
G lioma is one of the most aggressive brain tumors 
with a poor prognosis compared with other brain 

cancers.  The WHO classification categorizes gliomas 
into four grades based on pathological and genetic 
alterations [1].  Glioblastoma (GBM),  grade IV,  has the 
poorest prognosis among all gliomas,  with a median 
overall survival time of less than 2 years despite the 
availability of aggressive treatments including surgery,  
chemotherapy,  radiation therapy and tumor-treating 
fields [2 , 3].  Several new treatments have been explored,  
including immunotherapy [4] and molecular targeted 
therapy [5-7]; however,  an improved survival benefit 
from these treatments has not been achieved.  Even ana-

plastic astrocytoma (grade III) shows an overall 5-year 
survival of approximately 50-60% [8 , 9].  The poor 
prognoses of these brain tumors are caused by patho-
logical and molecular features.  Recent deep molecular 
analysis revealed the genetic heterogeneity of GBM 
[10 , 11],  which contributes to the limited efficacy of 
molecular targeted therapy and subclonal selection [12].  
Furthermore,  the tumor hierarchy is also complicated 
in GBM [13].  Liau et al.  reported the epigenetic regu-
lation of glioma stem cells (GSCs),  which contribute to 
resistance to chemotherapy and radiotherapy and 
exhibit tumorigenic properties,  and the authors showed 
reversible phenotypic changes between GSCs and dif-
ferentiated glioma cells [14].  GSCs are also involved in 
glioma invasiveness [15],  which is another factor that 
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contributes to poor prognosis.
In pathological features,  GBM shows prominent 

angiogenesis,  diffuse invasion and high proliferation 
[16] (Fig. 1A and B).  Microvascular proliferation is a 
histological hallmark of GBM and typically presents as 
so-called glomeruloid tufts of multilayered endothelial 
cells and pericytes.  The tumor blood vessels are more 
dilated and tortuous with excessive branching; the ves-
sels lack the normal artery-capillary-vein hierarchy and 
show increased cellular fenestration as well as widened 
intercellular junctions or gaps [17].  These abnormal 
structures result in high vascular permeability,  hyper-
osmosis in stroma,  and hypoxia and contribute to resis-
tance to drug delivery.  Diffuse invasion of tumor cells 
into normal brain is another characteristic feature of 
glioma,  and the highly invasive nature of glioma cells 
makes complete surgical resection unfeasible and ren-
ders radiotherapy and local drug delivery ineffective.  
Matsukado reported that more than 50% of untreated 
brain tumors spread into the contralateral hemisphere 
[18],  and therefore even radical surgical resection such 
as complete removal of the tumor-bearing hemisphere 
does not prevent tumor recurrence [19].  Conventional 
radiological imaging with computed tomography or 
magnetic resonance imaging is used for establishing 
treatment plans and evaluating the treatment response 

[20],  but both of these imaging techniques significantly 
underestimate the extent of infiltrative glioma growth,  
as tumor cells are present outside of low density areas of 
computed tomography [21] and hyperintensive regions 
on T2-weighted images [22].

GBM is characterized by prominent angiogenesis 
with overexpression of VEGF-A,  a key molecule in reg-
ulating angiogenesis and the neovasculature [23].  
Therefore,  blockage of VEGF with bevacizumab,  an 
anti-VEGF monoclonal antibody,  has been used for 
GBM patients [6 , 7 , 24].  However,  both AVAGlio and 
RTOG-0825 studies showed no survival benefit of bev-
acizumab for newly diagnosed GBM.  One possible 
reason may be due to bevacizumab-induced glioma 
invasion.  Our previous studies [25-27] and other 
reports [28-30] showed aggressive glioma invasion after 
bevacizumab treatment,  and several factors such as 
proneural to mesenchymal transition [31 , 32],  MET 
[33],  or Wnt [30] signaling are known to be activated 
and promote invasion after bevacizumab treatment.  
Together these studies demonstrate that the highly 
invasive feature of glioma cells is an important factor 
that contributes to poor prognosis of glioma patients 
[34 , 35].

Cell migration is an important biological process for 
normal development and immune surveillance,  and the 
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Fig. 1　 Two distinct invasion 
patterns of glioma cells and 
molecular expression.  The char-
acteristic pathological features of 
glioma are prominent angiogene-
sis (A) and diffuse invasion (B).  
Our previous studies using 2  
glioma models,  J3T-1 and J3T-2,  
revealed two different invasion 
patterns and key molecular expres-
sions: annexin A2 in perivascular 
invasion and fibroblast growth 
factor 13 (FGF13) in diffuse inva-
sion to surrounding healthy paren-
chyma [26 ,55-57].  Immunohisto-
chemistry of human glioblastoma 
specimens showed high annexin 
A2 expression in glioma cells 
located around vasculature (C),  
and FGF13 expression in the cyto-
plasm of glioma cells in diffuse 
infiltrating area (D).  Scale bars,  
500 µm (A and B) and 100 µm (C 
and D).



cytoskeleton is a critical regulator of cell migration.  
Numerous studies have also demonstrated the role of 
the cytoskeleton in tumor cell motility,  including gli-
oma [36-39].  Glioma was originally named due to its 
morphological similarity to glial cells,  the presumed 
cell origin of glioma.  However,  recent evidence sug-
gested the origin cells of gliomas are neural stem cells or 
precursor cells of the oligodendroglial lineage [40-42],  
as glioma cells show similar behaviors with these cells 
[41 , 43],  including migration patterns [44].  In the 
mammalian brain,  microtubules,  one of the structural 
components of the cytoskeleton,  make up approxi-
mately 20% of total protein compared with 3-4% of 
total protein in somatic tissues [45],  and microtubules 
play an important role in neuronal migration.  In this 
review,  we focus on the role of the cytoskeleton,  espe-
cially microtubules,  in glioma invasion.

Patterns of Glioma Invasion

The morphological patterns of glioma invasion 
dependent on preexisting tissue elements was reported 
by Hans Joachim Scherer as ‘secondary structures’ [46],  
and today these secondary structures of Scherer are 
referred to as 1) perineuronal satellitosis,  2) perivascu-
lar satellitosis,  3) subpial spread,  and 4) invasion along 
the white matter tract [47].  These invasion patterns are 
different from the spreading of brain tumor from the 
metastases of systemic cancer [48].  In the human brain,  
blood vessels represent hundreds of miles of linear 
tracks covered with extracellular matrix factors,  such as 
collagen,  laminin,  and fibronectin [49-51],  and func-
tion as an important scaffold for glioma invasion 
[52 , 53].  Watkins et al.  reported that a vast majority of 
human glioma cells that travelled outside of the main 
tumor mass were associated with blood vessels and 
tumor cells inserted between the endfeet and the endo-
thelial wall of the preexisting blood vessel,  which leads 
to the loss of tight junction and a focal breach of the 
blood-brain barrier (BBB) [53].  Montana et al.  showed 
that endothelial cell-derived bradykinin attracts glioma 
cells to the vasculature and promotes tumor invasion 
[54].  Zagzag et al.  also demonstrated that stromal 
cell-derived factor-1α (SDF-1α) was highly expressed in 
vasculatures,  neurons,  white matter tract,  and subpial 
regions,  and glioma cells around these structures 
expressed high levels of CXCR4,  the receptor for 
SDF-1α.  This indicates a possible mechanism of 

Scherer’s secondary structures based on SDF-1α/
CXCR4 expression at the invading edge of GBM [47].

We also identified annexin A2 as a candidate protein 
that may regulate glioma invasion along the vasculature 
using our two novel invasive glioma models: J3T-1 and 
J3T-2 [55-57] (Fig. 1C).  Annexin A2 is a 36-kDa calci-
um-dependent phospholipid-binding protein [58-60] 
that is mainly distributed in the plasma membrane and 
cytoplasm,  with slight expression in the nucleus [61,62].  
Calcium,  phospholipid and F-actin binding sites in the 
C-terminal are important for annexin A2 activities in 
the plasma membrane and cytoplasm,  including extra-
cellular degradation,  angiogenesis,  actin cytoskeleton 
regulation,  and cell-cell adhesion [60 , 63-72].  A 
nuclear export signal and multiple phosphorylation 
sites such as Tyr23,  Ser11 and Ser25 in the N-terminal 
of annexin A2 are important for its nuclear transport 
[73 , 74],  and annexin A2 plays an important role in the 
nucleus in DNA synthesis and mRNA transport and 
translation [75].  We showed that overexpression of 
annexin A2 induced angiogenesis and co-opted glioma 
cells to vasculature,  whereas silencing of annexin A2 
suppressed this process [57].  Notably,  Hirata et al.  
evaluated C6 glioma invasion pattern in vivo with 
2-photon imaging and revealed two different invasion 
patterns [76],  which indicated different glioma invasion 
patterns based on location.  On blood vessel walls,  gli-
oma cells showed a spindle shaped morphology with a 
single pseudopodium and fast migration in a saltatory 
manner.  In contrast,  glioma cells invading into the 
brain parenchyma showed multiple pseudopodia.

A recent study was performed to elucidate the origin 
of GBM by Lee et al.,  and the authors revealed that neu-
ral stem cells in the human subventricular zone (SVZ) 
tissue are the origin cells of GBM [77].  The authors 
conducted deep sequencing of triple-matched tissues 
consisting of (i) normal SVZ tissue away from the 
tumor,  (ii) tumor tissue,  and (iii) normal cortical tissue 
(or blood).  Normal SVZ tissue away from the tumor 
contained GBM driver mutations in 56.3% of patients 
with wild-type IDH GBM.  The adult human SVZ tissue 
comprises three anatomically distinct layers: the 
ependymal layer,  hypocellular gap,  and astrocytic rib-
bon [78].  The astrocytic ribbon layer contains SVZ 
astrocytes that can function as neural stem cells [78-80].  
Lee et al.  identified significant enrichment of TERT 
promoter mutation in astrocyte-like stem cells from the 
astrocytic ribbon layer and suggested that the stem cells 
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harboring driver mutations clonally evolved to tumors 
away from the SVZ in patients with GBM [77].  As 
mentioned above,  the pattern of glioma cell migration 
strongly resembles the glial progenitor cell migration 
pattern during normal brain development [36 , 44],  and 
understanding the neurogenesis mechanism may help 
uncover the mechanism of glioma invasion.

Neurogenesis is observed in both the developing and 
adult brain,  and most of these processes are regulated 
by similar mechanisms.  In the course of brain develop-
ing,  newborn neurons migrate tangentially or radially 
[81].  Excitatory pyramidal neurons migrate radially 
into the developing cortex and hippocampus,  while 
inhibitory cells migrate tangentially to reach their posi-
tion in the dorsal forebrain [82].  In the adult brain,  
newly generated neurons migrate through the rostral 
migratory stream to the olfactory bulb,  where they 
mature and are integrated into the neuronal circuitry 
[83].  Neurons also migrate into injury sites such as in 
stroke and differentiate into functional neurons [84].  In 
both the developing and adult brain,  neurons migrate in 
a saltatory manner that involves 1) leading-process 
extension,  2) swelling formation and centrosomal 
migration,  and somal translocation,  and the cytoskele-
ton,  especially microtubules,  play important roles in 
this migration pattern [85 , 86].  As mentioned above,  
Hirata et al.  evaluated C6 glioma invasion patterns in 
vivo and found that glioma cells on vasculature 
migrated in a saltatory manner [76].  Monzo et al.  also 
observed glioma migration in a saltatory manner with 
patient-derived glioma cells and C6 cells [87].  Glioma 
cells exhibited saltatory migration on microfabricated 
laminin tracks similar to their motion in the brain,  and 
this movement had two phases.  In the first phase,  the 
cell extended leading processes with small lamellipodia 
and the cell body moved forward at a slow speed (cell 
elongation phase).  In the second phase,  the cell 
restored its original length by sudden retraction of the 
tail,  rapid movement of the cell body forward,  and 
constant leading-edge movement (tail retraction phase).  
Notably,  nocodazole,  a microtubule-depolymerizing 
drug,  severely inhibited glioma cell motility by blocking 
polarization but not lamellipodial activity.  Furthermore,  
Panopoulos et al.  revealed GBM cell motility in the 
absence of actin polymer [88].  Strikingly,  glioma cells 
exhibit no motility in the presence of microtubule 
inhibitors; however,  cells displayed persistent motility 
in the presence of actin inhibitors at concentrations suf-

ficient to fully disassemble actin,  which indicated the 
heavy involvement of microtubules in glioma invasion.

Cytoskeleton

The cytoskeleton is composed of 3 polymers,  actin,  
intermediate filaments,  and microtubules,  which are 
structurally,  morphologically,  and functionally differ-
ent from each other and have distinctive dynamic prop-
erties that are important for their individual functions.  
Each of the three polymers is associated with a large 
number of accessory proteins that can regulate the 
assembly properties of these polymers and mediate 
interactions among themselves and with other cellular 
structures,  including various organelles,  plasma mem-
brane,  and chromosomes.  During cell movement,  the 
cytoskeleton shows asymmetrical distribution of these 
polymers (Fig. 2A).

Actin. Actin is the most abundant protein in 
most eukaryotic cells and the main globular protein that 
forms microfilaments.  Actin exists either in monomeric 
(G-actin) or polymeric forms (F-actin) in cells,  and 
actin filaments have polar structures with a plus-end 
and minus-end.  Actin filaments are involved in cell 
migration and generate force through 2 different  
mechanisms: (i) ATP-dependent elongation of actin 
filaments at their barbed ends and shortening at the 
pointed ends,  and (ii) through the involvement of myo-
sin-family motor proteins.  Actin-binding proteins also 
work together to organize the dynamics of actin fila-
ments [89].  Rho GTPases are a family of 20 small G 
proteins that are divided into subfamilies,  including 
Rho,  Rac,  Cdc42,  Rnd,  RhoD,  RhoF,  RhoH,  and 
RhoBTB.  Rho GTPases are important regulators of 
actin,  and RhoA,  Rac,  and Cdc42 have shown key 
roles in cell motility [90].  Rho GTPases are upregulated 
in cancers including glioma,  and their high expression 
is correlated with invasiveness [91-94].  In the mecha-
nism of cell movement,  the first step is actin-driven 
protrusions at the leading edge,  followed by contrac-
tions at the cell body and rear.  Actin-driven protru-
sions at the leading edge include lamellipodia and filo-
podia,  and these protrusions are driven by Rac and 
Cdc42 activation,  respectively [95 , 96].  Contractions at 
the cell body and rear are induced by Rho [97].  Recent 
studies revealed that Rho GTPases also regulate micro-
tubule dynamics and,  in turn,  microtubules affect Rho 
GTPases activites [98].
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Intermediate filaments. Intermediate filaments 
are ubiquitous cytoskeletal elements that function to 
support the cell membrane,  serving as a structural scaf-
fold to maintain cell shape.  Unlike F-actin and micro-
tubules,  which are composed of highly conserved pro-
teins,  intermediate filaments are formed from 40 
different subunit proteins and are subdivided into six 
classes,  which include keratins,  neurofilaments,  
desmin,  lamin and vimentin [99 , 100].  Multiple studies 
have demonstrated the roles of actin and microtubles in 
cell migration,  however the function of intermediate 
filaments in migration is less known.  Vimentin is in the 
type III class of intermediate filaments,  and Rogel et al.  
reported that vimentin is sufficient and required for cell 
migration and wound repair closure [101].  Nestin,  a 
type IV intermediate filament,  is also involved in devel-
opment processes,  such as in the migration of neural 
progenitor cells [102].  Some studies have demonstrated 
an involvement of intermediate filament proteins in 
glioma invasion.  Zhao et al.  showed that withaferin-A,  
a chemical inhibitor of vimentin,  inhibited the migra-
tion of U251 and U87 glioma cells in vitro [103].  Nestin 
is a glioma stem cell marker and associated with the 
malignant potential of glioma [104].  One study showed 
that knockdown of nestin reduced glioma invasion 
[105].

Microtubules. Microtubules are highly dynamic 
structures that have important roles in vesicular trans-
port,  mitosis,  and motility.  Microtubules are com-
posed of α/β-tubulin heterodimers.  There are 10 α- and 
9 β-tubulin isotypes that display tissue- and develop-
mental-specific expression [106].  Microtubules are polar 
structures,  consisting of α-tubulin at the slow-growing 
minus-end and β-tubulin exposed at the fast-growing 
plus end [45].  Polymerized microtubules form a hollow 
fiber 25 nm in diameter.  In mammalian cells,  minus-
ends are often stably anchored,  whereas the plus-ends 
are highly dynamic and stochastically switch between 
phases of growth and shrinkage,  a process that is pow-
ered by GTP hydrolysis [107].  This rapid growth and 
collapse is known as dynamic instability and is regu-
lated by the local free tubulin,  microtubule-associated 
proteins (MAPs),  plus-end tracking proteins,  
post-translational modifications (PTMs),  and motor 
proteins (Fig. 2B).

The Role of Microtubules in Glioma Motility

MAPs. MAPs include MAP1,  MAP2,  and MAP4 
proteins and Tau proteins and mostly function to regu-
late microtubules.  MAP2 and Tau are the major MAPs 
in the central nervous system and show a distinct sub-
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Fig. 2　Microtubule-binding proteins regulate glioma invasion.  (A) Immunofluorescent staining of human glioma LN229 cells showed differ-
ent distribution of F-actin (green) and microtubules (red).  DAPI,  4ʼ ,6-diamidino-2-phenylindole,  was used for nuclear staining.  Scale bar,  
25µm.  (B) Microtubules are composed of αβ-tubulin heterodimers and extend at their plus-end.  Microtubule plus-end tracking proteins 
(+TIPs) specifically accumulate at microtubule plus-ends and regulate microtubule dynamics.  Microtubule-associated proteins (MAPs) also 
play a crucial role in microtubule dynamics.  Motor proteins such as kinesins and dyneins move along microtubules and are involved in gli-
oma invasion.  Post-translational modifications (PTMs) also affect microtubule dynamics.



cellular localization [108].  MAP2 is the most abundant 
neuronal MAP and is mainly expressed in the dendrites 
and neuronal cell body.  MAP2 has four different iso-
forms (MAP2a,  b,  c,  and d),  which show specific 
expression patterns: MAP2a,  2b,  and 2d are expressed 
in the adult brain whereas MAP2c is expressed in the 
embryonic and neonatal brain [109].  Tohyama et al.  
evaluated MAP1b,  MAP2b,  and MAP2c expression in 
five glioma cell lines (U87MG,  U138MG,  U251MG,  
U373MG,  and HS683) using northern blot and immu-
noblot analysis [110].  All glioma cell lines expressed 
MAP1b,  and three cell lines expressed MAP2c;  
however,  only U373MG cells expressed MAP2b.  Zhou 
et al.  reported that protein kinase A (PKA) activator 
treatment induced MAP2 expression via signal trans-
ducer and activator of transcription 3 (STAT3) in gli-
oma cells,  which resulted in the reduction of glioma 
invasion [111].

Doublecortin (DCX) is another MAP that promotes 
microtubule polymerization and stabilization [112].  
During brain development,  DCX is expressed by 
migrating neuronal precursor cells and post-migratory 
neurons [113 , 114],  while in the adult brain,  DCX is 
expressed by migrating neuroblasts [115].  DCX is 
mutated in lissencephaly,  which is characterized by 
disorganized layers of the cerebral cortex [116].  Daou et 
al.  showed that DCX is preferentially expressed in inva-
sive brain tumors such as GBM,  anaplastic astrocy-
toma,  and oligoastrocytoma [117].  Ortensi et al.  
demonstrated reduced glioma invasiveness by knock-
down of Rai (ShcC/N-Shc),  a member of the Shc-like 
adaptor protein family,  accompanied by a significant 
reduction in DCX [118].  DCX function is regulated by 
several serine-threonine kinases and phosphatases [15].  
Cyclin-dependent kinase 5 (CDK5),  a serine-threonine 
kinase that forms complexes with p35 and p39 and is 
indispensable for brain development [119],  phosphor-
ylates DCX at Ser297 and decreases its binding affinity 
to microtubules in neurons [120].  Liu et al.  also showed 
that Cdk5 mediates migration and invasion of GBM 
cells [121].  In addition,  the small molecule inhibitor 
AC1MMYR2 attenuated CDK5 activities by function-
ally targeting CDK5RAP1,  resulting in inhibition of 
glioma invasion [122].  DCX is also regulated by PKA 
and MAP/MARK signaling,  as well as the phosphatase 
and tensin homolog (PTEN) pathway.  Both signal 
pathways are frequently dysregulated in GBM [10] and 
involved in glioma invasion [123 , 124],  which indicates 

a possible mechanistic involvement of DCX or microtu-
bules in glioma invasion.

The Disrupted in Schizophrenia 1 (DISC1) gene was 
originally identified as a candidate gene for schizophre-
nia [125].  Later studies revealed its distribution in 
microtubule-associated cytoskeletons and mitochon-
dria and its various functions,  such as in neuronal 
migration,  neurogenesis,  and cAMP signaling.  DISC1 
interacts with MAP1A and MIPT3 proteins [126].  Gao 
et al.  showed that silencing of DISC1 in U251 MG cells 
inhibited glioma migration and invasion in vitro [127].

Stathmin is a microtubule destabilizing protein [128] 
that functions in cell migration by assisting in new 
leading edge microtubule growth [129 , 130].  Stathmin 
is also involved in cancer cell migration and its expres-
sion is upregulated in several cancers including leuke-
mia,  lymphoma,  Wilms tumor,  ovarian cancer,  pros-
tate cancer,  breast cancer,  head and neck cancer,  
hepatocellular carcinoma,  osteosarcoma,  lung cancer 
and mesothelioma [131].  Some groups reported that 
downregulation of stathmin expression inhibited 
migration in multiple glioma cell lines [132 , 133].

Spastin is a microtubule-severing protein encoded by 
the SPG4 gene and a member of ATPases [134].  Spastin 
has 2 domains: a microtubule-interacting and endoso-
mal trafficking (MIT) domain and an ATPases associ-
ated with various cellular activities (AAA) domain.  
Spastin exhibits functions in microtubule severing as 
well as microtubule bundling.  A previous study showed 
that knockdown of spastin decreased glioma invasion 
[135].

Fibroblast growth factor 13 (FGF13) is another 
microtubule-stabilizing protein that regulates neuronal 
polarization and migration and was recently identified 
by Wu et al.  [136-138].  FGF13 has 2 splicing isoforms,  
FGF13A and FGF13B,  which are spatially differentially 
expressed in the nucleus and cytoplasm,  respectively.  
In the developing brain,  FGF13B is dominant and reg-
ulates microtubule dynamics and neuronal migration.  
Cerebral cortex-specific knockdown of FGF13 in mice 
resulted in disorganization of laminar development of 
the cerebral cortex.  We previously identified dominant 
FGF13B expression compared with FGF13A in GBM 
specimens as well as established glioma cells and 
patient-derived GSCs and found that FGF13B colocal-
ized with microtubules in the cytoplasm of these sam-
ples [26] (Fig. 1D).  Moreover,  knockdown of FGF13 
reduced glioma invasion in vitro and in vivo.  FGF13 
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expression level is regulated by SoxD in Xenopus [138] 
and Sox2 in glioma [139 , 140].  Notably,  Wang et al.  
recently reported CD133+ GSCs that are preferentially 
located on and invaded along white matter tracts 
expressing NOTCH-induced SOX2 and SOX9,  whereas 
the nerve fibers expressed JAG1,  the NOTCH ligand 
[141].  In our study,  FGF13 was highly expressed in the 
J3T-2 glioma model,  which showed diffuse glioma 
invasion without angiogenesis.  FGF13 was expressed at 
higher levels in the proneural group,  in which NOTCH 
signaling is upregulated.  These data indicate that 
FGF13 might be involved in angiogenesis-independent 
glioma invasion.

Plus-end tracking proteins. The plus-ends of 
microtubules are highly dynamic,  and the microtubule 
plus-end tracking proteins (+TIPs) specifically accumu-
late at microtubule plus ends [142].  More than 20 +TIP 
families have been reported since the first +TIP cyto-
plasmic linker protein of 170 kDa (CLIP-170) was dis-
covered [143].  End-binding 1 protein (EB1) is a mem-
ber of the EB family in +TIPs and is located on the 
plus-ends of growing microtubules,  where it controls 
microtubule dynamics and regulates linking to other 
cellular structures.  EB1 overexpression correlates with 
poor prognosis in GBM [144] as well as in other cancers 
such as breast cancer [145],  esophageal squamous cell 
carcinoma [146],  gastric adenocarcinoma [147],  col-
orectal cancer [148] and hepatocellular carcinoma 
[149].  Berges et al.  showed that overexpression of EB1 
in glioma cells promoted invasion and accelerated 
tumor growth in vivo,  while downregulation of EB1 
inhibited glioma invasion and proliferation.  Further
more,  overexpression of EB1 sensitizes GBM cells to 
vinca-alkaloids.

PTMs. PTMs such as acetylation,  deacetylation,  
phosphorylation,  glutamylation,  Δ2 modification,  and 
glycylation also affect microtubule activity [150 , 151].  
Acetylated tubulin is a hallmark of long-lived microtu-
bules and stable tubulin [152].  Tubulin is acetylated on 
lysine 40 by the α-tubulin acetyltransferase 1 (αTAT1) 
[153] and its acetylation is reversed by histone deacety-
lase 6 (HDAC6) [154] and sirtuin 2 (SIRT2).  Over
expression of HDAC6 significantly increases cell motil-
ity [154] and a previous study showed a significant 
association between metastatic breast cancer cell lines 
and high acetylation of α-tubulin [155].  Wu et al.  
revealed a role for HDAC6 in glioma invasion [156].  
Overexpression of invasion inhibitory protein 45,  

which is a binding partner of HDAC6,  decreased 
HDAC6 activity and reduced glioma migration.  
Therefore,  several HDAC6 inhibitors are being cur-
rently evaluated in clinical trials (as described later).

Motor proteins. Motor proteins such as dynein 
and kinesin are important for microtubule organization 
and carry organelles,  mRNA,  proteins,  and signaling 
molecules along the microtubule [157].  Migrating cells 
exhibit a highly polarized shape along the anterior-pos-
terior axis.  In neurons,  cytoplasmic dynein links to the 
nuclear envelope and pulls the nucleus forward along 
microtubules,  whereas inhibition of dynein or its regu-
lator Lissencephaly-1 (LIS1) attenuates nuclear migra-
tion [86].  High grade glioma shows high expression of 
dynein compared with low grade glioma [158],  and 
expression of dynein cytoplasmic 2 heavy chain 1 
(DHC2) has been associated with temozolomide resis-
tance [159].  In contrast,  Neubauer et al.  reported a 
dramatic downregulation of DYNC1I1 in GBM speci-
mens,  in which lower expression correlated with poor 
prognosis [160].  Lis1,  a dynein-binding protein,  colo-
calized with CD133+ GSCs,  and knockdown of Lis1 
decreased U87 cell migration [161].  Kinesin is another 
target for glioma invasion.  Venere et al.  showed that 
kinesin family member 11 (KIF11),  which enhances 
elongation of tubulin protofilaments at the plus-end,  is 
upregulated in GBM,  and knockdown of KIF11 
reduced self-renewal and motility of glioma cells [162].

Microtubule-targeting Agents (MTAs) to Block 
Glioma Invasion

MTAs are classically divided into drugs that act as 
inhibitors and those that act as enhancers of tubulin 
polymerization.  Both categories of MTAs alter micro-
tubule dynamics defined by growth to shrinkage transi-
tions (catastrophes) and reverse transitions (rescue) and 
inhibit not only invasion but also mitosis.  While MTAs 
have showed efficacy in treatment of diverse cancers,  
the use of MTAs in GBM treatment has been restricted 
due to the BBB that blocks the crossing of most clini-
cally relevant,  natural product-derived MTAs [39 , 163].  
Furthermore,  microtubules are essential for central 
nervous system function,  and a therapeutic dose of 
MTAs leads to neurotoxicity in the central nervous sys-
tem,  a common issue for the peripheral nerve system 
after systemic administration of MTAs [164].  Therefore,  
efforts are underway to develop new MTAs that can 
cross the BBB and identify MAPs or other microtu-
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bule-regulating factors whose inhibition would block 
mitosis and migration without producing neurotoxicity 
[162].

Several MTAs have shown potential efficacy in 
inhibiting glioma invasion.  BAL101553 is a prodrug of 
BAL27862 and can efficiently distribute into the brain 
and tumor.  This MTA can inhibit GBM proliferation 
and migration in an EB1-dependent manner [39] and is 
currently in clinical trials for advanced cancers includ-
ing GBM (NCT02490800,  NCT02895360).  Patupilone 
is another brain-penetrating microtubule-stabilizing 
agent and can overcome traditional taxane resistance 
mechanisms because of its efficacy against both wild-
type and common mutated forms of β-tubulin and as it 
is a poor substrate for the P-glycoprotein efflux pump 
[165].  Clinical trials have confirmed its safety and drug 
accumulation in glioma (NCT00045708,  NCT00715013) 
[165].  Pagano et al.  reported that a non-cytotoxic con-
centration of patupilone reduced accumulation of EB1 
and inhibited glioma cell movement [166].  Ispinesib is 
an anti-kinesin drug and the small molecule inhibitor of 
KiF11.  Venere et al.  showed significant reduction of 
glioma migration by ispinesib [162].  In a study by 
Berges et al.  [167],  the NFL-TBS. 40-63 peptide (a 
tubulin-binding peptide) was shown to disrupt the 
microtubule network in glioma cells but not in normal 
astrocytes and neurons and thus demonstrated potential 
as a primary or supplementary glioma treatment 
modality.  Vorinostat is a FDA-approved drug for the 
treatment of cutaneous T cell lymphoma that selectively 
inhibits HDAC6.  Clinical trials with volinostat in gli-
oma are also being conducted (NCT02420613) [168-
170].  Zhang et al.  showed the decrease of glioma migra-
tion and invasion in vitro with vorinostat [171].  
Interestingly,  the HDAC6 inhibitor could not only 
inhibit glioma invasion [156 , 171],  but it also improved 
the efficacy of other treatments such as chemotherapy 
[172],  radiation [173],  and oncolytic virus therapy 
[174].

Future Directions and Conclusions

Glioma is a highly invasive brain tumor,  and recent 
studies have demonstrated similar mechanisms between 
glioma and neural progenitor cells including in migra-
tion,  which involves dynamic instability of microtu-
bules.  Developing novel treatments to target microtu-
bules whose inhibition would block mitosis and 

migration in glioma cells without toxicity in normal 
brain is extremely important,  which can inhibit both 
aspects of ‘go and grow’ [162].  Recently,  tumor-treat-
ing fields,  an antimitotic treatment that selectively 
affects dividing GBM cells by delivering low-intensity,  
intermediate-frequency alternating electric fields via 
transducer and perturbs microtubules during mitosis,  
showed survival benefit in newly diagnosed GBM [3] 
and also inhibited glioma invasion [175].  Further dis-
coveries of microtubule-targeted therapies may improve 
the clinical outcome of glioma patients.
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