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Abstract Cytokines and chemokines are produced and secreted by a broad range of immune

cells including macrophages. Remarkably, little is known about how these inflammatory mediators

are released from the various immune cells. Here, the endolysosomal cation channel TRPML2 is

shown to play a direct role in chemokine trafficking and secretion from murine macrophages. To

demonstrate acute and direct involvement of TRPML2 in these processes, the first isoform-selective

TRPML2 channel agonist was generated, ML2-SA1. ML2-SA1 was not only found to directly

stimulate release of the chemokine CCL2 from macrophages but also to stimulate macrophage

migration, thus mimicking CCL2 function. Endogenous TRPML2 is expressed in early/recycling

endosomes as demonstrated by endolysosomal patch-clamp experimentation and ML2-SA1

promotes trafficking through early/recycling endosomes, suggesting CCL2 being transported and

secreted via this pathway. These data provide a direct link between TRPML2 activation, CCL2

release and stimulation of macrophage migration in the innate immune response.

DOI: https://doi.org/10.7554/eLife.39720.001

Introduction
Cytokines/chemokines are released from a wide range of immune cells such as macrophages, B- and

T-lymphocytes, neutrophils, mast cells and dendritic cells. They are essential for intercellular commu-

nication in both innate and adaptive immunity. Remarkably, our knowledge of the function of cyto-

kines/chemokines in immunity is much more advanced than our knowledge about how they are

packaged and secreted from immune cells. Understanding how innate immune cells release cyto-

kines/chemokines is important, as these factors are indispensable for communication between

immune but also with non-immune cells to coordinate inflammatory responses (Lacy and Stow,

2011). Importantly, secretion pathways vary between different cell types. Macrophages for example
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lack typical secretory granules (Lacy and Stow, 2011). Thus, macrophage cytokine/chemokine

release is mediated either by direct transport to the cell surface from the trans-Golgi network (TGN)

(e.g. IL-10), by transport via recycling endosomes (RE) to the cell surface (e.g. TNF-a, IL-6, IL-10)

(Manderson et al., 2007; Murray and Stow, 2014), or via late endosomes/lysosomes (LE/LY),

for example IL-1b (Andrei et al., 1999; Lopez-Castejon and Brough, 2011).

We show here that the endolysosomal calcium-permeable cation channel TRPML2 plays a direct

role in chemokine secretion, thereby modulating the inflammatory response. Expression of TRPML2

in different immune cells and tissues has been demonstrated by several groups (Cuajungco et al.,

2016; Valadez and Cuajungco, 2015; Garcı́a-Añoveros and Wiwatpanit, 2014; Sun et al., 2015).

On the subcellular level, TRPML2 has been shown to be expressed primarily on RE and LE/LY by

immunocytochemistry experiments (Sun et al., 2015; Venkatachalam et al., 2006;

Karacsonyi et al., 2007). However, functional expression of TRPML2 in different intracellular vesicles

and organelles has not been confirmed yet by direct and selective patch-clamp analysis, that is

patch-clamping of RE, EE (early endosomes), LE/LY, or other endolysosomal vesicles. Furthermore, it

remains unclear whether direct and selective stimulation of TRPML2 leads to an increase in cytokine/

chemokine release from macrophages, and which intracellular trafficking pathways mediate the

release of these cytokines/chemokines.

One important impediment for the investigation of different endogenous TRPML-like currents

and their functional impact on secretion, endolysosomal trafficking, or autophagy, is the lack of iso-

form-selective agonists. Development of such agonists would allow demonstration of the TRPML iso-

form-specific contribution towards observed phenomena, for example chemokine secretion.

Currently available TRPML channel agonists belong to different chemotypes, including benzenesulfo-

namides (e.g. SN-1- or SF-21-type), thiophenesulfonamides (e.g. SF-22-type, including MK6-83), iso-

indolediones (e.g. SF-51-type, including ML-SA1), isoxazolines (e.g. SN-2-type) and others

(Grimm et al., 2010; Yamaguchi and Muallem, 2010; Grimm et al., 2012b; Shen et al., 2012). Effi-

cacy, potency and selectivity of these compounds can vary between species. Furthermore, none of

the currently available TRPML agonists is selective for TRPML1 or TRPML2. ML-SA1 for example acti-

vates TRPML1 and TRPML3 in mouse, while it activates all three human isoforms (Shen et al., 2012;

Grimm, 2016). MK6-83 activates TRPML1 and TRPML3 in both mouse and human (Grimm, 2016;

Chen et al., 2014). The putative endogenous TRPML channel activator PI(3,5)P2 activates all three

TRPML channel isoforms in both species and, in addition, also activates the endolysosomal cation

channels TPC1 and TPC2 (Chen et al., 2014; Wang et al., 2012; Cang et al., 2013; Grimm et al.,

2014). Through systematic chemical modification of known lead structures we have now generated

the first isoform-selective TRPML2 channel agonist, ML2-SA1.

We demonstrate that ML2-SA1 activates TRPML2 in EE and LE/LY as well as in Rab11+ and Tf+/

TfR+ (transferrin/transferrin receptor) vesicles. In macrophages, LPS (lipopolysaccharide) exposure

leads to a strong upregulation of TRPML2 expression, while TRPML1 and TRPML3 expression levels

remain unaffected by LPS (Sun et al., 2015). Importantly, activation by ML2-SA1 was not observed

in macrophages without LPS treatment which express TRPML2 only at very low levels, further con-

firming specificity of the compound. We also show that direct activation of TRPML2 by ML2-SA1

results in an increased release of the chemokine CCL2 from LPS-stimulated WT macrophages, while

TRPML2-/- macrophages show no release increase, suggesting that TRPML2 channel activity is

directly linked to CCL2 trafficking and secretion. We further provide evidence that CCL2 is released

via the early/recycling endosomal pathway but not via LE/LY. Finally, we show that stimulation with

ML2-SA1 promotes macrophage migration, one of the major physiological functions of the chemoat-

tractant CCL2, one synonym of which is monocyte chemoattractant protein 1 (MCP-1).

Results

Development of a potent isoform-selective TRPML2 channel agonist
With the aim to further improve the characteristics of existing TRPML channel agonists, we gener-

ated more than 80 novel derivatives of recently reported lead activators of TRPML channels which

had been originally identified by random screening of the MLSMR small molecule library (Scripps

Research Institute Molecular Screening Center) (Grimm et al., 2010). Here, novel derivatives of the

lead compounds SN-2 and ML-SA1, a SF-51 analogue (Grimm et al., 2010; Shen et al., 2012;
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Grimm, 2016; Chen et al., 2014) were evaluated for their efficacy, potency, and selectivity profiles,

respectively.

We first synthesized and tested >50 chemically modified versions of the TRPML3 activator SN-2

(Figure 1; Figure 1—figure supplement 1; Supplementary file 1). These modifications comprise

systematic variations of the substitution pattern of the aryl ring, variations of the aliphatic norbor-

nane ring system, aromatisation of the isoxazoline to an isoxazole fragment, introduction of polar

substituents, as well as replacement of the isoxazol(in)e ring by other heterocycles. Crucial steps in

these syntheses were Huisgen-type 1,3-dipolar cycloaddition reactions of norbornene (for the closer

analogues) and other alkenes with nitrile oxides (Jawalekar et al., 2011; Huisgen, 1963) and related

1,3-dipoles. Related aromatic isoxazole analogues were prepared via cycloaddition of nitrile oxides

with ketone enolates (Vitale and Scilimati, 2013) or enamines (Fos et al., 1992). General synthesis

strategies for these modifications are shown in Figure 1A.

Derivatives of SF-51/ML-SA1 (Figure 1—figure supplement 2; Figure 1—figure supplement 3;

Supplementary file 1) were synthesized by combining appropriate amine building blocks (partially

hydrogenated quinolines and other cyclic and open-chain analogues) with N-acyl spacers and imide/

lactam-type residues following standard procedures (Figure 1—figure supplement 3A).

Following synthesis, we initially tested the compounds in HEK293 cells transiently transfected

with human TRPML1, TRPML2, or TRPML3 (C-terminally fused to YFP) by using the fura-2 calcium

imaging technique. When expressed in HEK293 cells, TRPML2 and TRPML3 but not TRPML1 sub-

stantially localize at the plasma membrane besides endolysosomes as described previously

(Grimm et al., 2010), enabling standard fura-2 calcium imaging experimentation. To evaluate effects

on TRPML1, a plasma membrane variant with mutated lysosomal targeting sequences in the N- and

C-termini (TRPML1(NC)) was used as reported previously (Grimm et al., 2010).

The majority of the SN-2 and SF-51/ML-SA1 derivatives were either inactive, non-selective like

ML-SA1, or selective for TRPML3 like SN-2 (Figure 1B; Figure 1—figure supplement 3B). A subset

of molecules however displayed a strong preference for TRPML2: ML2-SA1 (=EVP-22), a derivative

of SN-2, as well as derivatives of SF-51/ML-SA1: EVP-198, EVP-207 and EVP-209. The latter three

SF-51/ML-SA1 derivatives however showed lower efficacy compared to ML2-SA1 (Figure 1B; Fig-

ure 1—figure supplement 3B).

TRPML2 activity is detectable in EE, LE/LY as well as Rab11+ and TfR
+ organelles
In endolysosomal patch-clamp experiments using transiently transfected HEK293 cells, we investi-

gated TRPML2 channel activity in wortmannin/latrunculin B (Wort./Lat.B)-enlarged EE (Chen et al.,

2017a), in YM201636-enlarged LE/LY (Chen et al., 2017a), as well as in vacuolin-enlarged Rab11

+ and TfR+ organelles (Figure 2; Figure 2—figure supplement 1). In LE/LY, both ML2-SA1

(Figure 2B; Figure 2—figure supplement 1A) and PI(3,5)P2 (Figure 2—figure supplement 1A)

evoked TRPML2 activation while no or very little activation was detectable for TRPML1 and TRPML3.

In contrast, the latter ones were robustly activated by ML-SA1 as a positive control (Figure 2C–E).

The time course for activation of TRPML2 in LE/LY patch-clamp experiments and the relative Ca2+

permeability are shown in Figure 2G and Figure 2—figure supplement 1B. In addition to LE/LY,

TRPML2 channel activity was also detectable in EE after stimulation with ML2-SA1 (Figure 2H and

K). In order to patch-clamp discrete populations of vesicles involved in early/recycling endosomal

trafficking, cells were transfected with fluorophore-tagged Rab11 or TfR, and enlarged with vacuolin.

ML2-SA1 elicited significant currents in Rab11+ and in TfR+ vesicles (Figure 2I–K).

Furthermore, the effect of luminal pH on TRPML2 channel activity was evaluated (Figure 2—fig-

ure supplement 1A and C). TRPML2 activity (stimulated with PI(3,5)P2 or with ML2-SA1) increases

with increasing, that is less acidic luminal pH. This differs from TRPML1 which shows maximal activity

in highly acidic luminal pH (Chen et al., 2017a; Dong et al., 2010). These findings argue TRPML2

channel function is adapted to vesicles of only slightly acidic or neutral pH such as EE/RE rather than

highly acidic LE/LY. The strong colocalization between TfR or Rab11 with TRPML2 confirms an

important functional role of TRPML2 in RE (Figure 2—figure supplement 2A–B).

In summary, ML2-SA1 was found to be a potent and efficacious activator of both hTRPML2 and

mTRPML2. The calculated EC50 values for human and mouse TRPML2 were 1.24 ± 0.12 mM and

2.38 ± 0.01 mM, respectively (Figure 2F; Figure 2—figure supplement 3A). ML2-SA1 shows high

selectivity over h/mTRPML1 and h/mTRPML3 in both calcium imaging and endolysosomal patch-
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Figure 1. Chemical synthesis strategies and functional evaluation of SN-2 analogous compounds using calcium imaging. (A) Shown are synthesis

strategies a and b used to generate most of the SN-2 analogous compounds shown in Suppl. Figure 1. R1 = alkyl/ halogen/nitro/ methoxy; R2 / R3 =

(cyclo)alkyl/phenyl/ hydroxyalkyl; R4 / R5=alkyl/ phenyl / (hetero)cycles; a) H2N-OH . HCl (1.5 eq.), NaOH (3 eq.), H2O:EtOH (1:1), 0˚C - rt, 18 hr; b) PIFA

(1.2 eq.), alkene (1.5 eq.), H2O:MeOH (1:2), rt, 1–24 hr; c) ketone (2 eq.), LDA (2 eq.), THF, �78˚C, 2 hr, mesitonitrile oxide, �78˚C - rt, 2–15 hr; d)

Figure 1 continued on next page
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clamp experiments and it does not activate TPC1 nor TPC2 (Figure 1; Figure 2; Figure 2—figure

supplement 3B–F).

Molecular modeling of ML2-SA1 binding
Several recent papers have provided in-depth information on the structures of TRPML1 and TRPML3

channels (Schmiege et al., 2017; Chen et al., 2017b; Hirschi et al., 2017). Schmiege et al., 2017

found that a hydrophobic cavity created by I468 and F465 of PH1 (pore helix 1), F428, C429, V432

and Y436 of S5, F505 and F513 of S6, and Y499 and Y507 of S6 in the neighboring subunit, tightly

accommodates ML-SA1 (Figure 3A). In a molecular modeling approach using these recently pub-

lished structures of TRPML1 and TRPML3 as a basis, we simulated the binding of ML-SA1 as well as

ML2-SA1 to hTRPML1 and hTRPML2 (Figure 3; Figure 3—figure supplement 1). Complete 3D

models of the open conformation of hTRPML1 and hTRPML2 were constructed and used for ligand

docking analysis. Amino acids differing between hTRPML1 and hTRPML2 are colored green

(Figure 3B–D). Based on this model, ML2-SA1 (both enantiomers are described, one in Figure 3—

figure supplement 1) is predicted to bind to the same binding pocket as ML-SA1 as observed in

the cryo-EM structure of hTRPML1 (Figure 3A–B). Six amino acids (A422, A424, G425, A453, V460,

and I498) in this pocket are unique to hTRPML2 (highlighted in green; Figure 3C–D). The orientation

of ML2-SA1 in the binding pocket of hTRPML2 with the highest docking score is shown in

Figure 3C. The dichlorophenyl ring shows favorable p-stacking interaction with F502 whereas the

polar isoxazole ring is located near the side chain OH-groups of Y428 and Y496. The hydrophobic

norbornane ring is interacting with G425 and Y428. Other possible orientations of ML2-SA1 binding

to hTRPML2 are shown in Figure 3—figure supplement 1C–D). The observed binding mode of

ML2-SA1 at hTRPML1 is different and appears to be energetically less favorable compared to

hTRPML2 due to the observed amino acid substitutions in the predicted binding cavity (Figure 3D).

We subsequently replaced each of the six amino acids that are unique to the predicted hTRPML2

binding pocket with the respective amino acids of hTRPML1. We analysed these mutant isoforms

first in calcium imaging experiments where we found the strongest reduction of the ML2-SA1 effect

in G425A (Figure 3E). In the next step, we performed endolysosomal patch-clamp experiments with

this mutant. Mutation of G425 to alanine was found to selectively abrogate the effect of ML2-SA1,

while ML-SA1 was still able to activate G425A to a degree not significantly different from WT

(Figure 3E–F). G425 is close to the norbornane ring of ML2-SA1 (minimum distance 3.6 Å) docked

to hTRPML2 and substitution to alanine is unfavorable for this binding mode (Figure 3C). The exper-

imental data corroborate binding of ML2-SA1 to the ML-SA1 binding pocket and confirm a critical

role of G425 in mediating ML2-SA1 selectivity.

Effect of ML2-SA1 on endogenous TRPML2 channel activity in
organelles isolated from LPS-stimulated macrophages
In macrophages significant TRPML2 channel expression is found only after stimulation with LPS, as

demonstrated previously by qRT-PCR and western blot analysis (Sun et al., 2015). We confirmed

this finding by qRT-PCR and endolysosomal patch-clamping, revealing that only after several hours

of LPS treatment, robust endogenous TRPML2 channel expression and activity were detectable

Figure 1 continued

Na2CO3, MeOH:H2O (2:1), 95˚C, 2 hr. (B) Cartoon showing schematically the fractions of inactive, non-selective TRPML activating, TRPML2-selective,

and TRPML3-selective agonists (total number = 55). (C) Fura-2 calcium imaging results showing the effect of SN-2 and its analogues (10 mM) on

hTRPML1(NC)-YFP, hTRPML2-YFP, and hTRPML3-YFP transfected HEK293 cells. Mean values normalized to basal (200 s after compound application)±

SEM of up to >100 independent experiments with 3–10 cells per experiment are shown.

DOI: https://doi.org/10.7554/eLife.39720.002

The following figure supplements are available for figure 1:

Figure supplement 1. Structures of SN-2 analogues.

DOI: https://doi.org/10.7554/eLife.39720.003

Figure supplement 2. Structures of SF-51/ML-SA1 analogues.

DOI: https://doi.org/10.7554/eLife.39720.004

Figure supplement 3. Chemical synthesis strategies and functional evaluation of SF-51/ML-SA1-analogous compounds using calcium imaging.

DOI: https://doi.org/10.7554/eLife.39720.005
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Figure 2. Effect of ML2-SA1 on TRPML channels. (A) Cartoon depicting chemical structures of SN-2 and ML2-SA1. (B) Representative ML2-SA1 or ML-

SA1 (10 mM) elicited currents from YM201636-enlarged LE/LY isolated from hTRPML2 expressing HEK293 cells. (C–D) Representative ML2-SA1 or ML-

SA1 (10 mM) elicited currents from YM201636-enlarged LE/LY isolated from hTRPML1 or hTRPML3 expressing HEK293 cells. (E) Statistical summary of

ML2-SA1 data as shown in B-D as fold increase compared to the respective basal currents in LE/LY. Shown are mean values ± SEM at �100 mV of n

Figure 2 continued on next page
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(Figure 4A–G). In LPS-stimulated bone marrow-derived macrophages (BMDMF) ML2-SA1-induced

currents were detectable in Tf-Alexa555 loaded, vacuolin-enlarged vesicles, while no significant

TRPML2 channel activity could be detected in non-LPS stimulated BMDMF Tf+ vesicles (Figure 4A–

B). Currents measured in BMDMF LE/LY with ML2-SA1 after LPS-stimulation were smaller than cur-

rents measured in Tf+ loaded vesicles (Figure 4C–D). In contrast, in LE/LY isolated from alveolar

macrophages (AMF), TRPML2 currents elicited with ML2-SA1 were larger on average than in

BMDMF (Figure 4E–F). These data confirm that ML2-SA1 elicits robust TRPML2 currents in endoge-

nously expressing cells.

Effect of selective TRPML2 activation on CCL2 secretion
To evaluate effects of the novel TRPML2 channel agonist on chemokine secretion from macro-

phages, we performed experiments based on the results recently provided by Sun et al. (2015)

(Figure 5A). We found that incubation with ML2-SA1 significantly increased secretion of the chemo-

kine CCL2 from BMDMF, both after 4 hr and 8 hr of LPS treatment (Figure 5A). Importantly, ML2-

SA1 did not induce CCL2 secretion in unstimulated BMDMF. Furthermore, CCL2 secretion was

severely reduced in TRPML2-/- BMDMF and ML2-SA1 showed no further increase of CCL2 secretion

in the TRPML2-/- BMDMF, corroborating the specificity of the agonist (Figure 5A). To characterise

the pathway of ML2-SA1-induced CCL2 secretion from macrophages, we performed lysosomal exo-

cytosis and Tf trafficking experiments to distinguish between LE/LY and EE/RE as possible secretion

routes. Lysosomal exocytosis experiments revealed no significant effect of ML2-SA1 on lysosomal

enzyme (beta-hexosaminidase) release (Figure 5B). In accordance with this, ML2-SA1 application did

not result in translocation of LAMP1 to the plasma membrane (Figure 5C), arguing against LE/LY

being involved in CCL2 secretion in BMDMF. These findings are supported by the LE/LY environ-

ment being less favorable for TRPML2 activity as outlined above. More favorable conditions are

found in EE/RE compartments (less acid to neutral pH). In line with this, ML2-SA1 application

resulted in a significant enhancement of Tf trafficking and recycling through EE/RE (Figure 5D–E).

Taken together, these data argue for a TRPML2-dependent trafficking route of CCL2 from Golgi to

EE/RE (Figure 5F).

ML2-SA1 promotes macrophage migration
To assess effects of ML2-SA1 on cell migration, we performed migration assays in a modified Boy-

den chamber setup (Figure 6—figure supplement 1). BMDMF in the presence or absence of LPS

were seeded in the lower compartment of the chamber and exposed to different concentrations of

ML2-SA1. LPS-stimulated, ML2-SA1 pre-treated BMDMF were able to significantly increase migra-

tion of untreated BMDMF through the transwell chamber, while LPS-stimulated BMDMF without

ML2-SA1 pre-treatment (only DMSO) were not able to alter migration properties of untreated

BMDMF. (Figure 6A). This is in accordance with the enhanced release of CCL2 by ML2-SA1, which

Figure 2 continued

independent experiments as indicated, each. (F) Dose-response curves obtained from fura-2 calcium imaging experiments with hTRPML1(NC),

hTRPML2, and hTRPML3 expressed in HEK293 cells and elicited with ML2-SA1 at varying concentrations. The calculated EC50 value for hTRPML2 is:

1.24 ± 0.12 mM (mean ± SEM). (G) Time course of TRPML2 activation by ML2-SA1 taken from experiments as shown in B. Black and red arrows indicate

time points for basal and ML2-SA1 induced TRPML2 activity that were used for the IV relationship. (H–J) Representative basal and ML2-SA1 (10 mM)

elicited currents from Wort./Lat.B-enlarged EE, from vacuolin-enlarged Rab11+, or form TfR+ vesicles isolated from hTRPML2 expressing HEK293 cells.

(K) Statistical summary of data as shown in G-I. * indicates p<0.05, ** indicates p<0.01, *** indicates p<0.001, Figure 2E, one-way ANOVA test followed

by Tukey’s post-hoc test, Figure 2J, paired t-test.

DOI: https://doi.org/10.7554/eLife.39720.006

The following figure supplements are available for figure 2:

Figure supplement 1. Effect of ML2-SA1 on TRPML2 under different pH conditions.

DOI: https://doi.org/10.7554/eLife.39720.007

Figure supplement 2. Co-transfection of HEK293 cells with fluorescently labelled TRPML2 and vesicle-specific markers of the endolysosomal system.

DOI: https://doi.org/10.7554/eLife.39720.008

Figure supplement 3. DRC of ML2-SA1 effect on mTRPML2, effects of ML2-SA1, SN2, and ML-SA1 on mTRPML channel isoforms, and cytotoxicity of

ML2-SA1.

DOI: https://doi.org/10.7554/eLife.39720.009
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Figure 3. Molecular modeling of ML2-SA1 and ML-SA1 binding. (A) Binding mode of ML-SA1 (green colored carbon atoms) at hTRPML1, showing

residues within 5 Å of ML-SA1, as observed in one of the four identical binding pockets of the cryo-EM structure (PDB ID: 5WJ9). The S6 helix of

monomer A of hTRPML1 is colored magenta, the PH1 and S5 helices of monomer B are colored cyan. (B) Binding mode of ML-SA1 (green colored

carbon atoms) at hTRPML2 (homology model generated with MODELLER) as predicted by the ligand docking. Only residues within 5 Å of ML-SA1 in

Figure 3 continued on next page
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serves as chemoattractant for untreated BMDMF. To exclude a chemotactic effect of the com-

pounds themselves, we used a classical Boyden chamber setup without cells in the lower compart-

ment. Yet, neither LPS nor ML2-SA1 alone were able to significantly enhance BMDMF migration,

while supplementation of recombinant CCL2 led to a substantial increase in BMDMF migration

(Figure 6B; Figure 6—figure supplement 2A–B). Overall, these data suggest that ML2-SA1 is able

to induce CCL2 secretion selectively in TRPML2-expressing macrophages, thus serving as chemoat-

tractant to recruit more macrophages.

Discussion
We describe here a novel, isoform-selective activator of the TRPML2 channel and describe how

TRPML2 activation enhances endosomal trafficking to induce inflammatory mediator release in LPS-

stimulated macrophages. Until now, selective activators for TRPML2 had not been available. In an

effort to identify such selective activators we synthesized >80 chemical compounds by systematic

variation of the known lead structures SN-2 and SF-51/ML-SA1 (Grimm et al., 2010; Shen et al.,

2012), generating a library of analogues of sufficient size to deduce structure-activity relationships.

In the ML-SA1 series, improved TRPML2 activation was achieved by modification of the length of

the acyl spacer, but the resulting selective activators were of only intermediate efficacy and potency.

By contrast, the activator ML2-SA1 from the series of norbornene-derived isoxazolines (based on

SN-2) is characterized by high TRPML2 subtype selectivity as well as high efficacy and potency, ren-

dering this new small molecule a valuable compound for future studies on this ion channel

(Supplementary file 2). Molecular modeling data support specific binding of ML2-SA1 to the pore

region of the channel, as observed for ML-SA1. The binding orientation of ML-SA1 at hTRPML2 was

found to be similar to the experimentally observed binding to hTRPML1 (Schmiege et al., 2017)

which is in agreement with nonselective activation. In contrast, the binding orientation of docked

ML2-SA1 at hTRPML1 differs from that found for hTRPML2, suggesting a plausible rationale for its

selectivity. In an experimental approach where we investigated the functional consequences of point

mutations in hTRPML2 with the endolysosomal patch-clamp technique we found that in mutant

G425A activation by ML2-SA1 is selectively lost, while activation by ML-SA1 is preserved, indicating

that this amino acid is highly critical for the selective effect of ML2-SA1 on TRPML2.

Sun et al. (2015) have recently shown that the levels of TRPML2 are strongly upregulated in mac-

rophages upon TLR4 (toll-like receptor) activation (Supplementary file 2). Thus, treatment with LPS

was found to lead to TRPML2 upregulation in, for example microglia, peritoneal macrophages, bone

marrow derived macrophages, or alveolar macrophages (Sun et al., 2015). The authors further

found that the translation and secretion of several chemokines such as CCL2 was reduced in

TRPML2-/- mice, and concluded that TRPML2 might play a role in the regulation of trafficking and/or

Figure 3 continued

one of the four identical binding pockets are displayed. The S6 helix of monomer A of hTRPML2 is colored petrol blue, the PH1 and S5 helices of

monomer B are colored salmon. Amino acid residues that are different in hTRPML1 and hTRPML2 are colored green (C) Binding mode of one ML2-SA1

enantiomer (cyan colored carbon atoms; 3aS, 4S, 7R, 7aS) at hTRPML2 as predicted by ligand docking. Only residues within 5 Å of ML2-SA1 in one of

the four identical binding pockets are displayed (same coloring and representation style as in Figure 3B). Binding of the other ML2-SA1 enantiomer

(3aR, 4R, 7S, 7aR) resulted in a similar binding mode that is shown in Figure 3—figure supplement 1B (D) Binding mode of one ML2-SA1 enantiomer

(cyan colored carbon atoms; 3aS, 4S, 7R, 7aS) at hTRPML1 as predicted by ligand docking. Only residues within 5 Å of ML2-SA1 in one of the four

identical binding pockets are displayed (same coloring and representation style as in Figure 3a). (E) Fura-2 calcium imaging results showing the effect

of ML2-SA1 (10 mM) on hTRPML2-YFP WT and mutant transfected HEK293 cells. Mean values normalized to basal (120 s after compound application)±

SEM of at least three independent experiments, each. * indicates p<0.05, one-way ANOVA, followed by Dunnet post-hoc test. (F) Representative ML2-

SA1 or ML-SA1 (10 mM) elicited currents from YM201636-enlarged LE/LY isolated from hTRPML2(G425A) expressing HEK293 cells. (G) Statistical

summary of data as shown in F as fold increase compared to the respective basal currents in LE/LY. Shown are mean values ± SEM at �100 mV of at n

independent experiments as indicated. * indicates p<0.05, unpaired t-test.

DOI: https://doi.org/10.7554/eLife.39720.010

The following figure supplement is available for figure 3:

Figure supplement 1. Additional molecular modeling of ML2-SA1 and ML-SA1 binding.

DOI: https://doi.org/10.7554/eLife.39720.011
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Figure 4. Effect of ML2-SA1 on channel currents in endolysosomal organelles isolated from different primary mouse macrophages. (A) Representative

currents from vacuolin-enlarged/Tf+ vesicles isolated from murine (LPS 6 hr or LPS 0 hr) primary WT BMDMF, basal or elicited by an application of 10

mM ML2-SA1. All currents are normalized to basal current without ML2-SA1. (B) Statistical summary of data shown in A. (C) Representative currents from

YM201636-enlarged LE/LY isolated from murine (LPS 6 hr or LPS 0 hr) primary WT bone marrow macrophages (BMDMF), basal or elicited by an

application of 10 mM ML2-SA1. (D) Statistical summary of data shown in C. (E) Representative currents from YM201636-enlarged LE/LY isolated from

murine (LPS 6 hr or LPS 0 hr) primary WT alveolar macrophages (AMF), basal or elicited by an application of 10 mM ML2-SA1. (F) Statistical summary of

data shown in E. * indicates p<0.05, ** indicates p<0.01, Student’s t test, unpaired. (G) qPCR data showing levels of TRPML2 expression after 3, 6, and

24 hr LPS treatment compared to untreated (0 hr). * indicates p<0.05, ** indicates p<0.01, one-way ANOVA test followed by Tukey’s post-hoc test.

Figure 4 continued on next page
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secretion of these chemokines. However, it remained unclear whether TRPML2 is directly involved in

these processes and whether activation of TRPML2 channel activity would show increased release.

Here, we present data strongly supporting a direct involvement of TRPML2, as direct stimulation

of TRPML2 with ML2-SA1 leads to an increase in CCL2 secretion from macrophages. Using the spe-

cific TRPML2 agonist and the TRPML2-/- knockout mouse model as control, we demonstrate a posi-

tive relationship between TRPML2 activity and CCL2 secretion. Using the endolysosomal patch-

clamp technique we demonstrate that TRPML2 is present in LE/LY and EE as well as in Rab11+ and

TfR+/Tf+ vesicles (Supplementary file 2). However, early endosomes including RE provide more

favorable activation conditions for TRPML2 than LE/LY due to their less acidic/neutral luminal pH. In

accordance with this, TRPML2 currents elicited with ML2-SA1 in LE/LY isolated from endogenously

expressing BMDMF were smaller than currents in Tf+ vesicles. In addition, no evidence was found

that ML2-SA1 can promote lysosomal exocytosis, while ionomycin or ML-SA1 were able to increase

the release of beta-hexosaminidase as previously reported (Samie et al., 2013). The subcellular dis-

tribution of LAMP1 did also not change during ML2-SA1 treatment and no translocation to the PM

was observed. In contrast, ML2-SA1 application was found to significantly promote Tf trafficking

through the early/recycling endosomal compartment, arguing for a role of TRPML2 in CCL2 release

via the early/recycling endosomal pathway (Figure 5F).

Loss of function mutations in the TRPML2-related channel TRPML1 result in lysosomal storage

and endolysosomal trafficking defects underlying the neurodegenerative disease mucolipidosis type

IV (Bach, 2001; Pryor et al., 2006; Chen et al., 2014). Mechanistically, it was postulated that loss of

TRPML1 impairs lysosomal exocytosis (LaPlante et al., 2006). It was also suggested that TRPML1 is

required for lysosomal pH regulation (Soyombo et al., 2006) and for vesicle fusion

(Venkatachalam et al., 2013) while, very recently, data have been presented, supporting that

TRPML1 may regulate lysosomal fission (Chen et al., 2017a). A further interesting finding has been

presented by Park et al. (2016), suggesting that, in secretory cells, a major role for TRPML1 is to

guard against unintended, pathological fusion of lysosomes with other intracellular organelles, for

example secretory vesicles. TRPML1 has also been attributed to mediate lysosomal trafficking via

Ca2+-dependent motor protein recruitment, its activity favoring retrograde lysosomal movement

(Vergarajauregui et al., 2009; Li et al., 2016).

Like TRPML1, TRPML3 was also suggested to regulate membrane trafficking. In particular, it was

found to regulate trafficking of early endosomes and to affect endocytosis (Kim et al., 2009).

Lelouvier and Puertollano (2011) further presented data showing that TRPML3 is required for

proper calcium homeostasis in the endosomal pathway and that impairment of TRPML3 function

leads to defective endosomal acidification and defective membrane trafficking. Surprisingly, the

authors found increased endosomal fusion after depletion of TRPML3. Recently, Miao et al. (2015)

showed that TRPML3 activation, upon neutralization of lysosomal pH, mediates efflux of Ca2+ ions

from lysosomes, which in turn induces lysosome exocytosis. TRPML3 is normally inactive in highly

acidic lysosomes, in contrast to early/recycling endosomes with more neutral pH, but when the pH in

the lumen of the lysosome is neutralized, TRPML3 becomes activated, releases Ca2+ into the cytosol,

which in turn triggers spontaneous exocytosis of the lysosome and its contents.

TRPML2 has been suggested to play a role in the regulation of the Arf6-associated pathway and,

more specifically, in the trafficking of GPI-APs (Karacsonyi et al., 2007). Arf6 has been implicated in

the regulation of endocytosis as well as endocytic recycling and cytoskeleton remodeling. More

recently, TRPML2 has been found to increase trafficking efficiency of endocytosed viruses

(Rinkenberger and Schoggins, 2018). Furthermore, we are showing here that TRPML2 is, like its rel-

atives TRPML1 and 3, Ca2+ permeable (Figure 2—figure supplement 1C).

Taken together, these findings imply that all three TRPML channels can impact intracellular traf-

ficking processes while the mechanisms how they affect trafficking might differ. While it is likely,

based on the available data, that the effect of TRPML2 knockout/activation on CCL2 trafficking and

release is occurring at the level of EE/RE, it remains to be further established where along this path-

way the effect takes place. Possible scenarios might be: fusion of Golgi vesicles with RE, fission from

Figure 4 continued

DOI: https://doi.org/10.7554/eLife.39720.012

Plesch et al. eLife 2018;7:e39720. DOI: https://doi.org/10.7554/eLife.39720 11 of 23

Research article Biochemistry and Chemical Biology

https://doi.org/10.7554/eLife.39720.012
https://doi.org/10.7554/eLife.39720


Figure 5. Effect of ML2-SA1 on chemokine release from primary mouse macrophages. (A) Shown are data obtained from primary WT and TRPML2-/-

mouse bone marrow macrophages (BMDMF) with and without LPS treatment for 4 hr and 8 hr, respectively. The fraction treated with LPS and 10 mM

ML2-SA1 showed significantly increased CCL2 secretion compared to WT controls treated with LPS only. TRPML2-/- cells displayed strongly reduced

CCL2 secretion. Shown are normalized mean values ± SEM of 5 mice each. * indicates p<0.05, Student’s t test, unpaired. (B) Lysosomal exocytosis assay

showing the increase in beta-hexosaminidase release upon stimulation with either ionomycin, ML-SA1, or ML2-SA1 (conc. as indicated) from LPS (6 hr)

Figure 5 continued on next page
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RE, fusion of Golgi vesicles with EE, fission from EE, fusion of EE-derived vesicles with the RE

(Figure 5F).

Functionally, we found that ML2-SA1 promotes migration of untreated macrophages towards

LPS-treated macrophages. This suggests that TRPML2-dependent CCL2 release is enhancing the

inflammatory response by recruiting innate immune cells to the site of inflammation. This is in accor-

dance with the results presented by Sun et al. (2015) who found that macrophage migration is

impaired in vivo in the absence of TRPML2.

Figure 5 continued

stimulated BMDMF. *** indicates p<0.001, one-way ANOVA test followed by Tukey’s post-hoc test. (C) Lysosomal exocytosis assay by flow cytometry

showing the percentage of cells which show an increase in LAMP1 fluorescence on the plasma membrane. Cells were treated with DMSO, calcium

ionophore A23187 (calcimycin), and 30 mM ML2-SA1. (D–E) Recycling endosome assay showing the decrease of Tf mean fluorescence in LPS stimulated

RAW264.7 cells, treated with either DMSO or 30 mM ML2-SA1. Scale bar (identical for all images)=10 mm. Plot shows the normalized Tf intensity (shown

is the average of 3 independent experiments, each). **p<0.01, two-way ANOVA, repeated measures, followed by Bonferroni post-hoc test. (F) Cartoon

showing organelles with functional TRPML2 expression as confirmed by endolysosomal patch-clamp analysis (EE, RE, LE/LY). CCL2 (MCP-1) is

hypothesized to be trafficked and secreted via the EE/RE pathway, based on the observation that ML2-SA1 promotes Tf trafficking in the EE/RE

compartment, while no effect on lysosomal exocytosis was found. No secretory vesicles are reported to exist in macrophages.

DOI: https://doi.org/10.7554/eLife.39720.013

Figure 6. Effect of ML2-SA1 on macrophage migration. (A) Shown are representative images obtained from a modified Boyden chamber experiment.

Images show fixed and crystal violet stained BMDMF after 3 hr migration through a transwell chamber along a chemotactic gradient created by

BMDMF in the lower compartment. Indicated treatments refer to treatment of the cells in the lower compartment. (B) Quantification of migration in the

modified Boyden chamber setup (A) shows a significant increase in migration when LPS pre-treated cells in the lower compartment were subjected to

10 or 30 mM ML2-SA1. Shown are mean values ± SEM of 4 independent experiments. * indicates p<0.05, ** indicates p<0.01, repeated measures, one-

way ANOVA with Greenhouse-Geisser correction, followed by Dunnet post-hoc test.

DOI: https://doi.org/10.7554/eLife.39720.014

The following figure supplements are available for figure 6:

Figure supplement 1. Modified and classical Boyden chamber setup.

DOI: https://doi.org/10.7554/eLife.39720.015

Figure supplement 2. Migration assay without cells in the lower compartment of the classical Boyden chamber.

DOI: https://doi.org/10.7554/eLife.39720.016
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CCL2 is known to be a key chemokine regulating migration and infiltration of monocytes/macro-

phages (Deshmane et al., 2009). Since CCL2 is implicated in the pathogenesis of diseases charac-

terized by infiltrates containing macrophages like psoriasis, rheumatoid arthritis, multiple sclerosis,

and atherosclerosis (Deshmane et al., 2009; Xia and Sui, 2009; Daly and Rollins, 2003), we postu-

late that TRPML2 may be an attractive novel target for the treatment of such innate immunity-

related inflammatory diseases.

Materials and methods

Key resources table

Designation Source or reference Identifiers Additional information

HEK293 DSMZ ACC 305

HEK 293 stable stably
expressing TRPML3-YFP

Grimm et al. (2010);
PMID: 20189104

HEK 293 stable stably
expressing TRPML1-YFP

Chen et al. (2014),
PMID: 25119295

TRPML1 (encoded by
the Mcoln1 gene) KO
mouse; Mcoln1tm1Sasl,
C57BL/6

Venugopal et al. (2007);
PMID: 17924347

MGI ID: 3794204

TRPML2 (encoded by
the Mcoln2 gene) KO
mouse; C57BL/6

Sun et al. (2015);
PMID: 26432893

MGI: 1915529

TRPML3 (encoded by the
Mcoln3 gene)
KO mouse; Mcoln3tm1.
1Hels, FVB/NJ

Jörs et al. (2010);
PMID: 21179200

MGI ID: 5319089

anti-LAMP-1 (1D4B)
(rat monoclonal)

Santa Cruz Cat#A-11006; RRID: AB_2134495 (1:100)

Goat anti-Rat IgG (H + L)
Secondary Antibody,
Alexa Fluor 488

ThermoFisher Cat#sc-19992; RRID: AB_2534074 (1:1000)

mcherry-Transferrin
Receptor 20 (plasmid)

N/A Addgene Plasmid #55144

DsRed-Rab11 (plasmid) Choudhury et al. (2002);
PMID: 12070301

Addgene Plasmid #12679

TRPML1-YFP (plasmid) Grimm et al. (2010),
PMID: 20189104

TRPML2-YFP (plasmid) Grimm et al. (2010),
PMID: 20189104

TRPML3-YFP (plasmid) Grimm et al. (2010),
PMID: 20189104

Quikchange primers for
TRPML2:YFP A422C

this paper forward: CTTCGGTTTTGTTGTTGTG
CTGGTATGATTTATCTGGG
reverse: CCCAGATAAATCATACCAGC
ACAACAACAAAACCGAAG

Quikchange primers for
TRPML2:YFP A424V

this paper forward: CGGTTTTGTGCTTG
TGTTGGTATGATTTATCTGGGTTACAC
reverse: GTGTAACCCAGATAAATCAT
ACCAACACAAGCACAAAACCG

Quikchange primers for
TRPML2:YFP G425A

this paper forward: CGGTTTTGTGCTTGT
GCTGCTATGATTTATCTGGGTTACAC
reverse: GTGTAACCCAGATAAATCA
TAGCAGCACAAGCACAAAACCG

Quikchange primers for
TRPML2:YFP A453S

this paper forward: CTGAACACAGTTTCTG
AGTGTCTGTTTTCTCTGG
reverse: CCAGAGAAAACAGACA
CTCAGAAACTGTGTTCAG

Continued on next page
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Continued

Designation Source or reference Identifiers Additional information

Quikchange primers for
TRPML2:YFP V460I

this paper forward: TGTCTGTTTTCTCTGATCA
ACGGTGATGACATG
reverse: CATGTCATCACCGTTGATC
AGAGAAAACAGACA

Quikchange primers for
TRPML2:YFP I498V

this paper forward: CCTTCATCAGCCTTTTTATATATA
TGGTTCTCAGTCTTTTTATTGC
reverse: GCAATAAAAAGACTGAGAACCA
TATATATAAAAAGGCTGATGAAGG

qPCR Primer for TRPML1
(NM_053177)

www.pga.mgh.
harvard.edu/primerbank

PrimerBankID: 16716462 c2 forward: GCCTTGGGCCAATGGATCA
reverse: CCCTTGGATCAATGTCAAAGGTA

qPCR Primer for TRPML2
(NM_026656)

this paper forward: AATTTGGGGTCACGTCATGC
reverse: AGAATCGAGAGACGCCATCG

qPCR Primer for TRPML3
(NM_134160)

this paper forward: GAGTTACCTGGTGTGGCTGT
reverse: TGCTGGTAGTGCTTAATTGTTTCG

qPCR Primer for HPRT
(NM_013556)

Hruz et al. (2011);
PMID: 21418615

N/A forward: GCTCGAGATGTCATGAAGGAGAT
reverse: AAAGAACTTATAGCCCCCCTTGA

Lipopolysaccharides (LPS)
from Escherichia coli O26:B6

Sigma-Aldrich Cat#L2762

Lipopolysaccharides (LPS)
from Escherichia coli O111:B4

Sigma-Aldrich Cat#L4391

Fura-2, AM, cell
permeant

ThermoFisher Cat#F1201

Mouse M-CSF,
premium grade

Miltenyi Biotech Cat#130-101-703

Transferrin from human
serum, Alexa FluorTM
546-conjugated

TermoFisher Cat# T23364

Transferrin from human
serum, Alexa FluorTM
555-conjugated

Thermo Fisher Cat#T35352

JE/MCP-1/CCL2 from
mouse, recombinant

Sigma-Aldrich Cat# SRP4207

YM201636 Chemdea Cat#CD0181

MLSA-1 Sigma-Aldrich Cat#SML0627

PI(3,5)P2 AG Scientific Cat#P-1123

Wortmannin Sigma-Aldrich Cat#W1628

LatrunculinB Sigma-Aldrich Cat#L5288

Vacuolin Santa Cruz Cat# sc-216045

Calcium ionophore A23187 Sigma-Aldrich Cat#C7522

4-Methylumbelliferyl
N-acetyl-b-D-glucosaminide

Sigma-Aldrich Cat#M2133

RNeasy Plus Mini Kit Qiagen Cat# 74134

RevertAid first strand
cDNA synthesis Kit

ThermoScientific Cat# K1621

CD11b MicroBeads,
human and mouse

Miltenyi Biotech Cat#130-049-601

QuikChange II
Site-Directed
Mutagenesis Kit

Agilent Cat#200523

Mouse/rat CCL2/
JE/MCP-1 Quantikine
ELISA Kit

BioLegend Cat#432707

Origin8 OriginLab

GraphPad Prism GraphPad Software Inc.
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Endolysosomal patch-clamp and calcium imaging experiments
Whole-LE/LY and whole-EE recordings have been described previously in detail (Chen et al., 2017a;

Chen et al., 2017c). In brief, for whole-LE/LY manual patch-clamp recordings, cells were treated

with YM201636 (HEK293 cells: 800 nM o/n; macrophages: 800 nM 1 hr). For whole-EE manual

patch-clamp recordings, cells were treated with a combination of 200 nM wortmannin and 10 nM

latrunculin B (HEK293 cells: 10–15 min). Cells were treated with compounds at 37˚C and 5% CO2.

YM201636 was obtained from Chemdea (CD0181), wortmannin and latrunculin B from Sigma

(W1628 and L5288), and vacuolin from Santa Cruz (sc-216045). Compounds were washed out before

patch-clamp experimentation.

For other organelle patch-clamp recordings, HEK293 cells were transfected with the markers

Rab11-DsRed or TfR-mCherry, respectively, and treated with 1 mM vacuolin o/n. Since macrophages

could not be transfected with standard transfection protocols or by electroporation, cells were

loaded with transferrin-Alexa555 and simultaneously treated with vacuolin for 1 hr to enlarge and

visualize vesicles for patch-clamp.

Isolation-micropipettes were used to open up the plasma membrane, and push the enlarged vesi-

cle of interest out of the cell. Afterwards, electrode-micropipettes were applied to patch-clamp the

isolated vesicles.

Macrophages were used for experiments within 2–10 days after isolation. Mean capacitance val-

ues for Rab11+ vesicles isolated from HEK293 cells was 0.7 ± 0.2 (n = 6), for TfR+ vesicles (n = 3)

1.4 ± 0.3 pF, for EE (n = 10) 0.4 ± 0.1 pF, and for LE/LY (n = 51) 1.0 ± 0.2 pF. For LE/LY isolated from

primary macrophages it was 0.8 ± 0.1 pF (n = 41), for Tf-loaded vesicles 1.3 ± 0.5 pF (n = 8). Currents

were recorded using an EPC-10 patch-clamp amplifier (HEKA, Lambrecht, Germany) and PatchMas-

ter acquisition software (HEKA). Data were digitized at 40 kHz and filtered at 2.8 kHz. Fast and slow

capacitive transients were cancelled by the compensation circuit of the EPC-10 amplifier. Recording

glass pipettes were polished and had a resistance of 4–8 MW. For all experiments, salt-agar bridges

were used to connect the reference Ag-AgCl wire to the bath solution to minimize voltage offsets.

Liquid junction potential was corrected. For the application of the lipids (A.G. Scientific) or small

molecule agonists (ML2-SA1, ML-SA1), cytoplasmic solution was completely exchanged by cyto-

plasmic solution containing agonist. Unless otherwise stated, cytoplasmic solution contained 140

mM K-MSA, 5 mM KOH, 4 mM NaCl, 0.39 mM CaCl2, 1 mM EGTA and 10 mM HEPES (pH was

adjusted with KOH to 7.2). Luminal solution contained 140 mM Na-MSA, 5 mM K-MSA, 2 mM Ca-

MSA 2 mM, 1 mM CaCl2, 10 mM HEPES and 10 mM MES (pH was adjusted with NaOH to 7.2). For

optimal conditions of TRPML1, luminal pH was adjusted to 4.6 and Na-MSA was used in the luminal

solution. For optimal conditions of TRPML2, luminal pH was adjusted to 7.2 and Na-MSA was used

in the luminal solution. For optimal conditions of TRPML3, luminal pH was adjusted to 7.2 and

K-MSA was applied to replace Na-MSA in the luminal solution. In all experiments, 500 ms voltage

ramps from �100 to +100 mV were applied every 5 s, holding potential at 0 mV. The current ampli-

tudes at �100 mV were extracted from individual ramp current recordings. All statistical analysis was

done using Origin8 software.

Calcium imaging experiments were performed using fura-2 as described previously

(Grimm et al., 2012a). Briefly, HEK293 cells were plated onto glass coverslips, grown over night and

transiently transfected with the respected cDNAs using TurboFect transfection reagent (Thermo Sci-

entific). After 24–48 h cells were loaded for 1 hr with the fluorescent indicator fura2-AM (4 mM; Invi-

trogen) in a standard bath solution (SBS) containing (in mM) 138 NaCl, 6 KCl, 2 MgCl2, 2 CaCl2, 10

HEPES, and 5.5 D-glucose (adjusted to pH 7.4 with NaOH). Cells were washed in SBS for 30 min

before measurement. Calcium imaging was performed using a monochromator-based imaging sys-

tem (Polychrome IV mono-chromator, TILL Photonics).

Computational methods
Analysis of electron density map. The electron density maps for the cryo-electron microscopy struc-

tures of hTRPML1 and hTRPML3 in open agonist-bound form (PDB IDs: 5WJ9 and 6AYF, respec-

tively) were downloaded from the Protein Data Bank (PDB; ww.rcsb.org) (Berman et al., 2000) and

visualized in PyMOL (The PyMOL Molecular Graphics System, Version 1.7.4 Schrödinger, LLC).

Homology modelling of TRPML2. The amino acid sequence of hTRPML2 was retrieved from UniProt
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(The UniProt Consortium, 2017); Accession number: Q8IZK6-1) and a Blast (Altschul et al., 1990)

search using BLOSUM62 matrix was performed against the PDB to find the closest homologues.

Subsequently, sequence alignment of hTRPML2 to the top scored template, hTRPML3 (Sequence

identity 59%), was conducted in MOE2012.10 (Molecular Operating Environment (MOE), 2016.08;

Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A

2R7, 2016) and the alignment file was used to generate the homology model using MODELLER 9.11

(Webb and Sali, 2014). Ligand-bound homology models of hTRPML2 were finally built using the

agonist-bound structure of hTRPML3 (PDB ID: 6AYF) and ranked according to their DOPE score

(Shen and Sali, 2006). Molecular docking to hTRPML1 and �2. The ligands were prepared for dock-

ing using the LigPrep tool as implemented in Schrödinger’s software (Schrödinger Release 2017–1:

LigPrep, Schrödinger, LLC, New York, NY, 2017), where the two stereoisomers of ML2-SA1 were

generated and energy minimized using the OPLS force field. Conformers of the prepared ligands

were calculated with ConfGen using the default settings and allowing minimization of the output

conformations.

Protein preparation. The cryo-electron microscopy structure of the open conformation of

hTRPML1 in complex with ML-SA1 (PDB ID: 5WJ9) and the generated hTRPML2 homology model

were prepared with Schrödinger’s Protein Preparation Wizard (Schrödinger Release 2017–1: Schrö-

dinger Suite 2017–1 Protein Preparation Wizard; Epik, Schrödinger, LLC, New York, NY, 2016;

Impact, Schrödinger, LLC, New York, NY, 2016; Prime, Schrödinger, LLC, New York, NY, 2017):

Hydrogen atoms were added and the H-bond network was subsequently optimized. The protonation

states at pH 7.0 were predicted using the PROPKA tool in Schrödinger. The structures were finally

subjected to a restrained energy minimization step using the OPLS2005 force field (RMSD of the

atom displacement for terminating the minimization was 0.3 Å).

The receptor grid preparation for the docking procedure was carried out by assigning the agonist

as the centroid of the grid box. The generated ligand conformers were docked into the proteins

using Glide (Small-Molecule Drug Discovery Suite 2017–1: Glide, Schrödinger, LLC, New York, NY,

2017) in the Standard Precision mode. A total of 100 poses per ligand conformer were included in

the post-docking minimization step and a maximum of 20 docking clusters were output for each

ligand. Redocking of the ligand ML-SA1 into the hTRPML1 pocket gave a docking pose with root

mean square deviation of 1.22 Å for the top-ranked solution (Figure 3—figure supplement 1A).

Cell culture of primary macrophages isolated from knockout and WT
mice
For preparation of primary alveolar macrophages (AMF), mice were deeply anesthetized and eutha-

nized by exsanguination. Afterwards, the trachea was carefully exposed and cannulated by inserting

a 20 gauge catheter (B. Braun, cat. no. 4252110B). AMF were harvested by eight consecutive lung

lavages with 1 ml of DPBS each. After a centrifugation step, cells were immediately collected and

cultured in RPMI 1640 medium supplemented with 10% fetal bovine serum and 1% antibiotics. AMF

were directly seeded onto 12 mm glass cover slips and used for experiments within 5 days after

preparation. Bone marrow-derived macrophages (BMDMF) were isolated from femur and tibias of

mice. Thus, bones were isolated and bone marrow was flushed with 10 ml PBS using a sterile 25

gauge needle. Cells were obtained by centrifugation, resuspended and subsequently cultured in 10

cm petri dishes in RPMI 1640 medium supplemented with 10% fetal bovine serum and 1% penicillin/

streptomycin and 40 ng/mL murine M-CSF (Miltenyi Biotech). Cells were incubated for 5 days,

before they were plated onto poly-L-lysine coated cover slips for experiments. All cells were main-

tained at 37˚C in 5% CO2 atmosphere. If necessary, cells were stimulated with 1 mg/mL LPS (Escheri-

chia coli O26:B6, Sigma, L2762) prior to experiments for different time periods as stated in the text.

Animals were used under approved animal protocols and University of Munich (LMU) Institutional

Animal Care Guidelines.

Measurement of CCL2 content in bmdm’ culture supernatants by
ELISA
Cell culture supernatants from WT or TRPML2-/- BMDMF were collected at 4 hr or 8 hr following

LPS treatment in the presence or absence of TRPML2 agonist (ML2-SA1), and CCL2 was measured
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using an ELISA kit (BioLegend, 432707), per the manufacturer’s instructions. Cell culture superna-

tants were diluted ten times for the assay, and 50 mL diluted supernatant was assessed.

Transferrin trafficking assay
RAW264.7 cells were seeded overnight with 0.1 mg/mL of lipopolysaccharide (LPS) (L4391, Sigma).

Then, cells were loaded for 20 min at 37˚C with transferrin from human serum, Alexa Fluor 546-con-

jugated (T23364, ThermoFisher) at the concentration of 50 mg/mL in complete medium (DMEM 10%

FBS). The analysis of recycling kinetics was performed by chasing for 5, 10, 15 and 20 min in com-

plete media plus 50 mg/mL of unconjugated transferrin (T0665, Sigma) in the presence of either

DMSO or ML2-SA1 (30 mM). Before fixation with 4% paraformaldehyde (PFA), non-internalized trans-

ferrin was acid-stripped (150 mM NaCl, 0.5% acetic acid in H2O) for 30 s. Images were acquired

using a Zeiss LSM 800 with 63x magnification.

Lysosomal exocytosis assay (FACS)
RAW264.7 cells were seeded overnight with 0.1 mg/mL of lipopolysaccharide (LPS) (L4391, Sigma).

Then, cells were treated with DMSO, calcium ionophore A23187 (C7522, Sigma) or ML2-SA1 for 3

hr. After 3 h cells were collected and stained with LAMP1 antibody (SC-19992, Santa Cruz) in PBS

(1% BSA) during agitation for 20 min (4˚C). Cells were then collected by centrifugation and resus-

pended in PBS (1% BSA) with goat anti-rat, Alexa488 (A-11006 ThermoFisher) during agitation for 1

hr (4˚C). Finally, cells were washed in PBS and left on ice until FACS analysis. Cells were loaded into

the FACS machine using a nozzle of 100 mm and the LAMP1 fluorescence intensity was measured

using a 488 nm excitation laser and a FITCH (530/30 nm) emission filter. The threshold was set using

DMSO-treated samples, and 1000 events were counted for each condition.

Lysosomal exocytosis assay (Hexosaminidase)
For measurement of lysosomal hexosaminidase enzyme release, bone marrow macrophages were

treated with ML2-SA1, ML-SA1 or DMSO in serum-free RPMI medium, concentrations and durations

as indicated. Ionomycin was used as control. After treatment, supernatants were collected, centri-

fuged and incubated with natrium citrate buffer (pH 4.5) and 4-Methylumbelliferyl N-acetyl-b-D-glu-

cosaminide (M1233, Sigma, 1 mM final concentration) for 1.5 hr. Cells were lysed with Triton-X

buffer and lysates were processed in parallel. The reaction was stopped by adding glycin buffer to

the samples and the turnover of hexosaminidase substrate was detected as fluorescence (Exitation:

365 nm; Emission: 450 nm) using a plate reader (Spectramax ID3, Molecular Devices). The increase

in substrate turnover was analyzed as fluorescence increase in supernatants relative to lysates.

Site-directed mutagenesis
Generation of point mutant isoforms of hTRPML2 (encoded by the MCOLN2 gene) was performed

as described previously (Grimm et al., 2010) using the QuikChange protocol. The following primers

were used to generate hTRPML2 mutant isoforms: A422C forward primer: CTTCGGTTTTGTTGTTG

TGCTGGTATGATTTATCTGGG; A422C reverse primer: CCCAGATAAATCATACCAGCACAACAA-

CAAAACCGAAG; A424V forward primer: CGGTTTTGTGCTTGTGTTGGTATGATTTATCTGGGTTA-

CAC; A424V reverse primer: GTGTAACCCAGATAAATCATACCAACACAAGCACAAAACCG;

G425A forward primer: CGGTTTTGTGCTTGTGCTGCTATGATTTATCTGGGTTACAC; G425A

reverse primer: GTGTAACCCAGATAAATCATAGCAGCACAAGCACAAAACCG; A453S forward

primer: CTGAACACAGTTTCTGAGTGTCTGTTTTCTCTGG; A453S reverse primer: CCAGAGAAAA-

CAGACACTCAGAAACTGTGTTCAG; V460I forward primer: TGTCTGTTTTCTCTGATCAACGGTGA

TGACATG; V460I reverse primer: CATGTCATCACCGTTGATCAGAGAAAACAGACA; I498V forward

primer: CCTTCATCAGCCTTTTTATATATATGGTTCTCAGTCTTTTTATTGC; I498V reverse primer:

GCAATAAAAAGACTGAGAACCATATATATAAAAAGGCTGATGAAGG.

Macrophage migration experiments
ML2-SA1 effects on macrophage migration were assessed by a modified Boyden chamber setup

(Figure 6—figure supplement 2). In the modified Boyden chamber setup, BMDMF were plated

onto poly-L-lysine coated cover slips in a twenty-four well plate (lower compartment) in the presence

or absence of 1 mg/ml LPS for 6 hr. After 6 hr, media was replaced with media containing 10 or 30
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mM ML2-SA1 or DMSO. 1 � 105 BMDMF were placed on top of the transwell chamber (Corning) in

media without any compound. Transwell chambers were placed into the twenty-four well plate and

incubated for 3 hr at 37˚C in 5% CO2 atmosphere. In the classical Boyden chamber approach a

twenty-four well plate was filled with media containing either DMSO, 1 mg/ml LPS and DMSO, 1 mg/

ml LPS and 30 mM ML2-SA1, or 10 ng/ml CCL2. Transwell chambers were equally prepared and incu-

bated. Migrated cells were fixed and stained with crystal violet/methanol. The top of the transwell

chamber was cleaned an images were taken. Cell covered area was determined with ImageJ (NIH,

Bethesda, MD).
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