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Abstract

Background

The CX3C chemokine receptor CX3CR1 is expressed on monocytes as well as tissue resi-

dent cells, such as smooth muscle cells (SMCs). Its role in atherosclerotic tissue remodeling

of the aorta after transplantation has not been investigated.

Methods

We here have orthotopically transplanted infrarenal Cx3cr1-/-Apoe-/- and Cx3cr1+/+Apoe-/-

aortic segments into Apoe-/-mice, as well as Apoe-/- aortic segments into Cx3cr1-/-Apoe-/-

mice. The intimal plaque size and cellular plaque composition of the transplanted aortic seg-

ment were analyzed after four weeks of atherogenic diet.

Results

Transplantation of Cx3cr-/-Apoe-/- aortic segments into Apoe-/- mice resulted in reduced ath-

erosclerotic plaque formation compared to plaque size in Apoe-/- or Cx3cr1-/-Apoe-/- mice

after transplantation of Apoe-/- aortas. This reduction in lesion formation was associated

with reduced numbers of lesional SMCs but not macrophages within the transplanted

Cx3cr-/- Apoe-/- aortic segment. No differences in frequencies of proliferating and apoptotic

cells could be observed.

Conclusion

These results indicate that CX3CR1 on resident vessel wall cells plays a key role in athero-

sclerotic plaque formation in transplanted aortic grafts. Targeting of vascular CX3CL1/
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CX3CR1 may therefore be explored as a therapeutic option in vascular transplantation

procedures.

Introduction

Atherosclerosis is an inflammatory disease of the arteries with a high rate of morbidity and

mortality in the Western World. The immune reactions involved in atherosclerotic plaque for-

mation are controlled by lipid mediators, costimulatory molecules and cytokines. Chemokines

are a family of chemotactic cytokines that mediate immune cell recruitment and are of high

relevance in atherogenesis [1], and targeting of chemokines and their receptors has been

shown to reduce experimental atherosclerosis [2–4].

Fractalkine or CX3CL1 is a CX3C chemokine that is expressed in the vessel wall and medi-

ates firm adhesion and chemotaxis of leukocytes expressing its G-protein-coupled receptor,

CX3CR1. CX3CL1 is the only member of the CX3C chemokine family and is usually attached

to the membrane through a mucin-like domain [5,6].

Fractalkine/CX3CL1 expression has been detected on activated endothelial cells, smooth

muscle cells (SMCs), macrophages and platelets, and is involved in the development of numer-

ous inflammatory pathologies including atherosclerosis, rheumatoid arthritis, or graft rejec-

tion [7–13]. While the expression of fractalkine and its receptor CX3CR1 is low in healthy

vessels, it increases significantly under pathological conditions, such as in atherosclerotic pla-

ques or during allograft rejection [11,13]. In atherosclerotic vessels, its receptor CX3CR1 is

expressed on monocytes and tissue resident SMCs. Mice deficient in CX3CR1 (Cx3cr-/- mice)

have previously been employed to investigate the function of monocyte survival and recruit-

ment during atherogenesis [14,15]. The CX3CL1-CX3CR1 interaction has been shown to con-

fer essential survival signals in monocytes/macrohages, and absence of CX3CR1 was shown to

lead to an increased death of monocytes and/or foam cells, inhibiting atherosclerotic lesion

formation [15]. Pharmacological inhibition of the chemokine receptor, CX3CR1 has further-

more been described to inhibit leukocyte recruitment and to reduce atherosclerosis [16], indi-

cating an important role of CX3CL1 in the pathogenesis of atherosclerosis. In addiiton,

platelets express CX3CR1, which plays a role in the formation of platelet-monocyte complexes

[10]. Moreover, CX3CL1/Fractalkine can elicit chemotactic responses in SMCs and has been

described to exert anti-apoptotic and proliferative effects on human vascular SMC [6,11].

Effects of a deficiency of CX3CL1/CX3CR1 or its blockade in vivo, however, do not allow a

discriminatation of local from systemic effects. In this regard, murine aortic transplant models

have attracted great attention as these allow studying specific vascular responses caused by the

graft itself separate from systemic factors related to the recipient (atherogenic) environment

[17–19].

In this study, we focused on the function of CX3CR1 in the atherosclerotic response within

an aortic segment graft orthotopically transplanted in mice. This allowed us to investigate the

role of vascular CX3CR1 versus systemic CX3CR1 to gain further insight into the details of

how this chemokine receptor controls atherosclerotic plaque formation.

Methods

Aortic transplantation

Apoe-/- mice (C57BL/6 background) were crossed with Cx3cr1-/- [20] mice to generate

Cx3cr1+/+ Apoe-/- and Cx3cr1-/- Apoe-/- mice. 8–12 week old male mice were housed under
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standardized conditions in the Animal Facility of the University Hospital Aachen (Germany).

The operating procedure was in accordance with European legislation and approved by local

German authorities. Infrarenal abdominal Apoe-/- aorta segments were transplanted into

Apoe-/- mice (n = 4), Cx3cr1-/- Apoe-/- aorta segments into Apoe-/- mice (n = 5), and Apoe-/-

aorta segements were transplanted into Cx3cr1-/-Apoe-/- mice (n = 5). After transplantation,

mice were placed on atherogenic diet (21% fat, 0.15% cholesterol, Altromin) for four weeks.

The abdominal aortic transplantation was performed as described previously using the

sleeve technique [17,21]. Briefly, mice were anesthetized using a mixture of 1.5 vol. % isoflur-

ane and 100% oxygen through a face mask. The segment of aorta between the renal arteries

and its bifurcation was separated from the vena cava. The infrarenal aorta of the recipient was

dissected and mobilized between the renal arteries proximally and the bifurcation distally. All

the small branches of this segment were secured. The proximal and distal portions of the aorta

were clamped by 6/0 single silk suture (Silk, Deknatel, Research Triangle Park NC, USA). The

graft was placed in the orthotopic position and the anastomosis was performed using the sleeve

technique with sutures 11/0 monofilament (Ethilon, Ethicon, Norderstedt, Germany). The

mean surgical anastomosis time was 22 minutes (range 13–40 minutes). Donor and recipient

mice were of the same age (8–12 weeks).

Immunohistochemistry

For tissue harvesting, animals were anesthetized (with a mixture of 1.5 vol. % isoflurane and

100% oxygen via a face mask) and vessels were flushed with phosphate-buffered saline (PBS)

followed by 4% formaldehyde/PBS (pH 7.4) by cardiac puncture. Grafts were gently removed.

After overnight fixation in 4% formaldehyde/PBS, specimens were further processed and

embedded in paraffin. Serial sections (5 μm) throughout the transplanted aorta distal and

proximal of the anastomosis sites were stained by hematoxylin and eosin staining (HE).

Immunocytochemistry was performed using antibodies raised against macrophages (Mac2,

CL8942AP/Cedarlane), vascular smooth muscle cells (SMA, M0851/Dako) followed by anti-

rat FITC (Jackson Immuno- Research, West Grove, USA) and anti-mouse-Cy3, respectively,

antigen KI-67 for cellular proliferation (KI-67, M7249/Dako, Jena, Germany) and TUNEL for

detecting DNA fragmentation (1215679210/Roche; 11684795910/Roche, Mannheim, Ger-

many). Positively stained cells were counted in higher magnification (40x) and expressed as

percent from total DAPI stained nuclei or as absolute numbers per mm2 (S1A and S1B Fig).

Statistics

Data are presented as mean ± SEM. The significance of changes between experimental groups

and different time points was determined by one-way ANOVA, with Tukey multiple compari-

son test. A p-value of<0.05 was considered significant. Statistical analyses were performed

with GraphPad Prism 6.03 (Statcon, Witzenhausen, Germany).

Results

Murine orthotopical transplantations of infrarenal aortic segments of Apoe-/- mice into Apoe-/-

mice (control, n = 4), of Cx3cr1-/- Apoe-/- aortic segments into Apoe-/- mice (n = 5), as well as

Apoe-/- aortic segments into Cx3cr1-/- Apoe-/- mice (n = 5) were performed using the sleeve

technique [17,21], and mice were placed on atherogenic diet containing 21% fat and 0.15%

cholesterol. Four weeks after transplantation, the aortic segments were harvested for further

analysis.

The histological analysis of the transplanted aortic segment revealed a significant reduction

in plaque size in Cx3cr1-/- Apoe-/- aortic segments in Apoe-/- recipients, whereas a trend
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towards reduced plaque burden was observed in Apoe-/- aortic segments transplanted into

cx3cr1-/- Apoe-/- mice did not reach statistical significance, compared to control Apoe-/- aortic

segments in Apoe-/- mice (Fig 1). The histological analysis of the transplanted aortic segment

revealed a significant reduction in plaque size in Cx3cr1-/- Apoe-/- aortic segments in Apoe-/-

recipients, whereas a trend towards reduced plaque burden was observed in Apoe-/- aortic seg-

ments transplanted into Cx3cr1-/- Apoe-/- mice did not reach statistical significance, compared

to control Apoe-/- aortic segments in Apoe-/- mice (Fig 1). No statistical differences in plaque

size could be detected between Cx3cr1+/+ Apoe-/- mice with Cx3cr1-/- Apoe-/- aortic segments

and Cx3cr1-/- Apoe-/- mice with Cx3cr1+/+ Apoe-/- aortic segments.

Immunostaining further revealed that this decrease in atherosclerotic plaque size in

Cx3cr1-/- Apoe-/- aortic segments was associated with a significant reduction in the number of

smooth muscle actin (SMA)+ SMCs in plaques of the aortic segment (Fig 2A, S1C Fig). The

presence of SMA+ SMCs mostly in the intima during plaque formation may indicate that

SMCs in the media differentiate towards a synthetic phenotype during vessel inflammation

and plaque formation [22]. In contrast, lesional Mac2+ macrophage numbers were not

significantly altered between groups (Fig 2B, S1D Fig). These findings suggest that CX3CR1

expressed by vessel wall-resident SMCs is required for atherosclerotic plaques growth in trans-

planted vessels, whereas its expression on circulating cells and macrophages seems to play a

subordinate role.

Furthermore, we assessed cell proliferation by Ki-67 staining in all plaque cells and apopto-

sis by TUNEL staining in all plaque cells but could not detect significant differences between

groups (S1E and S1F Fig).

Discussion

We here employed a model of orthotopic transplantation of an infrarenal aortic segment into

the infrarenal aorta of recicpient mice. Unlike in bone marrow transplantation models, which

can be used to dissect the contribution of bone marrow versus non-bone marrow cells (includ-

ing vessel wall cells but also all resident cells in other organs), this model allows to focus on the

particular contribution of local (transferred) cells within the graft. Using this aorta transplanta-

tion model to discriminate between effects of circulating versus local vessel wall resident cells,

we here are able to show that interference with the CX3CR1-driven signaling pathway in vessel

wall cells inhibits atherosclerotic lesion formation.

Fig 1. Reduced plaque size after transplantation of Cx3cr1-/-Apoe-/- aortas into Apoe-/- mice. Apoe-/- mice were transplanted with Apoe-/- aortic

segments (n = 4, Apoe-/- > Apoe-/-) or Cx3cr1-/-Apoe-/- aortic segments (n = 5, Cx3cr1-/- > Apoe-/-), and Cx3cr1-/-Apoe-/- mice were transplanted with

Apoe-/- aortic segments (n = 5, Apoe-/- >Cx3cr1-/-) and placed on a high fat diet for 4 weeks. Atherosclerotic plaques were analysed in H&E stained

sections through the transplanted segment. Quantification of plaque area and representative sections (x20) are shown. *p<0.05, Scale bars 100 μm.

doi:10.1371/journal.pone.0170644.g001
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Previous studies by Combadière et al. and Lesnik et al. demonstrated a significant decrease

in atherosclerotic lesions in mice lacking CX3CR1 [23,24], associated with a reduction in mac-

rophage accumulation in plaques [23,24]. Saederup et al. showed that the deletion of CX3CL1

in CCR2-deficient mice reduced the accumulation of macrophages and the development of

atherosclerosis [25]. In accordance, Combadière et al. demonstrated that the combined inhibi-

tion of CCL2, CX3CR1, and CCR5 in Apoe-/- mice was associated with a marked and additive

reduction in atherosclerosis [26]. The site-specific action of CX3CR1 was not addressed in

these studies. However, also bone marrow deficiency of CX3CR1 reduced atherosclerotic

lesion formation in chimeric Apoe-/- mice, and the CX3CL1/CX3CR1 signaling pathway was

uncovered to exert pro-survival signals in macrophages, whose absence leads to the increased

death of monocytes/foam cells during plaque growth [15]. In contrast to these findings, we did

not observe significant alterations in plaque size or lesional macrophage accumulation in

Cx3cr1-/- Apoe-/- mice transplanted with Apoe-/- mice that entail a deficiency in CX3CR1 in cir-

culating leukocytes. This may be due to specificities of the transplantation model that produces

plaques that predominantly contain SMCs rather than macrophages in the infrarenal abdomi-

nal aorta.

The interaction of SMCs with monocytes induces a significant up-regulation of CX3CR1

gene and protein expression in both cell types [27]. Moreover, CX3CL1 gene and protein

Fig 2. Reduced numbers of SMCs in transplanted Cx3cr1-/-Apoe-/- aortic plaques. Apoe-/- mice were transplanted with Apoe-/- aortic segments

(n = 4, Apoe-/- > Apoe-/-) or Cx3cr1-/-Apoe-/- aortic segments (n = 5, Cx3cr1-/- > Apoe-/-), and Cx3cr1-/-Apoe-/- mice were transplanted with Apoe-/- aortic

segments (n = 5, Apoe-/- > cx3cr1-/-) and placed on a high fat diet for 4 weeks. Immunohistochemistry and quantification of (A) SMCs (alpha-Smooth

Muscle Actin staining, x20, red) and (B) macrophages (MAC2, x20, green) in plaques of the transplanted aortic segment. Counterstaining with DAPI

(blue) is showed in each images in insert. *p<0.05, Scale bars 100 μm.

doi:10.1371/journal.pone.0170644.g002
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expression increases in the murine aorta in high-fat vs normal diet fed Apoe-/- mice [28]. Nota-

bly, CX3CL1 has been demonstrated to exert anti-apoptotic and proliferative effects on vascu-

lar cells, mediated via EGFR, with antagonists of CX3CR1 abrogating the proliferative effects

of CX3CL1 in SMCs [6]. Deficiency of CX3CR1 may similarly have curtailed CX3CL1-me-

diated SMC proliferation, in turn inhibiting intimal hyperplasia. However, we cannot rule out

the involvement of other vessel wall cells, given that we did not observe changes in SMC or

proliferating cells relative to the plaque area. For instance, resident myeloid cells that accumu-

late CX3R1-dependently in the vessel wall [29] may have contributed to the phenotype

observed.

Clinically, stability of an atherosclerotic plaque is an important characteristic [30]. Unstable

atherosclerotic plaques are characterized by high numbers of macrophages and decreased

SMC and collagen content. These plaques are more likely to undergo rupture and cause vessel

thrombosis when compared to SMC and collagen-rich stable plaques [30]. Our findings that a

decrease in atherosclerotic plaque size in Cx3cr1-/- Apoe-/- aortic segments was associated

lower numbers of SMCs may indicate that inhibition of CX3CR1 may also have unfavorable

effects on plaque stability. On the other hand, confining SMC proliferation is major challenge

in vascular remodeling after percutanous transluminal coronary angioplasty and stent-implan-

tation [31]. In this regard, targeting CX3CR1 may be a potent therapeutic target limiting

monocyte accumulation [15,23,24] and SMC proliferation.

An increased expression of CX3CL1 and CX3CR1 has been found in coronary arteries

from patients after heart transplantation, and several studies have suggested a role of CX3CR1

in allograft rejection and dysfunction [13,32–34]. For instance, Robinson et al. observed a pro-

longed in vivo survival of heterotopic murine cardiac allograft transplants in a major histocom-

patibility complex-mismatch model, when treated with CX3CR1-antibodies [13]. In our study,

however, both donors and recipients were of the C57BL/6 background, excluding the possibil-

ity that (CX3CR1-dependent) graft versus host responses may have affected atherosclerotic

lesion development in our transplant model.

A clear limitation of our study are the low n-numbers that may have precluded reaching

more definite statistical conclusions. In particular, the trend of reduced plaque burden in

Apoe-/- aortic segments transplanted into Cx3cr1-/- Apoe-/- mice compared to control

Apoe-/- aortic segments in Apoe-/- mice may have substantiated when group sized were lager.

Similarly, the cellular plaque characterization yielded values with a wide distribution, so that

significant differences between groups may have been missed. Moreover, an additional group

of mice with Cx3cr1-/- donors and Cx3cr1-/- recipients is missing to evaluate the complete

absence of Cx3cr1 and possible additive effects in our model. Taken together we here unveil

an important function of CX3CR1 in resident vessel wall cells to promote atherosclerotic

lesion growth in the transplanted abdominal aorta in Apoe-/- mice. Targeting CX3CL1/

CX3CR1 may thus be viable therapeutic option in vascular transplantation procedures.

Supporting information

S1 Fig. Assesment of cell content by immunofluorescence. (A) The positive stained sections

for smooth muscle actin (SMA in red) was overlay with DAPI and the nuclei inside the stained

area were counted (red arrow heads). Scale bar 50 μm. (B) Similar, nuclei inside the Mac2-

stained area (green) are counted (green arrow heads). Immunohistochemistry and quantifica-

tion of (C) SMCs and (D) macrophages in plaques of the transplanted aortic segment and

expressed as cells/mm2. (E) No change is detected after staining with Ki-67 for proliferation

and (F) TUNEL for apoptosis.

(TIF)
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S1 Table. The original raw data table. The original raw data table (in a Excel spreadsheet)

that were used to generate our bar graphs.

(XLSX)
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