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In our original paper [2], we described our strat­
egy for testing whether a given hypothetized 2D mat­
erial would be dynamically stable, i.e. whether it would 
spontaneously distort if all constraints imposed on 
the calculation (symmetries and unit cell size) were 
relaxed. In other words, the test for dynamical stability 
should assess whether the configuration of the given 
material represents a minimum or a saddle point of the 
potential energy surface. Regarding the atomic posi­
tions within the unit cell, we calculate the phonons at 
the corners of the Brillouin zone boundary (specifi­
cally the Γ-point phonons of the 2 × 2 repeated cell).
The material is classified as dynamically unstable if at 
least one phonon with imaginary frequency is found. 
Concerning the shape of the unit cell, we calculate the 
components of the stiffness tensor corresponding to 
uniaxial deformations along the x, and y -axis, namely 
the C11, C22, and C12 components in the Voigt notation. 
A material is classified as dynamically unstable if either 
C11 or C22 is negative.

As pointed out in the comment, the correct test for 
dynamical stability would involve, in addition to the 
phonon analysis, a diagonalization of the full stiffness 
tensor to check for negative eigenvalues. By considering 
only the sign of C11 or C22 there is a risk that a material 
is incorrectly classified as dynamically stable when in 
reality it would undergo a shear deformation.

We have calculated the full 3 × 3 stiffness tensor,
C, for 378 materials in the C2DB. We picked this set of 

materials because we already had calculated the shear 
deformations in connection with the calculation of 
their piezoelectric tensors. They cover representatives 
from all five types of 2D Bravais lattices. In figure 1 we 
show the minimum eigenvalue of C plotted against 
min{C11, C22}. There are 36 materials in the grey
shaded area where our original assessment of dynami­
cal stability based on the C11 and C22 components is 
wrong. Most of these are materials in the GeS2 struc­
ture prototype. However, 34 of these have at least one 
imaginary zone boundary phonon and would there­
fore be classified as dynamically unstable in any case. 
Therefore, the stronger criterion based on the full stiff­
ness tensor only leads to a different conclusion for two 
materials, namely GeSe2 in the GeS2 prototype and 
I2Sb2 in the CuI prototype, which are now classified as 
dynamically unstable.

Maździarz highlights three specific materials from
C2DB , namely Au2O2–GaS, Ta2Se2–GaS, and Re2O2–
FeSe, and criticises that (1) despite the hexagonal and 
cubic symmetries of the lattices C11 and C22 are not 
equal for these materials, and (2) the elastic stabil­
ity of the crystals is not reflected by the signs of C11 
and C22. Regarding (1), we acknowledge that C11 and 
C22 should be equal in these cases, but according to 
our calculations they deviate by 1.1%, 0.8%, and 9%, 
respectively. The average deviation for the 531 mat­
erials in C2DB with hexagonal or cubic symmetry is 
1.2%, see figure 2. This is obviously due to numerics 
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Abstract
In his comment Maździarz 2019 (2D Mater. 6 048001) raises doubts concerning the reliability of our 
test for dynamical (in particular elastic) stability of monolayer materials, which neglects the shear 
components of the stiffness tensor and only considers the sign of the planar stiffness coefficients. We 
agree that our analysis has not been complete, but find that it suffices in practice except for very few 
cases (less than 1% of the materials). Nevertheless, for completeness we are currently calculating the 
shear components of the elastic tensor for all the materials in the C2DB.
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as we also write in our original paper (page 9): ‘for 
the isotropic materials MoS2, WSe2 and WS2, C11 and 
C22 should be identical, and we see a variation of up 
to 0.6%. This provides a test of how well converged 
the values are with respect to numerical settings.’ The 
deviation of 9% for Re2O2–FeSe is an outlier and we 
speculate that it arises due to the strong dynamical 
instability of this material (see below). We note that 
we could have decided to symmetrise the elastic ten­
sors by hand such as to exactly reflect the symmetry of 

the lattice. We have, however, refrained from such sym­
metrisation procedure because we believe it is relevant 
and more transparent to provide the raw rather than 
post-processed data. Similar considerations apply to 
many other quantities in C2DB. Regarding (2) we can 
essentially refer to the discussion in the first part of this 
paper. After calculating the full stiffness tensor for the 
three materials we obtain the same conclusions regard­
ing the elastic stability of these materials as suggested 
in the Comment. However, as was the case for 99.5% 

Figure 1.  The minimum eigenvalue of the full 3 × 3 stiffness tensor plotted against the smallest of the two uniaxial stiffness 
coefficients. Conclusions regarding the elastic stability is changed for the 36 materials in the grey shaded region. However, all of these 
except for the two materials indicated by red circles are dynamically unstable due to imaginary zone boundary phonons.

Figure 2.  The two in-plane elastic constants, C11 and C22, plotted against each other for 531 materials in C2DB with either hexagonal 
or cubic crystal symmetry. Ideally, the two should be equal but due to numerical uncertainties in practice they are not. The three 
materials discussed in the text are highlighted. The mean relative deviation between the two components for all the materials is 1.2%.
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of the 378 test materials discussed above, irrespective 
of the stiffness tensor all three materials are correctly 
categorised as dynamically unstable in C2DB because 
they have zone boundary phonons with imaginary fre­
quencies.

Despite the fact that only 0.5% out of the set of 378 
materials are affected, we have decided to calculate the 
full stiffness tensor for all of the approximately 4000 
materials currently in the C2DB. The full stiffness ten­
sors for the 378 materials have already been made avail­
able in the C2DB, and data for the remaining materials 
will be available as soon as the calculations are done.
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