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Abstract: The applicability of linearized axisymmetric dynamics to the intensification and structure
change of tropical cyclones is investigated. The study is motivated by recent work that presented
axisymmetric solutions to the linearized, non-hydrostatic, vortex-anelastic equations of motion (the
so-called 3DVPAS model). The work called into question the importance of a recently proposed
nonlinear, system-scale boundary-layer spinup mechanism both in intensifying storms and in mature
storms undergoing secondary eyewall formation. The issue is examined using a three-dimensional
mesoscale simulation of an intensifying tropical cyclone, alongside the linear 3DVPAS model.
Solutions to the linear model, for imposed eddy forcing terms derived from the mesoscale simulation,
are shown to be valid only for short times (t < 1 h) in the inner-core region of the vortex. At later
times, the neglected nonlinear terms become significant and the linear results invalid. It follows that
the linear results cannot be used to describe all aspects of the tropical cyclone dynamics at later times.
In particular, they cannot be used (a) to dismiss the importance of the nonlinear boundary-layer
spinup mechanism, nor (b) to isolate the separate effects of diabatic heating from those of friction,
within the nonlinear boundary layer at least. Such separation depends on the linear superposition
principle, which fails whenever nonlinearity is important. Similar caveats apply to the use of another
linear model, the traditional Sawyer–Eliassen balance model. Its applicability is limited not only
by linearity, but also by its assumption of strictly balanced motion. Both are incompatible with
nonlinear spinup.

Keywords: tropical cyclone; hurricane; typhoon; intensification; eddy dynamics; conventional and
nonlinear boundary layer spinup mechanisms

1. Introduction

In the past few years, there have been at least two studies of tropical cyclone dynamics using a
model called “Three-Dimensional Vortex Perturbation Analysis and Simulation” (3DVPAS), a linearized
numerical model designed to analyze some aspects of symmetric and asymmetric vortex dynamics,
including the dynamics of tropical cyclone and tornado vortices [1,2]. The 3DVPAS model neglects
all nonlinear terms involving the axisymmetric flow, but generalizes classic balance models in that it
retains linear unbalanced processes including radially and vertically propagating inertia-gravity waves.
The studies reported in [1,2] apply the 3DVPAS model to the evolution of an axisymmetric tropical
cyclone vortex by forcing the model with azimuthally-averaged outputs from three-dimensional,
non-hydrostatic numerical simulations of an intensifying tropical cyclone, or a tropical cyclone
undergoing secondary eyewall formation. The averaged outputs represent heating and forces arising
from eddy processes in the numerical simulations. Therefore, these studies can be seen as a revival of
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the axisymmetric “convective ring model" of tropical cyclone intensification originally proposed in [3,4],
but can be seen also as a generalization thereof because the original ring model assumed axisymmetric
balance dynamics.

Ref. [1] used the 3DVPAS model to diagnose the relative roles of the heat and tangential momentum
forcing in the formation of a simulated secondary eyewall as predicted by the three-dimensional Weather
Research and Forecasting (WRF) model. The solutions for the transverse circulation using the 3DVPAS
model were found to be qualitatively similar to the transverse circulation diagnosed from the WRF
model. However, the theoretical justification for the neglect of the nonlinear terms was not provided.
At a minimum, one needs to verify that all the nonlinear terms, when evaluated using the linear
solutions, are small in comparison to the retained linear terms.

In a more recent study, Ref. [2] used the same methodology as employed in [1] to diagnose the
relative roles of the heat and tangential momentum forcing distributions in the intensification of a
tropical cyclone using again the WRF model, but for another intensifying storm.

Because of the linearization built into the 3DVPAS model, this use of it cannot address the
situation within the frictional boundary layer in the inner-core region of the storm where the flow is
intrinsically nonlinear [5–7]. As discussed in earlier publications (e.g., [7–10]), there is an intrinsically
nonlinear boundary layer spinup process, which, as discussed in [7], involves strong, non-Ekman-like
nonlinearities in an essential way, with dramatic consequences such as the generation of strong
supergradient winds within the boundary layer. These supergradient winds include the strongest and
most destructive winds found anywhere within a mature tropical cyclone.

The inherently linear nature of the 3DVPAS model means that its use in Refs. [1,2] produces results
that are misleading in two ways. The first is simply that important nonlinear terms are neglected,
and the second is that, in using the results to examine the relative importance of heat and tangential
momentum forcing, the linear superposition principle is tacitly assumed. That is, it is assumed that
the heat and momentum forcing processes can be considered separately, with effects that are additive.
The superposition principle fails as soon as nonlinearity is significant, and fails drastically when
nonlinearity is strong. In particular, its use in Ref. [2] to cast doubt on the nonlinear boundary layer
spinup mechanism is, in our view, unjustified.

The objectives of this paper are twofold. The first is to examine the validity of the 3DVPAS model,
summarized in Section 2, for a class of axisymmetric vortex flows forced by azimuthally-averaged
diabatic and frictional terms diagnosed from a state-of-the art three-dimensional mesoscale numerical
model (Section 3). The specific goal in this context is to quantify the errors introduced by the neglect
of the nonlinear terms in the governing equations in the inner-core region of the storm (Section 4).
We show that the inner-core nonlinear terms are already significant even at an early stage of tropical
cyclone intensification, much earlier than expected from the recent results of [7] who examined a
later stage of tropical cyclone intensification and secondary eyewall formation. Our findings, together
with those of [7], suggest that the emergence of strong nonlinearities outside the scope of 3DVPAS
invalidates the use of 3DVPAS for diagnosing and interpreting complex numerical model solutions for
maturing and mature tropical cyclones that possess such strong nonlinearities.

A second, and subsidiary, objective (Section 5) is to examine the use of the traditional
Sawyer–Eliassen (hereafter SE) model of transverse circulations, in this same context of maturing
and mature tropical cyclones. The SE model was used in [2] to cast further doubt on the existence of
nonlinear spinup. However, the SE model is linear, by assumption, in the same sense as the 3DVPAS
model, and is subject to additional limitations through its assumption of strictly balanced motion.
Neither assumption is compatible with the nonlinear boundary-layer dynamics. For instance, when the
boundary-layer inflow separates and turns upward into the eyewall, not only are the non-Ekman-like
nonlinearities strong, but departures from balance can become significant in the form of axisymmetric
inertia-gravity waves launched into the eyewall upflow [11]. Section 5 discusses the extent to which
these limitations might be overcome in future work. Section 6 offers concluding remarks.
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2. A Forced Axisymmetric Convective Ring Model Revisited

The time-dependent linear vortex model 3DVPAS was developed originally to examine linear,
non-hydrostatic, asymmetric wave-like disturbances and their wave, mean-flow interactions in tropical
cyclones and tornado vortices [12]. The model solves for linear disturbances to a basic-state circular
vortex in gradient and hydrostatic balance and has produced many insightful results for a wide class
of asymmetric vortex wave and instability problems in tornado and tropical-cyclone-like vortices
(e.g., [12–17]).

Follow-up work by [17,18] adapted this model to solve for the azimuthal-wavenumber-zero
disturbance and corresponding velocity and temperature tendencies subject to the imposed forcing
of diabatic heating, and momentum sources/sinks for physically-motivated forcing distributions
in either tornadoes or tropical cyclones. This is the version of the model used in [1,2], where the
model configurations assume an initially zero radial and vertical flow and a zero vertical gradient of
basic-state tangential velocity below a nominal height that spans a large part of the boundary layer;
see assumption (1) below Equation (11).

The 3DVPAS model used here is the version described in [19]. It uses a non-standard form of
the anelastic equations known as the “vortex-anelastic equations”, in which the basic-state density
ρ and potential temperature θ are allowed to depend on radial distance r as well as on altitude z,
as appropriate for a strong vortex. For the full set of equations, the reader is referred to [19].

The subset of equations from Ref. [19] needed here, and the notation to be used, are as follows.
The azimuthal-wavenumber-zero disturbance flow predicted by the 3DVPAS model is denoted by a
zero subscript. The asymmetric (eddy) disturbance flow is denoted by a prime. By definition, primed
quantites have zero azimuthal average. They are diagnosed from the WRF model output at hour 27
(see below). The corresponding eddy forcing terms, in Equations (6) and (10) below, are switched
on at the initial time t = 0 of the 3DVPAS model. For times t ≥ 0, we write v = V(r, z) + v0 + v′,
where V(r, z) is the frozen-in-time circular vortex tangential velocity field in gradient wind and
hydrostatic balance at t = 0 (i.e., at WRF hour 27), and v0 = v0(r, z, t), the tangential velocity
disturbance that develops in response to the imposed eddy forcing and satisfies v0(r, z, 0) = 0.
Similarly, we write u = u0 + u′, where u0(r, z, t) is the forced radial velocity disturbance satisfying
u0(r, z, 0) = 0. Similar definitions apply for the vertical velocity, pressure, and potential temperature
fields. Respectively, these are w = w0(r, z, t) + w′, p = P(r, z) + p0(r, z, t) + p′, and θ = Θ(r, z) +
θ0(r, z, t) + θ′, where w0(r, z, 0) = 0, p0(r, z, 0) = 0, and θ0(r, z, 0) = 0. The anelastic density field ρ is a
fixed basic-state-only quantity, ρ = ρ(r, z).

With these definitions, the horizontal momentum equations become

∂u0

∂t
= ξ̄v0 −

∂

∂r

(
p0

ρ

)
+ Fr + Nu0 , (1)

∂v0

∂t
= −η̄u0 − w0

∂V
∂z

+ Fλ + Nv0 , (2)

where ξ̄ = f + 2V/r denotes twice the local absolute rotation rate of the basic-state vortex, and
η̄ = f + (1/r)∂(rV)/∂r denotes its local absolute vorticity. The remaining terms are defined in
Equations (5)–(8) below. The basic-state pressure field P(r, z) is assumed to be in gradient wind
balance with V(r, z):

V2

r
+ f V =

1
ρ

∂P
∂r

, (3)

and in hydrostatic balance with ρ(r, z),

∂P
∂z

= −ρg, (4)
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where g is the gravitational acceleration. This basic-state vortex is constructed by azimuthally averaging
the WRF model output, as described in the next section; see also assumption (1) below Equation (11).

The terms Fr and Fλ in Equations (1) and (2) represent the imposed forcing and are defined by

Fr = SGr − u′
∂u′

∂r
− w′

∂u′

∂z
, (5)

Fλ = SGλ − u′ζ ′ − w′
∂v′

∂z
− 1

rρ

∂p′

∂λ
. (6)

Here an overbar denotes the azimuthal average, and, as before, the primed (eddy) quantities
the deviations therefrom, with zero average; ζ ′ denotes the eddy vertical vorticity (1/r)(∂(rv′)/∂r−
∂u′/∂λ), λ is the azimuthal angle and SGλ and SGr denote the subgrid-scale velocity tendencies
associated with surface friction and unresolved turbulent mixing processes (modeled by diffusion) in
the planetary boundary layer and vortex interior.

The terms Nu0 and Nv0 in Equations (1) and (2) are the nonlinear terms arising from the
self-advection and curvilinear acceleration of the wavenumber-zero disturbance flow, and are defined
as follows:

Nu0 = −u0
∂u0

∂r
− w0

∂u0

∂z
+

v0
2

r
, (7)

Nv0 = −u0
∂ (rv0)

r∂r
− w0

∂v0

∂z
; , (8)

and there is a similar term Nw0 in the (non-hydrostatic) vertical momentum equation equal to minus
the self-advection of w0 by the wavenumber-zero disturbance flow. The vertical momentum equation
also contains a term Fz term analogous to Fr in Equation (5), but with u′ replaced by w′ in the radial and
vertical derivatives. However, we do not display these terms because the corresponding disturbances
to hydrostatic balance were found to be relatively unimportant.

In a similar manner, the tendency equation for the wavenumber-zero disturbance potential
temperature is given by

∂θ0

∂t
= −u0

∂Θ
∂r
− w0

∂Θ
∂z

+ Q + Nθ0 . (9)

The thermal forcing function Q in Equation (9) is defined similarly to Equations (5) and (6)
as follows:

Q = θ̇ − u′
∂θ′

∂r
− v′

∂θ′

r∂λ
− w′

∂θ′

∂z
+ SGθ (10)

where θ̇ is the diabatic (radiative plus latent-heat) contribution to the material derivative of the potential
temperature in the WRF model, and SGθ denotes the heating rate due to subgrid-scale diffusion of
potential temperature. In Equation (9), Nθ0 is the nonlinear term arising from the advection of the
wavenumber-zero disturbance potential temperature by the wavenumber-zero disturbance flow and is
defined as follows:

Nθ0 = −u0
∂θ0

∂r
− w0

∂θ0

∂z
. (11)

When the quadratic terms Nu0 , Nv0 , Nw0 , and Nθ0 associated with the wavenumber-zero
disturbance flow are small compared with the corresponding linear terms (defined by the first-order
disturbance terms on the right-hand sides of Equations (1), (2) and (9)), it is justifiable to drop these
quadratic terms in the foregoing equations. The 3DVPAS model for the wavenumber-zero disturbance
flow is defined by the resulting linearized equations.

In their application of the 3DVPAS equations, Refs. [1,2] make three additional assumptions. We
will make the same assumptions here so as not to introduce additional complexity when comparing
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with their published solutions: (1) in evaluating V(r, z) from the azimuthally-averaged tangential
wind in the WRF model, we take its value at 490 m altitude and extend that value downward so as to
be independent of z below 490 m; (2) we assume a stress-free boundary condition on the disturbance
horizontal velocity at z = 0; (3) we neglect the Fr forcing term, and its vertical counterpart Fz, keeping
only Fλ and Q, i.e., using only Equations (6) and (10).

Although we thus follow [1,2] in adopting their assumptions (1)–(3), we should point out before
going further that we consider all three to be questionable. Assumption (1) is questionable because the
condition ∂V/∂z = 0 at the lower boundary is inconsistent with the frictional, subgrid scale forcing
diagnosed there from the WRF model, which is used to force the linear 3DVPAS model. Assumption (2)
is questionable because the stress-free boundary condition implies that the disturbance flow at the
lower boundary is subject to an artificial momentum source at the boundary. Finally, regarding
assumption (3), although the neglect of Fz is certainly acceptable for the system-scale vortex dynamics,
recent work by [7] has shown that Fr is, by contrast, not negligible—in fact comparable to Fλ in the
boundary layer, as is usual in rotating frictional boundary layers. Ref. [7] used a modestly high
resolution cloud-permitting numerical simulation of an idealized tropical cyclone. We find the same
to be true for the WRF model output used here (not shown). Fr is comparable to Fλ in the boundary
layer because of the subgrid (frictional) contributions SGr and SGλ that tend to dominate there.
Together with assumptions (1) and (2), the neglect of Fr seriously distorts the boundary-layer dynamics
by suppressing the frictionally-induced imbalance of the radial force field, which is an important
component in producing strong low-level inflow.

We point out here further that Refs. [1,2] tacitly make an additional assumption by discarding
the prime–prime eddy terms in Equations (6) and (10). Both Refs. [1,2] use the linear model with only
the SG terms retained in Equations (6) and (10) along with the θ̇ term in Equation (10). (From Ref. [1]
(p. 2632): “The latent heating and the azimuthal component of friction from WRF are used to force 3DVPAS“.
From Ref. [2] (p. 1294): “The 12-h time-averaged WRF diabatic heating and PBL tangential wind tendency
are shown in Figure 13c and 13d, respectively. The diabatic heating comes from direct model output from
the WSM6 microphysics scheme, and the PBL term is the parameterized frictional tendency on tangential
winds from the Yonsei University (YSU) scheme. We use these time-averaged tendencies as constant forcing
terms for 3DVPAS”.) However, since the WRF model is a fully three-dimensional model, and since
three-dimensional eddy processes have been shown to be a non-negligible and important components
of the intensification process of an idealized tropical cyclone [11], we prefer to retain the prime–prime
eddy terms here.

For the calculations presented here, the forcing terms for the disturbance tangential velocity and
diabatic heating (including the azimuthal average of the corresponding prime-prime eddy terms) are
calculated from the WRF model output using the residual method:

Fλ =
∂V
∂t

+ η̄U + W
∂V
∂z

(12)

and
Q =

∂Θ
∂t

+ U
∂Θ
∂r

+ W
∂Θ
∂z

. (13)

Here, (U, V, W, Θ) denote the azimuthally-averaged radial, tangential and vertical velocity
components, and the potential temperature, diagnosed from the WRF model output. By contrast with
assumption (1) above, the symbol V now temporarily includes the model’s boundary–layer structure
below 490 m. These quantities and the differential operations in Equations (12) and (13) are evaluated
at hour 27 in the WRF simulation, corresponding to t = 0 in the 3DVPAS model. The time derivatives
are computed as centered differences using data at hours 28 and 26. No formal accuracy is lost here
by using the residual method because it has the same accuracy as a direct evaluation of Fλ and Q
from Equations (5), (6) and (10). (To address a possible question about the potential inaccuracy of the
residual method, for obtaining the partial time derivative terms using relatively coarse (1 h) model
output, we have found that in Equations (12) and (13), the forcing terms Fλ and Q are dominated by
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the vertical and horizontal advection terms, and are relatively insensitive to the time derivatives and
therefore still less sensitive to the precise time interval used to evaluate the finite differences. To assess
the robustness of the residual method, Fλ and Q were calculated in two ways: the first calculation
retained the advection terms, but discarded the time derivative terms altogether; the second calculation
retained both the time derivative and the advection terms using the 1 h model output. The two results
were found to be virtually identical.)

3. Forcing the 3DVPAS Model

The data used to force the 3DVPAS model are derived from a realistic WRF simulation of Hurricane
Igor (2010). The storm reached tropical cyclone Category 4 in the Saffir–Simpson scale [20]. At the
chosen time, hour 27, the storm was far less intense and in Category 1, but we will see that, even then,
the nonlinearities were already becoming significant. Quadratic nonlinearities scale with the square of
the wind speed, and so increase very steeply as Category 1 goes into Category 4.

The full-physics simulation was integrated with the Advanced Research core of the WRF model
(ARW, [21]) version 3.2. The simulation was integrated by the Hurricane Group in the Mesoscale
and Microscale Meteorology Division of the National Center for Atmospheric Research (NCAR). It is
one of a set of model integrations that have been carried out since 2004 [22,23]. The simulation has
three nested domains, with horizontal grid spacings of 12, 4 and 1.33 km (with 469× 424, 202× 202,
and 241× 241 grid points, respectively), each of them with 35 vertical levels and each of them in a
two-way nesting configuration. The outer domain is fixed and the two inner nests are centered at the
location of the minimum 500 hPa geopotential height, with repositioning performed every 15 min. The
Kain–Fritsch cumulus parameterization is used on the outer domain, but the inner domains have no
cumulus parameterization since they run in cloud-permitting mode. The simulation uses the Yonsei
University (YSU) scheme for the planetary boundary layer [24], a first-order closure scheme similar to
the scheme of [25], but thought to be less biased towards excessive vertical mixing [26]. The surface drag
algorithm follows [27]. The surface exchange coefficient for heat flux uses a similarity relationship [21]
and that for water vapor follows [28]. The simulation was initialized at 12:00 a.m. UTC 11 September
and integrated for 120 h. At hour 27, having reached Category 1, the storm was only just becoming a
tropical cyclone, and a coherent eyewall was imminent rather than fully formed.

Figure 1 shows the hourly evolution of maximum azimuthally averaged tangential wind velocity
and minimum sea level pressure in the inner core of the WRF integration along with the corresponding
6-hourly National Hurricane Center best track information. The figure shows a relatively good
performance of the simulation, particularly near hour 27, the focus time of our analysis. The model
integration captures the evolution of minimum sea level pressure particularly well in the first 40 h of
integration. Within this period, the evolution of maximum wind velocity is relatively well captured
also, after a gestation period during which the boundary layer becomes established and moistened by
the surface moisture flux (not shown). The storm intensity evolution after hour 70 is largely influenced
by the eyewall replacement cycle that Igor (2010) underwent. This notable structure, as well as the
intensity change of Hurricane Igor, were well captured by the model integration (not shown) despite
some discrepancies between the model integration and the Best Tracks dataset in terms of the variables
shown in Figure 1.

To obtain the basic-state vortex fields, the azimuthal average pressure and density fields at hour
27 are used to derive V as the corresponding gradient wind field from Equation (3), as in [29]. The
resulting V field is then smoothed with three-point running averages in the horizontal and in the
vertical, applied twice each. (If the un-smoothed gradient wind is used to integrate the 3DVPAS model
as explained in this manuscript, the model kinematic fields evolve unrealistically and absurdly large
values are soon generated. In particular, the radial velocity exhibits values that surpass 50 m s−1 in
the upper troposphere, within the first two hours of integration.) The V field below 490 m is then
altered to comply with assumption (1) below Equation (11). From the V field thus altered, the balanced
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pressure, density and temperature fields, including a correspondingly altered Θ field, are obtained
using Equations (3) and (4) and the methodology of [30].

[ h ]

Figure 1. Maximum azimuthally averaged tangential wind velocity and minimum sea level pressure
(hourly, dashed lines) in the inner core of the Weather Research and Forecasting (WRF) integration for
Hurricane Igor (2010), and corresponding National Hurricane Center Best-Track information (6 hourly,
solid lines).

4. Results

The time period around hour 27 is sufficient for illustrating the main point of this paper, i.e.
the failure of the linear approximation even at this early stage of intensification. Similar analyses have
been carried out for later times, including the time of the secondary eyewall formation period of Igor.
As expected, they all show nonlinearities much stronger than those found below.

Figure 2 shows the basic-state V and Θ fields and the corresponding forcing terms Q and Fλ,
as inferred from the WRF simulation at hour 27, but made consistent with assumption (1) as just
explained. The V and Θ fields are characteristic of a warm-cored cyclonic vortex in hydrostatic and
gradient-wind balance. V has a maximum of approximately 25 m s−1 near the lower surface and
decreases monotonically with height, while the Θ isopleths curve downwards with decreasing radius.
By itself, the Q pattern (Figure 2c) suggests an annular eyewall with a localized heating pattern
extending through the troposphere and sloping outwards. However, at this early stage of development,
the convection exhibits a high degree of asymmetry and the Q pattern comes from vertically coherent
vortical plumes [11,31]. The Fλ field (Figure 2d) exhibits a more complex pattern. First, as expected
near the surface, there is a broad region out to a radius of about 60–70 km where Fλ is largely negative.
This reflects the near-surface friction felt by the tangential wind. Other prominent features are regions
of strong positive and negative Fλ within and near the incipient eyewall. Since Fλ is computed as a
residual, from Equation (12), it contains implicitly the rectified effect of eddy processes as noted above
Equation (12).
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Figure 2. Calculated basic-state circular vortex and corresponding forcing terms as output from the
WRF model at hour 27 in the simulation of the intensification of Hurricane Igor (2010). This basic state
and these forcing terms (held constant) are used in the integration of the linear 3DVPAS model. Shown
are the azimuthally-averaged (a) basic-state tangential velocity V at hour 27 (contour interval 5 m s−1);
(b) basic-state potential temperature Θ at hour 27 (contour interval 5 K); (c) diabatic heating-rate
forcing Q̇ at hour 27 (thick contour interval is 10 K h−1, thin curve contour interval is 5 K h−1);
and (d) tangential momentum forcing Fλ at hour 27 (contour interval 2 m s−1 h−1, solid positive,
dashed negative).

Figure 3 shows the v0, u0, and w0 fields from the linear 3DVPAS model output at t = 8 h, similar to
integration times used in [1,2]. The v0 pattern has positive values in the lower troposphere, just below
the base of the Q maximum in Figure 2c, and negative values within that maximum. The positive v0

values at low levels are due primarily to the radial influx of basic-state vertical absolute vorticity, the
linear term −η̄u0 in Equation (2). It dominates the other linear term −w0∂V/∂z as well as the forcing
term Fλ, whose negative values are evident in Figure 2d. Earlier, at t = 0.4 h, we have already seen
positive values of −η̄u0 at low levels, as hinted in Figure 4a below. Returning to Figure 3a and t = 8
h, we see that v0 is negative somewhat higher in the troposphere. This is probably due primarily to
the negative Fλ values seen there in Figure 2d. In Figure 3b, the u0 field shows a shallow layer of
relatively strong inflow below 1 km, and an upper-level outflow in the layer between about 11 and
15 km. In Figure 3c, the w0 structure near the incipient eyewall largely mimics the Q structure seen in
Figure 2d, with a primary maximum of 2.5 m s−1 at r ≈ 33 km and z ≈ 11 km. The w0 structure has
a secondary maximum between 0.5 m s−1 and 1.0 m s−1 at r ≈ 55 km and z ≈ 10 km and a strong,
broad minimum at r ≈ 83 km and z ≈ 9 km.

Returning to the main point of this paper, we show now that, in this Hurricane Igor example,
the 3DVPAS model becomes invalid, that is to say self-inconsistent, well before t = 8 h. We show
this by taking the 3DVPAS model output and using that output to evaluate some of the nonlinear
terms that are neglected in the model. We then observe that these terms are not all uniformly small in
magnitude by comparison with the terms that are retained, in defining the model and its response to
the imposed forcing.
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Figure 3. Output from the linear 3DVPAS model at 8 h integration time. Shown in a radius-height
coordinate system are (a) tangential velocity disturbance v0 (contour interval every 5 m s−1;
dashed negative, solid positive); (b) radial velocity disturbance u0 (contour interval 2 m s−1; dashed
negative, solid positive); (c) vertical velocity disturbance w0 (positive contour interval 0.5 m s−1, solid;
negative contour interval 0.1 m s−1, dashed).

We focus attention on Equations (1) and (2), in which the tendencies or rates of change as the
model responds to the imposed forcing are determined entirely by the forcing terms together with the
linear terms. The linear terms are the first pair of terms on each right-hand side of Equations (1) and
(2), whose sums will be referred to as the “u linear tendency” and the “v linear tendency”, respectively.
Figures 4 and 5 compare those linear tendencies (panels on the left) with the the nonlinear terms Nu0

and Nv0 neglected in the model (panels on the right). The neglected terms, evaluated from the linear
solution, will be referred to as the “u nonlinear tendency" and the “v nonlinear tendency”, respectively.

Even at the very early time t = 0.4 h (Figure 4), there are parts of the domain in which the nonlinear
tendencies are, conspicuously, not much smaller than the linear tendencies, indeed comparable or
greater in magnitude, most notably in the region of the incipient eyewall. A little later, at t = 1.2 h
(Figure 5), the nonlinear tendencies are very much bigger in some places. This is more than enough to
support our conclusion that, in this example, the 3DVPAS model has predicted its own breakdown and
has become self-inconsistent, and therefore invalid. Still less is the model valid at t = 8 h. If the analysis
is repeated, but with forcing terms derived from the WRF model at times closer to full intensity, then we
find, not surprisingly, that the magnitudes of the nonlinear terms have increased very steeply indeed.

At t = 1.2 h, there are already hints in Figure 5d of what can be seen much more clearly in
Ref. [7], namely the emergence of strong, non-Ekman-like nonlinearities near the base of the eyewall
at the later stages of intensification, giving rise to strong supergradient winds, much stronger than
those obtained from Ekman-like dynamics. This is the signature of the nonlinear spinup mechanism,
which significantly increases the destructive power of a tropical cyclone. The signature becomes very
clear as Igor approaches full intensity.
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Figure 4. Linear tendency terms diagnosed from the 3DVPAS model and corresponding nonlinear
tendency terms evaluated using the linear solutions at t = 0.4 h integration time. Shown in a
radius-height coordinate system are (a) linear terms from the disturbance tangential velocity equation;
(b) nonlinear terms in the disturbance tangential velocity equation (Equation (8)) evaluated using
the linear solutions; (c) linear terms in disturbance radial velocity equation; (d) nonlinear terms in
disturbance radial velocity equation (Equation (7)) computed using linear solutions. Contour interval
for all panels is 5 m s−1 h−1, solid positive and dashed negative.

Figure 5. Linear and nonlinear tendency terms diagnosed from the 3DVPAS model at t = 1.2 h
integration time. The nonlinear tendency terms are evaluated using the linear solutions. Shown in a
radius-height coordinate system are (a) sum of linear terms from the disturbance tangential velocity
equation; (b) sum of nonlinear terms in the disturbance tangential velocity equation (Equation (8))
evaluated using the linear solutions; (c) sum of linear terms in disturbance radial velocity equation; (d)
sum of nonlinear terms in disturbance radial velocity equation (Equation (7)) computed using linear
solutions. Contour interval for all panels is 2 m s−1 h−1; solid positive and dashed negative.
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5. 3DVPAS Dynamics, Sawyer–Eliassen Balance Dynamics, and Their Possible Extensions

Refs. [1,2,17,18] bring up the issue of 3DVPAS dynamics versus the dynamics of the traditional
Sawyer–Eliassen (SE) model of transverse circulations. Since both are linearized models in the sense
already discussed, the only differences are those arising from the unbalanced dynamics allowed
by 3DVPAS versus the strictly balanced dynamics built in to SE. The SE model, as is well known,
incorporates hydrostatic and gradient-wind balance from the start.

If, for instance, 3DVPAS is run with steady forcing terms, as above, and we wait for long enough
after the forcing terms are switched on (t � 0.4 h, typically between 6 and 12 h, in examples like
the foregoing), then the 3DVPAS behavior approaches that of the SE model. Somewhat confusingly,
Ref. [17] calls this long-time behaviour “quasi-steady”, even though the tangential wind and potential
temperature are still changing like t, in the well known way. It is not, of course, essential to use steady
forcing terms. More generally, as discussed below, we may expect 3DVPAS behavior to resemble SE
behavior whenever the forcing terms vary slowly enough in time.

Being a statement about the comparative behaviors of two linearized models, the foregoing is
entirely separate from our main point, that the linearization itself becomes invalid at comparatively
short times t ∼ 0.4 h in the context of maturing and mature tropical cyclones, especially as regards the
inner-core boundary layer. It is of interest, nevertheless, to ask whether in that context either model
could be rendered useful by restoring the neglected nonlinear N terms. The rest of this section will
tentatively conclude that both models could indeed become useful in this way, although the numerical
experiments needed to examine the question more closely are beyond the scope of this paper and will
be left for future work.

We proceed as follows. Starting within the framework of the unbalanced 3DVPAS equations, we
derive an extended SE equation that retains all forcing terms in the disturbance equations of Section 2,
as well as the nonlinear N terms in the momentum equations and in the corresponding thermodynamic
equation. Retention of the radial as well as the tangential horizontal forcing terms is consistent with
the findings of the previous section. We retain also the time derivatives that are usually neglected, but
then discuss which of these should be included in order to make the equation as useful as possible in
the current context.

For simplicity, we adopt the Boussineq approximation wherein density disturbances are retained
only when multiplied by the gravitational acceleration, but neglected elsewhere (e.g., [29], Ch.7).
The generalization to the vortex-anelastic equations is straightforward. The reference density with
disturbances neglected will be denoted by ρa, a constant. The disturbance continuity equation is that
of incompressible flow,

∂(ru0)

∂r
+

∂(rw0)

∂z
= 0, (14)

and the disturbance vertical momentum equation is

∂w0

∂t
= − 1

ρa

∂p0

∂z
+ b0 + F̃z, (15)

where F̃z is shorthand for the sum Fz + Nw0 referred to below in Equation (8), and where b0 satisfies
the Boussinesq counterpart of Equation (9),

∂b0

∂t
= −u0

∂B
∂r
− w0

∂B
∂z

+ Q̃. (16)

Here, B(r, z) and b0(r, z, t) are the background and disturbance Boussinesq buoyancy accelerations,
and Q̃ is shorthand for the sum of the last two terms in Equation (9), i.e., the thermal forcing term
Q and the nonlinear term Nθ0 , or rather their Boussinesq counterparts. B and b0 are defined in the
standard way as gravitational acceleration times fractional density anomaly. To complete the system,
we use the Boussinesq forms of Equations (1) and (2), which are unaltered apart from replacing ρ by ρa

in Equation (1) and introducing the shorthand notations F̃r = Fr + Nu0 and F̃λ = Fλ + Nv0 .
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Now we can derive a single equation for the transverse circulation (u0, w0) by subtracting ∂2/∂r∂t
from Equation (15) from ∂2/∂z∂t from Equation (1), and then eliminating ∂v0/∂t and ∂b0/∂t using
Equations (2) and (16), respectively. The result is

∂

∂z

[(
∂2

∂t2 + ξ̄ η̄

)
u0

]
− ∂

∂r

[(
∂2

∂t2 +
∂B
∂z

)
w0

]
+

∂

∂z

(
ξ̄

∂V
∂z

w0

)
− ∂

∂r

(
∂B
∂r

u0

)
= − ∂Q̃

∂r
+

∂

∂z
(
ξ̄ F̃λ

)
+

∂2 F̃r

∂z∂t
− ∂2 F̃z

∂r∂t
. (17)

As defined in Section 2, upper-case V denotes the azimuthally-averaged tangential velocity of the
circular vortex and (η̄, ξ̄) denotes the local absolute vertical vorticity and twice the absolute rotation
rate of the circular vortex flow, respectively.

When a streamfunction ψ is introduced for the transverse circulation such that Equation
(14) is satisfied, i.e., u0 = −(1/r)∂ψ/∂z and w0 = (1/r)∂ψ/∂r, then a single partial differential
equation results for ψ. The resulting equation (not written) is analogous to the single streamfunction
equation derived by Hoskins [32] in his pioneering study of the symmetric stability and instability
of middle-latitude fronts. Notice that if F̃r, F̃λ, F̃z and Q̃ and the response described by (17) are all
assumed to vary sufficiently slowly, then we may neglect all the time derivatives in Equation (17), giving
us the standard SE equation, in which balance allows us to replace ∂B/∂r by ξ̄∂V/∂z.

More subtly, however, we may consistently keep the first time derivatives on the right-hand side
of Equation (17), while neglecting the second time derivatives on the left-hand side, if rates of variation
are “fairly slow” in the following sense. To neglect the second derivatives, we need ∂2/∂t2 to be small
in comparison with ξ̄ η̄ and ∂B/∂z, the squares of the local inertial frequency and buoyancy frequency.
There is a range of conditions for which the first derivatives can nevertheless remain significant,
especially in the first term on the third line of Equation (17), whose magnitude in comparison with the
last term on the middle line can be significant. On the reasonable assumption that Fr ∼ Fλ, we need to
compare ∂/∂t with ξ̄, which is more like the square root of the local inertial frequency. In our judgment,
such “fairly slow” evolution is often relevant to tropical cyclone evolution ([33]). We then have

∂

∂r

[
∂B
∂z

1
r

∂ψ

∂r
− ∂B

∂r
1
r

∂ψ

∂z

]
+

∂

∂z

[
ξ̄ η̄

r
∂ψ

∂z
− ξ̄

r
∂V
∂z

∂ψ

∂r

]
=

∂Q̃
∂r
− ∂

∂z
(ξ̄ F̃λ)−

∂2 F̃r

∂z∂t
+

∂2 F̃z

∂r∂t
. (18)

This has diagnostic form, like the standard SE equation, if the right-hand side can be regarded as
known. It will therefore be called an extended SE equation. However, it should be remembered that the
nonlinear N terms on the right then need to be treated iteratively. It needs also to be checked whether
the partial differential operator on the left is elliptic. Ellipticity can fail in the inner-core boundary
layer under nonlinear spinup conditions, which may be one of the reasons why Refs. [1,2] made their
assumptions (1)–(3).

Equation (18) is elliptic if the vortex is symmetrically stable (i.e., if the inertial stability on isentropic
surfaces is greater than zero); and symmetric stability is assured [33] when η̄ξ̄(∂B/∂z)− (ξ̄(∂V/∂z))2 >

0, assuming that we can use the balance relation ∂B/∂r = ξ̄∂V/∂z for this purpose.
The extended SE Equation (18) can be used to describe at least some of the effects of nonlinear

boundary-layer spinup, via iterative correction. That is, the N terms included on the right can
be evaluated from a linear solution, then the equation solved again, the N terms evaluated more
accurately, and so on. This iterative procedure corresponds to that used in the classic idealized
studies by Kuo [34,35], in which an Ekman-like boundary layer model was iteratively corrected for
the non-Ekman-like nonlinearities, verifying that these produced significant strengthening of the
supergradient winds near the top of the boundary layer. However, such an iterative procedure cannot
describe the sort of drastic breakdown of balance that can occur as the boundary layer undergoes
separation and turns upward into an eyewall.
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It is here that Equation (17), the fully-unbalanced counterpart of (18), could become useful. At
this level of description, with all the time derivatives included, we would have something equivalent
to 3DVPAS dynamics rather than to a somewhat-extended SE dynamics. Although this remains to be
verified—a topic for future work—it is possible that we could then begin to describe the emission of
freely-propagating inertia-gravity waves from the separating boundary layer into the eyewall.

6. Conclusions

We have re-examined the utility of an unbalanced axisymmetric convective ring model using
the dry, non-hydrostatic, time dependent linear vortex model 3DVPAS. This model was developed
originally to examine linear asymmetric disturbances and their wave-mean-flow interactions in tropical
cyclones and tornado vortices, and has produced many insightful results for that class of problems.
Recent work [1,2] has used the 3DVPAS model in a different way, to study intensifying tropical cyclones
by solving for the azimuthal-wavenumber-zero disturbance flow and corresponding tangential wind
tendency subject to the imposed forcing of heat and tangential momentum sources. Using diabatic
heating, tangential friction, and eddy forcing terms derived from a three-dimensional numerical
simulation of an intensifying tropical cyclone vortex, Hurricane Igor, we have again investigated
this different way of using of the 3DVPAS model, but this time with attention to whether, in this
context, it is valid to neglect the nonlinear effects omitted from the model, the N terms in the equations
described in Section 2.

We found that the linear 3DVPAS solutions quickly break down in the sense that the neglected
N terms, calculated from the output of the linear model, become comparable to or larger than the
linear terms in the governing momentum equations. This breakdown occurs on a time scale given
approximately by the time required to develop the vortex boundary layer and incipient eyewall in
the 3DVPAS model. The breakdown of the linear solution is found to be particularly severe in the
inner-core boundary layer and in the eyewall of the simulated vortex.

The demonstrated breakdown of linearity supports the scientific arguments made in [6] that (a)
non-Ekman-like nonlinearities and nonlinear spinup are important in the inner-core boundary layer
of an intensifying tropical cyclone and are responsible for the realistic growth of peak supergradient
winds, and that (b) it is not valid to use a linearized model to isolate the separate effects of diabatic
heating from those of friction. This is simply because the linear superposition principle breaks down
whenever the dynamics are not linear.

Further to our second objective regarding the traditional Sawyer–Eliassen (SE) model, we have
shown how an extended SE Equation (18) may be derived from the 3DVPAS model formulation,
the latter corresponding to Equation (17) above, with the addition of the nonlinear N terms and
also the radial and vertical momentum source terms associated with vertical subgrid scale mixing
associated with boundary layer processes that have been neglected in prior applications.

The traditional SE model requires that the forcing terms vary sufficiently slowly with time,
a requirement that is typically quite severe in a tropical cyclone undergoing rapid intensification.
For this reason, our extended SE Equation (18) also includes the first time derivatives shown on its
right-hand side, which allows somewhat faster variation with time, discussed in Section 5 as “fairly
slow” variation. For still faster variation and fully unbalanced motion, it is necessary to retain also a
pair of second time derivatives, those on the left of Equation (17), which restores the level of modeling
to that of 3DVPAS.

It would be interesting in future work to make use of Equations (17) and (18), and their
vortex-anelastic counterparts, in an approach to modeling and better understanding the nonlinear
effects in intensifying tropical cyclones. The first stage would be to evaluate the nonlinear N terms
from the linear solutions, as in Section 4, then solve Equations (17) or (18) again, then repeat the
process to make iterative corrections that represent the effects of the N terms with increasing accuracy.
Such an iterative process would correspond to that explored in the classic work of Kuo [34,35] on
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non-Ekman-like boundary-layer nonlinearities, and promises to yield a sharpened understanding of
the growth of supergradient winds.
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