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Abstract

Accurate maps of promoters and enhancers are required for understanding transcriptional

regulation. Promoters and enhancers are usually mapped by integration of chromatin

assays charting histone modifications, DNA accessibility, and transcription factor binding.

However, current algorithms are limited by unrealistic data distribution assumptions. Here

we propose GenoSTAN (Genomic STate ANnotation), a hidden Markov model overcoming

these limitations. We map promoters and enhancers for 127 cell types and tissues from the

ENCODE and Roadmap Epigenomics projects, today’s largest compendium of chromatin

assays. Extensive benchmarks demonstrate that GenoSTAN generally identifies promoters

and enhancers with significantly higher accuracy than previous methods. Moreover, Geno-

STAN-derived promoters and enhancers showed significantly higher enrichment of complex

trait-associated genetic variants than current annotations. Altogether, GenoSTAN provides

an easy-to-use tool to define promoters and enhancers in any system, and our annotation of

human transcriptional cis-regulatory elements constitutes a rich resource for future research

in biology and medicine.

Introduction

Transcription is tightly regulated by cis-regulatory DNA elements known as promoters and

enhancers. These elements control development, cell fate and may lead to disease if impaired.

A promoter is functionally defined as a region that regulates transcription of a gene, located

upstream and in close proximity to the transcription start sites (TSSs) [1]. In contrast, an

enhancer was originally functionally defined as a DNA element that can increase expression of

a gene over a long distance in an orientation-independent fashion relative to the gene [2]. The
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functional definition of enhancers and promoters leads to practical difficulties for their

genome-wide identification because the direct measurement of the regulatory activity of geno-

mic regions is hard, with current approaches leading to contradicting results [3–5].

Since the direct measurement of cis-regulatory activity is challenging, a biochemical charac-

terization of the chromatin at these elements based on histone modifications, DNA accessibil-

ity, and transcription factor binding has been proposed [6–10]. This approach leverages

extensive genome-wide datasets of chromatin-immunoprecipitation followed by sequencing

(ChIP-Seq) of transcription factors (TFs), histone modifications, or Cap analysis gene expres-

sion (CAGE) that have been generated by collaborative projects such as ENCODE [11, 12],

NIH Roadmap Epigenomics [13], BLUEPRINT [14] and FANTOM [15, 16].

In this context, the computational approaches employed to classify genomic regions as

enhancers or promoters play a decisive role [6, 10]. As the experimental data are heteroge-

neous, we generally refer to them as tracks. Several studies used supervised learning techniques

to predict enhancers based on tracks such as histone modifications or P300 binding (e.g. [17–

20]). However, a training set of validated enhancers is needed in this case, which is hard to

define since only few enhancers have been validated experimentally so far and these might be

biased towards specific enhancer subclasses. Alternatively, unsupervised learning algorithms

were developed to identify promoters and enhancers from combinations of histone marks and

protein-DNA interactions alone [8, 9, 11, 13, 21–24]. These unsupervised methods perform

genome segmentation, i.e. they model the genome as a succession of segments in different

chromatin states defined by characteristic combinations of histone marks and protein-DNA

interactions found recurrently throughout the genome. All popular genome segmentations are

based on hidden Markov models [25], or their generalized form (dynamic Bayesian networks).

However, these methods differ in the way the distribution of ChIP-seq signals for each chro-

matin state is modeled. ChromHMM [8, 21, 26], one of the two methods applied by the

ENCODE consortium, requires binarized ChIP-seq signals that are then modeled with inde-

pendent Bernoulli distributions (conditioning on the hidden state). Consequently, the perfor-

mance of ChromHMM depends on the non-trivial choice of a proper binarization cutoff.

Although the default binarization cutoff proposed by ChromHMM performs relatively well in

practice, the quantitative information is lost with this approach. This is especially important

for distinguishing promoters from enhancers since these elements are both marked with

H3K4me1 and H3K4me3, but at different ratios [27]. Segway [9, 22], the other method applied

by the ENCODE consortium, uses independent Gaussian distributions of transformed (by the

hyperbolic sine function) and smoothed ChIP-seq signal. Although Segway preserves some

quantitative information, the transformation of the original count data leads to variance esti-

mation difficulties for very low counts. Therefore, Segway further makes the strong assump-

tion that for a given track, all states have the same variance. Recently, EpicSeg [28] used a

negative multinomial distribution to directly model the read counts without the need for data

transformations. However, the EpicSeg model leads to a common dispersion (the parameter

adjusting the variance of the negative multinomial) for all tracks. Moreover, EpicSeg does not

provide other way to correct for sequencing depth than down-sampling, which makes it inap-

propriate to the analysis of data sets with multiple cell types with varying library sizes. (Down-

sampling, i.e. restricting all libraries to the size of the smallest one discards relevant informa-

tion from all the better covered libraries). Also, EpicSeg has been applied only to three cell

types so far [28]. These methods not only differ in their modeling assumptions but also lead to

very different results. In the K562 cell line for instance, ChromHMM identified 22,323 enhanc-

ers [11], Segway 38,922 enhancers [11], and EpicSeg 53,982 enhancers [28]. Altogether,

improved methods and detailed benchmarking analyses are required for a reliable annotation

of transcriptional cis-regulatory elements.
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Here we propose a new unsupervised genome segmentation algorithm, GenoSTAN

(Genomic State Annotation from sequencing experiments), which overcomes limitations of

current state-of-the-art models. GenoSTAN learns chromatin states directly from sequenc-

ing data without the need of data transformation, while still having track- and state-specific

variance models. We applied GenoSTAN to a total of 127 cell types and tissues covering 16

datasets of ENCODE and all 111 datasets of the Roadmap Epigenomics project as well as

four additional (three used in previous studies, one from this study) ENCODE ChIP-seq

dataset for the K562 cell line. GenoSTAN performed better in almost every comparison

when benchmarked against Segway, ChromHMM and EpicSeg segmentations using inde-

pendent evidence for activity of promoter and enhancer regions. Co-binding analysis of TFs

reveals that promoters and enhancers both shared the Polymerase II core transcription

machinery and general TFs, but they are bound by distinct TF regulatory modules and differ

in many biophysical properties. Moreover, GenoSTAN enhancer and promoter annotations

had a higher enrichment for complex trait-associated genetic variants than previous annota-

tions, demonstrating the advantage of GenoSTAN and our chromatin state map to under-

stand genotype-phenotype relationships and genetic disease.

Materials and Methods

Availability of GenoSTAN and chromatin state annotations

GenoSTAN is freely available from http://bioconductor.org/ as part of our previously pub-

lished R/Bioconductor package STAN [29]. All chromatin state annotations can be down-

loaded from http://i12g-gagneurweb.in.tum.de/public/paper/GenoSTAN.

Motivation of Poisson-lognormal and negative binomial emissions

The Poisson-lognormal and the negative binomial distribution can be thought of as extensions

of the Poisson distribution that allow for greater variance. We will now motivate both distribu-

tions from a Poisson distribution with a prior on the mean of the Poisson.

Suppose that X * Poisson(x|Λ) is a Poisson random variable and Λ * Gamma(λ|α, β).

From this we can derive the negative binomial with success rate p and size r:

Pr X ¼ xja; bð Þ ¼

Z1

0

Poisson xjlð ÞGamma lja ¼ r; b ¼
p

1 � p

� �

dl

¼

Z1

0

l
x

x!
e� ll

r� 1 e� l
1� p

p

p
1 � p

� �r

G rð Þ
dl

¼
G r þ xð Þ

x!G rð Þ
px 1 � pð Þ

r where r > 0; p 2 0; 1½ �

In order to increase interpretability in the context of read counts, we re-parameterize this

with mean m ¼
r 1� pð Þ

p :

Pr X ¼ xjm; rð Þ ¼
G r þ xð Þ

x!G rð Þ
r

r þ m

� �x

1 �
r

r þ m

� �r

where m > 0

The Poisson-lognormal distribution can be motivated likewise. Assume that X * Poisson
(x|Λ) is a Poisson random variable and L � N log lð Þjm; sð Þ. Then the Poisson-lognormal is
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given by [30]:

Pr X ¼ xjm; sð Þ ¼

Z1

0

Poisson xjlð ÞN log lð Þjm; sð Þdl

¼

ffiffiffiffiffiffiffiffiffiffi
2ps2
p

x!

Z1

0

l
x� 1e� le�

log lð Þ� mð Þ2

2s2 dl

A closed form solution for this distribution does not exist. Thus numerical integration is

needed to calculate probabilities, which is done in GenoSTAN by using the R package poilog

[31, 32].

Optimization of Poisson-lognormal and negative binomial emissions

Let O ¼ ðo0; :::; oTÞ; ot ¼ ðot;dÞd2D 2 N
D
0

be an observational sequence of jDj-dimensional

count vectors ot. An HMM assumes that each observation ot is emitted by a corresponding hid-

den (unobserved) variable st, t = 0, . . ., T. A hidden variable can assume values from a finite set

of states K. Each state k 2 K is associated to an emission distribution ψk, which defines the

probability of making a certain observation, ψk(ot). GenoSTAN assumes that the components

ot,d, d 2 D; i.e. the individual data tracks (or chromatin modifications), of a single observation

ot at position t are independent given the hidden state, and hence ckðotÞ ¼
Q

d2Dck;dðot;dÞ. The

value of st determines the probability of observing ot by Pr(otjst) = ψst
(ot). HMM learning is car-

ried out using the Baum-Welch algorithm [25]. The optimization problem for the parameters

of a single emission distribution ψi,d can be written as

arg max
ci;d

XT

t¼0

Pr st ¼ ijOð Þlog ci;d ot;d

� �
;

where Prðst ¼ i j OÞ is calculated efficiently by the Forward-Backward algorithm, and ψi,d is

maximized within the class of negative binomial or Poisson-lognormal distributions. An ana-

lytical solution for this problem does not exist. Thus, we resort to numerical optimization. As

indicated by [28], the above formula can be very costly to compute, since the function needs to

evaluate a sum over the complete observation sequence (i.e. the complete binned genome) in

each iteration. However, computations are greatly simplified by grouping together observa-

tions ot,d with the same count number. Let Cd be the set of unique read counts c in dimension

d. Then the following terms can be precomputed for all c 2 Cd before optimization:

f cð Þ ¼
X

t; ot;d¼c

Pr st ¼ ijOð Þ

The objective function becomes

arg max
ci;d

X

c2Cd

f cð Þlog ci;d cð Þ

which avoids redundant calculations of ψi,d(ot), t = 0, . . ., T, and greatly reduces complexity

since jCdj � T.

Correction for library size

The sequencing depth can be very different between experiments. GenoSTAN addresses this

problem by using pre-computed scaling factors to correct for varying sequencing depths for a
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data track between cell types. In this work, the ‘total count’ method is used [33]. Let L be the

set of cell types and rd,l the number of reads of data track d 2 D in cell line l 2 L. The scaling

factor is then computed as

sd;l ¼
1

rd;l
�

P
k2Lrd;k

Lj j

The probability of an observation ot,l was Pr ot;lj
m

sd;l
; r

� �
in the case of negative binomial and

Pr ot;ljlog m

sd;l

� �
; s

� �
in the case of Poisson-lognormal emissions. More robust estimation of

library sizes (e.g. [34]) can be used in combination with our software GenoSTAN.

Model initialization

The initialization of model parameters is crucial for HMMs since the EM algorithm is a gradi-

ent method which converges to a local maximum. K-means is a widely used approach to derive

an initial clustering to estimate model parameters [25]. In order to make this approach applica-

ble to sequencing data, we added a pseudocount and log-transformed the data before k-means

clustering. However, without further processing k-means rarely converged and the procedure

was slow on the complete data set. To address these issues, we further processed and filtered

the data. First, a threshold for signal enrichment for each data track is calculated using the

default binarization approach of ChromHMM [8]. The threshold is the smallest discrete num-

ber nd > 0 such that Pr(X> nd)< 10−4 where X is a Poisson random variable with mean

ld ¼

PT

t¼0
ot;d

Tþ1
. All ot,d < nd were set to 0, which improved convergence of k-means. To improve

the speed, all genomic bins ot,d where 8d 2 D : ot;d ¼ 0 were removed and defined as a ‘back-

ground cluster’. K-means was then run on the rest of the data with jKj � 1 clusters. This clus-

tering (the ‘background’ and k-means clusters) was then used to derive an initial estimate of

emission function parameters. Initial state and transition probabilities were initialized as

uniform.

Data preprocessing

Dataset 1 (K562 ENCODE) sequencing data (for each mark, all available experiments from

ENCODE were used) was mapped to the hg20/hg38 (GRCh38) genome assembly (Human

Genome Reference Consortium) using Bowtie 2.1.0 [35]. Samtools [36] was used to quality

filter SAM files, whereby alignments with MAPQ smaller than 7 (-q 7) were skipped. To

obtain midpoint positions of the ChIP-Seq fragments, the (single end) reads were shifted in

the appropriate direction by half the average fragment length as estimated by strand cover-

age cross-correlation using the R/Bioconductor package chipseq [37]. Next, ChIP-Seq tracks

were summarized by the number of fragment midpoints in consecutive bins of 200 bp

width. The data for the 127 ENCODE and Roadmap Epigenomics cell types was downloaded

as preprocessed tagAlign files (hg19) from the Roadmap Epigenomics supplementary web-

site [13]. Preprocessed ENCODE tagAlign files (hg19) for data set 2 and 4 were downloaded

from: http://www.broadinstitute.org/*anshul/projects/encode/rawdata/mapped/jan2011/

noMultiMapTagAlign/.

For dataset 2, all available ENCODE experiments were used for each mark (as in [23]). For

dataset 4, only the experiments from the Bernstein lab as described in [21] were used. For the

Roadmap Epigenomics datasets and datasets 2 and 4, fragment length was estimated using the

R/Bioconductor package chipseq and reads were shifted by the fragment half size to the aver-

age fragment midpoint [37]. The genome was partitioned into 200bp bins and reads were
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counted within each bin. The count matrix for dataset 3 was kindly provided by the EpicSeg

authors.

Model fitting of GenoSTAN

GenoSTAN was fitted on the complete data of dataset 1. The signal used for GenoSTAN

model training on datasets 2, 3 and 4 was extracted from ENCODE pilot regions (1% of the

human genome analyzed in the ENCODE pilot phase [38]). For the Roadmap Epigenomics

datasets, ENCODE pilot regions were extracted for each cell type. Thus the training data

amounted to an equivalent of 20% of the human genome for the models learned on 20 cell

types and 127% for the models learned on all 127 cell types. The GenoSTAN-nb-20 model was

learned in one day, the GenoSTAN-Poilog-20 model in two days using 10 cores. Model learn-

ing on all 127 cell types and tissues using 10 cores took three (GenoSTAN-nb-127) and six

days (GenoSTAN-Poilog-127). Precomputed library size factors were used to correct for varia-

tion in read coverage.

Model fitting of ChromHMM, Segway and EpicSeg

For application with ChromHMM, count data was downsampled to a common library size

(equal to the size of the smallest data set). The data was binarized as described in [8] and

ChromHMM was fitted with default parameters. We made sure the model fitting converged

by observing a plateau of the log-likelihood. Before applying Segway, the data was transformed

using the hyperbolic sine function [9] and a running mean over a 1kb sliding window was

computed to smooth the data. Segway was fitted on ENCODE pilot regions using a 200bp res-

olution. EpicSeg was fitted on the untransformed count data with default parameters.

Processing of chromatin state annotations and external data

All state annotations and external data were lifted to the hg20/hg38 (GRCh38) genome assem-

bly using the liftOver function from the R/Bioconductor package rtracklayer [39]. Overlap of

state annotations with external data was calculated with GenomicRanges [40]. TT-Seq data

was used from [41]. All 86,676 unfiltered transcribed region calls were used for benchmarking.

Transcription units on opposing strands were merged (yielding 60,606 non-strand-specific

transcribed regions) before overlapping the non-strand-specific chromatin state annotation.

All external data used in the analyses can be download from http://i12g-gagneurweb.in.tum.

de/public/paper/GenoSTAN/.

Computation of area under curve

AUC values were calculated on Benchmark set I for GenoSTAN, ChromHMM, Segway and

EpicSeg. To this end, a segmentation was transformed into a binary classifier and evaluated as

follows. Each 200bp bin in the genome overlapping with HOT (TSSs) regions was considered

as ‘true condition’, the rest as ‘false’. For each state S the precision for recalling HOT (TSS)

regions was calculated as the fraction of all segments annotated with S that overlapped with a

HOT (TSS) region. States were then sorted by decreasing precision. The rank of each state was

used as score in the prediction of HOT (TSS) regions on each 200bp bin in the genome, which

was then used to calculate AUC values.

Analysis of transcription factor (co-)binding

TF enrichment in chromatin states was calculated as described earlier [42]. Let TFnt be the

total number of nucleotides in the binding sites (peaks) a TF and TFnt
s the number of
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nucleotides in the binding sites that overlap with state s. Further let snt be the total number of

nucleotides in the genome covered by state s and let l be the length of the genome. TF enrich-

ment is then calculated as
TFnt

s =TFnt

snt=l . For each TF, enrichments were normalized to sum up to 1

across all 18 chromatin states (GenoSTAN-Poilog-K562). The co-binding rate was calculated

as the frequency of binding sites of two TFs that co-occur in a chromatin state divided by the

number of all binding sites of the two TFs (Jaccard index).

Tissue-specific enrichment of disease- and complex trait-associated

variants in regulatory regions

The GWAS catalog was obtained from the gwascat package from Bioconductor [37, 43]. Statis-

tical testing was carried out in a similar manner as described in [13]. The enrichment of SNPs

from individual genome-wide association studies was calculated for traits with at least 20 vari-

ants. SNPs for each trait were overlapped with promoter and enhancer regions and tested

against the rest of the GWAS catalogue as background using Fisher’s exact test. P-values were

adjusted for multiple testing using the Benjamini & Yekutieli correction [44], which applies

under any types of dependencies among the null hypotheses. In order to calculate the recall

and frequency of SNPs, promoter and enhancer states were randomly sampled until a genomic

coverage of 2% for enhancers and 1% of promoters was reached. This was done to control for

the fact that methods can differ among each other regarding the length of the promoters and

enhancers they predict. This procedure was repeated 100 times enabling the calculation of 95%

confidence intervals.

Results and Discussion

Modeling of sequencing data with Poisson-lognormal and negative

binomial distributions

We developed a new genomic segmentation algorithm, GenoSTAN, which implements hidden

Markov models with more flexible multivariate count distributions than previously proposed.

Specifically, GenoSTAN supports two multivariate discrete emission functions, the Poisson-

lognormal distribution and the negative binomial distribution. For the sake of reducing run-

ning time, the components of these multivariate distributions are assumed to be independent

(conditioning on the hidden state). However, the variance is modeled separately for each state

and each track, which provides a more realistic variance model than current approaches. To

be applicable to data sets with replicate experiments or multiple cell types, GenoSTAN corrects

for different library sizes (Methods). All parameters are learnt directly from the data, leaving

the number of chromatin states as the only parameter to be manually set. We provide an effi-

cient implementation of the Baum-Welch algorithm for inference of model parameters, which

can be run in a parallelized fashion using multiple cores. The method is implemented as part

of our previously published R/Bioconductor package STAN [29], which is freely available from

http://bioconductor.org/. Altogether, GenoSTAN uniquely combines flexible count distribu-

tions, library size correction, and track- and state-specific variance (Fig 1).

We first fitted two GenoSTAN models, one with Poisson-lognormal emissions (henceforth

referred to as GenoSTAN-Poilog-K562 model) and one with negative binomial emissions

(GenoSTAN-nb-K562 model) to a dataset of ChIP-seq data of 9 histone modifications, of the

histone acetyltransferase P300, and DNA accessibility (by DNase-Seq) data for the K562 cell

line at 200 bp binning resolution (Methods). K562 is a major model system to study human

transcription and the ENCODE cell line with the largest number of experiments [11]. As

pointed out by others [8, 9], there is no purely statistical criterion for choosing the number of
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states from the data of practical usage in such a setting. In practice, the number of states is

manually defined by trading off goodness of fit against interpretability of the model [8, 9, 29].

For GenoSTAN-Poilog-K562, we used 18 chromatin states. For GenoSTAN-nb-K562, we used

23 states, since lower state numbers did not provide enough resolution to give a fine-grained

map of chromatin states on this data set. This led to the definition of promoter, enhancer,

repressed, actively transcribed and low coverage states, in line with previous studies [21, 22,

28] (Fig 2A and 2B, and S1 Appendix for a description of the identified states). The median

read coverage in state segments and genomic distributions were very similar for both the Gen-

oSTAN-Poilog-K562 and the GenoSTAN-nb-K562 models (Fig 2B, S1 Fig). We noticed that

GenoSTAN segmentation often gave more accurate annotations of enhancers and promoters

compared to previous segmentations for K562 using ChromHMM, Segway and EpicSeg [11,

22, 28, 45], as for instance at the locus of the gene TAL1 (Fig 2A). We then investigated how

systematic this improvement was.

Algorithmic benchmark

The segmentations considered above not only differed for the algorithms but also for the data

they have been fitted on. To compare the performance of the algorithms only, we devised

benchmarks on common data. First, we benchmarked GenoSTAN and the three alternative

methods for a common set of ChIP-seq data of the K562 cell line (Fig 3A, dataset 1 and S1

Appendix). To discard the possibility that this benchmark is favorable to GenoSTAN because

we had not optimally applied the other software, we also compared the segmentations obtained

by GenoSTAN with the exact same data and number of states than the original segmentations

obtained by the authors of the respective methods (datasets 2, 3, and 4).

Transcription initiation activity is not only the hallmark of promoters, but also of enhancers

[15, 16, 46, 47]. To benchmark the predictions using independent evidence for transcription

initiation, we used published data from a protocol called GRO-cap [46], a nuclear run-on pro-

tocol, which very sensitively maps transcription start sites genome-wide. To this end, we sorted

for each method chromatin states by their overlap with GRO-cap TSSs by decreasing preci-

sion. Starting with the most precise state (i.e. highest overlap with TSSs) we calculated cumula-

tive recall and false discovery rate (FDR) by subsequently adding states with decreasing

precision. GenoSTAN-Poilog-K562 had a lower FDR at a similar or higher recall than all other

methods (S2A Fig). Only Segway showed a stronger recall when allowing for a lose FDR larger

than 20%. However, this was reached with a single state which does not distinguish between

Fig 1. Overview of chromatin state annotation methods. Comparison of features of GenoSTAN against three previous chromatin state annotation

algorithms.

doi:10.1371/journal.pone.0169249.g001
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Fig 2. Chromatin states fitted on a dataset using eight histone modifications, P300 and DNase-Seq (dataset 1) using GenoSTAN. (A) GenoSTAN

segmentations are shown with published segmentations using ChromHMM-ENCODE [11], Segway-ENCODE [11] and EpicSeg [28] at the TAL1 gene and

three known enhancers. GenoSTAN-Poilog-K562 correctly recalls all known promoter and enhancer regions, whereas other methods frequently switch

between promoter, enhancer, and other states. (B) Median read coverage of GenoSTAN-Poilog-K562 chromatin states (left), their number of annotated

segments in the genome, their median width and distance to the closest GENCODE TSS (middle). The right panel shows recall of genomic regions by

chromatin states.

doi:10.1371/journal.pone.0169249.g002
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promoters and enhancers. As second independent measure, we considered High Occupancy

of Target (HOT) regions. Hot regions are genomic regions which are bound by a large number

of different transcription-related factors [12], which were shown to function as enhancers [48]

and are enriched in disease- and trait-associated genetic variants [49]. HOT regions are not

necessarily transcriptionaly active regions and thus provide a different kind of benchmark. As

for the benchmark with GRO-cap, the best performing segmentations for HOT regions was

GenoSTAN-Poilog-K562 (S2B Fig). Only Segway showed a stronger recall at an FDR over

20%, but again with a single state which does not discriminate promoters from enhancers. We

also benchmarked the models for recovering complete transcribed regions at the base pair

level, using an independent dataset of transcriptional units obtained by transient transcrip-

tome sequencing (TT-seq), a protocol we recently developed that sensitively identifies tran-

scribed regions [41]. GenoSTAN-Poilog-K562 showed an improved recall of transcribed base

pairs up to 20% FDR against all other methods (S3C Fig).

Fig 3. GenoSTAN with other published chromatin state annotation methods applied to four different datasets in K562. (A) Description of the four

data sets used for benchmarking. All methods were applied to dataset 1 with 18 states in this study. Datasets 2, 3 and 4 were used in previous studies [21, 23,

28]. Segmentations which were created by the authors of the respective studies were compared to GenoSTAN segmentations using the same number of

states. (B-F) Performance of chromatin annotations on each of the dataset 1, 2, 3, and 4 is summarized by the area under the recall-FDR curve for various

genomic features. Cumulative FDR and recall are calculated using overlap on state segments level (B,C) or on base pair level (D-F) by subsequently adding

states (in order of increasing FDR). S2, S3, S4 and S5 Figs show individual recall-FDR curves for all datasets and segmentations.

doi:10.1371/journal.pone.0169249.g003
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The overall results over data sets 1, 2, 3 and 4 are summarized by area under the recall-FDR

curves (Fig 3B–3F) and individual curves provided in S2, S3, S4 and S5 Figs. Overall, Geno-

STAN ranked first in 17 out of 20 comparisons, whereby GenoSTAN-Poilog and GenoSTAN-

nb showed comparatively good performances. These results include comparisons for recalling

GRO-cap and HOT regions at the base-pair level, to control for the possibility that some meth-

ods get good performance on segment-level benchmarks by reporting aberrantly long seg-

ments. Altogether, this extensive benchmark in the K562 cell line demonstrates that

GenoSTAN-Poilog and to a slightly lesser extent GenoSTAN-nb, outperforms current chro-

matin state annotation algorithms for a variety of genomic features.

Because the K562 cell line is a widely used model system for the study of human transcrip-

tion, we provide in S1 Appendix a detailed comparison of the advantage of this segmentation

over the former K562 chromatin state annotations. This comparisons includes benchmarks for

GRO-cap TSS (S6A Fig), HOT regions (S6B Fig), transcription factor binding (S6C Fig), dis-

crimination between enhancers and promoters (S6D and S7 Figs, S1 Table), activity of enhanc-

ers from reporter assays (S6E and S6F Fig), and robustness regarding state number (S8 Fig).

Chromatin state annotation for ENCODE and Roadmap Epigenomics

cell types and tissues

We next applied GenoSTAN to 127 cell types and tissues from ENCODE and Roadmap Epige-

nomics, the largest compendium of chromatin-related data. To this end, we used genomic

input and the five chromatin marks H3K4me1, H3K4me3, H3K36me3, H3K27me3, and

H3K9me3 that have been profiled across the whole compendium [13] (GenoSTAN-127, S9

and S10 Figs). Moreover, we performed a dedicated analysis to 20 of these cell types and tissues

which had three further important data tracks: H3K27ac, H3K9ac and DNase-Seq (Geno-

STAN-20, S11 Fig). These further three tracks are important features of active promoters and

enhancers, which can lead to more precisely mapped enhancer boundaries [11]. For complete-

ness, each analysis was performed with Poisson-lognormal emission distributions and with

negative binomial distributions. We focus primarily on the GenoSTAN-Poilog-127 results

because these cover the full compendium. We provide results for the other analyses when

relevant.

We performed similar comparisons as for K562 to the three available segmentations from

the Roadmap Epigenomics project with 15, 18 and 25 states (ChromHMM-15, -18, and -25).

ChromHMM-15 is the segmentation that had been applied to all 127 cell types and tissues [13,

50] and should be compared to GenoSTAN-Poilog-127 which was run on the same data.

ChromHMM-18, and -25 had been applied to specific subsets [13, 50]. All methods were less

performant than for the K562 annotations, possibly due to lower read coverage or to less rich

data. Nonetheless, the GenoSTAN annotations consistently outperformed the existing ones.

Specifically, this held when assessing the recovery of FANTOM5 CAGE tags (Fig 4A, assessed

for all 127 cell types and tissues), of GRO-cap TSSs (Fig 4B assessed for the cell types with avail-

able GRO-cap TSSs), of HOT regions (Fig 4C, assessed for the cell types with available HOT

regions), and of transcribed regions (GENCODE genes, S12A Fig, and TT-seq transcribed

regions, S12B Fig). Moreover, the GenoSTAN-Poilog-127 model distinguished better promot-

ers from enhancers than ChromHMM-15 when using FANTOM5 annotations for benchmark

(Fig 4D, S2 Table). One possible reason for this better discrimination is that the ChromHMM-

15 annotation had two states called “Flanking active TSS (TssAFlnk)” and “Transcription at

gene 5’ and 3’ (TxFlnk)” that map to either enhancers or promoter states of the GenoSTAN-

Poilog-127 segmentation (S13A Fig). Inspection of the fits indicated that the lower accuracy of

the ChromHMM promoters and enhancers might be caused by frequent state switching
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between the promoter and promoter flanking state (S9 Fig for an example at the TAL1 locus).

Consistent with this hypothesis, the distance between consecutive promoters was much

shorter for the ChromHMM-15 annotation than for the GenoSTAN-Poilog-127 and for the

GenoSTAN-nb-127 segmentations (S14A Fig). Also, the ChromHMM-15 segmentations

showed weaker agreement across cell types: the number of 200bp-bins annotated with pro-

moter state in only one of the 127 cell types was much larger for ChromHMM-15 (298,859)

Fig 4. Comparison of GenoSTAN to other published ChromHMM segmentations from the Roadmap Epigenomics project. GenoSTAN was learned

on all 127 cell types and tissues (GenoSTAN-127) using the five core marks H3K4me1, H3K4me3, H3K36me3, H3K27me3, H3K9me3 and an input control

(ChromHMM-15 was learned on the same data). To improve accuracy additional histone modifications H3K27ac, H3K9ac and DNase-Seq were used to learn

another model (GenoSTAN-20) on a subset of 20 cell types and tissues, where the marks were available. (A) Performance of chromatin states in recovering

FANTOM5 CAGE tags in 127 cell types. CAGE tags were verlapped with chromatin states wihout the use of cell type information. Cumulative FDR and recall

are calculated by subsequently adding states (in order of increasing FDR). (B) Performance of chromatin states in recovering GRO-cap transcription start

sites in two cell types where GRO-cap data was available. (C) The same as in (B) for ENCODE HOT regions for five cell types where annotation of HOT

regions was available. (D) Recall of FANTOM5 promoters and enhancers by predicted promoters and enhancersis plotted to assess how well models

distinguish promoters from enhancers. (E) The fraction of predicted enhancer segments bound by individual TFs is shown for different studies. GenoSTAN

enhancers are more frequently bound by TFs than those from other studies.

doi:10.1371/journal.pone.0169249.g004
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than for GenoSTAN (133,062 for GenoSTAN-Poilog-127 and 107,417 for GenoSTAN-nb-127,

S14B Fig).

The higher accuracy of enhancers for GenoSTAN was also reflected by the enrichment for

transcription factor binding in K562 (Fig 4E). For instance 46% (25%) of enhancers were

bound by Pol II in the GenoSTAN-Poilog-20 (-127) model, compared to 8%, 18% and 36% in

the ChromHMM 15, 18 and 25 state models. Also, the lineage-specific enhancer-binding tran-

scription factor TAL1 binds at 37% (GenoSTAN-Poilog-20) and 27% (GenoSTAN-Poilog-

127) of predicted enhancers. Conversely, 13%, 16% and 27% of putative enhancers were

bound by TAL1 in the respective 15, 18 and 25 state ChromHMM models (Fig 4E).

Collectively, these results show that the improved performance of GenoSTAN is not specific

to the K562 dataset.

Cell-type specific enrichment of disease- and other complex trait-

associated genetic variants at promoters and enhancers

Previous studies showed that disease-associated genetic variants are enriched in potential regu-

latory regions [13, 21, 51–54] demonstrating the need for accurate maps of these elements to

understand genotype-phenotype relationships and genetic disease. To study the potential

impact of variants in regulatory regions on various traits and diseases, we overlapped our

enhancer and promoter annotations from 127 cell types and tissues with phenotype-associated

genetic markers from the NHGRI genome-wide association studies catalog (NHGRI GWAS

Catalog [43]). We note that the functional variants might not be the markers themselves but

some other variants that are in linkage with these markers. Therefore this analysis conserva-

tively underestimates the true sensitivity, but, importantly, the same way for all methods. First,

we intersected trait-associated variants with enhancer and promoter states (GenoSTAN-Poi-

log-127). Overall, 37% of all trait-associated SNPs were located in potential enhancers and 7%

in potential promoters. The number of traits significantly enriched (at FDR <0.05) with

enhancers or promoters in at least one cell type or tissue was similar for GenoSTAN-Poilog-

127 (39 traits for GenoSTAN-Poilog-127 for enhancers and 9 traits for promoters) than for the

best performing ChromHMM-model (ChromHMM-15, 35 traits for enhancers and 11 traits

for promoters, S15A and S15B Fig). We next assessed the sensitivity and the precision for

recalling disease- and complex trait-associated markers. To control for the fact that methods

can differ among each other regarding the length of the promoters and enhancers they predict,

we furthermore computed the recalls of GWAS variants for a fixed genomic coverage. Restrict-

ing to a total genomic coverage of 2% (random subsetting, also allowing confidence interval

computation, Methods), enhancers of all GenoSTAN models overlapped a higher fraction of

GWAS variants at a similar to better per base pair density compared to the current

ChromHMM annotations (Fig 5A). The same trend was observed for promoters when restrict-

ing to 1% of genomic coverage (Fig 5B). These results also held for weak enhancers (S16 Fig),

and when controlling for possible segment length effect by benchmarking at the base-pair level

rather than at the segment level to (S17 Fig). The improved overlap with trait-associated vari-

ants indicates that GenoSTAN annotation has a higher enrichment for functional elements

than the current annotation.

In accordance with previous studies [13, 21] we found that individual variants were strongly

enriched in enhancer or promoter states specifically active in the relevant cell types or tissues

(Fig 5C, S15C Fig). Variants associated with height were significantly associated with osteo-

blasts enhancers (at FDR <0.001 here and after). Variants associated with immune response

or autoimmune disorders were enriched in B- and T-cell enhancers (Fig 5C) and promoters

(S15C Fig). These include for instance autoimmune disease associated SNPs for systemic lupus
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erythematosus, inflammatory bowel disease, ulcerative colitis, rheumatoid arthritis, and pri-

mary biliary cirrhosis. Variants associated with electrocardiographic traits and QT interval

were enriched in fetal heart enhancers. SNPs associated with colorectal cancer were enriched

in enhancers specific to the digestive system. These results illustrate that the annotation of

potential promoters and enhancers generated in this study can be of great use for interpreting

genetic variants associated, and underscore the importance of cell-type or tissue-specific

annotations.

Fig 5. Enrichments of genetic variants associated with diverse traits in enhancers and promoters are specific to the relevant cell types or tissues.

(A) Median SNP recall and frequency was calculated for enhancer states in different segmentations by restricting it to a total genomic coverage of 2% (100

samples of random subsetting) to control for different number of enhancer calls between the segmentations. Error bars show the 95% confidence interval. (B)

The same as in (A) but for promoters. (C) The heatmap shows the -log10(p-value) of significantly enriched traits in enhancer states (GenoSTAN-Poilog-127,

p-value < 0.01, marked by ‘*’). Only cell types and tissues where at least one trait was significantly enriched are shown. P-values were adjusted for multiple

testing using the Benjamini-Yekutieli correction.

doi:10.1371/journal.pone.0169249.g005
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A novel annotation of enhancers and promoters in human cell types and

tissues

We then compiled the results from the best performing annotations for each cell type and tis-

sue into a single annotation file. The combined annotation files are available from http://i12g-

gagneurweb.in.tum.de/public/paper/GenoSTAN. For the combined annotation file, we chose

GenoSTAN with Poisson-lognormal in every instance, as it performed best in almost every

comparison we conducted. We used the results from dataset 1 for K562, from GenoSTAN-Poi-

log-20 for the 20 cell types and tissues, and from GenoSTAN-Poilog-127 for all the remaining

Roadmap Epigenomics cell types and tissues. Overall, our annotation reports typically between

8,945 and 16,750 (10% and 90% quantiles of number of promoters across all 127 cell types and

tissues) active promoters per cell type or tissue. This number is consistent with the typical

number of expressed genes per tissue (in 11,953 to 16,869 range, [55]). However, the median

width of these elements depends on the data on which the annotation was based. For the Gen-

oSTAN-Poilog-20 segmentation, promoters are much narrower (800bp median) than for the

K562 annotations (1.4 kb), suggesting that promoter regions in the 20 cell types more accu-

rately match DNase hypersensitivity sites (DHS) of the core promoter. The number of enhanc-

ers per cell type or tissue varied more greatly (between 8,208 and 33,596 for the 10% and 90%

quantiles). The large variation of the number of enhancers might be partly due to differences

of sensitivity in complex biological samples. Consistent with this hypothesis, much fewer

enhancers were identified in tissues than in primary cells and cell lines (S18 Fig) likely because

enhancers that are active only in a small subsets of all cell types present of a tissue may be not

detected. As more cell-type specific data will be available, improved maps can be generated.

The GenoSTAN software, which is publicly available, will be instrumental to update these

genomic annotations.

Promoters and enhancers have a distinct TF regulatory landscape

The biochemical distinction between enhancers and promoters is a topic of debate [6, 7]. We

explored to which extent enhancers and promoters are differentially bound by TFs using the

K562 cell line dataset because i) we obtained the most accurate annotation for this cell line

(GenoSTAN-Poilog-K562, dataset 1) and ii) ChIP-seq data was available for as many as 101

TFs in this cell line [11]. Nine TF modules were defined by clustering based on binding pattern

similarity across enhancers and promoters (Methods, Fig 6). These 9 TF modules were further

characterized by the propensity of their TFs to bind promoters, enhancers or both (Fig 6). In

accordance with previous studies [42, 56], this recovered many complexes and promoter-asso-

ciated and enhancer-associated proteins, including the CTCF/cohesin complex (CTCF, Rad21,

SMC3, Znf143), the AP-1 complex (Jun, JunB, FOSL1, FOS), Pol3, promoter and enhancer

associated modules, and factors associated with chromatin repression (EZH2, HDAC6).

Moreover, the modules identified provided insights into the distinction of promoters and

enhancers. On the one hand, some TFs are common to both enhancers and promoters, which

supports previous reports [7, 15]. In accordance with the recent finding of widespread tran-

scription at enhancers [46], Pol II and multifunctional TFs Myc, Max, and MAZ [57] are part

of a TF module—which we called the Promoter-Enhancer-Module (PEM)—which had

approximately equal binding preferences for promoter and enhancer states, but also co-local-

ized with other TFs specifically binding enhancers or promoters (Fig 6).

On the other hand enhancers and promoters were also bound by distinct TFs, which is con-

sistent with previously reported TF co-occurrence patterns at gene-proximal and gene-distal

sites [42, 56]. Among the promoter and enhancer-associated proteins we defined Promoter

module 1 and 2 (PM1, PM2), Enhancer module 1 and 2 (EM1, EM2), which had a strong
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preference for binding either a promoter or an enhancer, but exhibited different co-binding

rates (Fig 6). Promoter module 1 contained TFs which were specifically enriched in promoter

states and associated with basic promoter functions, such as chromatin remodeling (CHD1,

CHD2), transcription initiation or elongation (TBP, TAF1, CCNT2, SP1) and other TFs

involved in the regulation of specific gene classes (e.g. cell cycle: E2F4) [57]. However, it also

included TFs known as transcriptional repressors (e.g. Mxi1, a potential tumor suppressor,

which negatively regulates Myc). While TFs in PM1 showed a high co-binding rate, PM2 fac-

tors exhibited low co-binding. This might be partially explained by lower efficiency of the

ChIP, since PM2 also contained general TFs such as TFIIB, TFIIF or the Serine 2 phospho-iso-

form of Pol II, which are expected to co-localize with other general TFs from PM1.

EM1 contained TFs with high co-binding rate, which included TAL1, an important lineage-

specific regulator for erythroid development (K562 are erythroleukemia cells) and which had

been shown to interact with CEBPB, GATA1 and GATA2 at gene-distal loci [56, 58]. It also

contained the enhancer-specific transcription factor P300 [59] and transcriptional activators

Fig 6. Promoters and enhancers have a distinctive TF regulatory landscape. Co-binding (left) and enrichment of transcription factor binding sites (right)

in chromatin states (GenoSTAN-Poilog-K562) for 101 transcription factors in K562 reveals TF regulatory modules with distinct binding preferences for

promoters, enhancers and repressed regions. The co-binding is depicted as the frequency of binding sites of two TFs that co-occur in a chromatin state

divided by the number of all binding sites of the two TFs (Jaccard index). For each TF, enrichments were normalized to sum up to 1 across all 18 chromatin

states of GenoSTAN-Poilog-dataset 1.

doi:10.1371/journal.pone.0169249.g006
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(e.g. ATF1) and repressors (e.g. HDAC2, REST) [57]. Analogously to PM2, EM2 contained

enhancer-specific transcriptional activators and repressors with a low co-binding rate.

Altogether this analysis highlights the common and distinctive TF binding properties of

enhancers and promoters.

Conclusion

We introduced GenoSTAN, a method for de novo and unbiased inference of chromatin states

from genome-wide profiling data. In contrast to previously described methods for chromatin

state annotation, GenoSTAN directly models read counts, thus avoiding data transformation

and the manual tuning of thresholds (as in ChromHMM and Segway), and variance is not

shared between data tracks or states (as in EpicSeg and Segway) [8, 9, 28]. GenoSTAN is

released as part of the open-source R/Bioconductor package STAN [29, 32, 37], which provides

a fast, parallel implementation that can process data from 127 human cell types in less 3–6

days (GenoSTAN-Poilog-127: 6 days, -nb: 3 days).

Application of GenoSTAN significantly improved chromatin state maps of 127 cell types

and tissues from the ENCODE and Roadmap Epigenomics projects [11, 13]. Binding of

enhancer-associated co-activator CBP and histone acetyltransferase P300 was used by several

studies for the genome-wide prediction of enhancers [27, 59, 60]. From these predictions a dis-

tinctive chromatin signature for promoters and enhancers was derived based on H3K4me1

and H3K4me3 [27]. In particular, the ratio H3K4me1/H3K4me3 was found to be low at pro-

moters, in comparison to enhancers. Active and poised enhancers could also be distinguished

by presence or absence of H3K27me3 and H3K9me3 [61]. All these features could be con-

firmed by GenoSTAN, making it a promising tool for the biochemical characterization of

enhancers and promoters. Moreover, extensive benchmarks based on independent data

including transcriptional activity, TF binding, cis-regulatory activity, and enrichment for com-

plex trait-associated variants showed the highest accuracy of GenoSTAN annotations over for-

mer genome segmentation methods.

We have implemented two count distributions, the Poisson log-normal and the negative

binomial distribution. Both distributions capture over-dispersion. The negative binomial dis-

tribution is a popular distribution for modeling count data, because it is part of the exponential

family, and it is used for many genomics applications. However, in almost every benchmark

we performed, the Poisson log-normal distribution turned out to give better results. We there-

fore suggest to use GenoSTAN with the Poisson-lognormal distribution. Independently of

which of the Poisson-lognormal or the negative binomial, GenoSTAN generally improved

over former methods. This indicates that the importance of i) a count distribution and ii)

modeling a state- and track-specific variance. GenoSTAN tended to attribute more states to

regions with low coverage compared to ChromHMM, which is based on a binarization of the

data (S12 Fig). The biological interpretation of these multiple states with low coverage is

unclear. This is not a problem in practice because all these states are typically considered as a

single group. Different noise model could be investigated to cope with these low count regions

more uniformly, for instance with mixture models such as the zero-inflated poisson. In con-

trast, ChromHMM provided more states regions with high coverage (S12 Fig). Although

potentially more relevant, the qualitative distinction of these states also has unclear biological

interpretation. In practice, these are often grouped with other states for further analysis [13]. If

wished, capturing more states with high coverage could be obtained with GenoSTAN by

increasing the number of states.

The GenoSTAN annotation sheds light on the common and distinctive features of promot-

ers and enhancers, which currently are an intense subject of debate [6, 7]. Among other
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characteristics, a shared architecture of promoters and enhancers was proposed based on the

recent discovery of widespread bidirectional transcription at enhancers [7, 46, 47]. This was

supported by the observation that enhancers, which are depleted in CpG islands have similar

transcription factor (TF) motif enrichments as CpG poor promoters [15]. However, another

study showed that TF co-occurrence differed between gene-proximal and gene-distal sites [42,

56]. GenoSTAN chromatin states revealed a very distinct TF regulatory landscape of these ele-

ments and therefore suggest that promoters and enhancers are fundamentally different regula-

tory elements, both sharing the binding of the core transcriptional machinery. Our annotation

of enhancers and promoters will be a valuable resource to help characterizing the genomic

context of the binding of further TFs.

Indirectly, our analysis showed that chromatin state annotations are better predictors of

enhancers than the transcription-based definition provided by the FANTOM5 consortium

[15]. While FANTOM5 enhancers are an accurate predictor for transcriptionally active

enhancers, the sensitivity remains poor (only 4,263 enhancers were called by overlap with

GRO-cap TSSs and DHS, which is less than the estimated number of transcribed genes, for

K562 cells compared to about 20,000–30,000 for ChromHMM and 10,000–20,000 for Geno-

STAN). Although, the sensitivity of the transcription-based approach can increase with tran-

sient transcriptome profiling [62–63] or nascent transcriptome profiling [64], the chromatin

state data undoubtedly add valuable information for the identification of promoters and

enhancers. Because it models count data, GenoSTAN analysis can in principle also integrate

RNA-seq profiles, for instance using it in a strand-specific fashion [29].

Systematic identification of cis-regulatory active elements by direct activity assays is notori-

ously difficult. STARR-Seq for instance is a high-throughput reporter assay for the de novo
identification of enhancers [5]. It was previously used to identify thousands of cell-type specific

enhancers in Drosophila, but has not been applied genome-wide to human yet. Moreover,

STARR-Seq makes rigid assumptions about the location of the enhancer element with respect

to the promoter, and it does not account for the native chromatin structure. This might iden-

tify regions that are inactive in situ [5]. Other experimental assays for the validation of pre-

dicted ENCODE enhancers lead to different results [3, 4]. Complementary to these

approaches, the systematic evaluation of cis-regulatory activity based on candidate regions in

human cells have made progress with the advent of high-throughput CRISPR perturbation

assays [65]. Because it requires candidate cis-regulatory regions in a first place, such approach

will benefit from improved annotation maps as the one we are providing.

Thus, we foresee GenoSTAN to be instrumental in future efforts to generate robust,

genome-wide maps of functional genomic regions like promoters and enhancers.

Supporting Information

S1 Fig. Summary statistics for GenoSTAN-nb-K562 model. Median read coverage of Geno-

STAN-nb-K562 chromatin states (left), their number of annotated segments in the genome,

their median width and distance to the closest GENCODE TSS (middle). The right panel

shows recall of genomic regions by chromatin states.

(PDF)

S2 Fig. Algorithmic benchmark of GenoSTAN with ChromHMM, EpicSeg and Segway on

dataset 1. (A) Performance of chromatin states in recovering GRO-cap transcription start

sites using state segments. Cumulative FDR and recall are calculated using overlap with state

segments by subsequently adding states (in order of increasing FDR). (B) The same as in (A)

for ENCODE HOT regions. (C) TT-Seq transcribed regions were overlapped with state anno-

tations on bp level and cumulative FDR and recall were calculated. (D,F) Performance of
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chromatin states in recovering GRO-cap transcription start sites and ENCODE HOT regions

using bp overlap.

(PDF)

S3 Fig. Algorithmic benchmark of GenoSTAN with Segway on dataset 2. (A) Performance

of chromatin states in recovering GRO-cap transcription start sites using state segments.

Cumulative FDR and recall are calculated using overlap with state segments by subsequently

adding states (in order of increasing FDR). (B) The same as in (A) for ENCODE HOT regions.

(C) TT-Seq transcribed regions were overlapped with state annotations on bp level and cumu-

lative FDR and recall were calculated. (D,F) Performance of chromatin states in recovering

GRO-cap transcription start sites and ENCODE HOT regions using bp overlap.

(PDF)

S4 Fig. Algorithmic benchmark of GenoSTAN with EpicSeg on dataset 3. (A) Performance

of chromatin states in recovering GRO-cap transcription start sites using state segments.

Cumulative FDR and recall are calculated using overlap with state segments by subsequently

adding states (in order of increasing FDR). (B) The same as in (A) for ENCODE HOT regions.

(C) TT-Seq transcribed regions were overlapped with state annotations on bp level and cumu-

lative FDR and recall were calculated. (D,F) Performance of chromatin states in recovering

GRO-cap transcription start sites and ENCODE HOT regions using bp overlap.

(PDF)

S5 Fig. Algorithmic benchmark of GenoSTAN with ChromHMM on dataset 4. (A) Perfor-

mance of chromatin states in recovering GRO-cap transcription start sites using state seg-

ments. Cumulative FDR and recall are calculated using overlap with state segments by

subsequently adding states (in order of increasing FDR). (B) The same as in (A) for ENCODE

HOT regions. (C) TT-Seq transcribed regions were overlapped with state annotations on bp

level and cumulative FDR and recall were calculated. (D,F) Performance of chromatin states in

recovering GRO-cap transcription start sites and ENCODE HOT regions using bp overlap.

(PDF)

S6 Fig. Comparison of GenoSTAN-(NB/PoiLog)-K562 (dataset1) to other published seg-

mentations (‘ChromHMM-ENCODE’ [11, 22], ‘ChromHMM-dataset4’ [21],

‘ChromHMM-15’, ‘-18’ and ‘-25’ [13], ‘Segway-ENCODE’ [11, 22], ‘Segway-nmeth’ [9],

‘Segway-dataset2’ [23] and EpicSeg-dataset3 [28]. (A) Performance of chromatin states in

recovering GRO-cap transcription start sites. Cumulative FDR and recall are calculated by

subsequently adding states (in order of increasing FDR). (B) The same as in (A) for ENCODE

HOT regions. (C) The fraction of predicted enhancer segments bound by individual TFs is

shown for different studies. GenoSTAN enhancers are more frequently bound by TFs than

those from other studies. (D) Recall of FANTOM5 promoters and enhancers which are active

in K562 (i.e. overlapping with a GRO-cap TSS and an ENCODE DNase hypersensitivity site)

by predicted promoters and enhancers is plotted to assess how well models distinguish pro-

moters from enhancers. (E) Predicted enhancers show significantly higher activity than

repressed and low coverage regions as measured by a reporter assay (‘�’, ‘��’ and ‘���’ indicate

p-values <0.05, 0,01 and 0.001). (F) Comparison of experimental measures of enhancer activ-

ity between different studies.

(PDF)

S7 Fig. Overlap of promoter and enhancer annotations in K562 between different studies.

(A) Heatmap of pairwise overlap (Jaccard index) of promoter (red) and enhancer (orange)

state annotations from different studies. Rows and columns were ordered by separate

Accurate Promoter and Enhancer Identification with GenoSTAN

PLOS ONE | DOI:10.1371/journal.pone.0169249 January 5, 2017 19 / 25

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0169249.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0169249.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0169249.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0169249.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0169249.s007


clustering of promoter and enhancer overlaps. (B) Distribution of pairwise Jaccard indices for

strong promoters and enhancers (off-diagonal elements of promoter and enhancer sub-matri-

ces from (A)).

(PDF)

S8 Fig. Algorithmic benchmark of GenoSTAN, ChromHMM, Segway and EpicSeg on data-

set 1. Comparison of chromatin segmentation algorithms with respect to their ability to call

GRO-cap transcription start sites (left panels) and ENCODE HOT regions (right panels), as a

function of the state number used in the respective algorithm (x-axes). All models were learned

on dataset 1. (A-B) For each model, the state with highest precision in recalling HOT (respec-

tively TSS) regions is shown. (C-D) For each model, an area under curve (AUC) score (see

Methods) is plotted to asses the spatial accuracy of a genome segmentation.

(PDF)

S9 Fig. GenoSTAN and ChromHMM segmentations on Roadmap Epigenomics data

around the TAL1 gene in K562. GenoSTAN models fitted on a subset of 20 and all 127 cell

types and tissues from Roadmap Epigenomics are compared to ChromHMM models with 15,

18 and 25 states at the TAL1 gene in K562.

(PDF)

S10 Fig. GenoSTAN models with 20 states fitted on five core marks of all 127 cell types and

tissues from Roadmap Epigenomics. (A) Median read coverage of GenoSTAN-Poilog-127

chromatin states (left), their number of annotated segments in the genome, their median

width and distance to the closest GENCODE TSSs of segments (middle). The right panel

shows recall of genomic regions by chromatin states. (B) The same as (A) for GenoSTAN-nb-

127.

(PDF)

S11 Fig. GenoSTAN models with 25 states fitted on nine chromatin marks on a subset of

20 cell types and tissues form Roadmap Epigenomics. (A) Median read coverage of GenoS-

TAN-Poilog-20 chromatin states (left), their number of annotated segments in the genome,

their median width and distance to the closest GENCODE TSSs of segments (middle). The

right panel shows recall of genomic regions by chromatin states. (B) The same as (A) for Geno-

STAN-nb-20.

(PDF)

S12 Fig. Algorithmic benchmark of GenoSTAN-(Poilog/NB)-127 and ChromHMM-15.

GenoSTAN-(Poilog/NB)-127 is shown in red/orange, ChromHMM-15 in green. All three

models were learned on the same data (H3K4me1, H3K4me3, H3K36me3, H3K27me3,

H3K9me3 and an input control). GenoSTAN models were learned with 20, ChromHMM-15

with 15 states. In both plots, cumulative FDR and recall are calculated by subsequently adding

states (in order of increasing FDR). Performance of chromatin states in recovering GENCODE

gene annotations (A) and TT-seq transcribed regions (B) in K562 at bp level.

(PDF)

S13 Fig. Overlap (base pair) between GenoSTAN-Poilog-127 and ChromHMM-15 is shown.

(A) Rows were normalized to sum up to 1. (B) Columns were normalized to sum up to 1.

(PDF)

S14 Fig. Comparison of stability of promoter and enhancer annotation between GenoS-

TAN-Poilog-127, GenoSTAN-NB-127 and ChromHMM-15. (A) Estimated cumulative dis-

tribution of promoter states within a certain distance along genome in K562. The number of
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200bp bins that are annotated in only one (out of 127) cell types are counted for promoters (B)

and enhancers (C) for the different segmentations.

(PDF)

S15 Fig. Enrichments of genetic variants associated with diverse traits in enhancers and

promoters are specific to the relevant cell types. (A) The number of traits which are enriched

in enhancer states in at least one cell type or tissue is plotted for p-values < 0.05. (B) The same

as in (A) but for promoters. (C) The heatmap shows the -log10(p-value) of significantly

enriched traits in promoter states (GenoSTAN-Poilog-127, p-value < 0.05, marked by ‘�’). P-

values were adjusted for multiple testing using the Benjamini-Yekutieli correction.

(PDF)

S16 Fig. Frequency of SNPs in enhancers precicted from Roadmap Epigenomics data.

Median SNP recall and frequency was calculated for weak intergenic enhancer or enhancer

flanking states (ChromHMM-18: ‘10_EnhA2’, ChromHMM-25: ‘14_EnhA2’, GenoSTAN-Poi-

log-20: ‘EnhF.13’, GenoSTAN-NB-20: ‘EnhF.12’, GenoSTAN-Poilog-127: ‘EnhW.9’, GenoS-

TAN-NB-127: ‘EnhW.8’) in different segmentations by restricting it to a total genomic

coverage of 2% (100 samples of random subsetting) to control for different number of

enhancer calls between the segmentations. Error bars show the 95% confidence interval.

ChromHMM-15 is omitted because it only has one intergenic enhancer state.

(PDF)

S17 Fig. Precision and recall of GWAS SNPs for promoter and enhancer 200bp bins. (A)

Median SNP recall and frequency was calculated for enhancer states in different segmentations

by restricting it to a total genomic coverage of 2% (100 samples of random subsetting) to con-

trol for different number of enhancer calls between the segmentations. Error bars show the

95% confidence interval. (B) The same as in (A) but for promoters.

(PDF)

S18 Fig. Dependency of number of predicted promoters and enhancers on tissue group

and sample type. (A) Number of enhancer states per Roadmap Epigenomics cell/tissue group.

(B) The same as in (A) for promoters. (C) Number of enhancer states per Roadmap Epige-

nomics sample type. (D) The same as in (C) for promoters.

(PDF)

S1 Appendix. Additional information. This document contains the preprocessing steps of

dataset 1 for ChromHMM, a detailed description of the GenoSTAN state annotation on data-

set 1 and the author contributions.

(PDF)

S1 Table. Number of promoter and enhancer states for the chromatin state annotations

analyzed in this study.

(PDF)

S2 Table. Promoter and enhancers states used to calculate recall of FANTOM5 promoters

and enhancers. Two promoter and enhancer states were used for each segmentation, except

for the EpicSeg segmentation, which only fitted one enhancer state.

(PDF)
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