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Abstract

Various parasite-host interactions that involve adaptive manipulation of host behavior dis-

play time-of-day synchronization of certain events. One example is the manipulated biting

behavior observed in Carpenter ants infected with Ophiocordyceps unilateralis sensu lato.

We hypothesized that biological clocks play an important role in this and other parasite-host

interactions. In order to identify candidate molecular clock components, we used two gen-

eral strategies: bioinformatics and transcriptional profiling. The bioinformatics approach

was used to identify putative homologs of known clock genes. For transcriptional profiling,

RNA-Seq was performed on 48 h time courses of Ophiocordyceps kimflemingiae (a recently

named species of the O. unilateralis complex), whose genome has recently been se-

quenced. Fungal blastospores were entrained in liquid media under 24 h light-dark (LD)

cycles and were harvested at 4 h intervals either under LD or continuous darkness. Of all

O. kimflemingiae genes, 5.3% had rhythmic mRNAs under these conditions (JTK Cycle,�

0.057 statistical cutoff). Our data further indicates that a significant number of transcription

factors have a peaked activity during the light phase (day time). The expression levels of a

significant number of secreted enzymes, proteases, toxins and small bioactive compounds

peaked during the dark phase or subjective night. These findings support a model whereby

this fungal parasite uses its biological clock for phase-specific activity. We further suggest

that this may be a general mechanism involved in parasite-host interactions.

Introduction

Endogenous temporal programs, which anticipate daily changes in e.g. temperature and light,

have evolved in organisms from all phyla [1–4]. These programs function as circadian clocks,

organizing physiology and behavior to specific times of day (phases). Circadian clocks share

several properties, most notably a free-running rhythm of about 24 h in constant conditions

and entrainment or synchronization of these rhythms to exactly 24 h in the presence of highly
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predictable, regular signals from the environment (zeitgebers, e.g. light and temperature

cycles). Various insect behaviors, such as foraging, flight and oviposition show phase-charac-

teristic daily rhythms under entrainment conditions [5, 6]. Daily rhythms in immune systems

have also been reported in insects, as well as in plants [7, 8], an observation that has conse-

quences for timing of inter-species interactions with respect to parasites. For example, it has

been proposed that fungi invade plants such that they circumvent rhythms in host immune

systems [9]. Moreover, it has been shown for the plant pathogen Botrytis cinerea that its viru-

lence is regulated by the circadian clock [10]. Adaptive timing of infection could thus enable a

parasite’s life cycle by increasing infection rates, virulence and, eventually, transmission. In

vertebrate-infecting parasites, circadian clocks also appear to play a role. For example, circa-

dian rhythms were shown to contribute to fitness in the malaria parasite Plasmodium chabaudi
and metabolism in the sleeping sickness parasite Trypanosoma brucei, is under clock control

[11–13]. Biological clocks could, therefore, be an important aspect of parasite-host interactions

in general.

In this work, we wish to learn more about how the circadian clock is used in parasitic

behavioral manipulation, specifically in stages past the initial host invasion and immune sys-

tem evasion. Such a behavioral manipulation can be observed in Formica ants infected with

the lancet fluke that are manipulated to bite grass. This behavior appears regulated by daily

temperature fluctuations [14–16] and its phase-specific activity facilitates parasite transmission

from the intermediate ant host to the gut of the ultimate, herbivore host. Another example of

daily synchronization of manipulated behaviors is seen in soldier beetles infected with Eryniop-
sis lampyridarum. Here, infected beetles are thought to grip flower heads with their mandibles

in the early morning immediately prior to death. Emergence of conidiophores and conidia

(spores; transmission agents) and post-mortem spreading of the wings occurs pre-dawn the

following day. This timing is thought to protect the spores via optimal humidity levels [17].

Another time-of-day specific fungal manipulation of insect behavior is that of fungi of the

Ophiocordyceps unilateralis complex as they infect Carpenter ants. Workers foraging for food

are infected when they encounter fungal spores [18]. Infected ants then abandon their tasks as

the fungus slowly expands throughout the body [19]. This behavioral change may represent a

disruption of the ant circadian clock, as foraging, and other behaviors, are typically under

clock control [20, 21]. Ultimately, like in the examples above, the ant displays manipulated

biting behavior followed by death at a certain time of day. In field studies in Thailand, Ophio-
cordyceps camponoti-leonardi induced Carpenter ants to bite vegetation around solar noon

[22]. Laboratory studies with Ophiocordyceps kimflemingiae demonstrated synchronized biting

in the early morning [23]. In both unilateralis species’ interactions, the timing of death after

biting is also synchronous. Moreover, mixed transcriptomics data revealed differentially

expressed clock gene homologs in O. kimflemingiae-infected ants versus healthy individuals

sampled at the same time of day [23]. This suggests that the fungal infection works at some

level through the host circadian clock.

Fungal clocks have mainly been studied in the nonpathogenic fungus Neurospora crassa,

revealing a negative feedback loop based on transcriptional regulation that is essential for cir-

cadian clock function [24]. In Neurospora, the activation arm of this molecular clock gene

mechanism consists of the White Collar Complex (WCC). This complex is made up of the

transcription factors White Collar-1 (WC-1) and White Collar-2 (WC-2), which have a second

role, namely blue-light perception (important for entraining the clock [25–27]) and regulation

of light-induced genes (including many clock-controlled genes, ccgs) [28, 29]. As such, the

WCC promotes transcription of the frequency (frq) gene. FRQ forms a complex with FRQ-

interacting RNA helicase (FRH), which then functions as the repression arm in the transcrip-

tional feedback loop as it inhibits the activity of WCC. After FRQ is synthesized it is post-
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translationally modified and degraded. As FRQ levels drop, the WCC is reactivated and the

cycle can start anew (reviewed in more detail in e.g. [30–32]). Recent genome-wide gene

expression studies in N. crassa, performed under constant darkness (free-running) conditions,

show that the rhythmic expression of the many ccgs peak in time-of-day-related clusters [33,

34]. Catabolic processes appear to be dawn-phased, while anabolic processes are dusk-phased

[34]). Additionally, among the circadian clock-regulated genes, processes such as metabolism,

protein synthesis, DNA processing and stress response are highly enriched. and phase-specific,

with metabolism primarily peaking in the subjective late night and early morning, and protein

synthesis activity rising in the subjective afternoon and early night. Expression levels of DNA

processing genes also peaked during the subjective late day/evening [33]. Unfortunately, little

is known about the molecular mechanism and clock-driven processes in other fungi. Saccharo-
myces cerevisiae shows typical circadian entrainment but no obvious homologs of clock genes

are found in its genome [35]. For Aspergillus spp. the presence of a circadian clock was also

shown, though these ascomycetes have different clock components since no homolog for frq
was found [36]. Homologs of the N. crassa “clock genes” have been identified in the basal asco-

mycete Pyronema confluens and rhythmic expression of the P.c. frq has been observed [37].

Furthermore, studies have presented phenotypic and molecular evidence for the presence of a

functional molecular clock in the phytopathogenic fungus B. cinerea, where it appears to con-

tribute to virulence [9, 10]. To a lesser extent, evidence for biological clocks in phytopathogens

Cercospora kikuchii and Magnporthe oryzae have also been reported [38, 39]. To our knowl-

edge, fungal entomopathogens have not yet been studied from a circadian biology perspective.

Circadian rhythms in ants have been reported [20, 21, 40]. To investigate if parasite circa-

dian clocks could contribute to the observed patterns of manipulated ant behavior, we wished

to characterize the temporal program in the parasite, Ophiocordyceps. To this end, we per-

formed RNA-Seq on two-day long time courses of O. kimflemingiae. Rhythmic signals were

paired with homology searches against N. crassa to detect candidate core clock genes in the

genome. We report rhythmic candidate clock and clock-controlled genes with activity patterns

that appear to be synchronized to certain times of day.

Materials and methods

Fungal culture conditions

The fungal parasite used in this study, O. kimflemingiae [41], was isolated from an infected and

manipulated Camponotus castaneus ant [42]. This species resides within the O. unilateralis s.l.
complex and was recently named [41]. Previous data for this species’ interaction with C. casta-
neus suggests that biological clocks could be involved in the observed manipulation [23, 42].

Cultures were maintained in Grace’s insect medium (Sigma) supplemented with 10% fetal

bovine serum (Invitrogen). For time course studies, cultures were grown as fungal blastospores

(Fig 1A) in 25m2 tissue culture flasks in 20 mL media and shaken at 60 rpm at 28 oC. Fungal

hyphae (Fig 1B) were grown in a 250 mL Erlenmeyer flask holding 100 mL media shaken at

the same speed. To synchronize fungal cells, cultures were kept in constant light (light intensity

300 Lux) for 48 h and then transferred to 24 h LD (12 h:12 h) cycles for 5 days at 28 oC. To

avoid starvation conditions during sampling, on the fourth day at the end of the light phase,

cultures were briefly spun down in a swing-out rotor (3000 rpm for 5 min), and old media was

removed and replaced with fresh media. Each culture was subsequently split in two 20 mL cul-

tures: one to keep in LD during sampling, and one to be transferred to DD. After an additional

24 h under LD conditions, half of the cultures were transferred to constant darkness (DD sam-

ples). The other half of the flasks were maintained under LD conditions (LD samples) (Fig

1C). During this time, fungal cultures had reached an OD600 of ~ 1 and material was collected
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every 4 h under red light in a climate controlled room set to 28 oC. Cultures were kept in incu-

bators running zeitgeber cycles in antiphase, which allowed harvesting 48 h time courses over

12 h. Fungal cells were pelleted by spinning down 2 mL of the culture for 3 min at 10,000 rpm.

The supernatant was removed and the samples were snap frozen in liquid nitrogen and stored

at -80 oC until processing for RNA extraction.

RNA extraction, library construction and sequencing

Total RNA was extracted as previously reported [43]. Sample quality and quantity were

checked with a Bioanalyzer and RNA 6000 Nano Kit (Agilent Technologies), and a Qubit with

the RNA BR Assay Kit (Invitrogen). Sequence libraries were constructed using the NEBNext

Ultra Directional RNA Library Prep Kit for Illumina (New England BioLabs) and manufactur-

er’s instructions. Library quality and quantity were checked with a Bioanalyzer and the High

Sensitivity DNA Analysis Kit (Agilent Technologies) and a Qubit with the ds DNA HS Assay

Kit (Invitrogen). Samples were sequenced on a HiSeq1500 (Illumina) using 50 bp single-end

sequencing in rapid-run mode. The dataset is available at the NCBI’s Gene Expression Omni-

bus under the accession code GSE101312.

Biostatistical analyses

RNA reads were mapped to the latest version of the O. kimflemingiae genome [44] with CLC

Genomics Workbench 9. Reads were also mapped to inter-genic regions and other parameters

were kept at default. Expression levels were calculated for all genes and normalized to Reads

Per Kilobase of exon model per Million mapped reads (RPKM).

Fig 1. Ophiocordyceps kimflemingiae growth conditions O. kimflemingiae was grown in its blastospore

state (A), rather than in its vegetative growth state (B). Blastospores were synchronized under constant light,

followed by entrainment in 24 h LD (12 h:12 h) cycles before harvesting samples under either cycling or free-

running conditions (C).

https://doi.org/10.1371/journal.pone.0187170.g001
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Cycling transcripts were identified with JTK_CYCLEv3.1 [45]. Normalized expression lev-

els from 4 h-interval time points were used as input data. Defined period length was set at 20–

28 hour for the LD time course and at 16–28 hour for the DD time course.

Functional annotation enrichment was determined with a Fisher Exact test with the Benja-

mini-Hochberg procedure and a corrected p-value cutoff of 0.05 to correct for multiple testing.

Hierarchical clustering was performed with Cluster 3.0 and resulting heat maps were visual-

ized with Java TreeView 1.16r4 [46]. For hierarchical clustering, normalized gene expression

values were increased by 1 prior to log2-transformation to avoid negative values, and scaled

per gene by centering around the mean. Next, genes were hierarchically clustered using the

average linkage method.

Real-time quantitative PCR verification

RNA-Seq results were verified through RT-QPCR by determining the relative expression of

five clock gene homologs. Two biological replicates from independently performed time

courses and technical triplicates for each time point and amplified gene were used. Primers

were designed to span exon-exon boundaries when possible (Table 1). Efficiencies were calcu-

lated from a standard curve of serial dilutions. RNA was converted to cDNA with the Quanti-

Tect Reverse Transcription Kit (Qiagen). RT-QPCR reactions were performed on a ViiA 7

(Applied Biosystems) running in Fast Cycling Mode followed by a melt curve analysis, with 10

ng cDNA per 10 μL reaction and PowerUp SYBR Green Master Mix (Applied Biosystems).

Amplification data was analyzed using the Relative Quantification and the Design and Analy-

sis Application Apps of the ThermoFisher Cloud Software.

To normalize samples within a time course, candidate reference genes were selected from

genes displaying non-cycling expression patterns in the same RNA-Seq dataset, as well as low

variation expression patterns in the RNA-Seq dataset from [23]. The pool of non-cycling genes

(JTK-CYCLE p>0.057) was first restricted by selecting for genes with a low fold-change, as

done in [47] and by setting a cutoff for the coefficient of variation, as described in [48]. Refer-

ence candidates displayed a<2-fold-change between the maximum and minimum RPKM

expression values under both LD and DD conditions. In addition, log2-transformed expres-

sion values displayed a coefficient of variation�5%. Reference candidates were further

Table 1. RT-QPCR primers.

Primer name Forward Primer (5’-3’) Reverse Primer (5’-3’) Amplicon length (bp) Efficiency (%)

frq ACGACTTGACGGTGGAAATC TCTTTGCGTAGCATGTCAGG 81 89.58

wc-1 AACAGCATGAACCTCGATCC GAAGAAACGTGGCGAGAAAG 76 94.86

wc-2 GAAAAAGGACGGTGCCTATG AAAGGGTGACTGGTTGTTCG 96 91.17

vvd CTCCAAGGCCGAGATTATTG ATAGATTGGCGGATCTGCTG 97 96.09

cry TGTCTTGGGAAGAGGGTCAG TGCGACTTGCGATATGTTGT 169 103.28

2167* GATGTCATCGATTTCGTACAAGATTC TGTGCGTCAACATCCTACAGAAG 85 103.34

2393* GTTCGCGAGGTCTCTGATGAC GCAGGTTTCCCACATAAACTTATCC 102 90.14

3083* CGTTCTCAAGGCTCTCAAGG ACACGGACATTTTGGCCTAC 156 94.46

6497* ACAACGAGGACCAGCAGAGT GAACGTCATGACCCTTGAGC 189 102.14

7897* CTGGGAAGCCTCATCATCGT GACAACCATGCCCTCTTCGT 75 99.42

Sequences, amplicon length and efficiency of primers used in this study to amplify four clock gene homologs, a putative cryptochrome DASH, and reference

genes.

Tested reference genes are indicated with * and their Gene ID numbers are given under primer name. The two most stable reference genes are underlined.

https://doi.org/10.1371/journal.pone.0187170.t001
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restricted to genes that lacked differential expression in a previously published transcriptomics

dataset that compared stages of the fungal parasite in culture, inside the manipulated host and

inside the dead host [23]. From this restricted pool, five genes were amplified using RT-QPCR

after which the two most stable ones were selected with RefFinder [49] (Table 1).

Results and discussion

O. kimflemingiae blastospores: Growth and sampling conditions

Fungal entomopathogens have a yeast-like (blastospores) and a vegetative (hyphae) growth

state. Daily foraging behavior is disrupted and phase-specific biting behavior is induced when

the infecting fungus is in a blastospore state (Fig 1A). When secured in the biting position, the

host dies and the fungus quickly switches to a vegetative, hyphal growth (Fig 1B). For this

study, we identified conditions for O. kimflemingiae that would induce morphological growth

resembling that in situ (blastopores in an infected, live C. castaneus ant).

Culturing O. kimflemingiae on solid media results in vegetative (hyphal) growth. Hyphae

are also formed in liquid shaking cultures grown in Erlenmeyer flasks. In order to trigger blas-

tospore growth in liquid cultures, we tried several media compositions (S1 Table). Vegetative

growth persisted in all conditions. We next cultured fungi in tissue culture flasks with rectan-

gular edges shaken gently at 60 rpm. In the presence of Grace’s medium with 10% FBS, the

fungi switched to a yeast-like growth and started forming blastospores. Blastospores reverted

back to hyphal growth when they were placed into Erlenmeyer flasks. We do not quite under-

stand the reason for this but speculate that this could be due to different aeration rates. The

greater turbulence in tissue culture flasks might also decrease flocculation and, therefore, lead

to favored blastospore growth. For the experiments in this study, fungal cells were grown in tis-

sue culture flasks throughout time course experiments. Experiments were performed as

described in the Materials and methods section and in Fig 1C.

Mining the O. kimflemingiae genome for clock gene homologs

Clock and clock-controlled genes of fungi, cyanobacteria, plants, insects and mammals have

been reported [1]. We surveyed the O. kimflemingiae genome for homologs by searching for

protein family (Pfam) domains [50] that are encoded in those genes. Per Arnt Sim (PAS)

domains (PF00989) are found in all kingdoms of life [51] and have been shown to be involved

in eukaryotic circadian clocks [52]. A frequency (FRQ) domain (PF09421) has been identified

in the clock gene frequency of the fungal model organism N. crassa [53] as well as other fungi

[10, 37]. PHY domains (PF00360) are found in phytochrome photoreceptors that can sense

(far-)red light. Phytochromes have been mainly studied in plants where they regulate develop-

ment via photoperiodism. To a lesser extent, they have been reported for (cyano)bacteria and

fungi as well. In Aspergillus nidulans this receptor was shown to repress sexual spore formation

[54] as it forms a light-regulator complex with receptors similar to the white collar proteins in

N. crassa [55]. In N. crassa, however, phy transcripts are not regulated by light. There, phyto-
chrome-1 mRNAs levels appear under the control of the circadian clock [56]. We mined the O.

kimflemingiae genome for the presence of these functional domains and found eight candidate

homolog genes (Table 2). The Pfam search was followed by BlastP alignments against the N.

crassa OR74A genome [57]. These alignments confirmed O. kimflemingiae homologs of the N.

crassa clock genes frequency (frq), white collar 1 and 2 (wc-1 and wc-2), and vivid (vvd). In Neu-
rospora, VVD is only expressed in the light and regulates gating of light input to the circadian

clock [58]. Four additional homologs of PAS domain-containing genes were found through

alignment, one of which was a putative phytochrome 1 (phy-1) (Table 2).

Daily rhythms in a behavior-manipulating fungal parasite

PLOS ONE | https://doi.org/10.1371/journal.pone.0187170 November 3, 2017 6 / 20

https://doi.org/10.1371/journal.pone.0187170


Detection of candidate genes with cycling transcripts

The identification of clock gene homologs suggests that O. kimflemingiae may have clock-con-

trolled daily oscillations in gene expression. To detect genes that oscillate under LD and DD

conditions, we generated genome wide gene expression profiles of samples collected over a

48 h time course using RNA-Seq. Reads were mapped to the latest version of the O. kimflemin-
giae genome, which is 23.92 Mb in size and has been annotated to encode 8,629 genes [44].

Sequencing yielded an average of 20.5 million single-end reads per sample with an average

mean quality score of 38. This read depth is around the maximum read depth that was tested

for D.melanogaster [59]. It should thus be sufficient to detect cycling transcripts in our fungal

model since its genome is about five times smaller. An average of 95.9% of the reads mapped

uniquely to this genome. Resulting expression profiles were normalized to Reads Per Kilobase

of exon model per Million mapped reads (RPKM).

Normalized expression profiles were analyzed with the JTK_CYCLE algorithm [45]. Our

sampling method (single samples at 4 h intervals) did not allow us to assign false discovery

rates. We, therefore, ranked genes based on the Bonferroni-adjusted p-values. In our ranking

approach, we relaxed the p = 0.05 threshold, which has been the topic of debate for many years

now [60, 61]. We set the threshold for rhythmicity at the p-value of an Ophiocordyceps homo-

log of a rhythmically expressed Neurospora clock gene. In N. crassa, ca. 24 h rhythmic expres-

sion levels have been observed for frq under both LD and DD conditions. Under LD

conditions, vvd is rhythmic, but when transferred to DD, vvd oscillation is only seen in the

first 24 h. For wc-1, rhythmicity has been observed in LD and though its promoter shows

rhythms in DD, its mRNA levels are not predicted to be highly rhythmic [26, 33, 58, 62, 63]. In

addition, we used the expression patterns from fungal tissue cultured in LD conditions.

JTK_CYCLE returned Bonferroni-adjusted p-values of 0.002, 0.057, and 0.009, respectively,

for the above-mentioned homologs under LD conditions. As such, we set our threshold for

Table 2. Identified clock(-controlled) gene homologs.

Gene ID Pfam domains Neurospora crassa OR74A homolog E value

NCBI BlastP

Annotation score

UniProt (1–5)

Ophio5|

6046

PF09421.5|FRQ Frequency (frq) NCU02265 0.0 5—Experimental

evidence

Ophio5|

4975

PF13426.1|PAS_9; PF08447.6|PAS_3; PF00989.19|PAS;

PF00320.22|GATA

White collar 1 (wc-1) NCU02356 0.0 4—Experimental

evidence

Ophio5|

889

PF00320.22|GATA; PF08447.6|PAS_3; PF13426.1|PAS_9;

PF00989.19|PAS

White collar 2 (wc-2) NCU00902 2e-174 4—Experimental

evidence

Ophio5|

6595

PF13426.1|PAS_9 Vivid PAS protein (vvd) NCU03967 8e-32 2—Experimental

evidence

Ophio5|

6786

PF02518.21|HATPase_c; PF00512.20|HisKA; PF00072.19|

Response_reg; PF08447.6|PAS_3; PF08448.5|PAS_4

Two-component histidine kinase CHK-1

(nik-2) NCU01833

0.0 1—Protein predicted

Ophio5|

7010

PF02518.21|HATPase_c; PF00072.19|Response_reg;

PF00512.20|HisKA; PF13426.1|PAS_9

Development and carotenogenesis

control-1 (dcc-1) NCU00939

0.0 1—Protein predicted

Ophio5|

7293

PF02518.21|HATPase_c; PF00512.20|HisKA; PF00072.19|

Response_reg; PF13426.1|PAS_9; PF08447.6|PAS_3;

PF08448.5|PAS_4

Autoinducer 2 sensor kinase /

phosphatase luxQ NCU02057

0.0 1—Protein predicted

Ophio5|

4324

PF00360.15|PHY; PF02518.21|HATPase_c; PF00072.19|

Response_reg; PF01590.21|GAF; PF00512.20|HisKA;

PF08446.6|PAS_2

Phytochrome-1/Sensor histidine kinase/

response regulator (phy-1) NCU04834

0.0 1—Protein predicted

Identification of candidate clock(-controlled) genes was based on their functional domains (Pfams). For each identified gene, Pfam domains and the

Neurospora crassa homolog are given as well as the E value of their alignment and annotation score of the N. crassa gene according to the UniProt

database.

https://doi.org/10.1371/journal.pone.0187170.t002
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rhythmicity at the adjusted p-value for wc-1 under these conditions (i.e. rhythmic candidates

p� 0.057). This led to the detection of 333 candidate genes with oscillating transcripts under

LD conditions with a median period of 24 h (S1 Fig and S1 Data File). Under DD conditions,

adjusted p-values for these genes were markedly higher (0.30, 0.46, and 1 for frq, wc-1, vvd,

respectively). This suggests either that endogenous rhythmicity at the mRNA level damps over

48 h in DD and constant temperature conditions or that rhythms detected in LD are simply

driven by the zeitgeber cycle. To minimize false discovery, we set the threshold for rhythmicity

in DD to the same adjusted p-value as for the LD samples. This led to the detection of 154

genes with suggested circadian rhythms with a median period of 26 h (S1 Fig and S2 Data

File). Studies using other model organisms also report fewer rhythmic genes under DD than

under LD conditions [64–68]. In addition, lower numbers of cycling transcripts for cells taken

out of their natural context and grown under laboratory cell culture conditions have previously

been shown [69]. Moreover, a decreased amplitude under DD conditions for the significantly

rhythmic gene frq is observed in B. cinerea [10]. Similarly, a decreased amplitude in O. kimfle-

mingiae under DD conditions, combined with single 4h-interval data points could have

resulted in poor detection of endogenously rhythmic genes in this study.

Among the rhythmic candidate genes in LD, we identified 14 transcription factors (TFs).

One of these TFs, as identified above, is the O. kimflemingiae homolog of wc-1. Two of these

TFs appear to be involved in regulation of Neurospora conidiation (homologs of N. crassa
znf-21; NCU02671 and csp-2; NCU06095) and one regulates ascus development (N. crassa
homolog asd-4; NCU20921). ChIP sequencing revealed that N. crassa TFs znf-21 and csp-2 are

among the direct targets of the White Collar Complex (WCC, formed by WC1 and WC2)

[70], a blue-light photoreceptor that is the key transcriptional activator of the circadian oscilla-

tor in this fungus. Additionally, we identified a putative blue-light photoreceptor cryptochrome
DASH homolog (cry; NCU00582) (S1 Data File). In Neurospora, CRY was shown to be an

essential photoreceptor for the correct functioning of a novel frq-less-oscillator (FLO) named

the CRY-dependent oscillator [71].

We performed enrichment analyses on the rhythmic genes. For both LD and DD condi-

tions, secreted proteins (SPs) and small secreted proteins (SSPs) were significantly over-repre-

sented (i.e. LD: 41 SPs and 25 SSPs, Fisher-exact corrected p-value 3.88E-07 and 0.0029,

respectively; and DD: 15 SPs and 15 SSPs, Fisher-exact corrected p-value 0.0008 and 0.00160,

respectively). One of the SSPs was homologous to clock-controlled gene-6 of N. crassa (ccg-6;

NCU01418). Rhythmic expression has been demonstrated for this conidiation-related gene

in N. crassa, which also appears to be photoinducible and developmentally regulated [72].

Among the rhythmic SPs under LD conditions were five genes encoding enterotoxins and

six encoding predicted proteases. These, as well as the potentially bioactive SSPs, could be

involved in O. kimflemingiae interactions with its ant host. Moreover, we found rhythmicity in

genes encoding secreted enzymes that have previously been identified as candidate manipula-

tion genes: tyrosinase and protein tyrosine phosphatase, [23].

Twenty-six genes had rhythmic transcripts under both cycling and free-running conditions

(S1A Fig). A relatively low overlap between LD and DD rhythmic transcripts has previously

been observed [65–68, 73]. To obtain insight into the biological processes that were rhythmic

regardless of LD or DD conditions, we again performed an enrichment analysis. Despite the

small number of endogenously cycling genes (26), we again found an over-representation of

SPs (six genes) and SSPs (five genes; Fisher-exact corrected p-value 1.95E-05 and 0.0030, re-

spectively). Nine out of the eleven genes with encoded secretion signals appeared to peak dur-

ing the dark phase in LD and in the subjective night in DD (Fig 2A). These comprised four

unknown SSPs that appear unique to O. kimflemingiae since they only aligned with deposited

sequences of this species in the NCBI Database. Night-active SPs comprised a
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chloroperoxidase, an exo-beta-D-glucosaminidase, a metallocarboxypeptidase, an enterotoxin,

and a tyrosinase. The other two genes peaked during the (anticipated) light phase and com-

prised another unique SSP with unknown function and a homolog of the Aspergillus fumigatus
allergen Asp f9, which is a cell wall glucanase (Fig 2A). Two fungal transcription factors (TFs)

were also among the endogenously rhythmic genes. We additionally identified a rhythmically

expressed histidine phosphotransferase, a gene encoding a predicted two-component regula-

tory system protein, which would facilitate responses to changing stimuli in the environment

[74]. This histidine phosphotransferase, as well as one of the fungal TFs appeared to peak dur-

ing the (subjective) day, while the other TF showed peaks in expression during the (subjective)

night (Fig 2B).

Fig 2. Expression patterns of endogenously cycling genes. (A) Rhythmic mRNA levels of secreted proteins (SPs) and small secreted proteins

(SSPs) under cycling (LD) and free-run (DD) conditions. (B) Rhythmic mRNA levels of genes involved in regulatory systems under cycling (LD) and free-

run (DD) conditions. Normalized expression levels are plotted as their standard scores (Z-scores) and represent the amplitude of the gene expression

observed at that time point versus the mean expression measured over the entire time course of 48 h.

https://doi.org/10.1371/journal.pone.0187170.g002
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RT-QPCR verification of rhythmicity

To verify the rhythmic gene expression in our samples, we measured expression of a small sub-

set of genes through RT-QPCR. As target genes, we chose the four clock gene homologs for

which experimental evidence in N. crassa has been reported [63, 75–78]: frq, vvd,wc-1 and wc-
2 (Table 2). We added the O. kimflemingiae homolog for cry as a fifth candidate gene (Table 1).

All of the genes tested by RT-QPCR were rhythmic in the RNA-Seq data in LD except for wc-
2, which is constitutively expressed in Neurospora [79].

For normalization purposes, we selected candidate reference genes that showed non-rhyth-

mic expression according to the RNA-Seq data. These reference genes were chosen from a

pool of 177 genes that did not have cycling transcripts and showed the least expression varia-

tions in the RNA-Seq datasets produced in this study and in a previous behavioral manipula-

tion study in O. kimflemingiae [23] (see Materials and methods section for details). An

enrichment analysis using these genes revealed that annotations such as nucleotide, ribonucle-

oside and ion binding functions, as well as genes with an RNA recognition motif, were over-

represented. In addition, (small) secreted proteins were under-represented. After performing

RT-QPCR on five of these genes, we used RefFinder [49] to select the two genes that showed

the most consistent gene expression across all samples: Ophio5|2167 and Ophio5|2393

(Table 1). Both genes have been functionally predicted to be involved in nucleic acid binding

(GO term), and more specifically in RNA binding (Pfam domains). The Genorm score,

according to ThermoFisher’s Relative Quantification Cloud Software, for both genes was

0.401.

We generated RT-QPCR data from the biological samples that were used to obtain the

RNA-Seq dataset (Time Course 1; TC1). In addition, we conducted RT-QPCR on an indepen-

dently obtained biological replicate for both LD and DD conditions (Time Course 2; TC2).

The Z-scores for the normalized RT-QPCR data (RT-QPCR TC1 and RT-QPCR TC2) are

plotted together with those for the RNA-Seq profiles (RNASeq TC1) in Fig 3. The means of

these three curves and the Standard Error of the Mean (SEM) have been calculated for each

time point as well (S2 Fig). Rhythmic genes that were highly expressed (RPKM values) and

that displayed a high amplitude (Amp), generally returned lower SEMs. As such, frq (average

61.2 RPKM with Amp 35.0), vvd (average 73.3 RPKM with Amp 106.4) and cry (average 25.0

RPKM with Amp 17.8) under LD conditions (Fig 3 and S2A–S2C Fig) returned average SEMs

between 0.19 and 0.22. For wc-1, a rhythmic gene with a lower amplitude under LD conditions

(average 39.9 RPKM with Amp 8.3), the SEM was higher (average SEM = 0.48; Fig 3 and S2D

Fig). The dispersion in the data for this gene, therefore, makes the claim for rhythmicity

unwarranted at this time. Expression patterns under DD conditions generally returned higher

SEMs as well (average SEMs: 0.33–0.54). The low amplitudes for frq, vvd, cry, and wc-1 (Amp

2.6–9.3 RPKM) also resulted in expression patterns that displayed more variation across time

course experiments (Fig 3 and S2F–S2I Fig).

Cluster analysis reveals predominantly day- or night-active genes

Concentrations of expression to specific times of day have been observed in Neurospora,

where circadian transcripts generally peak at different times depending on their function [33,

34]. Here, we performed cluster analyses on rhythmic genes in O. kimflemingiae (JTK_CYCLE

at p�0.057) to determine time-of-day (phase) expression. The majority of genes with rhythmic

transcripts cluster into either the light or the dark phase (as opposed to dawn/dusk [34]; Fig 4).

In LD, 52% of the cycling genes were up-regulated in the light phase and down-regulated in

the dark. The opposite expression pattern was observed in 40% of the genes: up-regulation

during the dark phase and down-regulation during the light phase (Fig 4A). We observed a
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Fig 3. Expression of candidate genes involved in circadian regulation. Expression profiles of four O.

kimflemingiae clock gene homologs and cryptochrome over the course of 48 h under LD (A-E) and DD (F-J)

conditions. Black lines and blue lines represent RNA-Seq expression levels and RT-QPCR data, respectively,

obtained from the same biological replicate (Time Course 1, i.e. TC1). Red lines represent RT-QPCR data

obtained from an independently obtained biological replicate (Time Course 2, i.e. TC2). Normalized expression
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similar pattern under DD conditions, where 25% of rhythmic genes were up-regulated during

the subjective day and down-regulated during subjective night. For 64%, the peak expression

was in the subjective night (Fig 4B). The majority of rhythmic genes in DD thus had peak

expression during the subjective night. Indeed, when we looked at the 26 genes that are cycling

in both LD and DD, nineteen (73%) of them peaked during the dark or subjective night phase.

We again did another cluster analysis on all rhythmic genes found under LD conditions with

concatenation of their expression levels in DD (Fig 5). The resulting heat map visualizes how

rhythmicity of many genes that peaked in the light phase damp after 24 h in DD. Conversely,

many genes that are up-regulated during the dark phase remained rhythmic in DD. This sug-

gests that the majority of the rhythmic day-active genes are probably light-driven rather than

endogenously rhythmic. Among the night-active genes, endogenous rhythmicity seems more

likely to be found.

To obtain insight into the biological processes that are represented during the (subjective) light

and dark phases, we performed enrichment analyses on the functional annotations of the genes

within these clusters. Information about annotations and clustered activity for each rhythmic gene

can be found in S1 and S2 Data Files. Among the genes that peak in the light phase, TFs were sig-

nificantly over-represented (11 genes, corrected p-value 0.003). During the dark phase, under

cycling conditions, a significant over-representation for SPs and SSPs was found (50 genes total,

corrected p-values 1.13E-16 and 4E-07, respectively). In fact, they comprised 37% of all genes that

peaked in the dark. Among these genes were five annotated enterotoxins with secretion signals,

and four annotated proteases, as well as the above-mentioned tyrosinase, predicted to be secreted,

protein tyrosine phosphatase, and homolog ofN. crassa ccg-6. In DD, enrichments were only

found among the genes that peaked during the subjective night. Again, SPs and SSPs were over-

represented (23 genes total, corrected p-values 0.0002 and 0.0006, respectively), as well as genes

encoding for secondary metabolites from annotated Cluster 8 (2 out of a total of 5 genes within

the cluster, corrected p-value 0.0012). These secondary metabolites are both annotated to be

involved in oxidation-reduction processes (a predicted P450 monooxygenase and a FAD depen-

dent monooxygenase). Among the genes with secretion signals were the genes that appeared to be

expressed in the (subjective) night in Fig 2. We also identified another endopeptidase, predicted to

be secreted, a glycosyl hydrolase, and various SPs and SSPs with unknown function. This suggests

that while a significant number of TFs are expressed during the light phase, the rhythmicO. kimfle-
mingiae genes encoding enzymes and small bioactive compounds that may interact with the ant

host are predominantly expressed during the dark phase.

Conclusions

In this study, we have provided the first evidence that the behavior manipulating fungus O.

kimflemingiae has a circadian clock. Using a culture method that allows for the performance of

time course experiments in LD and in DD, we have demonstrated that O. kimflemingiae cul-

tures exhibit daily oscillations in their mRNA levels. We identified homologs of fungal clock

genes in the genome of O. kimflemingiae and confirmed their rhythmicity in LD with RNA-

Seq and RT-QPCR. Among the other rhythmic, likely clock-controlled, genes (ccg’s), a signifi-

cant number are predicted to be involved in parasite-host interactions. These could thus be

important in establishing behavioral manipulation. Our finding that the activity patterns of

these ccg’s are seemingly synchronized to a certain time of day additionally indicates that daily

timing could be involved in insect infection and manipulation. Our data thus sets the stage for

levels are plotted as Z-scores and represent the amplitude of the gene expression observed at that time point

versus the mean expression measured over the entire time course of 48 h.

https://doi.org/10.1371/journal.pone.0187170.g003
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Fig 4. Clustering of genes with rhythmic transcripts. (A) A heat map representation of the clustering of genes

found to have rhythmic transcripts based on their expression profiles over a time course of 48 h in LD. (B) A heat map

representation of the clustering of genes found to have rhythmic transcripts based on their expression profiles over a

time course of 48 h in DD. The squares indicate two clusters: genes showing up-regulation during the light phase (light

grey squares), and genes showing up-regulation during the dark phase (dark grey squares).

https://doi.org/10.1371/journal.pone.0187170.g004
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Fig 5. Heat map of gene expression patterns in LD and DD cultures. A heat map representation of genes

found to oscillate in their expression over 48 h in LD conditions is concatenated with their expression profiles

over 48 h in DD conditions.

https://doi.org/10.1371/journal.pone.0187170.g005
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further detailed investigations of the involvement of biological clocks in the mechanisms of

infection and manipulation. At this time, clock knock-outs can not yet be made for O. kimfle-
mingiae. The development of the molecular tools to facilitate this will aid in the true characteri-

zation of the core clock homologs in this fungus and how they potentially regulate effector

genes. This will lead to a better understanding of the pathways and timing that lead to key par-

asite-host interactions that are taking place. Such an understanding may eventually support

development of more effective strategies for the biological control of insect pests.
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