simple WPP test case, the validity of collapsing the design space to a space 

spanned by only one parameter for each WT is justified. The selected parameter reflects the unique 

combination of tip speed and collective pitch, which, for a given Cp value, results in the minimum Ct 

value. The fact that the reduced design space is able to produce results identical to the results emerging 

from the “full” design space makes perfectly sense, since minimum Ct values imply minimum wake 

effects (i.e. wake deficit as well as wake generated turbulence). 

The one-parameter version of the platform is finally used to evaluate the WPP control potential on 

the existing Lillgrund offshore WPP, and it is demonstrated that production gains are in fact possible 

through individual de-rating of the WPP WT’s. This is encouraging for WPP control scheduling, since 

the gains can be obtained for virtually no cost compared to the gain they can provide. 

WT loading is so far not considered but, given the fact that wake losses to some degree correlate with 

loading of WPP WT’s, it is believed, that the load level in general is not increased as a result of the 

developed WPP control optimization.  

In a future perspective, besides de-rating, active yaw control of WPP WT’s should be included. 

Including active yaw control will definitely emphasize the need to also include load aspects. Finally, as 

an additional potential benefit, WPP control can ultimately be fully merged into topology optimization 

of a WPP. This makes sense, since WPP topology optimization depends on WPP control.    
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