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Abstract

Background: The inclusion of high-dimensional omics data in prediction models has become a well-studied topic in
the last decades. Although most of these methods do not account for possibly different types of variables in the set of
covariates available in the same dataset, there are many such scenarios where the variables can be structured in
blocks of different types, e.g., clinical, transcriptomic, and methylation data. To date, there exist a few computationally
intensive approaches that make use of block structures of this kind.

Results: In this paper we present priority-Lasso, an intuitive and practical analysis strategy for building prediction
models based on Lasso that takes such block structures into account. It requires the definition of a priority order of
blocks of data. Lasso models are calculated successively for every block and the fitted values of every step are included
as an offset in the fit of the next step. We apply priority-Lasso in different settings on an acute myeloid leukemia (AML)
dataset consisting of clinical variables, cytogenetics, gene mutations and expression variables, and compare its
performance on an independent validation dataset to the performance of standard Lasso models.

Conclusion: The results show that priority-Lasso is able to keep pace with Lasso in terms of prediction accuracy.
Variables of blocks with higher priorities are favored over variables of blocks with lower priority, which results in easily
usable and transportable models for clinical practice.
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Background
Many cancers are heterogeneous diseases regarding biol-
ogy, treatment response and outcome. For example, in
the context of acute myeloid leukemia (AML), a vari-
ety of classifiers and recommendations were published to
guide treatment decisions [1].We and others have recently
shown that gene expression markers as well as mutational
profiling are able to improve risk prediction based on
standard clinical markers [2–5]. Other types of biomark-
ers such as copy number variation data or methylation
data may also be used for this purpose in the future.
However, irrespective of the considered specific end point
(e.g., overall survival, resistant disease, early death) no
model is currently able to precisely predict the outcome
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of AML patients. To date, the most powerful prognos-
tic models are based on cytogenetics and gene expression
markers [6].
In the present paper, we use the term omics to

denote molecular biomarkers measured through high-
throughput experiments. Beyond the example of AML
mentioned above, the integration of multiple types of
omics biomarkers with the aim of improved prediction
accuracy has been a focus of much attention in the past
years, see for example [7] and references therein. While
prediction modelling using a single type of omics markers
is a well-studied topic, it is not clear how different types
of biomarkers should be handled simultaneously when
deriving a prediction model.
In addition to the highly important topic of predic-

tion accuracy, encompassing both discrimination ability
and calibration, clinical reality requires analysts to take
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aspects related to usability into account when devel-
oping prediction models for clinical practice. Firstly, a
model including several hundreds/thousands of variables
is much more difficult to implement in clinical practice
than a model including only a handful of variables. Spar-
sity is thus an important aspect of the model which con-
tributes to its practical utility in clinical settings. Secondly,
a model including variables that are already included in
routine diagnostics — such as genetic alterations as rec-
ommended by the European LeukemiaNet (ELN) in the
case of AML [1], or variables that can be easily assessed
such as age or common clinical variables— aremore likely
to be accepted by physicians than a model including vari-
ables measured with new and/or expensive technologies,
maybe even at the expense of a slightly lower prediction
accuracy. These two points are arguments in favor ofmod-
els that (preferably) include a small number of variables
selected from particular “favorite” sets of variables — as
opposed to, say, a large number of variables selected from
genome-wide data.
Another aspect related to practical usability is the trans-

portability of a prediction model, i.e. the possibility for
potential users to apply the prediction model to their own
data based on information provided by the model devel-
opers [8]. Penalized regression methods yielding sparse
models typically yield better transportable models than
black-box machine learning algorithms [8, 9]. For exam-
ple, to apply a Lasso logistic regression model [10] for
making predictions for their own patients, users only
need the fitted regression coefficients and names of the
selected variables to compute the score and, if they want
to compute predicted probabilities, the fitted intercept. In
contrast, a prediction tool constructed using, for exam-
ple, the random forest algorithm, can be applied by other
researchers or clinicians only if they have access to a
software object (such as the output of the R function ‘ran-
domForest’ if the package of the same name is used) or
the dataset and the code used to construct it — which
may become obsolete after a few years. In this sense, Lasso
logistic regression is preferable to random forest as far
as transportability and sustainability are concerned. Note
that model interpretation is also particularly easy with
sparse penalized regression methods.
Finally, coming back to prediction accuracy, we note

that medical experts often have some kind of prior knowl-
edge regarding the information content of different sets
of variables. For example, they often expect (a particular
set of ) the clinical variables to have high prediction abil-
ity and a large proportion of the gene expression variables
to be less relevant. Such prior knowledge should ideally be
taken into account while constructing a prediction model.
Motivated by the need, in the context of AML research

and other fields, for sparse transportable models selecting
preferably variables that are easy to collect or expected to

yield good prediction accuracy, we suggest priority-Lasso,
a simple Lasso-based approach. Priority-Lasso is a hier-
archical regression method which builds prediction rules
for patient outcomes (e.g., a time-to-event, a response sta-
tus or a continuous outcome) from different blocks of
variables including high-throughput molecular data while
taking clinicians’ preference into account. More precisely,
clinicians define “blocks” of variables (which may simply
correspond to the type of data, e.g., the block of methy-
lation variables or the block of gene expression variables)
and order these blocks according to their level of priority.
The prediction model is then fitted in a stepwise manner:
In turn, each block of variables is considered as a covari-
ate matrix in Lasso regression, in the sequence of priority
specified by the clinician; see the “Methods” section for
more details.
The priority-Lasso procedure is fast and simple. It can

cope with all the types of outcome variables accepted by
Lasso and, more generally, inherits its properties. The
hierarchical principle of priority-Lasso can essentially also
be applied to extensions of Lasso, including but not lim-
ited to elastic net [11], adaptive Lasso [12] or stability
selection [13], but also, more generally, to other predic-
tion methods applicable to high-dimensional covariate
data. Last but not least, note that the priority sequence
imposed by the clinician merely determines which blocks
are prioritized over other blocks with respect to rendering
predictive information that is contained in several blocks.
Predictive information of blocks with low priority that is not
contained in blocks with high priority is still exploited by
priority-Lasso (see “Principles of priority-Lasso” section
for details).
The rest of this paper is structured as follows. Section

“Methods” presents the priority-Lasso method and its
implementation in detail. In “Results” section, the method
is illustrated with different settings through an application
to AML data and compared to standard Lasso in terms
of accuracy and included variables. The considered out-
come is the survival time and the considered types of data
are comprised of clinical data, the mutation status of sev-
eral genes and gene expression data. Most importantly,
prediction models are fitted on a training dataset and sub-
sequently validated on an independent dataset following
the recommendations by Royston and Altman [14].

Methods
We first provide a non-technical introduction into the
principles of priority-Lasso in “Principles of priority-Lasso”
section to make these concepts accessible to readers
without strong statistical background and to give a suc-
cinct overview. We present the method formally in
“Formalization of priority-Lasso” section, treat its imple-
mentation in “R package prioritylasso” section, and
describe in “Validation” section the validation strategy
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inspired from Royston and Altman [14] adopted in our
illustrative example.

Principles of priority-Lasso
Priority-Lasso is a method that can construct a prediction
model for a clinical outcome of interest (e.g., a time to
event or a response status and continuous outcome) based
on candidate variables, using an available training dataset.
Before running priority-Lasso, the user is required to first
specify a block structure for the covariates where each
covariate belongs to exactly one of M blocks and, second,
a priority order of these blocks.
A block may be of a particular data type, for example

“clinical data”, “gene expression data” or “methylation data”,
but the classification of variables into blocks may also be
finer. For example, clinical data may be divided into two
blocks, e.g., the demographic data (e.g., age or sex) in a
first block and clinical data related to the tumor in the
second block. Once the blocks of variables are defined,
the clinician orders them according to their level of pri-
ority. High priority should be given to blocks which are
easy and/or inexpensive to collect or are already routinely
collected in clinical practice.
After this definition, the prediction model is fitted in a

stepwise manner. In the first step, a Lasso model is fitted
to the block with highest priority. The goal of this step is
simply to explain the largest possible part of the variability
in the outcome variable by the covariates from the block
with highest priority. In the second step, a Lasso model is
fitted to the block with second highest priority using the
linear score from the first step as an offset, i.e., this linear
score is forced into the model with coefficient fixed to 1.
In the special case of a metric outcome, this corresponds
to fitting a second Lasso model (without the offset) to the
residuals from the first Lasso model using the block with
second highest priority as covariate matrix. The goal of
this second step is thus to use the variables from the sec-
ond block to explain remaining variability in the outcome
variable that could not be explained by covariates from the
first block.
In the third step, a Lasso regression is fitted to the

block with third highest priority using the linear score
from the second step as offset. The special case of a
metric outcome is correspondingly equivalent to fitting
a Lasso model to the residuals from the second Lasso
model using the block with third highest priority. This
procedure is iterated until all blocks have been consid-
ered in turn. Thus, in the case of a metric outcome, at
each step the current block is fitted to the residuals of
the previous step. Generalizing to other types of out-
come variables, in each step the current block is fitted
to the outcome conditional on all blocks with higher pri-
ority that were considered in the previous steps. In this
way, blocks of variables with low priority enter the model

only if they explain variability that is not explainable by
blocks with higher priority. Compared to non-hierarchical
approaches, priority-Lasso tends to yield models in which
variables from the most prioritized blocks play a more
important role.
This procedure was motivated by the fact that there

is frequently a strong overlap of predictive information
across the considered blocks. For example, some gene
expression and gene mutation variables can be associ-
ated with the same phenotype, which is why these two
different types of omics data may contain similar predic-
tive information. Moreover, clinical covariates and omics
covariates often carry similar predictive information. If, in
priority-Lasso, a block A is given a higher priority than a
block B, this means that the part of the predictive informa-
tion contained in A and B that is common to both blocks
will be obtained from block A. The larger the number
of blocks, the lower the information contained in indi-
vidual blocks, that is not contained in any other block.
Thus, in the presence of a large number of blocks there
is a high chance that priority-Lasso will exclude variables
from blocks of low priority, because the predictive infor-
mation contained therein may also be contained in the
data of blocks of higher priority. Therefore, by providing
a priority sequence, the analyst can decide which blocks
should be prioritized over others with respect to providing
predictive information redundant among blocks. The cho-
sen priority sequence can, however, be expected to have
a limited impact on the prediction error for the follow-
ing reason: If a block A with strong predictive power is
attributed a low priority, its predictive power will never-
theless be exploited in the prediction rule. This is because
the proportion of the variability of the outcome variable
that is only explainable by block A will still be unexplained
before block A is considered as a covariate block in the
iterative procedure.

Formalization of priority-Lasso
In the following description, we considerM blocks of con-
tinuous or binary variables that are all to be penalized,
and a continuous outcome variable for the sake of sim-
plicity. Extensions to time-to-event and binary outcomes
are straightforward using the corresponding variants of
Lasso (Cox Lasso and logistic Lasso, respectively, see [15]
and [10, 16]). The extension to multicategorical variables
is also straightforward using an appropriate coding of the
variables.
Let xij denote the observed value of the jth variable (j =

1, . . . , p) for the ith subject (i = 1, . . . , n) and yi denote the
observed outcome of subject i. For simplicity it is assumed
that each variable is centered to have mean zero over the n
observations. The standard Lasso method [10] estimates
the regression coefficients β1, . . . ,βp of the p variables by
minimizing the expression
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n∑

i=1

⎛

⎝yi −
p∑

j=1
xijβj

⎞

⎠
2

+ λ

p∑

j=1
|βj|

with respect to β1, . . . ,βp, where λ is a so-called penalty
parameter. This method performs both regularization
(shrinkage of the estimates) and variable selection (i.e.,
some of the estimates are shrunken to zero, meaning that
the variable is excluded from the model). The amount of
shrinkage is determined by the parameter λ, which is con-
sidered as a tuning parameter of the method and is in
practice most often chosen using cross-validation.
We now adapt our notation to the case of variables

forming groups that is considered in this paper. From now
on, the observations of the pm variables from block m for
subject i are denoted as x(m)

i1 , . . . , x(m)
ipm , for i = 1, . . . , n

and m = 1, . . . ,M. The number of blocks M usually
ranges from 2 to, say, 10 in practice, while the number
pm of variables often varies strongly across the blocks.
For example, blocks of clinical variables typically include a
very small number of variables, say, pm ≈ 10, while blocks
of molecular variables from high-throughput experiments
may include several tens or hundreds of thousands of
variables.
Similarly to the definition of x(m)

ij , β
(m)
j denotes the

regression coefficient of the jth variable from block m,
for j = 1, . . . , pm, while β̂

(m)
j stands for its estimated

counterpart.
Let us further denote as π = (π1, . . . ,πM) the permu-

tation of (1, . . . ,M) that indicates the priority order: π1
denotes the index of the block with highest priority, while
πM is the index of the block with the lowest priority. For
example, if M = 4, π = (3, 1, 4, 2) means that the third
block has highest priority, the first block has second high-
est priority, and so on. Conversely, the priority level of a
given block is indicated by the position of its index in the
vector π .
In the first step of priority-Lasso, the variables from

block π1 are used to fit a Lasso regression model. The
coefficients β

(π1)
1 , . . . ,β(π1)

pπ1
are estimated by minimizing

n∑

i=1

⎛

⎝yi −
pπ1∑

j=1
x(π1)
ij β

(π1)
j

⎞

⎠
2

+ λ(π1)

pπ1∑

j=1

∣∣∣β(π1)
j

∣∣∣ .

The linear predictor fitted in step 1 is given as

η̂1,i(π) = β̂
(π1)
1 x(π1)

i1 + . . . + β̂(π1)
pπ1

x(π1)
ipπ1

.

In “Principles of priority-Lasso” section we noted that
this linear predictor is used as an offset in the second
step in which we fit a Lasso model to block π2. However,
the linear score η̂1,i(π) tends to be over-optimistic with
respect to the information usable for predicting yi that is
contained in block π1. The reason for the latter is that
yi was part of the data used for obtaining the estimates

β̂
(π1)
1 , . . . , β̂(π1)

pπ1
, which are then used to calculate η̂1,i(π).

This overoptimism is essentially similar to the well-known
overoptimism that results from estimating the prediction
error of a prediction rule using the observations in the
training dataset.When using this over-optimistic estimate
η̂1,i(π) as an offset in the second step, the influence of
block π2 conditional on the influence of block π1 will
tend to be underestimated. The reason for this is that
by considering the over-optimistic estimate η̂1,i(π) as an
offset, a part of the variability in yi is removed that is
actually not explainable by block π1 but would possibly
be explainable by block π2. As noted above, this problem
results from the fact that yi is contained in the train-
ing data used for estimating β

(π1)
1 , . . . ,β(π1)

pπ1
. As a solution

to this problem we suggest estimating the offsets η1,i(π)

using cross-validation in the following way: 1) Split the
dataset S randomly into K approximately equally sized
parts S1, . . . , SK ; 2) For k = 1, . . . ,K : obtain estimates
β̂

(π1)
S\Sk ,1, . . . , β̂

(π1)
S\Sk ,pπ1

of the Lasso coefficients using the
training data S \ Sk and for all i ∈ Sk (k = 1, . . . ,K),
calculate the cross-validated offsets as

η̂1,i(π)CV = β̂
(π1)
S\Sk ,1x

(π1)
i1 + . . . + β̂

(π1)
S\Sk ,pπ1

x(π1)
ipπ1

.

In the second step the coefficients of the variables in
block π2 are thus estimated by minimizing

n∑

i=1

⎛

⎝yi−η̂1,i(π)CV−
pπ2∑

j=1
x(π2)
ij β

(π2)
j

⎞

⎠
2

+λ(π2)

pπ2∑

j=1

∣∣∣β(π2)
j

∣∣∣ .

Using η̂2,i(π) = η̂1,i(π)CV+ β̂
(π2)
1 x(π2)

i1 + . . .+ β̂
(π2)
pπ2

x(π2)
ipπ2

as
an offset in the third step in which we fit a Lasso model to
block π3 could again lead to underestimating the influence
of block π3 conditional on the influences of blocks π1 and
π2. This is because, analogously to the first step, the esti-
mates β̂

(π2)
1 , . . . , β̂(π2)

pπ2
used to calculate η̂2,i(π) are overly

well adapted to the residuals yi − η̂1,i(π)CV. Therefore,
we again suggest to calculate cross-validated estimates,
η̂2,i(π)CV, of the offsets analogously to the first step.
Priority-Lasso proceeds analogously for the remaining

groups until the final (Mth) fit, where the following linear
predictor is obtained:

η̂M,i(π) =
M∑

m=1

pπm∑

j=1
β̂

(πm)
j x(πm)

ij .

Note that when the offsets are not estimated by cross-
validation but the estimates η̂1,i(π), . . . , η̂M−1,i(π) are
used, the effects described above of underestimating the
conditional influences of the individual blocks accumu-
late. Thus, the influences of blocks with higher priority are
underestimated to a less stronger degree than are blocks
with low priority. This could eventually lead to the exclu-
sion of blocks with lower priority that are valuable for
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prediction. This is particularly problematic in cases in
which low priorities are attributed to blocks with high pre-
dictive information. Thus, cross-validated offsets may be
used to avoid suboptimal models that may result in cases
in which the priority sequence does not attribute high
priority to blocks with high predictive power. Note, how-
ever, that we are not interested in determining priority
sequences that perform optimally from a statistical point
of view. Instead, the priority sequence reflects the specific
needs of the user, who particularly cares about practicabil-
ity. Notwithstanding the above mentioned advantages of
using cross-validated offsets, we nevertheless also include
the version of priority-Lasso without cross-validated off-
sets in our application study (see “Results” section) for
several reasons. Firstly, because the version with cross-
validated offsets is more computationally intensive, and
thus might not be easily applicable in all situations. Sec-
ondly, we aim to illustrate that this version tends to
accredit more influence to the blocks with lower priority
than does the version without cross-validated offsets. In
addition, the suspected tendency of the version without
cross-validated offsets to exclude blocks with lower prior-
ity might be advantageous in applications in which these
blocks contain data types that are expensive to collect or
not well established.

R package prioritylasso
The priority-Lasso method (for continuous, binary, and
survival outcomes) is implemented in the function ‘pri-
oritylasso’ from our new R package of the same name
(version 0.2), which is publicly available from the “Com-
prehensive R Archive Network” repository. This package
uses the implementation of Lasso regression provided by
the R package ‘glmnet’ (see [17], and for the special case of
Cox-Lasso, see [18]).
The M penalty parameters λ(π1), . . . , λ(πM) are chosen

via cross-validation in the corresponding steps. As in ‘glm-
net’, two variants are implemented: The penalty parameter
can be chosen either in such a way that the mean cross-
validated error is minimal (denoted as ‘lambda.min’), or
in such a way that it yields the sparsest model with error
within one standard error of the minimum (denoted as
‘lambda.1se’). The latter option yields sparser models. In
order to further enforce sparsity at the convenience of
the clinician, our package allows to specify a maximum
number of non-zero coefficients for each block.
Furthermore, the function ‘prioritylasso’ offers the

option to leave the block with highest priority unpenalized
(i.e., to set λ(π1) to 0), provided the number of variables pπ1
in this group is smaller than the sample size n. Depend-
ing on the outcome, the estimation is then performed via
generalized linear regression or via Cox regression [19].
Another variant of the priority-Lasso method is imple-
mented in the function ‘cvm_prioritylasso’, which makes

it possible to take more than one vector π as the input
and choose the best one through minimizing the cross-
validation error. This variant is useful in cases where it
makes sense to take the group structure into account but
the clinician does not feel comfortable assigning clear-cut
priorities to each of the groups.
Note that our package solely aims at building predic-

tionmodels with different types of already prepared omics
data available as an n × p data matrix. However, generat-
ing such multi-omics data matrices from several types of
raw data files requires considerable effort.We refer to Bio-
conductor software packages [20] that allow convenient
annotation and organization of multi omics data. As an
important example, the ‘MultiAssayExperiment’ data class
[21] can be used for data preparation prior to running
‘prioritylasso’.

Validation
In “Results” section, we apply the priority-Lasso method
as well as the classical Lasso to fit prediction models for a
time-to-event on a training dataset and subsequently eval-
uate these models on a validation dataset; see “AML data”
section for a description of the data used in this analysis.
The present section briefly describes the criteria consid-
ered to assess prediction accuracy and the procedures
used for validation of the considered models, following
the recommendations of Royston and Altman [14]. These
authors emphasize in their paper that validation com-
prises both discrimination and calibration. Hence, we
perform both in our analysis and focus on the methods
denoted as methods 3, 4, 6, and 7 in their paper.
Firstly, following method 3, we present some measures

of discrimination. Instead of Harrell’s C-index, a com-
mon measure to quantify the goodness of fit, we show
the results of the Uno’s C-index [22], an adapted version
of Harrell’s C-index that accounts for censored data and
is thus more appropriate in our context. Another useful
measure is the integrated Brier score [23] assessing both
calibration and discrimination simultaneously, which we
calculate over two different time spans: up to two years
and up to the time of the last event. To visualize the
results, we also show the corresponding prediction error
curves obtained using the R package ‘pec’ [24].
Secondly, following method 4 of Royston and Altman

[14], we display Kaplan-Meier curves that can be useful
for both discrimination and calibration. For each consid-
ered prediction model, we define three risk groups, which
corresponds to standard practice in the AML context. See
for example the newest European Leukemia Net (ELN)
genetic risk stratification of AML, which classifies patients
into a low-, intermediate-, and a high-risk group [1] and
will be referred to as ELN2017 score in the sequel. To build
three groups based on a considered score, we choose the
two cutpoints that yield the highest logrank statistic in the
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training data. We then present the Kaplan-Meier curves
of the three risk groups for both training and validation
sets. Good separation of the three curves in the validation
dataset indicates good discrimination.
These three Kaplan-Meier curves observed for the val-

idation dataset can also be compared to the predicted
curves for the three risk groups in the validation dataset
(Royston and Altman’s method 7). By “predicted curve
for a risk group”, we mean the average of the individual
predicted curves of the patients within this risk group.
Good agreement between observed and predicted curves
suggests good calibration. Thirdly, as an extension of the
graphical check for discrimination, we also examine the
hazard ratios across risk groups (Royston and Altman’s
method 6).
Beyond these methods, we report the AUC, the true

positive rate (TPR, also known as sensitivity) and the true
negative rate (TNR, also known as specificity) of each
score at two years after the diagnosis. This time point
was chosen because its ratio of cases to survivors is the
closest to 1. The true positive and the true negative rate
are calculated with the median of each score as a cutoff
for categorizing the scores into two groups. Furthermore,
we consider a modified version of Royston and Altman’s
method 1. They suggest performing a regression with the
linear predictor from the model as the only covariate. For
a standard Cox model the resulting coefficient is exactly
1 in the training data and should be approximately 1 in
the validation data to indicate a good model fit. How-
ever, since we perform penalized regression this method
is not applicable to our model. Therefore, we modify this
criterion in calculating the calibration slopes in both train-
ing and validation data. The difference between the slope
obtained using the training data and the one obtained
using the validation data is a measure for the extent of the
overoptimistic assessment of discrimination ability that is
obtained using the training data.

Results
The section starts with a brief description of the
AML example dataset (“AML data” section). Then
we present four models fitted using priority-Lasso
(“Results of priority-Lasso” section) and compare them
with the current clinical standard model and with
two models fitted through standard Lasso (i.e., with-
out taking the block structure into account) in terms of
included variables (“Assessing included variables” section)
and performance in the independent validation data
(“Assessing prediction accuracy” section). These models
are all fitted with a restricted number of selected variables.
The same models without restrictions to the number of
variables are presented in Additional file 1 for further
comparisons. The complete R code written to perform the
analyses is available from Additional file 2.

AML data
In this study we use two independent datasets, denoted
training set and validation set hereafter, including vari-
ables belonging to different blocks (see details below).
All patients included in the analysis received cytarabine
and anthracycline based induction treatment. The train-
ing set consists of 447 patients randomized and treated
in the multicenter phase III AMLCG-1999 trial (clini-
caltrials.gov identifier NCT00266136) between 1999 and
2005 [25, 26]. The patients are part of a previously
published gene expression dataset (GSE37642) analyzed
with Affymetrix arrays [27]. All patients with a t(15;17)
or myelodysplastic syndrome are excluded, as well as
patients with missing data.
The validation set consists of all patients with

available material treated in the AMLCG-2008 study
(NCT01382147) [28], a randomized, multicenter phase III
trial (n = 210) and additional n = 40 patients that had
resistant disease and were treated in the AMLCG-1999
trial. The dataset is publicly available at the Gene Expres-
sion Omnibus repository (GSE106291). The detailed
inclusion and exclusion criteria were described previously
[29]. The patients of the validation set were analyzed
by RNAseq. For comparability, all continuous variables
are standardized to a mean zero and variance one. All
study protocols are in accordance with the Declaration of
Helsinki and approved by the institutional review boards
of the participating centers. All patients provided written
informed consent for inclusion on the clinical trial and
genetic analyses.

Results of priority-Lasso
We apply priority-Lasso on the training dataset (n = 447,
described in “AML data” section), considering four
different scenarios. These scenarios differ in the way
the score ELN2017 is included in the analysis and
whether or not the offsets are cross-validated (see
“Formalization of priority-Lasso” section). Furthermore,
we always apply the ‘lambda.min’ procedure and 10-fold-
cross-validation for the choice of the penalty parameter
in each step. However, since prediction performance is
not the main concern in our analyses, the ‘lambda.1se’
approach would also be a reasonable option. In
“Sensitivity analysis” section we show some results with
‘lambda.1se’ in addition to our main analyses. Further-
more, we allow for a maximum of 10 gene expression
variables for each scenario as we want to keep the
resulting model as simple as possible and experience
has shown that in survival prediction for AML patients
only a few gene expression values have a considerable
influence on the outcome. Moreover, gene expression
values are not easy to implement in clinical routine.
We define the following blocks and corresponding
priorities:
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• Block of priority 1: the score ELN2017 [1]. It can be
represented in different ways which are explained in
the definition of the scenarios.

• Block of priority 2: 8 clinical variables measured at
different scales

• Block of priority 3: 40 binary variables, each of which
represents the mutation status for a certain gene

• Block of priority 4: 15809 continuous variables, each
of which is the expression value of a certain gene

The order of these blocks have been determined by a
physician involved in the project, who has many years
of experience in the treatment of patients with AML,
as well as experience with AML outcome prediction.
These choices are based on practical considerations.
However, alternative block orders could be reasonable
from other points of view. For example, if the focus is
solely on the maximization of prediction performance
without any practical constraints, we refer to the func-
tion ‘cvm_prioritylasso’ from our R package ’prioritylasso’
which chooses the best order of blocks from two or more
priority options according to the mean cross-validated
performance. In addition to our main analyses that are
based on an ordering that takes practical aspects into
account as outlined above, we present additional results
obtained for other block orders in “Sensitivity analysis”
section.

Scenario pl1A
In the first scenario, the block of priority 1 consists
of the three-categorical ELN2017 score represented by
two dummy variables. We do not penalize this block
and do not use cross-validated offsets. In this scenario
the selected model includes only 7 variables represented
by 8 coefficients: the dummy variables ELN2017_2 and
ELN2017_3, equaling 1 for the intermediate and the high-
risk category, respectively, and 0 otherwise, are selected
by definition, because they result from a fit of a stan-
dard Cox model without penalization. Moreover, age, the
Eastern Cooperative Oncology Group performance sta-
tus (ECOG) [30], white blood cell count (WBC), lactate
dehydrogenase serum level (LDH), hemoglobin level (Hb)
and platelet count (PLT) are selected. The selected vari-
ables and their coefficients are displayed in the second and
third column of Table 1. Variables from blocks with prior-
ity 3 (mutation status of 40 genes) and 4 (gene expression)
are absent from the model, yielding a particularly sparse
model based on variables which are easy to access.

Scenario pl1B
This scenario is very similar to pl1A with the differ-
ence that the offsets are cross-validated as described in
“Formalization of priority-Lasso” section. Because there
are no offsets in the first step of the model fit, the

Table 1 Variables selected by priority-Lasso in scenarios pl1A
and pl1B

Block Variable Coef. pl1A Coef. pl1B

1 ELN2017_2 0.8552 0.8552

ELN2017_3 1.4324 1.4324

2 Age 0.3540 0.3556

ECOG (>1) 0.2794 0.2768

WBC 0.1029 0.1019

LDH 0.1744 0.1763

Hb 0.0529 0.0532

PLT -0.0788 -0.0800

4 PHGDH 0.1242

FAM171B 0.0726

SH3PXD2B 0.0192

F12 0.0097

CD109 0.0599

FAM92A1 0.0193

LAPTM4B 0.0079

FAM24B 0.0378

DDIT4 0.0424

DOCK1 0.0295

Column 1: priority of the block the variables are included in. Column 2: variable
name. Column 3 and 4: coefficient of the variable in the Cox Lasso model

coefficients of pl1A and pl1B are the same for the block
of priority 1 (see Table 1, column 4). For the block of
priority 2, the same variables are selected with small
differences in their coefficients. While both models do
not select variables from the block of priority 3, model
pl1B additionally includes 10 gene expression markers—
all with only small influence though. Nevertheless, the fact
that gene expression markers are included in the model
with cross-validated offsets, but not in the model without
cross-validated offsets, illustrates the conjecture made in
“Formalization of priority-Lasso” section: When using the
priority-Lasso version with cross-validated offsets, more
influence tends to be accredited to the blocks with lower
priority compared to when using the version without
cross-validated offsets.

Scenario pl2A
As an alternative approach, considered as sensitivity anal-
ysis in the present paper, one may also replace ELN2017
with the 19 variables that are used for its calculation.
Because of the far higher number of variables, we penal-
ize this block of priority 1. The results of the scenario
without cross-validated offsets (scenario pl2A) are dis-
played in the third column of Table 2, showing that 14
of these 19 variables are selected. While the selected
variables from block 2 are almost the same as in sce-
nario pl1A (except the additional inclusion of sex), now
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Table 2 Variables selected by priority-Lasso in scenarios pl2A
and pl2B

Block Variable Coef. pl2A Coef. pl2B

1 t(8;21)(q22;q22) -1.0289 -1.0289

inv(16)(p13.1q22) -1.5444 -1.5444

NPM1 mut/FLT3-ITD neg or low -1.0181 -1.0181

biCEBPA -1.2240 -1.2240

NPM1 wt/FLT3-ITD pos or low -0.4358 -0.4358

t(9;11)(p21;q23) 0.4635 0.4635

Other aberrations -0.4376 -0.4376

KMT2A rearrangements -0.5440 -0.5440

Complex karyotype 0.2970 0.2970

Monosomal karyotype 0.0313 0.0313

NPM1 wt/FLT3-ITD pos 0.1712 0.1712

RUNX1 mutations 0.3065 0.3065

ASXL mutations -0.1224 -0.1224

TP53 mutations 0.4306 0.4306

2 Age 0.2957 0.2617

Sex -0.1011

ECOG (>1) 0.3147 0.3206

WBC 0.0990 0.0589

LDH 0.1681 0.2371

Hb 0.0700 0.0671

PLT -0.0960 -0.0578

4 ZBTB37 0.0047 0.0025

MFI2 0.0090

SH3PXD2B 0.0013 0.0418

PDK3 -0.0187

FAM24B 0.0248

SIK3 -0.0063

OR7A17 0.0039

TBC1D17 -0.0172

PHGDH 0.0488

FAM171B 0.0134

FGD5 0.0359

F12 0.0238

IRX1 -0.0090

FAM92A1 0.0239

DDIT4 0.0769

HSPA2 0.0169

Column 1: priority of the block the variable is included in. Column 2: variable name.
Column 3 and 4: coefficient of the variable in the Cox Lasso model. Variables from
the block of priority 4 also appearing in Table 1 are marked in bold

there are 8 gene expression variables selected from
the block of priority 4. We can see that these gene
expression variables are not necessarily the same as in
scenario pl1B.

Scenario pl2B
Analogously to scenarios pl1A and pl1B, scenario pl2B is
the same as pl2A, except that the offsets are calculated
with cross-validation. Column 4 of Table 2 contains the
results from this model, showing only small differences in
the block of priority 2, but again large differences in the
selected gene expression markers.

Assessing included variables
For assessing the fittedmodels with respect to the selected
variables, we consider as a reference two standard Lasso
models fitted to the training data using the whole set of
variables without taking any block structure into account.
The two models differ in the way ELN2017 is treated.
In the first Lasso model (variant ‘Lasso1’) it is consid-
ered as the score represented by two dummy variables. In
the second Lasso model it is represented by the 19 vari-
ables which are used for its definition (variant ‘Lasso2’).
In order to allow for a fair comparison, we again use
the ‘lambda.min’ procedure and 10-fold-cross-validation
to choose the penalty λ. Moreover, we allow the selection
of a maximum number of variables equal to the number
of all variables in blocks 1-3 for priority-Lasso plus 10.
This corresponds to the fact that we did not restrict the
number of variables of blocks 1-3 for priority-Lasso, but
set the maximum number of gene expression variables
to 10. The resulting models (not shown) clearly select
more variables than the models obtained with priority-
Lasso. Especially the number of gene expression variables
is much higher (43 for Lasso1 and 52 for Lasso2), whereas
only age for both models and ELN2017_3 for Lasso1
are selected variables from other types of data. Hence,
priority-Lasso favors variables from blocks with high pri-
ority compared to standard Lasso and yields models that
include considerably less variables.

Assessing prediction accuracy
In order to compare the different approaches we follow
the procedures described in “Validation” section − the
results are shown in Table 3. It can be seen that pl1A
and pl1B reach the highest sensitivity among the scenar-
ios (0.672), whereas especially the raw ELN2017 score is
associated with a far lower value (0.556). In contrast, the
specificity is 0.723 for ELN2017, whereas all other scenar-
ios are associated with a specificity between 0.64 and 0.67.
However, these results represent only one of many possi-
ble time points and cutoffs, so their use is doubtful in our
context. The other measures − the AUC, the C-indices,
and the integrated Brier score − do not show great dif-
ferences across the scenarios either. Only ELN2017 is an
exception with considerably poorer results. For the AUC,
pl1B yields the best result with a value of 0.731, but scenar-
ios pl2B, Lasso1 and Lasso2 are not far worse. For CUno,
the highest value is 0.664, which is reached by pl2B. The
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Table 3 Validation results for the model scenarios with restrictions to the number of selected variables

pl1A pl1B Lasso1 pl2A pl2B Lasso2 ELN2017

TPR 0.672 0.672 0.651 0.640 0.658 0.643 0.556

TNR 0.667 0.658 0.661 0.647 0.664 0.653 0.723

AUC 0.711 0.731 0.726 0.713 0.727 0.725 0.663

CUno 0.653 0.660 0.658 0.658 0.664 0.656 0.619

IBS2 0.175 0.172 0.176 0.175 0.172 0.177 0.181

IBS4.4 0.197 0.192 0.191 0.197 0.191 0.193 0.204

Optimism 0.393 0.289 0.920 0.377 0.243 0.984

CILlower 0.339 0.304 0.247 0.387 0.327 0.177 0.418

HRL 0.536 0.455 0.363 0.605 0.566 0.286 0.669

CILupper 0.849 0.652 0.535 0.946 0.981 0.461 1.074

CIHlower 1.175 1.098 0.948 1.515 1.534 0.974 1.314

HRH 1.751 1.651 1.385 2.208 2.199 1.386 1.954

CIHupper 2.612 2.483 2.022 3.216 3.151 1.972 2.907

p-valueLR 1.11e-08 1.05e-8 2.22e-10 1.07e-08 1.74e-08 4.99e-11 1.36e-07

The acronyms in the first column are: TPR: True positive rate; TNR: True negative rate; AUC: Area under the curve, CUno : Uno’s C-index, IBS2: Integrated Brier score up to 2 years,
IBS4.4: Integrated Brier score up to 4.4 years, Optimism: difference between calibration slopes of training and validation data, CILlower : lower bound of the 95% confidence
interval for the hazard ratio of the low risk group, HRL : hazard ratio of the low risk group, CILupper : upper bound of the 95% confidence interval for the hazard ratio of the low

risk group, CIHlower : lower bound of the 95% confidence interval for the hazard ratio of the high risk group, HRH : hazard ratio of the high risk group, CIHupper : upper bound of the
95% confidence interval for the hazard ratio of the high risk group, p-value: p-value of the likelihood ratio test

integrated Brier score is calculated over two different time
spans (up to 2 years and up to 4.4 years, the latter being
the time to the last event). After two years, the priority-
Lasso fit with cross-validated offsets is better than the
other models − no matter how ELN2017 is treated. Over
the whole time period, Lasso1 and pl2B give the low-
est IBS, followed by Lasso2, indicating a lower prediction
error for the Lasso models in the second half of the whole
time period. This can also be observed in Fig. 1. Scenar-
ios pl1B and pl2B perform best in the first two years but
they are outperformed by Lasso afterwards. As expected,
priority-Lasso with cross-validated offsets is always better
than without. All fitted models are associated with a much
lower prediction error than ELN2017 alone. The results
from the prediction error curves do not differ substan-
tially between the two panels of Fig. 1, that is, they are
robust with regard to the handling of ELN2017.
The Kaplan-Meier curves for training and validation

data are shown in Fig. 2. The discrimination by Lasso
is obviously very good in the training data, but worse
in the validation data. Especially the difference in sur-
vival between intermediate and high risk is not very
clear. For both representations of ELN2017, the priority-
Lassomodels with andwithout cross-validated offsets fea-
ture a similar discrimination, where, however, the results
obtained using the version with cross-validated offsets are
slightly better. For the scenario with all ELN2017 vari-
ables, the priority-Lassomodels give the best results in the
validation data among all scenarios. In contrast, ELN2017
discriminates less well between the three risk groups. The

results concerning Lasso indicate systematic overfitting
in the training data. This is consistent with the results
seen in “Assessing included variables” sectionwhere Lasso
included much more variables than the other methods. It
can also be seen from the row ‘optimism’ of Table 3. The
difference of the slopes between training and validation
data is the largest for the Lassomodels, indicating that this
method is associated with the highest overoptimism.
A possible way of quantifying the results seen in Fig. 2

is to consider the hazard ratios across risk groups in the
validation set as shown in the lower half of Table 3. The
intermediate group serves as a baseline here. The result of
the likelihood ratio test is significant for all models. The
discrimination between low and intermediate group is
worst for the ELN2017 score. As already seen in Fig. 2, the
discrimination between the low and intermediate group is
better for Lasso than priority-Lasso. In contrast, priority-
Lasso has a higher hazard ratio for the high risk group, in
particular when using all ELN variables. These observa-
tions are also consistent with the results shown in Fig. 1,
where the prediction was better for priority-Lasso than for
Lasso in the earlier years, but worse in the later years. This
corresponds to better prediction for shorter survival times
and worse prediction for longer survival times, respec-
tively. The fact that ELN2017 is included in the results of
priority-Lasso, but not standard Lasso except ELN2017_3
in Lasso1, also seems to play a role for this issue. Both
Fig. 2 and the hazard ratios clearly show that the predic-
tion is better for high risk groups than for low risk groups
with the raw ELN2017 score.
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Fig. 1 Prediction error curves. The curves show the Brier scores calculated in the validation data for the different scenarios and for different time
points. The left panel contains the models considering ELN2017 as categories. The right panel contains the models considering all ELN variables. The
Reference scenario results from the Kaplan-Meier estimation and is the same in both panels. Furthermore, curves for ELN2017, for priority-Lasso with
and without cross-validated offsets, and for standard Lasso are shown

Finally, we present the Kaplan-Meier curves for calibra-
tion in Fig. 3. For all the scenarios there are groups that
reveal some miscalibration. For the Lasso models, espe-
cially the high risk groups differ between predicted and
observed validation curves. The scenarios pl2A and pl2B
show more differences between predictions and observa-
tions in the low risk groups than the other scenarios—the
same fact applies to pl1A and pl1B in the intermediate risk
group.

Sensitivity analysis
In order to investigate the influence of different block
orders on the selected variables, we run the four different
scenarios of priority-Lasso with every possible block order
(data not shown). The results show that the block order
can have substantial influence on the number of selected
variables. For the scenarios pl1A and pl1B, sparsest mod-
els are obtained with our priority definition, illustrating
that priority-Lasso takes advantage of prior knowledge.
Higher numbers of variables are obtained for other block
orders with maximum values of 45 (pl2A, π = (4, 3, 1, 2)
and π = (4, 3, 2, 1)). Seven of the eight selected variables
in pl1A are chosen for almost every scenario of priority-
Lasso and block orders, demonstrating their importance
even in blocks of low priority. Remarkably, only a small
part of them are found in the standard Lasso models (age

in Lasso1 and Lasso2, as well as ELN2017_3 in Lasso1).
It can be further observed that many of the selected gene
expression variables are selected for only a small fraction
of models.
In additional sensitivity analyses we consider the four

scenarios with the ‘lambda.1se’ setting in order to
choose the M values λ(π1), . . . , λ(πM) as discussed in
“R package prioritylasso” section. As expected, the
‘lambda.1se’ setting leads to a smaller number of selected
variables for all scenarios. In total, the number of variables
is 4, 10, and 15 for priority-Lasso with ELN categories,
priority-Lasso with ELN variables (both with and with-
out cross-validated offsets), and Lasso, respectively. The
four different priority-Lasso models solely select variables
from blocks 1 and 2. On the other hand, apart from age,
Lasso selects only gene expression variables.

Discussion
We introduced priority-Lasso, a simple Lasso-based intu-
itive procedure for patient outcome modelling based on
blocks of multiple omics data that incorporates practical
constraints and/or prior knowledge on the relevance of
the blocks. The procedure essentially inherits most prop-
erties of Lasso. Its basic principle is however not limited
to Lasso and could be easily adapted to recently developed
variants of penalized regression.
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Fig. 2 Kaplan-Meier curves for training and validation data in three risk groups. The three risk groups were built according to the highest logrank
statistic in the training data. The left panel contains the results for the standard Lasso models and the raw ELN2017 score. The middle and right
panels contain the plots of priority-Lasso with and without cross-validated offsets, respectively. The top and middle panels show the results
considering ELN2017 as categories and using all ELN variables, respectively

An important feature of priority-Lasso is that it
directly addresses the problem of redundancies in the
predictive information across different blocks: Predic-
tive information contained in the data from specific
blocks is incorporated only if it is not contained in
data from blocks of higher priority. To date, this idea
seems to have been considered only in the TANDEM
approach [31], that is, however, restricted to the case of
two blocks.
In our illustrative example from leukemia research

priority-Lasso was able to reach better prediction accu-
racy than Lasso. This applies especially to the version
of priority-Lasso with cross-validated offsets, however, at

the cost of more computation time and more selected
variables than without cross-validated offsets. But even
without cross-validated offsets, the models are not sub-
stantially worse than Lasso as far as accuracy is con-
cerned. Moreover, they offer considerable advantages in
terms of increased sparsity and composition of the mod-
els: they include less variables that are currently not
included in the recommended diagnostic workup at initial
diagnosis, which is an advantage from a practical per-
spective. Priority-Lasso offers more flexibility than Lasso:
it allows the user to define block structures, where for
each block a maximum number of selected variables can
be specified.
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Fig. 3 Observed and predicted Kaplan-Meier curves for the validation data in three risk groups. The three risk groups were built according to the
highest logrank statistic in the training data. The left panel contains the results for the standard Lasso models and the raw ELN2017 score. The
middle and right panels contain the plots of priority-Lasso with and without cross-validated offsets, respectively. The top and middle panels show
the results considering ELN2017 as categories and using all ELN variables, respectively

The obtained models can be seen as compromises
between “what the data tells us” and what is more realistic
and easy to implement in clinical routine. As an extreme
variant of priority-Lasso, one could imagine the case
of a practitioner fixing the ordering of the variables
completely, which amounts to considering blocks of size
1 (each variable forms one block). The other extreme
consists of ignoring the block structure and simply fit-
ting a model using Lasso to all variables. The finer the
block structure, the less data-driven is the model selec-
tion. The number of blocks also influences the maximum
possible number of selected variables in the final model.
Since a maximum of n variables can be selected in a Lasso

regression, a selection of n variables is the maximum
for every block in priority-Lasso − hence the maximum
possible number of variables selected by priority-Lasso
depends on the number of blocks.
Unlike with Bayesian methods, prior knowledge is taken

into account only through the definition and ordering
of blocks. This feature makes the method less flexible,
but also easy to use and interpret for scientists with-
out strong background in statistics. The user does not
have to perform any complicated choices in order to
apply the method: The first choice to be made is whether
or not the offset should be cross-validated — the vari-
ant without cross-validation gives more weight to blocks
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with high priority, but is prone to overfitting. More-
over, the user may decide to leave the block with high-
est priority unpenalized in case it satisfies pπ1 < n.
By default it is treated like the other blocks of data
and is thus penalized. As for all penalized regression
methods, one can choose the procedure used for opti-
mizing λ (in ‘glmnet’: λmin or λ1se), which amounts to
deciding between a more complex model with poten-
tially slightly better accuracy and a sparser model. The
default is λmin, that is, the λ associated with the min-
imum cross-validation error in each step. Of course
there are additional parameters like the number of folds
in the cross-validation procedures that could be modi-
fied as well, but are not expected to strongly affect the
results.
Note that when working with multi-omics data other,

more technical analysis steps are required before build-
ing prediction models. The package ‘prioritylasso’ itself
was designed solely to build prediction models and
takes the already formatted multi-omics data matrix
as input. Fortunately, there are other tools available
in Bioconductor that are of great value for the pur-
pose of preparing multi-omics data. For example, the
‘MultiAssayExperiment’ software package [21] provides
useful functions to represent, store, and operate on
multi-omics data. It builds a bridge from standard
R to Bioconductor and its classes for data repre-
sentation that cannot be ignored in the context of
omics data.
Finally, priority-Lasso offers further practical advan-

tages for clinical practice. Suppose there are (blocks of )
variables available only for a subset of patients and miss-
ing for the other. A potential approach to efficiently handle
such data consists of assigning them a low priority in
priority-Lasso. In this way, one can first fit a “basic” model
to the blocks that are available for all patients, using all
patients. This basic model can then be complemented by
variables from the low priority blocks that are missing
for a subset of the patients. Importantly, this is also rele-
vant for prediction: Blocks which are not available for all
patients in the training data will not be frequently avail-
able for new data for the purpose of prediction. In such
cases, the basic prediction model can be used to obtain
predictions.

Conclusion
Our results show that priority-Lasso is a flexible and
user-friendly prediction method that can reach a sim-
ilar or even better prediction accuracy compared to
standard Lasso. The feature which favors variables of
blocks with higher priorities over variables of blocks
with lower priority offers a practical advantage and
makes the resulting prediction rules easy to use and
interpret.
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