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Abstract: In this paper, after a brief review of the physical notion of quality factor in viscoelasticity,
we present a complete discussion of the attenuation processes emerging in the Maxwell–Prabhakar
model, recently developed by Giusti and Colombaro. Then, taking profit of some illuminating plots,
we discuss some potential connections between the presented model and the modern mathematical
modelling of seismic processes.
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1. Introduction

The linear theory of viscoelasticity, despite its apparent simplicity, keeps having a striking impact
in geophysics, theoretical mechanics and biophysics; see, for example, [1–7]. Besides, fractional
calculus [8–10] has proven itself to be one of the fundamental languages for describing processes
involving memory effects, like the ones that are typically featured by viscoelastic systems. Concerning
the latter, it is also worth remarking on the pivotal role of the notion of complete monotonicity, which
was first (implicitly) hinted at by Gross [11] in 1953, and then brought to light by Molinari [12], in 1973.
These seminal studies were then followed by many other authors; see, for example, [10,13,14].

A simple generalization of the well-known fractional Maxwell model of linear viscoelasticity
was first introduced by Giusti and Colombaro in [15]. In this paper the authors provide an extension
of the classical model by replacing the Caputo fractional derivative with the Prabhakar one in the
constitutive equation. Concretely, if we denote with σ, ε, the stress and the strain for a given system,
respectively, and we further assume that these functions are both causal such that σ, ε ∈ AC1 (0, +∞),
then the constitutive equation of the Maxwell–Prabhakar model [15] reads

σ(t) + a CDγ
α,β,Ω σ(t) = b CDγ

α,β,Ω ε(t) , (1)

where a and b are two suitable real constants and provided that α, β, γ, Ω ∈ R, α > 0 and 0 < β < 1.
Here, CDγ

α,β,Ω represents the regularized Prabhakar derivative [16], which is defined by

C
a Dγ

α,β,Ω f (t) = aE−γ
α,m−β,Ω f (m)(t), (2)
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where

aEρ
µ,ν,λ f (t) =

∫ t

a
(t− τ)ν−1Eρ

µ,ν [λ (t− τ)µ] f (τ) dτ

denotes the Prabhakar fractional integral [17] and Eρ
µ,ν(t) represents the Prabhakar function [18–21].

Furthermore, it is important to stress that the function tν−1 Eρ
µ,ν(−tµ), for t > 0, is locally integrable

and completely monotone provided that 0 < µ ≤ 1 and 0 < µ ρ ≤ ν ≤ 1; see, for example, [22,23].
It is important to remark that the Prabhakar fractional calculus has been attracting much

attention in the mathematical community [15,17,18,23–26], particularly because of its connection
with the theoretical description of the Havriliak–Negami model [18,24,27,28]. Moreover, this growing
interest in Prabhakar’s calculus is also reflected by the increasing literature on the recently proposed
Maxwell–Prabhakar model, which was also kindly referred to as the Giusti–Colombaro model in [29].

In this paper we wish to analyze the important phenomena of storage and dissipation of energy in
linear viscoelastic media, with particular regard for the class of models emerging from the constitutive
equation in Equation (1). In viscoelasticity, as well as in electrical engineering, the process of dissipation
of energy is usually accounted for in terms of a dimensionless parameter, called the quality factor, that is
roughly defined as the ratio of the peak of energy stored in the system under a cycle of forced harmonic
oscillation to the total rate of change of the energy, per cycle, by damping processes. Therefore, the aim
of this paper is to compute and discuss the quality factor for the model defined in Equation (1).

2. Storage and Dissipation of Energy in Linear Viscoelasticity

In this section we wish to review the general theory, concerning the theoretical foundations,
that leads to the definition of quality factor for a viscoelastic system. In order to do so, we will mimic
the arguments presented in [10,30], unifying these formulations according to the notations employed
in this paper.

Let us consider a quiescent viscoelastic body for t < 0. Then, under the hypothesis of sufficiently
well-behaved causal histories, its constitutive equation in the creep representation reads

ε(t) =
∫ t

0
J(t− τ)dσ(τ) = σ(0+) J(t) +

∫ t

0
J(t− τ) σ̇(τ)dτ , (3)

where dσ(τ) represents the Riemann–Stieltjes measure and J(t) is the so-called creep compliance of
the system, that in the Laplace domain is given by

ε̃(s) = s J̃(s) σ̃(s) . (4)

In order to consider the harmonic behavior of a linear viscoelastic material, we should assume
that a sufficient amount of time has elapsed since the original perturbation so that the effect of initial
conditions could be considered negligible. So, let us consider some harmonic excitation of the material,
which can be described in terms of the complex exponential representation, that is

σ(t ; ω) = χ exp (i ω t) , ω > 0 , −∞ < t < ∞ , χ ∈ C . (5)

Clearly, a similar argument can be presented in terms of the relaxation representation, however we
will only focus on the creep one for sake of brevity.

If we now plug (5) into (3) we get

ε(t ; ω) = i ω Ĵ(ω) (χ exp (i ω t)) = i ω Ĵ(ω) σ(t ; ω) , (6)

where Ĵ(ω) stands for the Fourier transform of J(t) that, the latter being a causal function,
ultimately reads



Mathematics 2018, 6, 15 3 of 9

Ĵ(ω) =
∫ ∞

0
exp(−i ω t) J(t)dt .

Moreover, if we denote J?(ω) = i ω Ĵ(ω), as in [10], the constitutive equation, in the creep
representation, for a viscoelastic body subject to a harmonic stress excitation reduces to

ε(t ; ω) = J?(ω) σ(t ; ω) . (7)

The time rate of change of energy in the system is then given by

Ẇ = σR(t ; ω) ε̇R(t ; ω) , (8)

where the subscript R indicates that we are considering the real part of the corresponding function.
Now, one can easily solve (7) for σ(t ; ω), then taking the real part of the resulting equation gives

σR(t ; ω) =
εR(t ; ω) J?R(ω)− εI(t ; ω) J?I (ω)

|J?(ω)|2 , (9)

where we denoted σ ≡ σR + i σI, ε ≡ εR + i εI and J?(ω) ≡ J?R(ω)− i J?I (ω) for future convenience.
Besides, from (5) and (7) it is also easy to see that

εI(t ; ω) = − ε̇R(t ; ω)

ω
. (10)

Hence, if we plug (9) into (8) and recall the result in (10), then after some simple manipulations
Ẇ reduces to

Ẇ =
∂

∂t

[
1
2

J?R(ω)

|J?(ω)|2 ε2
R

]
+

1
ω

J?I (ω)

|J?(ω)|2 ε̇2
R , (11)

where we omitted the explicit dependence on t and ω in the strain for sake of clarity.
Thus, it is easy to see that the total rate of change of energy over one cycle is accounted for by the

integral over the cycle of the second term on the right-hand side of (11), namely

∆E
Cycle

=
∫ t+T

t
Ẇ(τ)dτ = π

J?I (ω)

|J?(ω)|2 |χ|
2 , (12)

with T = 2π/ω the period of the cycle.
Due to the second law of thermodynamics, which requires that the total amount of energy

dissipated increases with time, one can further infer that J?I (ω) ≥ 0.
However, despite defining a boundary term, the first piece of the right-hand side of (11) carries

a very important physical meaning. Indeed, it tells us that the peak energy stored during a cycle is
given by

Pmax =
1
2

J?R(ω)

|J?(ω)|2 |χ|
2 . (13)

One can now define the specific attenuation factor, or quality factor (Q-factor), as a normalized
non-dimensional quantity defined by

Q−1 ≡ 1
2 π

∆E/Cycle
Pmax

. (14)
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Then, taking profit of the previous discussion it is easy to see that

Q−1 =
1

2 π

∆E/Cycle
Pmax

=
J?I (ω)

J?R(ω)
= −
=
{

i ω Ĵ(ω)
}

<
{

i ω Ĵ(ω)
} , (15)

recalling that J?I (ω) = −={J?(ω)}.
If we combine the fact that the Fourier transform is equivalent to evaluating the bilateral Laplace

transform with imaginary argument s = i ω, together with the assumption for which J(t) is a causal
function, one can conclude that Ĵ(ω) = J̃(s) |s=i ω. This argument ultimately leads us to a very useful
expression for the Q-factor, namely

Q−1(ω) = −
=
{

s J̃(s) |s=i ω

}
<
{

s J̃(s) |s=i ω

} , (16)

where we shall consider some positive real frequencies ω.

3. Quality Factor in Prabhakar-Like Viscoelasticity

Let us now compute the Q-factor for the Maxwell–Prabhakar model. Recalling that the Laplace
transform of the Prabhakar integral kernel is given by

L
{

tβ−1 Eγ
α, β(λ tα)

}
= s−β

(
1− λ s−α

)−γ , (17)

where t ∈ R, α, β, γ, λ ∈ C and Re(β) > 0, then it is easy to see that the creep compliance, in the
Laplace domain, for a system described in terms of Equation (3) is therefore given by

s J̃(s) =
a
b
+

1
b sβ (1−Ω s−α)γ . (18)

Then, if we apply the replacement s = i ω, the latter turns into

J?(ω) = i ω Ĵ(ω) =
a
b
+

1
b (i ω)β [1−Ω (i ω)−α]γ

. (19)

Let us define an auxiliary variable z(ω) = 1−Ω (i ω)−α. Then, considering ω ∈ R+, one can
easily rewrite s = i ω = ω exp(i π/2), where |s| = ω, that allows us to recast this new variable in the
exponential representation, that is

z(ω) = |z(ω)| exp (i θz(ω)) , (20)

with

|z(ω)|2 = 1 +
Ω2

ω2α
− 2 Ω

ωα
cos

(α π

2

)
, (21)

θz(ω) = arctan
[

Ω sin (α π/2)
ωα −Ω cos (α π/2)

]
. (22)

Then, plugging z(ω) into Equation (18), one can easily infer that

J?(ω) =
a
b
+

1
b ωβ |z(ω)|γ

exp
[
−i
(

β π

2
+ γ θz(ω)

)]
, (23)
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from which we can conclude that

< {J?(ω)} = a
b
+

1
b ωβ |z(ω)|γ

cos
(

β π

2
+ γ θz(ω)

)
, (24)

and

= {J?(ω)} = − 1
b ωβ |z(ω)|γ

sin
(

β π

2
+ γ θz(ω)

)
. (25)

Hence, the quality factor for a Maxwell–Prabhakar viscoelastic body is given by

Q−1(ω) =
sin
(

β π
2 + γ θz(ω)

)
a ωβ |z(ω)|γ + cos

(
β π
2 + γ θz(ω)

) . (26)

4. Quality Factor for Some Specific Realizations of the Maxwell–Prabhakar Model

In this section we discuss the quality factor for different choices of the parameters of the
discussed model. Specifically, we will focus our discussion on four cases corresponding to two
well-known classical viscoelastic models and the viscoelastic analogue of the Havriliak–Negami model
for dielectric relaxation.

4.1. Fractional Maxwell Model

As argued in [15], it is easy to see that Equation (1) naturally reduces to the fractional Maxwell
model, namely

σ(t) + a CDν σ(t) = b CDν ε(t) , (27)

where CDν represents the Caputo fractional derivative, provided that the parameters are chosen
according to one of these two configurations:

(i) γ = 0, a > 0, b > 0, β = ν, Ω ∈ R;
(ii) γ ∈ R, a > 0, b > 0, β = ν, Ω = 0.

Here, it is trivial to infer that if γ = 0 then neither |z(ω)| nor θz(ω) enter in the expression for the
Q-factor, whereas if Ω = 0 it is easy to see that |z(ω)| = 1 and θz(ω) = 0. Hence, we get

Q−1(ω) =
sin (νπ/2)

a ων + cos (νπ/2)
. (28)

Furthermore, it is also worth remarking that if we set ν = 1 (ordinary limit), we explicitly recover
the Q-factor for the (ordinary) Maxwell model, that is, Q−1(ω) = (a ω)−1 (see, for example, [10]).

4.2. Fractional Voigt Model

Again, following the analysis presented in [15], one has that Equation (1) reduces to the fractional
Voigt model, that is

σ(t) = M ε(t) + B CDν ε(t) , (29)

by setting γ = 1, a = 0, b = −B < 0, α = β = ν, Ω = −M/B < 0.
Now, if we plug this choice of parameters into Equation (26), we get

Q−1(ω) =
sin
(

ν π
2 + θz(ω)

)
cos

(
ν π
2 + θz(ω)

) = tan
(ν π

2
+ θz(ω)

)
, (30)
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with

θz(ω) = − arctan
[

M
B

sin (ν π/2)
ων + (M/B) cos (ν π/2)

]
.

The latter, in the limit for ν = 1, reduces to

Q−1(ω) = tan
(π

2
+ θz(ω)

)
= − 1

tan θz(ω)
=

B ω

M
. (31)

which corresponds to the quality factor for the (ordinary) Voigt model (see, for example, [10]).

4.3. Havriliak–Negami Model

The Havriliak–Negami relaxation is an empirical model which was first introduced in order to
describe the dielectric relaxation of certain types of polymers [24,25,31].

Now, it is very well known that a viscoelastic system can usually be mapped onto a class of
electrical ladder networks and vice versa; see, for example, [32,33].

Following this line of thought, it is easy to see that the constitutive equation for the
Havriliak–Negami viscoelastic model is given by [15]

σ(t) + a CDγ
α,αγ,−λ σ(t) = b CDγ

α,αγ,−λ ε(t) , (32)

with β = αγ, Ω = −λ, with λ > 0, and 0 < α, γ < 1.
Then, following the procedure presented in Section 3, one finds that

Q−1(ω) =
sin
[
γ
(

α π
2 + θz(ω)

)]
a ωαγ

[
ω2α + λ2 + 2λωα cos

(
α π
2
)]γ/2

+ cos
[
γ
(

α π
2 + θz(ω)

)] , (33)

where

θz(ω) = arctan
[
− λ sin (α π/2)

ωα + λ cos (α π/2)

]
. (34)

5. Discussion and Conclusions

Attenuation effects represent one of the main fields of study in modern seismology,
and consequently the specific attenuation factor (or Q-factor, for simplicity) embodies one of the
key ingredients in geophysical sciences. Indeed, were it not for the damping capabilities of the soil,
the energy of past earthquakes would still be resonating within the earth’s interior.

In this paper, after a thorough review of the physical definition and meaning of the quality factor
Q, we have provided an analysis of the storage and dissipation of energy in viscoelastic material of the
Maxwell–Prabhakar class, namely, the one featured by a constitutive relation given by Equation (1).
Specifically, in Section 3 we have computed the Q-factor for the general Maxwell–Prabhakar model,
for which some interesting configurations of the parameters are shown in Figure 1. In Section 4 we have
further provided some explicit realizations of the Maxwell–Prabhakar theory, namely the fractional
Maxwell model, the fractional Voigt model and the viscoelastic equivalent of the Havriliak–Negami
model for dielectric relaxation, shown in Figures 2 and 3.

Let us pay particular attention to the cases displayed in Figure 1. Indeed, as argued in [34], there
exists much experimental evidence supporting the theses for which the Q-factor of homogeneous
materials is substantially independent of the frequency. In this respect, it is worth noting that the
Maxwell–Prabhakar class shows a very slow varying (almost constant) behaviour of the quality factor
for low frequencies, for certain choices of the parameters of the model (see Figure 1). This is quite
consistent with the results for the dumping of long-period teleseismic body waves and surface waves.
Furthermore, for high frequencies, the model shows a power law behaviour, namely, Q(ω) ∼ ωβ as
ω → ∞, which appears to be consistent with the experimental results concerning the attenuation of
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the coda of high-frequency teleseismic waves in Earth’s upper mantle [35]. Furthermore, it is rather
easy to prove that some very well-known constant-Q models are nothing but some specific realizations
of the model defined in Equation (1). Indeed, for example, the renowned Kjartansson model [36,37]
can be obtained from (18) by setting γ = 0, β ≡ 2 η with η ∈ (0, 1/2) and a = 0, which is nothing but
the Scott–Blair model [36]. In view of the last few comments, we believe that the Maxwell–Prabhakar
model of viscoelasicity can potentially provide some stimulating new insights into the mathematical
modelling of seismic processes and therefore is worthy of further studies.
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Figure 1. Q-factor of the Maxwell–Prabhakar model for a = 0.01 , Ω = −10. Model dependence on
α = 0.1, 0.2, . . . , 1, β = 0.5 , γ = 0.3 (a); model dependence on β = 0.1, 0.2, . . . , 1, α = 0.3 , γ = 0.3 (b);
model dependence on γ = 0.1, 0.2, . . . , 1, β = 0.5 , α = 0.3 (c). Parameter value increasing from blue to
red. In all panels the dashed line corresponds to α = 0.3 , β = 0.5 , γ = 0.3.
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Figure 2. Q-factor of fractional Maxwell model with a = 0.1 (a), fractional Voigt model with
M = 103, B = 1 (b). Parameter value increasing from blue to red.
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Figure 3. Q-factor of Havriliak–Negami model for dielectric relaxation with a = 1 , λ = 1 and
α = 0.1, 0.2, . . . , 1 , γ = 0.5 (a), or a = 1 , λ = 1 and γ = 0.1, 0.2, . . . , 1 , α = 0.5 (b). Parameter value
increasing from blue to red. Decreasing a, the widths of the curves become wider, while increasing λ,
the peak results are shifted to larger ω for lower α.
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