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Abstract

Translation of consecutive prolines causes ribosome stalling, which is alleviated but cannot

be fully compensated by the elongation factor P. However, the presence of polyproline

motifs in about one third of the E. coli proteins underlines their potential functional impor-

tance, which remains largely unexplored. We conducted an evolutionary analysis of polypro-

line motifs in the proteomes of 43 E. coli strains and found evidence of evolutionary

selection against translational stalling, which is especially pronounced in proteins with high

translational efficiency. Against the overall trend of polyproline motif loss in evolution, we

observed their enrichment in the vicinity of translational start sites, in the inter-domain

regions of multi-domain proteins, and downstream of transmembrane helices. Our analysis

demonstrates that the time gain caused by ribosome pausing at polyproline motifs might be

advantageous in protein regions bracketing domains and transmembrane helices. Polypro-

line motifs might therefore be crucial for co-translational folding and membrane insertion.

Author summary

Polyproline motifs induce ribosome stalling during translation, but the functional signifi-

cance of this effect remains unclear. Our evolutionary analysis of polyproline motifs

reveals that they are disfavored in E. coli proteomes as a consequence of the reduced trans-

lation efficiency, supporting the conjecture that translation efficiency-based evolutionary

pressure shapes protein sequences. Enrichment of polyproline motifs in the protein

regions bracketing structural domains and transmembrane helices indicates their regula-

tory role in co-translational protein folding and transmembrane helix insertion. Polypro-

line motifs could thus serve as protein-level cis-acting elements, which directly regulate

the rate of translation elongation.
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Introduction

Ribosomes facilitate the synthesis of proteins by translating the nucleotide sequence from an

mRNA template. The speed of mRNA translation significantly varies and strongly depends on

the amino acids to be incorporated into the growing polypeptide chain [1]. Especially slow is

the incorporation of proline [2–4]. The pyrrolidine ring gives proline an exceptional confor-

mational rigidity compared to all other amino acids and makes it not only a poor A-site pepti-

dyl acceptor [2], but also a poor P-site peptidyl donor [3,4]. Translation of two and more

consecutive prolines dramatically impairs the peptidyl transfer reaction and eventually causes

ribosomes to stall [3,5–9]. Although basically all diproline comprising motifs cause transla-

tional stalling [5,10], the arrest strength is influenced by physical and chemical properties of

the adjacent amino acids that affect the conformation of the nascent polypeptide chain. Based

on proteomic approaches combined with systematic in vivo and in vitro analyses, a hierarchy

of arrest peptides was described [5,9–11]. Thereby triplets such as PPP, D/PP/D, PPW, APP,

G/PP/G and PPN cause strong ribosome stalling whereas e.g. L/PP/L, CPP or HPP result in a

rather weak translational pause. Moreover, the stalling strength is modulated by amino acids

located—up to position -5—upstream of the arrest motif [10,12,13]. In this respect, H, K, Q, R

or W further pronounce the arrest whereas C, G, L, S or T attenuate it. We therefore define a

“polyproline motif” as a consecutive stretch of prolines with flanking residues: X(-2)X(-1)-

nP-X(+1), n�2; where X(-2), X(-1) and X(+1) can be any amino acid.

Regardless of the difficulties to translate consecutive proline coding sequences, they occur

frequently within prokaryotic and eukaryotic proteomes [14,15]. This in turn implies that the

benefits of retaining polyproline motifs significantly outweigh their costs to incorporate them

into the nascent polypeptide chain [16]. Proline is unique in terms of being the sole amino

acid to adopt cis and trans conformations, both of which are nearly energetically equal and nat-

urally occur in proteins [17–19]. Notably, a sequence of consecutive prolines results in the for-

mation of either the right-handed poly (cis-) proline helix I (PPI) or the left-handed poly

(trans-) proline helix II (PPII). Beside α-helix and β-sheet, PPII helix is considered to be the

third major secondary structure element in proteins and plays an important role in mediating

protein-protein and protein-nucleic acid interactions [20–23]. Three consecutive prolines are

also an integral part of the active center in the universally conserved Val-tRNA synthetase

ValS [14]. The proline triplet in ValS is essential for efficient charging of the tRNA with valine

and for preventing mischarging by threonine. These two examples illustrate why nature has

evolved a specialized translation elongation factor, referred to as EF-P in bacteria or e/aIF-5A

in eukaryotes and archaea, to alleviate ribosome stalling at polyproline motifs [3,5–9,16,24].

The importance of polyproline motifs in proteins is further underlined by the fact that efp
mutants are characterized by pleiotropic defects. Reportedly, the absence of EF-P impairs bac-

terial fitness [25,26], membrane integrity [27], motility [28], antibiotic sensitivity [29] and is

ultimately lethal for certain bacteria such as Mycobacterium tuberculosis [30] and Neisseria
meningitides [31]. Similarly, IF-5A is an essential protein in archaea [32] as well as in eukary-

otes [33] where eIF-5A is associated e.g. with cancer [34] and HIV infection [35].

EF-P alleviates polyproline motif-dependent translational arrest, but does not prevent ribo-

some pausing at these sequences [6,10,36]. The fact that polyproline motifs form a functionally

important structural element—the PPII helix—and at the same time interfere with translation

poses a major evolutionary conundrum. Are polyproline motifs disfavored during evolution

due to their translational burden? Does ribosome stalling caused by polyproline motifs regu-

late the speed of translation at the protein level in the same way as rare genetic codons and

RNA secondary structures cause translational pause at the RNA level [37,38]? To address these

questions, we conducted an evolutionary analysis of polyproline motifs in the proteomes of 43
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E. coli strains. Our analysis revealed evolutionary selection against polyproline motifs as a con-

sequence of the reduced translation efficiency. Against the overall background of polyproline

motif depletion, we observed their frequent occurrence in the vicinity of translational start

sites, in the inter-domain regions of multi-domain proteins, and downstream of transmem-

brane helices, where slow-translating codons are also enriched. This indicates the potential

involvement of polyproline motifs in co-translational protein folding and transmembrane

helix insertion.

Results

Polyproline motifs are underrepresented in E. coli proteomes

We first investigated the overall frequency of polyproline motifs in E. coli strains and found

99,386 polyproline motifs within 68,710 (33.3%) proteins from the 43 proteomes considered in

this study. Out of these 68,710 proteins, 47,056 proteins (68.5%) harbor only one polyproline

motif, 15,027 proteins (21.9%) have two polyproline motifs, and 6,627 proteins (9.6%) have

more than 2 polyproline motifs (S1 Fig). We identified 22,253 (22.4%), 21,953 (22.1%) and

55,149 (55.5%) polyproline motifs with strong, medium and weak ribosome stalling effect,

respectively. We found that polyproline motifs are significantly underrepresented in all the 43

E. coli proteomes compared with randomly generated protein sequences (Fig 1A and S2 Fig; p-

values< 2.2e-16; average fold change 0.82). Pairs of consecutive prolines show the lowest ratio

between the observed and expected frequency (0.84) compared to all other pairs of identical

amino acids in E. coli K-12 MG1655 (the ratios of the other amino acids are between 1.00 and

1.66, with a mean of 1.17). Moreover, normalized by the random level, the numbers of poly-

proline motifs negatively depend on the strength of the ribosome pausing effect in all E. coli
proteomes: in E. coli K-12 MG1655, for example, polyproline motifs with strong, medium and

weak ribosome stalling effect constitute 55.5%, 70.9% and 104.4% of the random level, respec-

tively (Fig 1B and S3 Fig). Collectively, these findings suggest the existence of evolutionary

pressure against ribosome pausing.

To investigate this hypothesis, we grouped the proteins into the core proteome, which

encompasses conserved, evolutionary older sequences, and the accessory proteome, which

mainly contains proteins of younger origin. Assuming that evolution disfavors polyproline

motifs, one would expect them to occur less frequently in the core proteome. Indeed, signifi-

cantly fewer polyproline motifs were found in proteins belonging to the E. coli core set, indepen-

dent of the arrest strength (Fig 1C and S4 Fig; Mann-Whitney-Wilcoxon test, p-values< 2.2e-

16; the ratios between motif occurrence of core and accessory proteomes for strong, medium

and weak strengths are 0.88, 0.87 and 0.93, respectively). We note that we cannot fully rule out

the possibility that this observation is partly due to the differences between the core and acces-

sory proteomes in terms of their functional repertoire (GO terms) and gene expression levels

(mean of log10 value: translation efficiency, 1.68 vs 1.57; protein abundance, 2.05 vs 1.86).

We also compared the occurrence of polyproline motifs across the 43 E. coli strains. We

found that they have the highest occurrence in strain O157:H7 (fold change 0.85) and the low-

est occurrence in strain UM146 (fold change 0.79). As seen in S5 Fig, the polyproline motif

occurrence in the core proteomes of E. coli strains is quite similar (mean fold change 0.76,

standard deviation 0.003), while the accessory proteomes are more diverse in this respect

(mean fold change 0.85, standard deviation 0.023). We also found that polyproline motif

occurrence is highly correlated with the number of proteins in proteomes (S6 Fig; Pearson’s

r = 0.68, p-value = 4.82e-7). By definition, core proteome sizes of E. coli strains are the same,

while accessory proteome sizes differ. Therefore, this result actually indicates that strains with

larger accessory proteomes have more polyproline motifs, as already discussed above.
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Variation of ribosome stalling strength in E. coli evolution

We next investigated changes in ribosome stalling strength caused by polyproline motifs in the

E. coli proteins by considering 3,280 orthologous groups with at least 3 proteins and at least

one polyproline motif. Within these orthologous groups, we identified 4,980 aligned regions

containing polyproline motifs, of which 1,568 showed changes of the ribosome stalling effect

Fig 1. Distribution and conservation of polyproline motifs. (A) Occurrence of polyproline motifs in E. coli K-12 MG1655 is lower than the random level (fold change

0.80). The histogram shows the numbers of motifs found in 1,000 sets of random sequences, and the blue line shows the number of motifs found in real sequences. (B)

Numbers of polyproline motifs negatively correlate with the strength of the ribosome stalling effect in E. coli K-12 MG1655. The differences are significant according to

Mann-Whitney-Wilcoxon test. (C) Occurrence of polyproline motifs in the core proteome of E. coli K-12 MG1655 is lower than that in the accessory proteome. The

differences are significant according to Mann-Whitney-Wilcoxon test. (D) In the core proteome more aligned regions have a negative PSEC (chi-squared test) while in

the accessory proteome PSEC values display no strong preference.

https://doi.org/10.1371/journal.pcbi.1005987.g001
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states. Out of the 1,923 evolutionary events 955 were gain events (change from a weaker or no

stalling effect state to a stronger state) and 968 were loss events (change from a stronger stalling

effect state to a weaker or no stalling effect state). The propensity for stalling effect change

(PSEC) was calculated for each of these aligned regions as described in the Materials and Meth-
ods section. In the core proteome, substantially more aligned regions displayed a negative

PSEC (Fig 1D; 63.03% vs 36.97%; chi-squared test, p-value = 8.15e-4), indicating that the ribo-

some stalling effect tends to be lost in evolution. In line with this finding, in the phylogeneti-

cally younger accessory proteome, PSEC still displayed no strong preference with 51.48% and

48.52% aligned regions possessing positive and negative PSEC, respectively (Fig 1D; chi-

squared test, p-value = 0.289). These results are also in line with the notion that evolution gen-

erally disfavors polyproline motifs in E. coli.

Translational efficiency is the evolutionary driving force for selecting

against polyproline motifs

The efficiency of translation and consequently biosynthesis correlates with both translation

initiation and elongation rates [39]. Translation elongation rate in turn depends on multi-

ple factors, such as codon bias [36], tRNA levels [40] and the amino acid to be incorporated

[2,41], but can also be influenced by an amino acid sequence such as consecutive prolines

[5,7,10]. Accordingly, we investigated whether there is a connection between the relative

frequency of polyproline motifs and translational efficiency in E. coli K-12 MG1655, and

found that they are negatively correlated (Fig 2A; Spearman’s rho = -0.105, p-value = 1.13e-

5), which is especially evident in the top 25% of most efficiently translated proteins and for

polyproline motifs known to cause a strong translational pause. Occurrence of polyproline

motifs also anticorrelates with relative protein abundance (Fig 2B; Spearman’s rho =

-0.135, p-value = 1.47e-8). Thus, in the course of evolution polyproline motifs are more dis-

favored in those proteins that have a high copy number per cell and need to be efficiently

translated, implying a translation efficiency-driven selection pressure against polyproline

motifs.

Fig 2. Correlation between translation efficiency, protein abundance and frequency of polyproline motifs. (A) Proteins with high translation efficiency tend to have

fewer polyproline motifs (Spearman’s rho = -0.105, p-value = 1.13e-5). (B) High abundance proteins tend to have fewer motifs (Spearman’s rho = -0.135, p-

value = 1.47e-8).

https://doi.org/10.1371/journal.pcbi.1005987.g002
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Polyproline motifs as regulatory elements in protein synthesis

We next investigated whether polyproline-mediated ribosome pausing is exploited in the regu-

lation of translation, focusing on the reference strain E. coli K-12 MG1655 comprising 2,115

polyproline motifs in 1,477 proteins (33.9% of the whole proteome) (S1 Table). In 2010, Tuller

et al. discovered reduced translation efficiency within the first 50 codons of the coding regions

[42]. The authors suggested that a slow ramp at the beginning of the ORF might serve as a late

stage of translation initiation, being a probate means to reduce ribosomal traffic jams in order

to minimize the cost of protein biosynthesis [42–44]. Multiple factors, including slow-translat-

ing codons, strong mRNA structures and positively charged amino acids, were implicated in

the formation of the ramp [43,44]. We were therefore curious whether there exists an enrich-

ment of polyproline motifs around the start sites of E. coli K-12 MG1655 proteins. In the 2,115

polyproline motifs of E. coli K-12 MG1655, 325 were found in the first 50 amino acids, and

1,771 located elsewhere in the protein sequence. After normalization by random level, we

found a clear enrichment of polyproline motifs in the N-terminal 50 residues (Fig 3A; Mann-

Whitney-Wilcoxon test, p-value< 2.2e-16; fold change 0.94 vs 0.78). Thus, similar to the spe-

cific codon bias in this region, an accumulation of polyproline motifs might allow adjustment

of translational speed in order to minimize the cost of protein production.

Fig 3. Functional role of polyproline motifs. (A) Occurrence of polyproline motifs in the first 50 residues is higher than elsewhere in the protein sequence (Mann-

Whitney-Wilcoxon test, p-value< 2.2e-16; fold change 0.94 vs 0.78). Error bars indicate the standard deviation. (B) Occurrence of polyproline motifs is associated with

domain boundaries. Regions with relatively high motif occurrence are marked red. Data are smoothed over a three-residue window. Left: frequency of motifs relative to

domain start (dashed line). Right: frequency of motifs relative to domain end (dashed line). The enrichment of motifs in these two regions is significant (p-values< 0.05;

fold changes 1.19 and 1.23). (C) Frequency of polyproline motifs relative to the start position of TMH. TMH is marked green (assuming the typical length of 21

residues). Regions with high motif frequency are marked red. Data are smoothed over a three-residue window. (D) Schematic illustration of the site III location relative

to TMH and the non-transmembrane region. In protein A site III of TMH1 locates in the TMH2 while in protein B site III of TMH1 is in the non-transmembrane

region.

https://doi.org/10.1371/journal.pcbi.1005987.g003
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Polyproline motifs coordinate co-translational folding of proteins

Protein folding is a co-translational process, and it is generally believed that structural ele-

ments of a protein may influence each other during the folding process [45]. Due to the coop-

erativity between different parts of the structure, the timing of translation is crucial for proper

folding [38]. The non-uniform distribution of synonymous codons with different translation

rates fine-tunes the co-translational folding of proteins [46–54]. Fast translation of the mRNA

stretches coding for structural domains helps to avoid misfolded intermediates [55], while

translational pauses induced by clusters of slow-translating codons in the inter-domain linkers

of multi-domain proteins facilitate independent folding of domains to minimize the chance of

misfolding [46,53,56–58]. By analogy, we hypothesized that polyproline motifs may coordinate

co-translational folding by slowing down translation of inter-domain linkers, and as a conse-

quence, would be expected to occur more frequently between rather than within structural

domains.

We therefore investigated the positional preference of polyproline motifs in globular multi-

domain proteins. Sequence positions of 7,398 structural domains within 4,080 E. coli K-12

MG1655 proteins were obtained from Gene3D database [59]. Out of these proteins, 1,868

(45.8%) are multi-domain proteins possessing the total of 5,186 domains. An inter-domain

linker was defined as the sequence span between the boundaries of two consecutive domains

(if such a span was shorter than 5 amino acids, it was expanded downstream to achieve the

length of 5 amino acids). This procedure yielded 3,318 inter-domain linkers between 5,186

domains.

Indeed, we found that polyproline motifs are significantly depleted in structural domains

(p-value = 7.86e-80; fold change 0.56), but not in inter-domain linkers (p-value = 0.912; fold

change 1.10). We then investigated the relative location of polyproline motifs with respect to

domain boundaries. As seen in Fig 3B, polyproline motifs frequently occur in two regions: 1)

-12 to -2 residues relative to the domain start; and 2) -2 to +9 residues relative to the domain

end. Polyproline motifs are significantly enriched in these two regions (p-values< 0.05; fold

changes for these two regions are 1.19 and 1.23, respectively). Thus, there is a strong correla-

tion between the location of polyproline motifs and the structural domain boundaries, which

was also observed for clusters of slow-translating codons [57,58,60,61]. These findings imply

that the ribosome stalling effect caused by the polyproline motifs within structural domains

may interfere with their folding, while stalling at domain boundaries may facilitate it.

Polyproline motifs facilitate co-translational insertion of transmembrane

helices

Another typical co-translational process is the targeting of α-helical transmembrane proteins

(TPs) to the translocons, mediated by the signal recognition particle (SRP), and their insertion

into the membrane [62,63]. This process has been found to be facilitated by translational pause

[50,64–69]. A recent study by Fluman et al. identified two translation pauses, triggered by

Shine-Dalgarno-like elements in E. coli mRNAs, that contribute to the SRP-mediated targeting

of TPs [64]. The first pause occurs before the nascent peptide emerges from the exit tunnel of

the ribosome (16 to 30 codons of the protein) and the second one occurs after the emergence

of the first transmembrane helix (TMH) (-5 to +1 codons relative to the start of the second

TMH). In the fungus Emericella nidulans, Dessen et al. identified two translational pauses

occurring at the distance of approximately 45 and 70 codons from TMHs, caused by clusters

of slow-translating codons and presumed to facilitate translocon-mediated co-translational

insertion of TMH [66].
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We investigated the occurrence and location of polyproline motifs in TPs. Based on the

UniProt [70] annotation, we identified 912 TPs from E. coli K-12 containing the total of 5,672

TMHs. We found that 39.3% (358) of these TPs harbor polyproline motifs, which is even

higher than the percentage of soluble proteins (32.6%; chi-squared test, p-value = 1.6e-4). No

enrichment of polyproline motifs around the pause sites identified by Fluman et al. was

observed. However, as seen in Fig 3C, we found that i) polyproline motifs rarely occur within

TMH; and ii) polyproline motifs display a relatively high occurrence in four positions (posi-

tions -17 to -1, 23 to 32, 49 to 59 and 77 to 87 relative to TMH start; termed here site I, II, III

and IV, respectively). The depletion of polyproline motifs in TMH is significant (p-

value = 1.65e-27; fold change 0.39) implying that the ribosome stalling effect caused by the

polyproline motifs may interfere with the folding of TPs. It should be noted that the site posi-

tions are shown relative to the start of a TMH, and thus in some cases the given region can

actually be located in another TMH (see Fig 3D for illustration). We therefore tested the

enrichment/depletion of the polyproline motifs in each of the four sites described above sepa-

rately in TMH and in non-transmembrane regions. For example, out of the 4,439 site IV

regions 3,013 and 1,426 regions are located in TMH and non-transmembrane regions, respec-

tively. For all four sites, significant depletion of polyproline motifs was evident in TMH regions

(p-values for sites I, II, III and IV are 2.63e-6, 1.86e-3, 7.84e-3 and 1.98e-3, respectively; fold

changes of these 4 sites are 0.57, 0.56, 0.71 and 0.64, respectively), while in non-transmem-

brane regions a significant enrichment of polyproline motifs was observed for site III (p-

value = 0.035; fold change 1.39). The location of this site is similar to the location of one of the

translational pauses (approximately 45 codons from TMHs) identified by Dessen et al. Consid-

ering that most of the TMHs are 21 residues in length (S7 Fig) and that about 28 amino acids

can be accommodated in the ribosome exit tunnel [71], ribosome stalling at site III may occur

after the TMH has emerged from the ribosome exit tunnel and is being inserted into the mem-

brane by translocon [63,72]. We therefore speculate that the translational pause at site III

could provide a time delay for the efficient insertion of TMH.

Discussion

Proline is a poor substrate for the ribosomal peptidyl transfer reaction [2–4], and consecutive

prolines cause ribosome stalling [5]. The bacterial elongation factor P (EF-P) and its eukaryotic

and archaeal orthologs e/aIF5A alleviate this stalling to some degree, but cannot fully compen-

sate the translational burden imposed by polyproline motifs [6–8,10]. The presence of a large

number of such motifs in bacterial proteomes might imply their biological significance, yet

their precise functional role remains poorly understood [14,15].

In this study, we made a comprehensive attempt to shed light on the functional role of poly-

proline motifs by investigating their distribution and evolution in the proteomes of 43 E. coli
strains. We found evidence of evolutionary selection pressure against translational stalling

caused by polyproline motifs. Translational efficiency and protein abundance negatively corre-

late with the frequency of polyproline motifs and thus might be the driving force for their loss.

Against the general trend of losing polyproline motifs during the course of evolution, we

observed accumulation of polyproline motifs close to the protein N-terminus, in inter-domain

regions of multi-domain proteins as well as downstream of transmembrane helices. We there-

fore speculate that the time gain caused by translational pause at polyproline motifs might be

crucial for translational regulation, domain folding, and the proper membrane insertion,

respectively.

Evolutionary selection for high efficiency of protein synthesis is one of the forces shaping

mRNA sequences. For example, unequal usage of synonymous codons reflects an adaption of
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the codon usage to the available tRNA pool, with slow-translating codons used much more

rarely than fast-translating codons [73,74]. However, protein sequence elements were also

found to influence the translation rate by interacting with the ribosome exit tunnel or impair-

ing the peptidyl transfer reaction [7,75]. An important question, which arises in this context, is

whether there exists protein-level evolutionary selection for high translation efficiency.

Recently, Tuller et al. found that short peptides, which induce ribosome stalling in yeast by

interacting with the ribosomal exit tunnel, tend to be either over or underrepresented in the

proteome [76]. They hypothesized that short peptide sequences were under evolutionary selec-

tion based on their synthetic efficiency. Our results show that polyproline motifs, which induce

ribosome stalling by slowing down the peptidyl transfer reaction, are significantly underrepre-

sented in E. coli proteomes, and that selection is more evident against motifs causing stronger

ribosome stalling and in proteins with higher translation efficiency. These findings support the

conjecture that translation efficiency-based evolutionary pressure shapes protein sequences.

Against the overall background of polyproline motif depletion, our investigation of the intra-

molecular distribution pattern of polyproline motifs revealed their overrepresentation at several

strategic locations, indicating their regulatory role in translation elongation. Translation elonga-

tion is a non-uniform process, which is subject to strict regulation [1,16] both in terms of the

quantity of the translation products [77] and the intra-molecular variation of the elongation rate,

which ensures the quality of the synthesized proteins by coordinating co-translational processes

[47,64,78]. The role of polyproline motifs in the regulation of the overall translation elongation

rate is exemplified by the lysine-dependent acid stress response regulator CadC of E. coli
[7,16,79]. This membrane-integrated pH-sensor and transcriptional activator contains two poly-

proline motifs, which allow for fine-tuning of its copy number. The amount of the CadC protein

is crucial for regulating the expression of the target operon. Analogously, precisely regulated

translational output of the polyproline-containing receptor CpxA is required for Shigella flexneri
virulence [80]. The intra-molecular variation of the elongation rate has so far been thought to be

regulated by cis-acting elements embedded in the translated mRNA [57,81], such as clusters of

slow-translating codons [38] and Shine-Dalgarno-like RNA sequences [64] (although the latter

notion has recently been challenged [82]), as well as by trans-acting molecules, such as the signal

recognition particle, which arrests translation elongation while targeting proteins to the mem-

brane [83,84]. Our study highlights the role of polyproline motifs in coordinating the co-transla-

tional protein folding and transmembrane helix insertion, implying that they could serve as

protein-level cis-acting elements, which directly regulate the rate of translation elongation.

The phenomenon we observed is not specific to E. coli. We also investigated the occurrence

of polyproline motifs in Bacillus subtilis, a Gram-positive bacterium, and obtained qualitatively

similar results (S8 Fig and S9 Fig). We therefore speculate that the polyproline motif-mediated

regulation of translation elongation may be universal in bacteria. B. subtilis has a lower occur-

rence of polyproline motifs than E. coli (average fold change 0.73 vs 0.82), which may indicate

a stronger evolutionary selection against polyproline motifs. We initiated a follow-up study of

polyproline motif occurrence in bacteria and also in eukaryotes, although the ribosome arrest-

ing sequences in eukaryotes are not limited to consecutive prolines [85,86]. In another follow

up study we are investigating the interplay between the RNA level elements, such as codon

usage and RNA structure, and polyproline motifs (Qi, F. et al., in preparation).

Materials and methods

Proteomes and orthologous groups of E. coli
We obtained Escherichia coli proteomes and orthology assignments from the OMA database

[87]. The total of 206,360 protein sequences from six out of seven E. coli phylotypes [88] were
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downloaded (S2 Table). We also obtained 11,356 orthologous groups covering 195,056

proteins.

The core- and accessory proteomes of E. coli
The core- and accessory proteomes were defined based on the occurrence of orthologous

groups. An orthologous group was classified as belonging to the core proteome if it was pres-

ent in all the 43 E. coli proteomes, otherwise it was considered to belong to the accessory prote-

ome. All proteins not assigned to any orthologous group were classified as belonging to the

accessory proteome. This procedure yielded a core proteome of E. coli covering 73,745 pro-

teins and an accessory proteome covering 132,615 proteins.

Identification of polyproline motifs in real and random sequences

Using the program fuzzpro from the EMBOSS package [89] we identified polyproline motifs

in the E. coli proteins. The same procedure was applied to randomly generated sequences.

Each amino acid sequence in our dataset was shuffled 1,000 times while maintaining its com-

position using the program shuffleseq from the EMBOSS package [89], yielding 1,000 sets of

random E. coli protein sequences.

Enrichment and depletion of polyproline motifs

We used the SPatt algorithm [90] to assess the enrichment and depletion of polyproline motifs,

taking into account occurrence patterns of proline in various parts of protein structure. SPatt

determines the expected occurrence of a sequence motif based on a Markov chain model of

order m (model Mm), compares the observed occurrence with expected one, and calculates the

p-value for the significance of a motif’s enrichment or depletion. Choosing a model Mm means

taking into account the m-mer and (m+1)-mer compositions while determining the expected

occurrence. For example, the model M0 solely takes into account the amino acid composition,

while choosing the model M1 takes into account the compositions of amino acid monomers and

dimers. For a motif of length l, the maximum m is (l-2). In our case, although a polyproline

motif can have more than 2 residues, the essential part of a polyproline motif is the proline

stretch with at least two consecutive proline residues. Therefore, we chose model M0 in our tests.

Normalization of polyproline motif occurrence

The occurrence of polyproline motifs in proteins was normalized by the polyproline motif

occurrence in randomly generated sequences. Each amino acid sequence (either full protein

sequences or specific sequence segments of interest) was shuffled 1,000 times while maintain-

ing its composition using the program shuffleseq from the EMBOSS package [89], yielding

1,000 sets of random sequences. The number of times the polyproline motif occurred in a real

sequence was then divided by the number of times the same motif occurred in each of the

1,000 random sequences, yielding a vector of 1,000 ratios between the observed and the

expected polyproline motif occurrence. The Mann-Whitney-Wilcoxon test was employed to

assess the significance of the difference between two such vectors corresponding to two differ-

ent sequences or sequence segments. This procedure was carried out for each strain of E. coli
separately.

Fold change of polyproline motif occurrence

The fold change of polyproline motif occurrence is used as a measure of the enrichment/deple-

tion level of polyproline motifs. It is defined as the ratio between the observed and expected
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occurrence of polyproline motifs, and is calculated as:

Fold change ¼
Nobs

Nexp
ð1Þ

Where Nobs and Nexp are the observed and expected occurrences of polyproline motifs, respec-

tively. The Nexp is either the mean value of the polyproline motif occurrences in 1,000 sets of

random sequences (for fold change of whole proteomes; see Normalization of polyproline motif
occurrence for detail) or the mean of the distribution of expected motif occurrence calculated

by SPatt algorithm (for fold change of structural domains, domain linkers, TMHs and regions

bracketing domains and TMHs; see Enrichment and depletion of polyproline motifs for detail).

Classification of polyproline motifs

Polyproline motifs were classified into three groups (strong, medium and week) according to

their predicted ribosomal translation arrest strength. The prediction is based on experimental

data both from systematic in vitro and in vivo analyses [10,12,14–16] (S3 Table and S4 Table).

As described in the Introduction section, the ribosome stalling strength of a X(-2)X(-1)-

nP-X(+1) motif is dependent on the number of consecutive prolines and on the flanking amino

acids. First, we classified the flanking residues X(-2), X(-1) and X(+1) (motifs involving ambigu-

ous amino acids were excluded from consideration) according to their influence on the ribo-

some stalling strength. If a flanking residue of the polyproline motif in an E. coli strain lacking

efp (Δefp) was responsible for a decrease of the translational output by�70% compared to a

wildtype control, the residue was defined as strong [5,10,12]. In cases where the protein syn-

thesis was reduced by 30–60%, we classified the stalling strength as medium. In all other cases,

the polyproline sequence context was assumed to cause only a weak arrest. All possible X(-2)X(-

1)-nP-X(+1) motifs and their respective arrest strength are listed in S4 Table and S5 Table.

Based on our classification, we correlated the predicted motif strength to available ribosome

profiling data [10]. Woolstenhulme et al. compared the ribosome occupancy at a diprolyl

motif with the occupancy downstream of the motif in an Δefp strain [10]. Stalling was ranked

according to the observed assymetry (ratio) between these two values. When setting an assy-

metry quotient of 2.00 as a threshold for proteins subject to strong translation arrest, we found

that more than 75% of them possess at least one medium or strong polyproline motif. This

number further increases to ~80% and ~90% when applying more stringent cutoffs of 3.00 and

5.00 to the assymetry score, respectively (S6 Table).

Word frequency in protein sequences

Frequencies of each single and dimer amino acid in protein sequences were calculated using

the compseq program from the EMBOSS package [89]. For each amino acid dimer, an expected

frequency was additionally calculated based on the observed frequencies of single amino acids.

Multiple alignment of protein sequences

Multiple alignments of protein sequences in each orthologous group were computed using the

Clustal Omega software [91] with all default parameters.

Construction of phylogenetic trees

Phylogenetic trees for each orthologous group with at least three proteins containing at least

one polyproline motif were reconstructed using the PhyML software [92]. These trees were

then rooted at midpoint.
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Reconstruction of evolutionary events

In order to reconstruct the gain and loss of the ribosome stalling effect in the evolutionary his-

tory of E. coli protein families, we first assigned one of the four possible ribosome stalling states

[S (strong), M (medium), W (weak) and N (none)] to all the exterior nodes (leaves) of the phy-

logenetic trees. Subsequently, the Maximum Likelihood algorithm [93] was employed to

reconstruct the states of ancestral nodes (internal nodes). The change of state between a given

node and its ancestral node from a stronger stalling effect state to a weaker or no stalling effect

state was defined as a loss of the stalling effect, while the change from a weaker or no stalling

effect state to a stronger state was defined as a gain event.

Propensity of stalling effect change

We defined propensity of stalling effect change (PSEC) similar to propensity of gene loss

(PGL) frequently used in evolutionary studies [94]. PGL captures the idea that the longer the

time during which a gene could have been lost but was not, the lower the propensity of this

gene to be lost. PGL is thus defined as the ratio between the total length of branches in which

the gene is lost and the total length of branches in which the gene could have been lost [95,96].

Similarly, PSEC captures the idea that the longer the time the stalling effect of a motif could

have been gained/lost but was not, the lower the propensity of the stalling effect to be gained/

lost. However, our model is somewhat more complex than the PGL model, since the PGL only

considers gene loss and we have to consider both gain and loss of the stalling effect. Therefore,

the PSEC is calculated as the difference between the propensities of gain and loss of the stalling

effect:

PSEC ¼
P

Bg
P

Bcg
�

P
BlP
Bcl

ð2Þ

where Bg and Bl are the lengths of the branches in which the stalling effect was gained and lost,

respectively, and Bcg and Bcl are the lengths of branches in which the stalling effect could have

been gained and lost, respectively. Thus, a positive PSEC indicates that the stalling effect of a

sequence motif tends to be gained, while a negative PSEC indicates that it tends to be lost dur-

ing evolution.

Protein abundance, gene expression, and translation efficiency

Protein abundance data used in this study was from [97,98], covering 2,163 proteins. Microar-

ray data on transcription levels of 2,710 genes from E. coli K-12 MG1655 under standard

growth conditions was downloaded from the ASAP database [99]. Translation efficiency for

each of the 1,743 genes present in both datasets was calculated as:

Translation efficiencyi ¼
Protein abundancei
Transcription leveli

ð3Þ

Domain composition of the E. coli proteins

Sequence positions of 7,398 structural domains in 4,080 E. coli K-12 MG1655 proteins were

obtained from the Gene3D database [59].

Transmembrane segments

We obtained the sequence positions of 5,672 transmembrane segments within 912 α-helical

transmembrane proteins from the UniProt database [70]. Since reviewed data on
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transmembrane proteins of E. coli K-12 MG1655 (taxonomy ID 511145) are not available in

the UniProt database, we used the reviewed data of E. coli K-12 (taxonomy ID 83333) instead.

Supporting information

S1 Fig. Numbers of E. coli proteins with 1, 2 and >2 polyproline motifs.

(PDF)

S2 Fig. Occurrence of polyproline motifs is lower than the random level. The histogram

shows the numbers of motifs found in 1,000 sets of random sequences and the blue line shows

the number of motifs found in real sequences. The results for 42 E. coli strains (except for E.

coli K-12 MG1655) are shown. The OMA id and fold change for each strain are shown in the

panel title. For mapping OMA ids to names of strains, please see S2 Table.

(PDF)

S3 Fig. Numbers of polyproline motifs negatively correlate with the strength of the ribo-

some stalling effect. The results for 42 E. coli strains (except for E. coli K-12 MG1655) are

shown. The OMA id of each strain is shown in the panel title. For mapping OMA ids to names

of strains, please see S2 Table. All the differences are significant according to Mann-Whitney-

Wilcoxon test, p-values< 2.2e-16.

(PDF)

S4 Fig. Occurrence of polyproline motifs in the core proteome is lower than that in the

accessory proteome. The results for 42 E. coli strains (except for E. coli K-12 MG1655) are

shown. The OMA id of each strain is shown in the panel title. For mapping OMA ids to names

of strains, please see S2 Table. All the differences are significant according to Mann-Whitney-

Wilcoxon test, p-values< 2.2e-16.

(PDF)

S5 Fig. Occurrences of polyproline motifs in the core/accessory proteome in the 43 E. coli
strains. The OMA id of each strain is shown on the x-axis. For mapping OMA ids to the

names of strains, please see S2 Table. Fold changes for the core proteome: mean 0.76, standard

deviation 0.003. Fold changes for the accessory proteome: mean 0.85. standard deviation

0.023.

(PDF)

S6 Fig. Occurrence of polyproline motifs is correlated with the number of proteins in the

proteomes. Pearson’s r = 0.68, p-value = 4.82e-7.

(PDF)

S7 Fig. Histogram of the TMH length.

(PDF)

S8 Fig. Occurrence of polyproline motifs in B. subtilis is lower than the random level. The

histogram shows the numbers of motifs found in 1,000 sets of random sequences and the blue

line shows the number of motifs found in real sequences. The name and fold change of each

strain are shown in the panel title. The proteomes of the 4 B. subtilis strains including 16,678

proteins were downloaded from the OMA database [87].

(PDF)

S9 Fig. The distribution of polyproline motifs in B. subtilis is qualitatively similar to E.

coli. The strain 168 were used as a reference strain of B. subtilis. (A) Occurrence of polyproline

motifs in the first 50 residues is higher than elsewhere in the protein sequence (Mann-Whit-

ney-Wilcoxon test, p-value< 2.2e-16; fold change 0.82 vs 0.73). Error bars indicate the
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standard deviation. (B) Occurrence of polyproline motifs is associated with domain bound-

aries. Regions with relatively high motif occurrence are marked red. Data are smoothed over a

three-residue window. Left: frequency of motifs relative to domain start (dashed line). Right:

frequency of motifs relative to domain end (dashed line). Sequence positions of 6,086 struc-

tural domains in 3,076 B. subtilis strain 168 proteins were obtained from the Gene3D database

[59]. (C) Frequency of polyproline motifs relative to the start position of TMH. TMH is

marked green (assuming the typical length of 21 residues). Regions with high motif frequency

are marked red. Data are smoothed over a three-residue window. The sequence positions of

5,456 transmembrane segments within 984 α-helical transmembrane proteins of B. subtilis
strain 168 were obtained from the UniProt database [70]. (D) The typical length of TMHs in

B. subtilis proteins is 21 residues.

(PDF)
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