
Explanations for Query Answers under Existential Rules

İsmail İlkan Ceylan1∗ , Thomas Lukasiewicz1 , Enrico Malizia2 and Andrius Vaicenavičius1
1Department of Computer Science, University of Oxford, UK
2Department of Computer Science, University of Exeter, UK

{ismail.ceylan, thomas.lukasiewicz, andrius.vaicenavicius}@cs.ox.ac.uk, e.malizia@exeter.ac.uk

Abstract

Ontology-mediated query answering is an exten-
sively studied paradigm, which aims at improving
query answers with the use of a logical theory. As a
form of logical entailment, ontology-mediated query
answering is fully interpretable, which makes it pos-
sible to derive explanations for query answers. Sur-
prisingly, however, explaining answers for ontology-
mediated queries has received little attention for
ontology languages based on existential rules. In
this paper, we close this gap, and study the problem
of explaining query answers in terms of minimal
subsets of database facts. We provide a thorough
complexity analysis for several decision problems
associated with minimal explanations under existen-
tial rules.

1 Introduction
Ontology-based data access (OBDA) is a popular paradigm in
knowledge representation and reasoning [Poggi et al., 2008].
The main goal is to facilitate access to possibly heterogeneous
and incomplete data sources based on a logical theory. This is
achieved via an ontology that enriches the user query, typically
a union of conjunctive queries, with commonsense knowledge.
In this framework, the ontology and the user query are viewed
as two components of one composite query, called ontology-
mediated query (OMQ) [Bienvenu et al., 2014]. The task of
evaluating such queries is then called ontology-mediated query
answering (OMQA).

Ontology languages are mostly fragments of first-order
logic (FOL), which result from a simple trade-off between
the expressivity of the language and the computational com-
plexity of reasoning in the language. As a form of first-order
entailment, ontology-mediated query answering is fully in-
terpretable, which makes it possible to derive explanations
for query answers. Explanations are widely considered as an
essential component of scientific progress. The fact that many
recent artificial intelligence systems operate mostly as a black
box has led some serious concerns; see, e.g., [Došilović et al.,
2018], for a recent survey.

∗Contact Author

Description logics (DLs) [Baader et al., 2007] and exis-
tential rules [Calì et al., 2012b; Calì et al., 2013; Calì et al.,
2012a], together, encompass the most widely used knowledge
representation languages in the context of ontology-mediated
query answering. Ontologies have found applications in data
exchange [Fagin et al., 2005], medical diagnosis [Bertaud-
Gounot et al., 2012], and life sciences [Bard and Rhee, 2004],
all of which can potentially benefit from explanations. In fact,
there has been a significant amount of interest in tracking down
and understanding the causes of various types of entailments
in DL ontologies.

A prominent approach is to identify explanations in terms of
a subset of the axioms in the ontology [Kalyanpur et al., 2007;
Baader and Suntisrivaraporn, 2008]. The benefit of this ap-
proach is that it allows us to abstract away from the particular
proof technique used to derive an entailment, and hence to
pinpoint the sets of axioms that are responsible for an en-
tailment. Such explanation sets are, furthermore, required
to be minimal with respect to some order, like subset, car-
dinality, or preference order. These explanations are called
justifications [Kalyanpur et al., 2007; Horridge et al., 2008;
Suntisrivaraporn et al., 2008], and the overall approach is also
known as axiom pinpointing in the DL literature [Horridge et
al., 2009; Baader and Suntisrivaraporn, 2008].

Earlier work on axiom pinpointing, however, is exclusively
based on standard reasoning tasks, and hence on deriving
explanations based on the axioms of the ontology. Indeed,
there is very little work in the direction of explaining query
entailments. To date, the only works in explaining query
answers is given for the DL-Lite family of languages [Borgida
et al., 2008; Bienvenu et al., 2019], as we elaborate later, in
detail. Surprisingly, explanations are not studied in the context
of existential rules.

In the present paper, we close this gap and study the prob-
lem of explaining query answers under existential rules. More
specifically, given an OMQ, we are interested in explaining
this compound query in terms of the minimal satisfying sub-
sets of a given database. Such a minimal subset of the database
is called a minimal explanation, or simply MinEX. Incorpo-
rating ideas from axiom pinpointing [Peñaloza and Sertkaya,
2017], we introduce a class of problems based on the notion
of minimal explanation. We conduct a detailed complexity
analysis for each of the problems introduced, and provide a
host of complexity results that cover a representative set of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/226955073?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

existential rules. Our results extend naturally to other existen-
tial rule languages. All the proof details can be found in the
extended version of this paper available from the authors.

2 Preliminaries
We give a brief overview on existential rules and the paradigm
of ontology-mediated query answering [Calì et al., 2012b; Calì
et al., 2013; Calì et al., 2012a], and also give some complexity-
theoretic background relevant to our study.

2.1 First-Order Logic
We consider a relational vocabulary consisting of mutually
disjoint, possibly infinite sets R, V, and C of predicates,
variables, and constants, respectively. A term is either a
constant or a variable. An atom is an expression of the form
p(t1, . . . , tn), where p is an n-ary predicate, and t1, . . . , tn
are terms. A ground atom (or fact) has only constants as terms.

A first-order formula is built as usual from atoms over the
given vocabulary, truth constants >, ⊥, operators ¬, ∨, ∧,→,
and quantifiers ∃, ∀. A quantifier-free formula is a formula that
does not use quantifiers. A variable in a formula is quantified
(or bound), if it is in the scope of a quantifier; otherwise, it is
free. A sentence is a formula without any free variables.

The semantics of FOL is given by means of interpretations
I = (∆I , ·I), where ∆I is a possibly infinite domain, and
·I is an interpretation function that maps every constant a to
a domain element aI ∈ ∆I , every predicate p with arity n
to a relation pI ⊆ (∆I)n. A sentence Φ is satisfied by an
interpretation I , if I |= Φ, where |= is the standard first-order
entailment relation.

A (first-order) theory Σ is a (finite) set of first-order for-
mulas. An interpretation I is a model of a theory Σ, denoted
I |= Σ, if I satisfies all Φ ∈ Σ. Σ entails a sentence Φ,
written Σ |= Φ, if all models of Σ are also models of Φ.

2.2 Existential Rules
A tuple-generating dependency (TGD) is a first-order formula
of the form

∀XΦ(X)→ ∃Y Ψ(X,Y),

where Φ(X) is a conjunction of atoms, called the body of
the TGD, and Ψ(X,Y) is a conjunction of atoms, called the
head of the TGD. Classes of TGDs are also known as existen-
tial rules, or Datalog± languages in the literature. A program
(or an ontology) is a finite set Σ of TGDs.

TGDs can express the inclusion and join dependencies of
databases. In its general form, however, reasoning with TGDs
is undecidable [Beeri and Vardi, 1981], but there are a plethora
of decidable fragments of TGDs. We review some known
(syntactic) restrictions on TGDs that ensure decidability (and
even tractability in most cases).

A TGD is guarded, if there exists a body atom that contains
(or “guards”) all body variables. The class of guarded TGDs,
denoted G, is defined as the family of all possible sets of
guarded TGDs. A key subclass of guarded TGDs are the
linear TGDs with just one body atom. The class of linear
TGDs is denoted by L. It is easy to verify that L ⊂ G.

Stickiness enforces the following property: variables that
appear more than once in a body (i.e., join variables) must

L Data fp-comb. ba-comb. Comb.

L, LF, AF ≤ AC0 NP NP PSPACE

S, SF ≤ AC0 NP NP EXP

A ≤ AC0 NP NEXP NEXP
G P NP EXP 2EXP

F, GF P NP NP EXP
WS, WA P NP 2EXP 2EXP

Table 1: Complexity of OMQA under existential rules.

always be propagated (or “stick”) to the inferred atoms [Calì
et al., 2012b]. A TGD that enjoys this property is called
sticky, and the class of sticky TGDs is denoted by S. Weak
stickiness generalizes stickiness by considering only “harmful”
variables, and defines the class WS of weakly sticky TGDs.
Observe that S ⊂WS.

A set of TGDs is acyclic and belongs to the class A if its
predicate graph is acyclic. Equivalently, an acyclic set of
TGDs can be seen as a non-recursive set of TGDs. A set of
TGDs is weakly acyclic, if its predicate graph enjoys a certain
acyclicity condition, which guarantees the existence of a finite
canonical model; the associated class is denoted WA. It is
known that A ⊂WA ⊂WS [Calì et al., 2012b].

The class of full TGDs do not contain any existentially
quantified variables. The corresponding class is denoted by F.
Restricting full TGDs to satisfy linearity, guardedness, stick-
iness, or acyclicity yields the classes LF, GF, SF, and AF,
respectively. It is known that F ⊂WA [Fagin et al., 2005].

2.3 Ontology-Mediated Query Answering
A database D is a finite set of facts over a (finite) relational
vocabulary. A conjunctive query (CQ) is an existentially quan-
tified formula ∃XΦ(X,Y), where Φ(X,Y) is a conjunction
of atoms over the set of variables X and Y; a union of con-
junctive queries (UCQ) is a disjunction of CQs (over the same
free variables). A query is Boolean if it is a sentence.

The paradigm of ontology-mediated query answering gen-
eralizes query answering over databases by incorporating ad-
ditional background knowledge in terms of an ontology. For-
mally, an ontology-mediated query (OMQ) is a pair (Q,Σ),
where Q is a Boolean query, and Σ is an ontology. Given
a database D and an OMQ (Q,Σ), we say that D entails
the OMQ (Q,Σ), denoted D |= (Q,Σ), if for all models
I |= Σ ∪ D it holds that I |= Q, where |= is first-order
entailment under the standard name assumption. Ontology-
mediated query answering (OMQA) is the task of decid-
ing whether D |= (Q,Σ) for a given database D and an
OMQ (Q,Σ).

A key paradigm in OMQA is the FO-rewritability of queries:
an OMQ (Q,Σ) is FO-rewritable, if there exists a Boolean
UCQ QΣ such that, for all databases D that are consistent
relative to Σ, we have that D |= (Q,Σ) iff D |= QΣ. In this
case, QΣ is called an FO-rewriting of (Q,Σ). A class of
programs L is FO-rewritable, if it admits an FO-rewriting for
any UCQ and program in L. All languages from Table 1 with
AC0 data complexity are FO-rewritable.

In our complexity analysis, we make the standard assump-
tions [Vardi, 1982]: the combined complexity of query answer-
ing is calculated by considering all the components, i.e., the
database, the program, and the query, as part of the input. The
bounded-arity combined complexity (or simply ba-combined
complexity) assumes that the maximum arity of the predicates
in R is bounded by an integer constant. The fixed-program
combined complexity (or simply fp-combined complexity) is
calculated by considering the ontology as fixed. Finally, the
data complexity is calculated by considering the database as
the input, i.e., everything else is fixed. Table 1 summarizes the
known complexity results for OMQA in the different classes
of TGDs that we consider.

The most relevant complexity classes for our analysis and
their relations are given as follows:

AC0 ⊆ P ⊆ NP, CONP ⊆ DP ⊆ ΣP
2 ,Π

P
2 ⊆ PSPACE ⊆

EXP ⊆ NEXP, CONEXP ⊆ DExp ⊆ PNEXP ⊆ 2EXP,

where DExp denotes the class NEXP ∧ CONEXP.

3 Explanations for Query Answers
In our framework, an explanation is given in terms of a set of
database facts, and we are interested in a minimal set of facts
that entail a given OMQ. The following definition is a natural
extension of those related to axiom pinpointing [Peñaloza and
Sertkaya, 2017] to ontology-mediated query answering.

Definition 1 (MinEX). For a databaseD and an OMQ (Q,Σ),
where Σ is a set of existential rules, and Q is a query, an
explanation for (Q,Σ) in D is a subset E ⊆ D of facts such
that E |= (Q,Σ). A minimal explanation E, or MinEX, for
(Q,Σ) in D is an explanation for (Q,Σ) in D that is subset-
minimal, i.e., there is no proper subset E′ (E that is an
explanation for (Q,Σ) in D.

When the OMQ (Q,Σ) and the database D are clear from
the context, we simply speak about MinEXs without explicitly
mentioning (Q,Σ) or D.

We provide a running example that will be used along the
paper to illustrate the different problems studied. Briefly
stated, the notion of minimal explanations and the associ-
ated problems are closely related to minimal hitting set prob-
lems [Gainer-Dewar and Vera-Licona, 2017; Gottlob and Mal-
izia, 2018], which appears naturally in several domains. Our
running example is from the field of computational biology,
motivated by experimental design for protein networks [Klamt
et al., 2009; Ramadan et al., 2004].

Example 2. Let us consider the protein containment scenario
illustrated in Figure 1. In this example, we are interested in
identifying proteins p1, . . . , p6 in relation to the complexes c1,
c2, and c3. We want to find a minimal subset of proteins that
covers all complexes, i.e., a minimal subset of proteins that
has at least one representative from each complex.

We can express this problem as an OMQ in a way that
every answer to this problem is in bijection with a minimal
explanation of the OMQ as follows. We define the database:

Dp = {protein(pi) | 1 ≤ i ≤ 6},

p1 p2 p3

p4 p5 p6

c1

c2

c3

Figure 1: Protein containment in complexes, where proteins
are given as p1, . . . , p6 and complexes c1, c2, and c3 are color-
coded (as shown on the left-hand side).

which encodes the set of proteins, and the OMQ {Qp,Σp}:

Σp = {protein(pi)→
∧

pi in cj

covered(cj) | 1 ≤ i ≤ 6},

Qp = covered(c1) ∧ covered(c2) ∧ covered(c3).

The ontology encodes the relation between proteins and com-
plexes, and the query asks whether all complexes c1, c2, and
c3 are covered.

Consider now a subset E ⊆ Dp. Then, it is easy to ver-
ify that E |= (Qp,Σp) iff E |= {covered(ci),Σp}, for every
complex ci. Thus, MinEXs for {Qp,Σp} in Dp are in bijec-
tion with minimal protein covers of complexes.

We focus on this running example throughout the paper due
to its simplicity.

4 Recognizing Minimal Explanations
In this section, we study the fundamental decision problem for
MinEXs of deciding whether a given subset of a database is a
minimal explanation. This is a natural decision version of the
search problem of finding a MinEX.
Problem: IS-MINEX(UCQ,L)
Input: A database D, an OMQ (Q,Σ), where Q is a UCQ and
Σ is from the class L of TGDs, and a set of facts E ⊆ D.
Question: Is E a MinEX for (Q,Σ) in D?

IS-MINEX is the most basic problem that is studied in this
paper, and serves as a baseline for the other problems. As all
the remaining problems studied, IS-MINEX is parametrized
with a query language. Let us illustrate this problem in our
running example.
Example 3. Recall the database Dp. Observe that the subsets

E1 = {protein(p1), protein(p3)},
E2 = {protein(p2), protein(p5)},
E3 = {protein(p2), protein(p4), protein(p6)},

of the database Dp are MinEXs for the OMQ (Qp,Σp), and
give the minimal protein covers of complexes. However,
{protein(p4), protein(p5), protein(p6)} is not a MinEX, as
it does not cover all complexes and thus does not entail
(Qp,Σp). The set {protein(p1), protein(p2), protein(p3)}
entails (Qp,Σp), but it is not a MinEX, since it is not mini-
mal (i.e., protein(p2) can be removed without affecting the
satisfaction).

L Data fp-comb. ba-comb. Comb.

L, LF, AF ≤ P DP DP PSPACE
S, SF ≤ P DP DP EXP
A ≤ P DP DExp DExp

G P DP EXP 2EXP
F, GF P DP DP EXP

WS, WA P DP 2EXP 2EXP

Table 2: Complexity results for IS-MINEX(UCQ,L).

First, we present a general algorithm for deciding
IS-MINEX(UCQ,L). Assume that OMQA in L is in the
class C. Then, IS-MINEX(UCQ,L) can be decided by one
C check and a polynomial number of co-C checks as follows:
testing whether E is a MinEX involves checking whether E
entails (Q,Σ), and checking whether E is minimal. The en-
tailment can be checked with a single call to C. To check
minimality of E, it is enough to show that removing any ele-
ment e of E gives a set that does not entail (Q,Σ). Therefore,
we need to carry out a polynomial number of non-entailment
checks, each in co-C. Hence, we state the following result.

Theorem 4. IS-MINEX(UCQ,L) can be decided by a single
C check, followed by a polynomial number of co-C checks,
where C is the complexity of OMQA in L.

As a consequence of Theorem 4, we are able to claim all
membership results given in Table 2. For example, OMQA
in the language G is NP-complete. That is, we need to
make an NP test (entailment) followed by polynomially many
CONP tests (non-entailment) to decide IS-MINEX(UCQ,G).
Clearly non-entailment tests can also be combined into a sin-
gle CONP test, which implies that the overall procedure is in
DP. Similar arguments apply to other languages considered.

Therefore, in the rest of this section, we only need to
show that these upper bounds are also matching lower bounds
for IS-MINEX, as shown in Table 2. First, we show that
IS-MINEX(UCQ,L) is DP-hard in fp-combined complexity
even for FO-rewritable languages.

Theorem 5. IS-MINEX(UCQ,L) is DP-hard for languages
L ∈ {LF,AF,SF} in fp- and ba-combined complexity.

This result implies that IS-MINEX(UCQ,L) is DP-hard
for all considered languages in fp-, ba- combined complexity
as a consequence of the inclusions between the languages.

This result is obtained by a reduction from the canonical
DP-complete problem SAT-UNSAT, which asks, given two
3CNF formulas, whether the first is satisfiable, and the second
is unsatisfiable. In the construction, the database contains facts
encoding satisfying assignments of clauses for both formulas
and facts enforcing the consistency of the assignments. There
is an additional fact, which is a kind of jolly, allowing to satisfy
the second formula, bypassing the constraints of the consis-
tency in the assignments. In this way, the jolly is required
in a MinEX iff the second formula is not satisfiable. The
program is empty, therefore, it applies to all languages. The
query ensures that there exists a MinEX iff the first formula is
satisfiable and the second is unsatisfiable.

Note that many hardness results are a consequence of the
hardness of OMQA in the given languages; see, e.g., Table 1.
The only case that is not covered by the given results is hence
IS-MINEX(UCQ,A) in ba- and combined complexity. The
matching lower bound is shown in the following result.
Theorem 6. IS-MINEX(UCQ,A) is DExp-hard in ba-com-
bined complexity.

This reduction is from a DExp-complete problem, inspired
by the construction given in [Eiter et al., 2016]. The problem
is a variant of the tiling problem, which is NEXP-complete.
Formally, given a tuple (w1, w2,TP1,TP2), where w1 and
w2 are initial tiling conditions, and TP1 and TP2 are two
tiling problems for the exponential square 2n × 2n, decide
whether TP1 has no solution with w1, and TP2 has a solution
with w2.

The main intuition behind the proof is as follows. We
encode the tiling problem in the program Σ. This program is
designed in such a way that, together with a database encoding
the adjacency rules and the initial condition, Σ entails an
atom tiling i iff TP i has a solution with wi. The construction
ensures the following. If TP1 has a solution with w1, then
tiling1 can be derived from the rules in Σ1, and hence there
is no need to include the atom tiling1 in E to entail the query.
Hence, E is a MinEX iff TP1 has no solution with w1 and
TP2 has a solution with w2.

We observe that IS-MINEX remains tractable in data com-
plexity. In all other cases, IS-MINEX has either the same com-
putational complexity as OMQA (for deterministic classes) or
has a higher computational complexity (for non-deterministic
classes). This concludes our analysis for IS-MINEX.

5 Set of All Minimal Explanations
In this section, we analyze the problem of deciding whether a
given set of subsets of a database is the set of all MinEXs.

Problem: ALL-MINEX(UCQ,L)
Input: A database D, an OMQ (Q,Σ), where Q is a UCQ and
Σ is from the class L of TGDs, and a set E ⊆ P(D).
Question: Is E the set of all MinEXs for (Q,Σ) in D?

Example 7. Suppose that we are interested in knowing
whether a given set of proteins are all possible minimal covers
of complexes. Consider the set E given as:{
{protein(p1), protein(p3)}, {protein(p1), protein(p5)},
{protein(p1), protein(p6)}, {protein(p2), protein(p5)},
{protein(p3), protein(p4)}, {protein(p3), protein(p5)},
{protein(p2), protein(p4), protein(p6)}

}
.

It is easy to verify that E is precisely the set of all MinEXs for
(Qp,Σp) in Dp.

As before, we start with a rather general result for
ALL-MINEX(UCQ,L), where by C, we represent the com-
plexity of OMQA in L. We show that it is sufficient to per-
form a polynomial number of C checks and a single co-(NPC)
check. More specifically, given a set E of subsets of the
database, to decide ALL-MINEX(UCQ,L), we can proceed
as follows. We perform a polynomial number of C checks

L Data fp-comb. ba-comb. Comb.

L, LF, AF ≤ P DP DP PSPACE
S, SF ≤ P DP DP EXP
A ≤ P DP DExp DExp

G CONP DP EXP 2EXP
F, GF CONP DP DP EXP

WS, WA CONP DP 2EXP 2EXP

Table 3: Complexity results for ALL-MINEX(UCQ,L).

to decide whether all sets in E entail (Q,Σ). Then, we need
to decide whether all sets in E are minimal, and there is no
MinEX that is not in E. This holds if there is no E′ ⊆ D
entailing (Q,Σ) such that E′ 6⊆ E for all E ∈ E. The com-
plement task of guessing a set E′ such that E′ 6⊆ E for all
E ∈ E and that entails (Q,Σ) is in NPC , and thus the task of
checking whether all sets in E are minimal, and there is no
MinEX, which is not included in E, is in co-(NPC).

Theorem 8. ALL-MINEX(UCQ,L) can be decided by a
polynomial number of C checks, followed by a single co-(NPC)
check, where C is the complexity of OMQA in L.

Importantly, Theorem 8 gives a tight upper bound for
all results in Table 3, apart from the data complexity re-
sults for FO-rewritable languages. In fact, we show that,
ALL-MINEX(UCQ,L) is feasible in polynomial time pro-
vided that L is FO-rewritable, which is summarized in the
next result.

Theorem 9. Let L be a FO-rewritable language over existen-
tial rules. Then, computing all MinEXs for a OMQ (Q,Σ) in
a database D over L is feasible in polynomial time in data
complexity.

To prove this result, it suffices to consider the FO-rewriting
of the program, and show that determining minimal subsets
of a database that entail the rewritten query can be done in
polynomial time.

It remains to show the hardness results presented in Table 3.
As before, we note that some of the lower bounds immediately
follow from the complexity of OMQA in the respective lan-
guage. We show that ALL-MINEX(UCQ,GF) is CONP-hard
in data complexity, by a reduction from UNSAT, by borrowing
ideas from [Lukasiewicz et al., 2018].

Theorem 10. ALL-MINEX(UCQ,GF) is CONP-hard in
data complexity.

This implies that ALL-MINEX(UCQ,L) is CONP-hard in
data complexity for all languages L ∈ {G,F,WS,WA}, due
to the language inclusions GF ⊂ G,F,WS,WA.

The following result settles the hardness results for
ALL-MINEX(UCQ,L) in fp-, ba-, and combined com-
plexity. In particular, we have that the complexity of
ALL-MINEX(UCQ,L) and IS-MINEX(UCQ,L) match for
all considered languages L in fp-, ba-, and combined com-
plexity. The hardness results for ALL-MINEX(UCQ,L) are
an adaptation of the proofs for IS-MINEX(UCQ,L) in most
cases, and hence we omit the details.

L Data fp-comb. ba-comb. Comb.
L, LF, AF ≤ P NP NP PSPACE
S, SF ≤ P NP NP EXP
A ≤ P NP NEXP NEXP
G NP NP EXP 2EXP

F, GF NP NP NP EXP
WS, WA NP NP 2EXP 2EXP

Table 4: Complexity results for MINEX-IRREL(UCQ,L) and
for SMALL-MINEX(UCQ,L).

Theorem 11. The fp-combined, ba-combined, and com-
bined complexity hardness results in Table 3 hold for
ALL-MINEX(UCQ,L).

This result concludes our complexity analysis for
ALL-MINEX(UCQ,L).

6 Explanations Excluding Forbidden Sets
The next problem that we consider is the one of finding a
minimal explanation that does not include a given sets of facts.
Let F be a set of subsets of a database D, which intuitively
encodes a set of invalid configurations: elements of F may
be known to be erroneous, or we may want to avoid them for
some other reason, depending on the application. Thus, we
are interested in finding whether there is an explanation that is
not a superset of any of the sets in F, as formalized next.

Problem: MINEX-IRREL(UCQ,L)
Input: A database D, an OMQ (Q,Σ), where Q is a UCQ and
Σ is from the class L of TGDs, and a set F ⊆ P(D).
Question: Is there a MinEX E for (Q,Σ) in D such that
F 6⊆ E, for every F ∈ F?

Example 12. Suppose that the set

F = {{protein(p1)}, {protein(p3), protein(p5)},
{protein(p2), protein(p4), protein(p6)}}

encodes the configurations of proteins that are not allowed
to be in a cover. In this case, {protein(p3), protein(p4)}
is a MinEX, since it is a cover that does not contain any
configuration from F.

MINEX-IRREL(UCQ,L) can be decided as follows. Let
C be an oracle for query answering over L. To decide the
existence of a MinEX not including the “forbidden” sets, it
is sufficient to guess such a subset of a database and then
check whether it entails the OMQ using an oracle C. This
can be carried out in NPC . Note that there is no need to
check minimality as, if there is a subset E of a database that
does not contain any of “forbidden” sets and entails the OMQ,
then E has a minimal subset with these properties (due to
monotonicity of the entailment relation).

Theorem 13. MINEX-IRREL(UCQ,L) can be decided in
NPC , where C is the complexity of OMQA in L. If C = NP
(resp., C = NEXP), then MINEX-IRREL(UCQ,L) is also
complete for NP (resp., NEXP).

This result above gives a tight upper bound for all results
in Table 4, apart from the data complexity results for FO-
rewritable languages. For these languages, we know by The-
orem 9 that it is possible to compute the set of all MinEXs
in polynomial time. But then, we can also find a MinEX that
does not contain as a subset any of the “forbidden” sets in
polynomial time.

Theorem 14. Let L be a FO-rewritable language over exis-
tential rules. Then, finding a MinEX for an OMQ (Q,Σ) in a
database D over L that does not contain any of the sets in F
is feasible in polynomial time in data complexity.

This result implies that MINEX-IRREL(UCQ,L) can be
decided in polynomial-time in data complexity for FO-
rewritable languages L.

The obvious next step is to understand the behavior of the
languages that are not FO-rewritable. Our next result states
that MINEX-IRREL(UCQ,L) is NP-hard for all such lan-
guages. The NP-hardness is obtained via a reduction from
the NP-complete problem PATH WITH FORBIDDEN PAIRS
[Gabow et al., 1976; Garey and Johnson, 1990]: decide
whether there exists a path between two vertices in a graph
avoiding a set of given pairs of edges. We encode the reacha-
bility in the rules, while in the database we have the facts for
the graph edges. The forbidden sets naturally encode the set
of forbidden pairs of edges.

Theorem 15. MINEX-IRREL(UCQ,GF) is NP-hard in data
complexity.

The hardness results of MINEX-IRREL(UCQ,L) in the
fp-combined, ba-combined, and combined complexity follow
from the hardness of OMQA in the respective languages. All
result are summarized in Table 4.

7 Explanations Including Distinguished Facts
We now investigate the problem of deciding whether there is a
minimal explanation including a given fact.

Problem: MINEX-REL(UCQ,L)
Input: A database D, an OMQ (Q,Σ), where Q is a UCQ and
Σ is from the class L of TGDs, and a fact ψ ∈ D.
Question: Is there a MinEX E for (Q,Σ) in D such that
ψ ∈ E?

Example 16. Suppose that we are interested in covers that
contain the protein ψ = protein(p6) which is a distinguished
fact. Observe, for example, that {protein(p1), protein(p6)}
and {protein(p2), protein(p4), protein(p6)} are MinEXs for
{Qp,Σp} in Dp, containing the fact ψ.

To check the existence of a MinEX that contains a distin-
guished factψ, we can guess a candidate MinEXE, containing
ψ and then use an oracle for IS-MINEX(UCQ,L) to check
whether E is a MinEX. This gives us a naive method to decide
MINEX-REL(UCQ,L).

Theorem 17. MINEX-REL(UCQ,L) can be decided by a
computation in NPIS-MINEX(UCQ,L).

Theorem 17 covers all membership results given in Table 5
for MINEX-REL(UCQ,L) apart from the data complexity
results for FO-rewritable languages. For these languages, it

L Data fp-comb. ba-comb. Comb.

L, LF, AF ≤ P ΣP
2 ΣP

2 PSPACE
S, SF ≤ P ΣP

2 ΣP
2 EXP

A ≤ P ΣP
2 PNEXP PNEXP

G NP ΣP
2 EXP 2EXP

F, GF NP ΣP
2 ΣP

2 EXP
WS, WA NP ΣP

2 2EXP 2EXP

Table 5: Complexity results for MINEX-REL(UCQ,L) and
for LARGE-MINEX(UCQ,L).

is a straightforward consequence of Theorem 9 that finding a
MinEX containing a distinguished fact is in polynomial time.
Theorem 18. Let L be a FO-rewritable language over ex-
istential rules. Then, finding a MinEX for an OMQ (Q,Σ)
in a database D over L that contains a fact ψ is feasible in
polynomial time in data complexity.

As before, we again obtain a hardness result for languages
that are not FO-rewritable: MINEX-REL(UCQ,L) is NP-
complete in data complexity for these languages L.
Theorem 19. MINEX-REL(UCQ,GF) is NP-hard in data
complexity.

To proof is via a reduction from the NP-complete prob-
lem PATH-VIA-NODE [Lapaugh and Papadimitriou, 1984]:
given a graph, decide whether there is a path between two
vertices passing through a third vertex. The construction is
quite similar to the one used to show the NP-hardness of
MINEX-IRREL(UCQ,GF) in data complexity.

Theorem 20 shows that the complexity of
MINEX-REL(UCQ,L) goes at least one level higher
in the polynomial hierarchy, if we focus on fp-combined and
ba-combined complexity. The reduction is from QBFCNF

2,∀,¬
which is known to be ΣP

2 -complete: given a quantified
Boolean formula Φ = ∃X∀Y ¬φ(X,Y), where φ is a
3CNF formula, decide whether Φ is valid. The reduction
is obtained by adapting the encoding of QBFCNF

2,∀,¬ in the
reduction in Theorem 10 of [Lukasiewicz et al., 2019], in
combination with the idea of the ‘jolly’ introduced in the
proof of the DP-hardness in the fp-combined complexity of
IS-MINEX(UCQ,L).
Theorem 20. MINEX-REL(UCQ,L) is ΣP

2 -hard for lan-
guages L ∈ {LF,AF,SF} in fp- and ba-combined complexity.

MINEX-REL(UCQ,L) is also ΣP
2 -hard in the fp-combined

and ba-combined complexity for all other languages consid-
ered as a result of language inclusions.

Our final result concerns the class A: we show that
MINEX-REL(UCQ,A)is PNEXP-hard in these cases, by a re-
duction from the following PNEXP-complete problem that is
the complement of a problem in [Eiter et al., 2016]: given
a triple (m,TP1,TP2), where m is an integer in unary no-
tation, and TP1 and TP2 are two tiling problems for the
exponential square 2n × 2n, decide whether there exists an
initial condition w of length m, such that TP1 has no solution
with w, and TP2 has a solution with w. The proof extends the
ideas used for the DExp-hardness proof of IS-MINEX.

Theorem 21. MINEX-REL(UCQ,A) is PNEXP-hard in ba-
combined complexity.

The other hardness results in Table 5 follow from the hard-
ness of query answering in the respective languages.

8 Cardinality-Based Explanation Problems
In this section, we deal with cardinality-related problems for
minimal explanations. Briefly, these problems are helpful
when we want to find out whether there is a MinEX smaller or
larger than a given size.

Problem: SMALL-MINEX(UCQ,L)
Input: A database D, an OMQ (Q,Σ), where Q is a UCQ and
Σ is from the class L of TGDs, and an integer n ≥ 1.
Question: Is there a MinEX E for (Q,Σ) in D such that
|E| ≤ n?
Problem: LARGE-MINEX(UCQ,L)
Input: A database D, an OMQ(Q,Σ), where Q is a UCQ and
Σ is from the class L of TGDs, and an integer n ≥ 1.
Question: Is there a MinEX E for (Q,Σ) in D such that
|E| ≥ n?

Example 22. Let us take n = 2. Then, there is a MinEX
for (Qp,Σp) in Dp smaller and larger than n. On the other
hand, if we take n = 4, then there is a MinEX smaller than n,
but there is no MinEX larger than n, since all MinEXs for
{Qp,Σp} in Dp are of size at most 3.

Most of the proofs of the results for the problems
SMALL-MINEX(UCQ,L) and LARGE-MINEX(UCQ,L)
are a result of adaptations of the proofs given for
MINEX-IRREL(UCQ,L) and MINEX-REL(UCQ,L), re-
spectively. Hence, we omit the details here.

Theorem 23. The complexity results in Table 4
and Table 5 hold for SMALL-MINEX(UCQ,L) and
LARGE-MINEX(UCQ,L), respectively.

9 Related Work
The study of explanations and diagnosis in logical formalisms
dates back to Reiter [1987]. From a broader perspective, our
study can be seen as a form a logical abduction, but our results
clearly differ from those in propositional abduction [Eiter and
Gottlob, 1995].

In this work, we focus on ontology languages, and build on
axiom pinpointing [Kalyanpur et al., 2007; Baader and Sun-
tisrivaraporn, 2008; Peñaloza and Sertkaya, 2017]. In axiom
pinpointing, an entailment is explained in terms of a minimal
set of ontological axioms. Such explanations are called justifi-
cations in the DL literature [Horridge et al., 2008; Horridge
et al., 2009]. Axiom pinpointing is extensively studied in
DLs, and some implementations exist [Kalyanpur et al., 2007;
Sebastiani and Vescovi, 2009].

Most of the existing approaches to explanations focus on
classical reasoning tasks and the associated types of entail-
ments. The problem of explaining query entailments has only
been investigated for the DL-Lite family of languages [Borgida
et al., 2008]. Our work provides a different framework in-
spired by axiom pinpointing and the associated problems. An-
other work for explaining query answers for the DL-Lite family

is given in the context of consistent query answering [Bien-
venu et al., 2019]. Our minimal explanations can be seen
analogous to the notion of causes studied in [Bienvenu et al.,
2019]. There are many differences in our approach, though.
We are interested in explaining query entailments in the most
general fashion (even if there is no inconsistency), and present
a unifying perspective for tasks that require explanations. The
only work related to explanations in existential rules is given
in [Ceylan et al., 2017], where explanations for OMQs un-
der existential rules are studied, but this study is relative to
probabilistic databases and hence of a very different flavor.

There are interesting model-theoretic connections with our
framework and more basic formalisms. For instance, for most
of the languages that we study, we can define disjunctive Dat-
alog programs [Eiter et al., 1997] such that every minimal
model of a disjunctive Datalog program will be in bijection
with a minimal explanation. These model-theoretic connec-
tions are very important, as they reveal the power of the studied
problems in terms of well-studied languages.

10 Summary and Outlook
In this paper, we have started a new direction of research by
translating several decision problems from axiom pinpointing
to provide explanations for OMQs. We have studied the prob-
lem of explaining query answers in terms of minimal subsets
of database facts, and provided a thorough complexity anal-
ysis for several decision problems associated with minimal
explanations under existential rules.

The problems investigated in this paper are also closely
related to minimal hitting set problems, which have a number
of applications in fault diagnosis, computational biology, and
data mining [Gainer-Dewar and Vera-Licona, 2017; Gottlob
and Malizia, 2018]. Indeed, many important problems in
practice (such as protein covers) can be naturally formulated
in our framework in terms of ontology-mediated queries, and
we hope that our work will be a basis for encoding and solving
problems in various application domains of ontologies.

There are many interesting directions for future work, in-
cluding the study of other ontology languages. We also aim to
explore the model-theoretic connections to other formalisms,
and make a more fine-grained complexity analysis. There are
many other types of problems encountered in the context of
explanations, which are also a subject of future study.

Acknowledgments
We are thankful to the anonymous reviewers of this paper. This
work was supported by the Alan Turing Institute under the
UK EPSRC grant EP/N510129/1, and by the EPSRC grants
EP/R013667/1, EP/L012138/1, and EP/M025268/1.

References
[Baader and Suntisrivaraporn, 2008] Franz Baader and Boontawee

Suntisrivaraporn. Debugging SNOMED CT using axiom pinpoint-
ing in the description logic EL+. In Proc. KR-MED, 2008.

[Baader et al., 2007] Franz Baader, Diego Calvanese, Deborah L.
McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, editors.
The Description Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, 2nd edition, 2007.

[Bard and Rhee, 2004] Jonathan B. L. Bard and Seung Y. Rhee. On-
tologies in biology: Design, applications and future challenges.
Nat. Rev. Genet., 5:213–222, 2004.

[Beeri and Vardi, 1981] Catriel Beeri and Moshe Y. Vardi. The im-
plication problem for data dependencies. In Proc. ICALP, pages
73–85, 1981.

[Bertaud-Gounot et al., 2012] Valérie Bertaud-Gounot, Régis Du-
vauferrier, and Anita Burgun. Ontology and medical diagnosis.
Inform. Health Soc. Care, 37(2):51–61, 2012.

[Bienvenu et al., 2014] Meghyn Bienvenu, Balder Ten Cate, Carsten
Lutz, and Frank Wolter. Ontology-based data access: A study
through disjunctive Datalog, CSP, and MMSNP. ACM Trans.
Database Syst., 39(4):33:1–33:44, 2014.

[Bienvenu et al., 2019] Meghyn Bienvenu, Camille Bourgaux, and
François Goasdoué. Computing and explaining query answers
over inconsistent DL-Lite knowledge bases. J. Artif. Intell. Res.,
64:563–644, 2019.

[Borgida et al., 2008] Alexander Borgida, Diego Calvanese, and
Mariano Rodriguez-Muro. Explanation in the DL-Lite family
of description logics. In Proc. OTM, pages 1440–1457, 2008.

[Calì et al., 2012a] Andrea Calì, Georg Gottlob, and Thomas
Lukasiewicz. A general Datalog-based framework for tractable
query answering over ontologies. J. Web Semant., 14:57–83, 2012.

[Calì et al., 2012b] Andrea Calì, Georg Gottlob, and Andreas Pieris.
Towards more expressive ontology languages: The query answer-
ing problem. Artif. Intell., 193:87–128, 2012.

[Calì et al., 2013] Andrea Calì, Georg Gottlob, and Michael Kifer.
Taming the infinite chase: Query answering under expressive
relational constraints. J. Artif. Intell. Res., 48:115–174, 2013.

[Ceylan et al., 2017] İsmail İlkan Ceylan, Stefan Borgwardt, and
Thomas Lukasiewicz. Most probable explanations for probabilis-
tic database queries. In Proc. IJCAI, pages 950–956, 2017.

[Došilović et al., 2018] Filip Karlo Došilović, Mario Brčić, and Ni-
kica Hlupić. Explainable artificial intelligence: A survey. In Proc.
MIPRO, pages 210–215, 2018.

[Eiter and Gottlob, 1995] Thomas Eiter and Georg Gottlob. Identify-
ing the minimal transversals of a hypergraph and related problems.
SIAM J. Comput., 24(6):1278–1304, 1995.

[Eiter et al., 1997] Thomas Eiter, Georg Gottlob, and Heikki Man-
nila. Disjunctive datalog. ACM Trans. Database Syst., 22(3):364–
418, 1997.

[Eiter et al., 2016] Thomas Eiter, Thomas Lukasiewicz, and Livia
Predoiu. Generalized consistent query answering under existential
rules. In Proc. KR, pages 359–368, 2016.

[Fagin et al., 2005] Ronald Fagin, Phokion G. Kolaitis, Renée J.
Miller, and Lucian Popa. Data exchange: semantics and query
answering. Theor. Comput. Sci., 336(1):89–124, 2005.

[Gabow et al., 1976] Harold N. Gabow, Shachindra N. Maheshwari,
and Leon J. Osterweil. On two problems in the generation of
program test paths. IEEE Trans. Softw. Eng., SE-2(3):227–231,
1976.

[Gainer-Dewar and Vera-Licona, 2017] Andrew Gainer-Dewar and
Paola Vera-Licona. The minimal hitting set generation problem:
Algorithms and computation. SIAM J. Discrete Math., 31(1):63–
100, 2017.

[Garey and Johnson, 1990] Michael R. Garey and David S. John-
son. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., 1990.

[Gottlob and Malizia, 2018] Georg Gottlob and Enrico Malizia.
Achieving new upper bounds for the hypergraph duality prob-
lem through logic. SIAM J. Comput., 47(2):456–492, 2018.

[Horridge et al., 2008] Matthew Horridge, Bijan Parsia, and Ulrike
Sattler. Laconic and precise justifications in OWL. In Proc. ISWC,
pages 323–338, 2008.

[Horridge et al., 2009] Matthew Horridge, Bijan Parsia, and Ulrike
Sattler. Explaining inconsistencies in OWL ontologies. In Proc.
SUM, pages 124–137, 2009.

[Kalyanpur et al., 2007] Aditya Kalyanpur, Bijan Parsia, Matthew
Horridge, and Evren Sirin. Finding all justifications of OWL DL
entailments. In Proc. ISWC/ASWC, pages 267–280, 2007.

[Klamt et al., 2009] Steffen Klamt, Utz-Uwe Haus, and Fabian
Theis. Hypergraphs and cellular networks. PLOS Comput. Biol.,
5(5):e1000385, 2009.

[Lapaugh and Papadimitriou, 1984] Andrea S. Lapaugh and Chris-
tos H. Papadimitriou. The even-path problem for graphs and
digraphs. Networks, 14(4):507–513, 1984.

[Lukasiewicz et al., 2018] Thomas Lukasiewicz, Enrico Malizia,
and Cristian Molinaro. Complexity of approximate query an-
swering under inconsistency in Datalog+/–. In Proc. IJCAI, pages
1921–1927, 2018.

[Lukasiewicz et al., 2019] Thomas Lukasiewicz, Enrico Malizia,
and Andrius Vaicenavičius. Complexity of inconsistency-tolerant
query answering in Datalog+/– under cardinality-based repairs. In
Proc. AAAI, 2019. To appear.

[Peñaloza and Sertkaya, 2017] Rafael Peñaloza and Barış Sertkaya.
Understanding the complexity of axiom pinpointing in lightweight
description logics. Artif. Intell., 250:80–104, 2017.

[Poggi et al., 2008] Antonella Poggi, Domenico Lembo, Diego Cal-
vanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo
Rosati. Linking data to ontologies. In Journal on Data Semantics
X, pages 133–173. Springer-Verlag, 2008.

[Ramadan et al., 2004] Emad Ramadan, Arijit Tarafdar, and Alex
Pothen. A hypergraph model for the yeast protein complex net-
work. In Proc. IPDPS, 2004.

[Reiter, 1987] Raymond Reiter. A theory of diagnosis from first
principles. Artif. Intell., 32(1):57–95, 1987.

[Sebastiani and Vescovi, 2009] Roberto Sebastiani and Michele
Vescovi. Axiom pinpointing in lightweight description logics
via Horn-SAT encoding and conflict analysis. In Proc. CADE,
pages 84–99, 2009.

[Suntisrivaraporn et al., 2008] Boontawee Suntisrivaraporn, Guilin
Qi, Qiu Ji, and Peter Haase. A modularization-based approach to
finding all justifications for OWL DL entailments. In Proc. ASWC,
pages 1–15, 2008.

[Vardi, 1982] Moshe Y. Vardi. The complexity of relational query
languages. In Proc. STOC, pages 137–146, 1982.

	Introduction
	Preliminaries
	First-Order Logic
	Existential Rules
	Ontology-Mediated Query Answering

	Explanations for Query Answers
	Recognizing Minimal Explanations
	Set of All Minimal Explanations
	Explanations Excluding Forbidden Sets
	Explanations Including Distinguished Facts
	Cardinality-Based Explanation Problems
	Related Work
	Summary and Outlook

