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Abstract Autoinducers are small signaling molecules that mediate intercellular communication in

microbial populations and trigger coordinated gene expression via ‘quorum sensing’. Elucidating

the mechanisms that control autoinducer production is, thus, pertinent to understanding collective

microbial behavior, such as virulence and bioluminescence. Recent experiments have shown a

heterogeneous promoter activity of autoinducer synthase genes, suggesting that some of the

isogenic cells in a population might produce autoinducers, whereas others might not. However, the

mechanism underlying this phenotypic heterogeneity in quorum-sensing microbial populations has

remained elusive. In our theoretical model, cells synthesize and secrete autoinducers into the

environment, up-regulate their production in this self-shaped environment, and non-producers

replicate faster than producers. We show that the coupling between ecological and population

dynamics through quorum sensing can induce phenotypic heterogeneity in microbial populations,

suggesting an alternative mechanism to stochastic gene expression in bistable gene regulatory

circuits.

DOI: 10.7554/eLife.25773.001

Introduction
Autoinducers are small molecules that are produced by microbes, secreted into the environment,

and sensed by the cells in the population (Keller and Surette, 2006; Hense and Schuster, 2015).

Autoinducers can trigger a collective behavior of all cells in a population, which is called quorum

sensing. For example, quorum sensing regulates the transcription of virulence genes in the Gram-

positive bacterium Listeria monocytogenes (Gray et al., 2006; Garmyn et al., 2011; da Silva and

De Martinis, 2013) and the transcription of bioluminescence genes in the Gram-negative bacterium

Vibrio harveyi (Xavier and Bassler, 2003; Anetzberger et al., 2009), and it may also autoregulate

the transcription of autoinducer synthase genes (Fuqua and Greenberg, 2002; Waters and Bassler,

2005). When the concentration of autoinducers reaches a threshold value, a coordinated and homo-

geneous expression of target genes may be initiated in all cells of the population (Waters and Bass-

ler, 2005; Hense and Schuster, 2015; Papenfort and Bassler, 2016), or a heterogeneous gene

expression in the population may be triggered at low concentrations (Anetzberger et al., 2009;

Williams et al., 2008; Boedicker et al., 2009; Garmyn et al., 2011; Pérez and Hagen, 2010;

Ackermann, 2015; Grote et al., 2014, Grote et al., 2015; Papenfort and Bassler, 2016;
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Pradhan and Chatterjee, 2014). To implement all of these functions and behaviors, a microbial pop-

ulation needs to dynamically self-regulate the average autoinducer production.

Within a given population, the promoter activity of autoinducer synthase genes may vary between

genetically identical cells (Garmyn et al., 2011; Grote et al., 2014; Anetzberger et al., 2012;

Plener et al., 2015; Cárcamo-Oyarce et al., 2015; Grote et al., 2015). For example, during the

growth of L. monocytogenes under well-mixed conditions two subpopulations were observed, one

of which expressed autoinducer synthase genes, while the other did not (Garmyn et al., 2011). Such

a phenotypic heterogeneity was associated with biofilm formation (Garmyn et al., 2011; da Silva

and De Martinis, 2013; Hense and Schuster, 2015; Cárcamo-Oyarce et al., 2015). The stable

coexistence of different phenotypes in one population may serve the division of labor or act as a

bet-hedging strategy and, thus, may be beneficial for the survival and resilience of a microbial spe-

cies on long time scales (Ackermann, 2015).

The mechanism by which a heterogeneous expression of autoinducer synthase genes is estab-

lished when their expression is autoregulated by quorum sensing has remained elusive. For example,

expression of the above mentioned autoinducer synthase genes in L. monocytogenes is up-regu-

lated through quorum-sensing in single cells (Garmyn et al., 2011, Garmyn et al., 2009;

Waters and Bassler, 2005). From an experimental point of view it is often not known, however,

whether autoinducer synthesis is up-regulated for all autoinducer levels or only above a threshold

level. To explain phenotypic heterogeneity of autoinducer production, currently favored threshold

models of quorum sensing typically assume a bistable gene regulation function (Fujimoto and

Sawai, 2013; Pérez-Velázquez et al., 2016; Goryachev et al., 2005; Dockery and Keener, 2001).

For bistable regulation, cellular autoinducer synthesis is up-regulated above a threshold value of the

autoinducer concentration in the population, whereas it is down-regulated below the threshold (’all-

or-none’ expression); see Figure 1B. Stochastic gene expression at the cellular level then explains

the coexistence of different phenotypes in one population. If, however, cellular autoinducer synthesis

is up-regulated for all autoinducer concentrations (monostable up-regulation), the mechanism by

which phenotypic heterogeneity can arise and is controlled has not been explained.

Here we show that the coupling between ecological and population dynamics through quorum

sensing can control a heterogeneous production of autoinducers in quorum-sensing microbial

eLife digest Bacteria and other microbes can communicate with each other using chemical

languages. They release small signaling molecules called autoinducers into their surroundings and

sense the levels of the autoinducers in the environment. The response to these autoinducers –

known as quorum sensing – can regulate how whole communities of microbes grow and behave; for

example, autoinducers can alter the ability of microbes to infect humans or enable the microbes to

collectively switch on light production.

Recent experiments suggest that, in a population of genetically identical microbes, some

individuals may produce autoinducers while others do not. The coexistence of these different

“phenotypes” in one population may enable different individuals to perform different roles, or act as

a “bet-hedging” strategy that helps the population to survive if it is later exposed to a stressful

situation.

It is not clear how microbes regulate autoinducer production so that only some individuals

produce these molecules. Bauer, Knebel et al. developed a theoretical model to address this

question. In the model, the microbes shape their environment by producing autoinducers and can

respond to this self-shaped environment by changing their level of autoinducer production. Bauer,

Knebel et al. found that this establishes a feedback loop that can result in autoinducers being

produced by some individuals but not others.

The next step following on from this work is to carry out experiments to test the assumptions and

predictions made by the theoretical model. These findings may help to understand how the

coexistence of different phenotypes affects collective behaviors, and vice versa, in populations of

microbes that use quorum-sensing.

DOI: 10.7554/eLife.25773.002
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populations. At the same time, the overall autoinducer level in the environment is robustly self-regu-

lated, so that further quorum-sensing functions such as virulence or bioluminescence can be trig-

gered. We studied the collective behavior of a stochastic many-particle model of quorum sensing, in

which cells produce autoinducers to different degrees and secrete them into the well-mixed environ-

ment. Production of large autoinducer molecules (for example oligopeptides) and accompanied

gene expression are assumed to reduce fitness such that non-producers reproduce faster than pro-

ducing cells. Moreover, it is assumed that quorum sensing enables up-regulation of autoinducer pro-

duction, that is, individuals can increase their production in response to the sensed average

production level in the population (Figure 1). As a central result, we found that the population may

split into two subpopulations: one with a low, and a second with a high production rate of autoin-

ducers. This phenotypic heterogeneity in the autoinducer production is stable for many generations

and the autoinducer concentration in the population is tightly controlled by how production is up-

regulated. If cellular response to the environment is absent or too frequent, phase transitions occur

from heterogeneous to homogeneous populations in which all individuals produce autoinducers to

the same degree. To capture these emergent dynamics, we derived the macroscopic mean-field

equation (1) from the microscopic stochastic many-particle process in the spirit of the kinetic theory

in statistical physics, which we refer to as the autoinducer equation. The analysis of the autoinducer

equation explains both phenotypic heterogeneity through quorum sensing and the phase transitions

to homogeneity.

The key aspect of our work is how the composition of a population changes in time when its con-

stituents respond to an environment that is being shaped by their own activities (see Box 1). This

ecological feedback is mediated by quorum sensing and creates an effective global coupling

between the individuals in the population. Such a global coupling is reminiscent of long-range inter-

actions in models of statistical mechanics, such as in the classical XY spin model with infinite range

interactions (Antoni and Ruffo, 1995; Yamaguchi et al., 2004; Barré et al., 2002; Choi and Choi,

2003; de Buyl et al., 2010; Campa et al., 2009; Pakter and Levin, 2013). Our analysis suggests

that quorum sensing in microbial populations can induce and control phenotypic heterogeneity as a

collective behavior through such a global coupling and, notably, does not rely on a bistable gene

regulatory circuit (see Discussion).
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Figure 1. The quorum-sensing model for the production of autoinducers in microbial populations. (A) Sketch of a typical update step. Individuals are

depicted as disks and the degree of autoinducer production (pi 2 ½0; 1�) is indicated by the size of the green fraction. Non-producers (orange disks)

reproduce fastest, full producers (green disks) slowest. Individual i with pi ¼ 1=6 divides into two offspring individuals, one of which replaces another

individual j. Both offspring individuals sense the average production level in the population (hpi ¼ 1=3), and may either respond to this environment,

with probability l, by adopting the value RðhpiÞ of the response function (¼ 2=3 here, see (B)) or, with probability 1� l, retain the production degree

from the ancestor (¼ 1=6). Here, offspring individual i responds to the environment while j does not (denoted by gray shading). (B) Quorum sensing is

characterized by the response function. Perception of the average production level in the population (hpi) enables individuals to change their

production degree to the value RðhpiÞ 2 ½0; 1�. Sketched are a monostable response function (stable fixed point at 1, unstable fixed point at 0), and a

bistable response function (stable fixed points at 0 and 1, unstable fixed point at an intermediate threshold value). Stable fixed points of the response

function are depicted as black circles while unstable fixed points are colored in white. For the sketched bistable response function, autoinducer

production is down-regulated with respect to the sensed production level in the population below the threshold value, and up-regulated above this

threshold. For the monostable response function, autoinducer production is up-regulated at all sensed production levels.

DOI: 10.7554/eLife.25773.003
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Set-up of the quorum-sensing model
We now introduce the quorum-sensing model for a well-mixed population of N individuals (Figure 1).

The phenotype of each individual i ¼ 1; . . . ;N is characterized by its production degree pi 2 ½0; 1�, that

is, the extent to which it produces and secretes autoinducers. In an experiment with microbes, the pro-

moter activity of autoinducer synthase genes or their enzymatic activity could be a proxy for the pro-

duction degree. The limiting case pi ¼ 0 denotes a non-producer, and pi ¼ 1 denotes a full producer.

The state of the population p ¼ ðp1; . . . ; pNÞ changes stochastically (Figure 1A): An individual i

reproduces with rate fi, which we refer to as the individual’s fitness. We assume that fitness

decreases with incurring metabolic costs of induction and synthesis of autoinducers, and with other

metabolic burdens in the cell’s phenotypic state (Ruparell et al., 2016; Diggle et al., 2007;

He et al., 2003). For simplicity, we choose fi ¼ fðpiÞ ¼ 1� spi. The selection strength 0 � s< 1

scales the fitness difference with respect to the non-producing phenotype (fð0Þ ¼ 1). Thus, the

larger an individual’s production, the smaller its reproduction rate. This assumption is discussed in

detail further below (see Discussion).

Whenever an individual divides into two offspring individuals in the stochastic process, another indi-

vidual from the population is selected at random to die such that the population size N remains con-

stant. Qualitative results of our model remain valid if only the average population size is constant,

which may be assumed, for example, for the stationary phase of microbial growth in batch culture.

One recovers the mathematical set-up of frequency-dependent Moran models for Darwinian selection

(Moran, 1958; Ewens, 2004; Blythe and McKane, 2007; Nowak et al., 2004) if one restricts the pro-

duction degrees to a discrete set, for example, to full producers or non-producers only, pi 2 f0; 1g.

The mathematical set-up of the well-known Prisoner’s dilemma in evolutionary game theory is recov-

ered if, in addition, the secreted molecules would confer a fitness benefit on the population

(Nowak et al., 2004; Traulsen et al., 2005; Melbinger et al., 2010; Assaf et al., 2013). Since we are

interested in the mechanism by which heterogeneous production of autoinducers might be induced

and do not study the context under which it might have evolved, we do not include any fitness benefits

through signaling, for example at the population level, into the modeling here (see Discussion).

A central feature of our model is the fact that individuals may adjust their production degree via a

sense-and-response mechanism through quorum sensing, which is implemented as follows. After

reproduction, both offspring individuals sense the average production level of autoinducers hpi ¼

1=N
P

i pi in the well-mixed population. With probability l, they independently adopt the value

RðhpiÞ 2 ½0; 1� as their production degree in response to the sensed environmental cue hpi, whereas

they retain the ancestor’s production degree with probability 1� l through non-genetic inheritance.

In an experimental setting, the response probability l relates to the rate with which cells respond to

the environment (Kussell and Leibler, 2005; Acar et al., 2008; Axelrod et al., 2015) and regulate

their production through quorum sensing. We refer to the function RðhpiÞ as the response function,

which is the same for all individuals. The response function encapsulates all biochemical steps involved

in the autoinducer production between perception of the average production level hpi and adjustment

of the individual production degree to RðhpiÞ in response (He et al., 2003; Williams et al., 2008;

Drees et al., 2014; Hense and Schuster, 2015; Maire and Youk, 2015); see Figure 1B. For example,

it may be a bistable step or bistable Hill function, which is often effectively assumed in threshold mod-

els of phenotypic heterogeneity (Fujimoto and Sawai, 2013; Pérez-Velázquez et al., 2016;

Goryachev et al., 2005; Dockery and Keener, 2001). For a bistable response function, cellular pro-

duction is up-regulated above a threshold value of hpi, whereas it is down-regulated below the thresh-

old. For the bistable response function sketched in Figure 1B, both values hpi ¼ 0 and hpi ¼ 1 are

stable fixed points. In this work, however, we particularly focus on monostable response functions

RðhpiÞ to model microbial quorum-sensing systems in which autoinducer synthesis is up-regulated at

all autoinducer production levels in the population (Garmyn et al., 2009; Waters and Bassler, 2005).

In other words, cellular production always increases with respect to the sensed production level in the

population (stable fixed point at hpi ¼ 1 and unstable fixed point at hpi ¼ 0). The sense-and-response

mechanism is further discussed in the Discussion section.

From a mathematical point of view, the introduced sense-and-response mechanism through quo-

rum sensing constitutes a source of innovation in the space of production degrees because an individ-

ual may adopt a production degree that was not previously present in the population. Thus, a

continuous production space with pi 2 ½0; 1� as opposed to a discrete production space is a technical
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necessity for the implementation of the quorum-sensing model. The coupling of ecological dynamics

(given by the average production level of autoinducers hpi) with population dynamics (determined by

fitness differences between the phenotypes) through quorum sensing results in interesting collective

behavior, as we show next. We emphasize that, as long as this coupling is present, the effects of the

quorum-sensing model that we found and report next are qualitatively robust against noise at all

steps; see below.

Box 1. An ecological feedback can control phenotypic

heterogeneity in quorum-sensing microbial populations.

Our work demonstrates that the coupling of ecological and population dynamics through quo-

rum sensing cannot only lead to homogeneously producing populations, but can also control a

heterogeneous production of autoinducers in microbial populations. Phenotypic heterogeneity

becomes manifest in the quorum-sensing model as long-lived, bimodal states of the population

that are dynamically stable; see sketch below and Equation (2).

In the quorum-sensing model, ecological dynamics are determined by the average production

level of autoinducers, while population dynamical changes are determined by fitness differences

between non-producers and producers of autoinducers. Because individuals sense and respond

to autoinducers in the environment, the ecological dynamics are coupled with the population

dynamics. In other words, an ecological feedback loop is established when cells respond to an

environment that is being shaped by their own activities. When fitness differences between non-

producers and producers of autoinducers balance with cellular response to autoinducers in the

environment, separated production degrees stably coexist in one population. Therefore, we

expect that a heterogeneous production of autoinducers may be induced and controlled by

such an ecological feedback in real microbial populations, suggesting an alternative mechanism

to stochastic gene expression in bistable gene-regulatory circuits to control phenotypic hetero-

geneity (see Discussion).

Box 1—figure 1. Effective picture of robust phenotypic heterogeneity through an ecological feedback.

The coupling of fitness differences between non-producers and producers (selection strength s) and sense-and-

response to the self-shaped environment through quorum sensing (response probability l and up-regulation of

production with response function RðhpiÞ) ensures the stable coexistence of the two subpopulations at the

phenotypic states plow and phigh; see Equation (2). The value b ¼ 2l=s quantifies this coexistence. In one

subpopulation (fraction y ¼ 1� b=RðbÞ of the total population), individuals do not produce (plow ¼ 0), while in

the other (fraction 1� y) individuals produce autoinducers to the degree phigh ¼ RðbÞ. The average production

level in the population is robustly adjusted to the value hpi ¼ b. States of phenotypic heterogeneity arise for a

broad range of initial distributions and are robust against noisy inheritance, noisy perception, and noisy

response (see Results of mathematical analysis and Appendix 1—figures 1 and 2).

DOI: 10.7554/eLife.25773.005
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Results of numerical simulations
The quorum-sensing model was numerically simulated by employing Gillespie’s stochastic simulation

algorithm (Gillespie, 1976, 1977) for a population size of N ¼ 10
4 individuals and an exemplary

selection strength s ¼ 0:2, such that sN � 1. In this regime, demographic fluctuations are subordi-

nate (Nowak et al., 2004; Wild and Traulsen, 2007; Blythe and McKane, 2007). Within the scope

of our quorum-sensing model, the precise value of the selection strength s that scales the fitness dif-

ferences is not important for the reported mechanism by which phenotypic heterogeneity can be

induced, see below. We tracked the state of the population p over time, and depict the histogram

of production degrees and the population average in Figure 2.

First, we studied the stochastic many-particle process without sense-and-response (l ¼ 0); see

Figure 2A,D and Video 1. In this case, non-producers always proliferate because they reproduce at

the highest rate in the population, which is well-studied in evolutionary game theory (Taylor and
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Figure 2. Homogeneous and heterogeneous production of autoinducers in the quorum-sensing model. Temporal evolution of autoinducer production

in the quorum-sensing model depicted as histograms of production degrees (normalized values), (A–C); and average production level of autoinducers

in the population (D–F); see also Videos 1–3. (A) In the absence of sense-and-response (l ¼ 0), only non-producers proliferate. The approach to

stationarity is asymptotically algebraically slow for a quasi-continuous initial distribution of production degrees (D). The black line hpi~ t�1 serves as a

guide for the eye. (B) Sense-and-response through quorum sensing (l ¼ 0:2 here) promotes autoinducer production, and the population becomes

homogeneous (ultimately, fixation at a single production degree, data not shown). The response function used here, RðhpiÞ ¼ hpi þ 0:2 � sin ðphpiÞ, was

chosen such that an individual’s production degree is always up-regulated through quorum sensing (see Figure 1B). Approach to stationarity is

exponentially fast (E), but timescales may diverge at bifurcations of the response function (see Appendix 1—figure 3). The dashed line in (E) shows fit

to an exponential decay. (C) When l is small (l ¼ 0:05 here), the population becomes heterogeneous: quasi-stationary states arise in which the

population splits into two subpopulations, one of which does not produce autoinducers, while the other does. The same monostable response function

was chosen as in (B). Therefore, heterogeneity may arise without bistable response. For very long times, one of the two absorbing states (A, B) is

reached, data not shown (see Figure 3A). Heterogeneous, quasi-stationary states arise for a broad class of initial distributions (see Appendix 1—figure

1 and our mathematical analysis). At the same time, the average production level of autoinducers in the population is adjusted by the response

probability l if s is fixed (F) or vice versa (data not shown). Bimodal, quasi-stationary states also arise when noisy inheritance, noisy perception, and

noisy response are included in the model set-up (see Appendix 1—figure 2). Mean-field theory agrees with all observations (autoinducer equation

(1)). The time unit Dt ¼ 1 means that in a population consisting solely of non-producers, each individual will have reproduced once on average.

Ensemble size M ¼ 100, s ¼ 0:2, N ¼ 10
4.

DOI: 10.7554/eLife.25773.006

The following source data is available for figure 2:

Source data 1. Source data accompanying Figure 2.

DOI: 10.7554/eLife.25773.007
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Jonker, 1978; Maynard Smith, 1982; Hofbauer and Sigmund, 1998). Thus, the initially uniform dis-

tribution in the population shifts to a peaked distribution at low production degrees. Ultimately, a

homogeneous (unimodal) stationary state is reached in which all individuals produce autoinducers to

the same low degree plow ’ 0. Such a stationary state is absorbing (Hinrichsen, 2000), that is, the

stochastic process offers no possibility of escape from this state of the population.

With quorum sensing (l> 0), absorbing states are reached if, again, all individuals produce to the

same degree p� and, in addition, the value of this production degree is a fixed point of the response

function (Rðp�Þ ¼ p�); see Figure 2B,E and Video 2. In such a homogeneous absorbing state with

hpi
¥
¼ p�, an offspring individual can no longer alter its production degree. It either takes over the

production degree p� from its ancestor or it adopts that same degree Rðhpi
¥
Þ ¼ hpi

¥
¼ p� through

sense-and-response. Thus, all individuals continue to produce with degree p� and the state of the

population remains homogeneous (unimodal).

Surprisingly, for small response probabilities l, we found that the population may get trapped in

heterogeneous (bimodal) states for long times before a homogeneous absorbing state is reached.

The temporal evolution of such a heterogeneous state is shown in Figure 2C,F and Video 3 for

l ¼ 0:05. A monostable response function was

chosen with RðhpiÞ> hpi for all hpi 2 ð0; 1Þ (unsta-

ble fixed point at 0, and stable fixed point at 1)

such that the production degree is always up-reg-

ulated through quorum sensing; see sketch in

Figure 1B. After some time has elapsed, the

population is composed of two subpopulations:

one in which individuals produce autoinducers to

a low degree plow, and a second in which individu-

als produce to a higher degree phigh that is sepa-

rated from plow by a gap in the space of

production degrees. Only through strong demo-

graphic fluctuations can the population reach one

of the homogeneous absorbing states (hpi
¥
¼ 0

or 1 for the response function chosen above). The

time taken to reach a homogeneous absorbing

state grows exponentially with N (Figure 3A).

Therefore, states of phenotypic heterogeneity

are quasi-stationary and long-lived. These hetero-

geneous states arise for a broad class of response

Video 1. Video accompanying Figure 2A –

Homogeneous production of autoinducers in the

population if sense-and-response is absent in the

quorum-sensing model (l ¼ 0).

DOI: 10.7554/eLife.25773.008

Video 2. Video accompanying Figure 2B –

Homogeneous production of autoinducers in the

population if sense-and-response is frequent in the

quorum-sensing model (l ¼ 0:2 here).

DOI: 10.7554/eLife.25773.009

Video 3. Video accompanying Figure 2C –

Heterogeneous production of autoinducers in the

population if sense-and-response is rare in the quorum-

sensing model (l ¼ 0:05 here).

DOI: 10.7554/eLife.25773.010
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functions and initial distributions (Appendix 1—figure 1), and they are robust against demographic

noise that is always present in populations of finite size (Figure 3A); see our mathematical analysis

below. We demonstrated that states of phenotypic heterogeneity are also robust against changes of

the model set-up, which might account for more biological details (see, for example, Papenfort and

Bassler, 2016 and references therein). Upon including, for example, noisy inheritance of the produc-

tion degree, noisy perception of the environment, and noisy response to the environment into the

quorum-sensing model, heterogeneous states still arise; see Appendix 1—figure 2. Furthermore,

the average production in the heterogeneous state is finely adjusted by the interplay between the

response probability l and the selection strength s (Figure 2F).

The establishment of long-lived, heterogeneous states induced by quorum sensing is one central

finding of our study. We interpret this phenotypic heterogeneity as the result of the robust balance

between population and ecological dynamics coupled through quorum sensing (see Box 1). On the

one hand, fitness differences due to costly production favor non-producers. On the other hand, sens-

ing the population average and accordingly up-regulating individual production enables producers

to persist. Remarkably, fitness differences and sense-and-response balance such that separated pro-

duction degrees may stably coexist in one population; the population does not become homoge-

neous at an intermediate production degree as one might naively expect. Heterogeneity of the

autoinducer production is a robust outcome of the dynamics (and not a fine-tuned effect), and the

average production level in the population is adjusted by the interplay of the response probability l

and the selection strength s. Phenotypic heterogeneity does not rely on a bistable response function,

but arises due to the global intercellular coupling of ecological and population dynamics through

quorum sensing, as we show next. The relevance of quorum sensing for phenotypic heterogeneity in

microbial populations is further explored below (see Discussion).

Heterogeneity
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Figure 3. Characterization of phenotypic heterogeneity in the quorum-sensing model. (A) For small response probability l, populations get stuck in

heterogeneous quasi-stationary states. The time taken to reach a homogeneous absorbing state, Tabs, increases exponentially with the population size

N (filled circles denote the mean, gray bars denote the range within which 95% of the data points lie closest to the mean; dashed lines show fit to

Tabs ~ e
gN ). (B) Heterogeneous states are long-lived only if l is small and the response function is nonlinear (in particular, up-regulation is required for

some average production level such that RðhpiÞ> hpi). Here, the monostable response function RðhpiÞ ¼ hpi þ k sinðphpiÞ was chosen such that k 2

½0; 1=p� scales the magnitude of up-regulation. As k increases, the gap between the low-productive and high-productive peaks of the heterogeneous

state becomes larger such that it takes longer to reach the absorbing state. Mean-field theory (1) predicts the existence and local stability of

heterogeneous stationary distributions for 0< l< lup ¼ s=2 (regime below the black line). Deviations between the stochastic process and mean-field

theory are due to demographic fluctuations that vanish as N ! ¥. (C) The variance of production degrees in the population reveals whether the

population is in a homogeneous (VarðpÞ ¼ 0) or heterogeneous state (VarðpÞ> 0). The variance was averaged over long times in the quasi-stationary

state. Mean-field theory (1) (black line) agrees with our numerical observations (red filled circles); see Methods and materials. Ensemble size M ¼ 100,

s ¼ 0:2, in (B) N ¼ 10
3 and in (C) N ¼ 10

4 and N ¼ 5 � 104 close to lup, in (A, C) k ¼ 0:2.

DOI: 10.7554/eLife.25773.011

The following source data is available for figure 3:

Source data 2. Source data accompanying Figure 3.

DOI: 10.7554/eLife.25773.012
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Results of mathematical analysis
In the following, the observed long-lived states of phenotypic heterogeneity in the quorum-sensing

model are explained. First, we derived the macroscopic mean-field equation (the autoinducer equa-

tion (1)) from the microscopic dynamics of the quorum-sensing model. Second, we analyzed this

mean-field equation and characterized phenotypic heterogeneity of autoinducer production.

The microscopic dynamics of the quorum-sensing model are captured by a memoryless stochastic

birth-death process as sketched in Figure 1. Starting from the microscopic many-particle stochastic

process, we derived a mean-field equation for the probability distribution of finding any individual at

a specified production degree p at time t in the spirit of the kinetic theory in statistical physics

(Kadar, 2007). We call this one-particle probability distribution the production distribution �; Fig-

ure 2 shows the corresponding histogram numerically obtained from the stochastic many-particle

process. The mean-field equation for �, which we refer to as the autoinducer equation, is obtained

as:

qt�ðp; tÞ ¼ 2lft

�
dðp�RðptÞÞ� �ðp; tÞ

�
þð1� 2lÞ

�
fðpÞ�ft

�
�ðp; tÞ ; (1)

where � t denotes averaging with respect to � at time t. The details of the derivation of the autoin-

ducer equation from the microscopic dynamics are given in the Methods and materials section and

in Appendix 2.

The autoinducer equation (1) involves two contributions: the sense-and-response term with pre-

factor 2l, and the replicator term with prefactor 1� 2l. Through the replicator term, probability

weight at production degree p changes if the fitness fðpÞ is different from the mean fitness in the

population ft (here fðpÞ � ft ¼ �sðp� ptÞ). Without quorum sensing (l ¼ 0), Equation (1) reduces to

the well-known replicator equation of the continuous Prisoner’s dilemma (Bomze, 1990;

Oechssler and Riedel, 2001; Hofbauer and Sigmund, 2003; Cressman, 2005; McGill and Brown,

2007). The sense-and-response term, on the other hand, encodes the global feedback by which indi-

viduals adopt the production degree RðptÞ upon sensing the average pt through quorum sensing at

rate 2l. The difference between the current state � and the state in which all individuals have this

production degree RðptÞ determines the change in � at every production degree. Through the repli-

cator term and the sense-and-response term, the ecological dynamics (average production level pt)

are coupled with the dynamics of �.

We now present our results for the long-time behavior of the autoinducer equation (1). First, the

autoinducer equation (1) admits homogeneous stationary distributions. Without quorum sensing

(l ¼ 0), the initially lowest production degree in the population, plow, constitutes the homogeneous

stationary distribution �¥ðpÞ ¼ dðp� plowÞ, which is attractive for generic initial conditions. With quo-

rum sensing (l> 0), fixed points of the response function p� ¼ Rðp�Þ yield homogeneous stationary

distributions as �¥ðpÞ ¼ dðp� p�Þ, which are attractors of the quorum-sensing dynamics (1) for all ini-

tial distributions if l> s=2; see analysis below. These homogeneous stationary distributions confirm

our observations of homogeneous absorbing states in the quorum-sensing model, in which all indi-

viduals produce to the same degree; see Figure 2A,B. Time scales at which stationarity is

approached are discussed in the Methods and materials section.

Second, to analytically characterize long-lived heterogeneous states of the population, we

decomposed � into a distribution at low production degrees and a remainder distribution at higher

degrees. We found that such a decomposition yields the bimodal, heterogeneous, stationary distri-

bution of the autoinducer equation (1):

�¥ðpÞ ¼ ydðpÞþ ð1� yÞdðp� phighÞ ;

with phigh ¼ RðbÞ and y¼ 1�b=RðbÞ ;
(2)

if the conditions 0<phigh � 1 and 0<y<1 are fulfilled; see Box 1 for an illustration and Appendix 3

for the derivation. The parameter b¼ 2l=s quantifies the balance between fitness differences and

sense-and-response mechanism through quorum sensing. Heterogeneous stationary distributions

(2) are constituted of a probability mass y at the low-producing degree plow ¼ 0 and a coexisting d-

peak with stationary value 1� y at a high-producing degree phigh separated from plow by a gap. Such

heterogeneous stationary distributions have mean p
¥
¼ b and variance VarðpÞ

¥
¼ bðRðbÞ�bÞ. There-

fore, the interplay between selection strength s and response probability l adjusts the average
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production of autoinducers in the population (Figure 2F). For simplicity, we assumed in Equation (2)

that the initially lowest production degree in the population is plow ¼ 0; generalized bimodal distribu-

tions for arbitrary initial distributions �0 are given in Appendix 3.

From the conditions on phigh and y below Equation (2), one can derive the following conditions

on the response function and the value of the response probability l (for given selection strength s)

for the existence of heterogeneous stationary distributions: (i) The response function needs to be

nonlinear with Rðp
¥
Þ ¼ phigh > p

¥
; that is, quorum sensing needs to up-regulate the cellular produc-

tion in some regime of the average production level. Therefore, both monostable and bistable

response functions depicted in Figure 1B may induce heterogeneous stationary distributions

through the ecological feedback. (ii) The response probability needs to be small with l< lup ¼ s=2;

that is, to induce phenotypic heterogeneity, cells must respond only rarely to the environmental cue

p. This estimate of an upper bound on l is confirmed by our numerical results of the stochastic pro-

cess (Figure 3A–C). Vice versa, for a given response probability, the selection strength needs to be

big enough to induce heterogeneous stationary distributions. As we show in the Methods and mate-

rials section, phase transitions in the space of stationary probability distributions govern the long-

time dynamics of the autoinducer equation (1) from heterogeneity to homogeneity as the response

probability changes (l ! 0 and l ! lup); see Figure 3C.

For small l, the coexistence of the low-producing and the high-producing peaks in solution (2) is

stable due to the balance of fitness differences and sense-and-response through quorum sensing. In

Appendix 3 we show that the heterogeneous stationary distributions (2) are stable up to linear order

in perturbations around stationarity. As our numerical simulations show, these bimodal distributions

are the attractor of the mean-field dynamics (1) for a broad range of initial distributions when l is

small; see Appendix 1—figure 1 for some examples. They are also robust against noisy inheritance,

noisy perception, and noisy response as demonstrated in Appendix 1—figure 2. We interpret the

stability of the bimodal stationary distributions (2) as follows (see also Box 1). Fitness differences

quantified by the selection strength s increase probability mass at production degree plow, whereas

nonlinear response to the environment with probability l pushes probability mass towards the up-

regulated production degree phigh ¼ Rðp
¥
Þ. The gap phigh � plow > 0 ensures that the exponential time

scales of selection and sense-and-response stably balance the coexistence of both peaks; see Meth-

ods and materials. Because heterogeneous stationary distributions (2) are attractive and stable, het-

erogeneous states of the stochastic many-particle process arise and are quasi-stationary.

Consequently, the time to reach a homogeneous absorbing state in the stochastic process through

demographic fluctuations scales exponentially with the population size N (Elgart and Kamenev,

2004; Kessler and Shnerb, 2007; Assaf and Meerson, 2010; Frey, 2010; Hanggi, 1986); see

Figure 3A. Thus, phenotypic heterogeneity is long-lived.

In summary, our mathematical analysis explains how phenotypic heterogeneity in the autoinducer

production arises when quorum sensing up-regulates the autoinducer production in microbial popu-

lations (Box 1). As an emergent phenomenon, the population may split into two subpopulations:

one in which cells do not produce autoinducers (‘off’ state, plow ¼ 0) and a second in which cells pro-

duce autoinducers (‘on’ state, phigh ¼ Rð2l=sÞ>0), but grow slower. The fraction of individuals in the

‘off’ state is given by the value of y in Equation (2). If quorum sensing is absent (l ¼ 0), the whole

population is in the ‘off’ state (y ¼ 1), whereas all individuals are in the ‘on’ state (y ¼ 0) if quorum

sensing is frequent (l � lup). Only when response to the environment is rare (0< l< lup) can the

two phenotypic states, plow and phigh, coexist in the population (0< y< 1). The transitions from hetero-

geneous to homogeneous populations are governed by nonequilibrium phase transitions when the

response probability changes (l ! 0 and l ! lup). Our mathematical analysis shows that phenotypic

heterogeneity arises dynamically, is robust against perturbations of the autoinducer production in

the population, and is robust against noise at the level of inheritance, sense, and response.

Discussion

Summary: Phenotypic heterogeneity in the quorum-sensing model as a
collective phenomenon through an ecological feedback
In this work, we studied a conceptual model for the heterogeneous production of autoinducers in

quorum-sensing microbial populations. The two key assumptions of our quorum-sensing model are
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as follows. First, production of large autoinducer molecules and accompanied gene expression in

the cell’s phenotypic state are negatively correlated with fitness such that non-producers reproduce

faster than producers. Second, cells sense the average production level of autoinducers in the popu-

lation and may accordingly up-regulate their production through quorum sensing. As a result, not

only does the interplay between fitness differences and sense-and-response give rise to homo-

geneously producing populations, but it can also induce a heterogeneous production of autoin-

ducers in the population as a stable collective phenomenon. In these heterogeneous states, the

average production level of autoinducers in the population is adjusted within narrow limits by the

balance between fitness differences (selection strength s in the model), and the rate with which cells

respond to the environment and up-regulate their production through quorum sensing (response

probability l and response function RðhpiÞ in the model). Due to this robust adjustment of the pro-

duction level in the population, the expression of other genes (for example, bioluminescence and vir-

ulence genes) can be regulated by quorum sensing even when the production of autoinducers is

heterogeneous in the population.

In the following, we discuss the assumptions of our model in the light of the empirical reality for

both quorum sensing and phenotypic heterogeneity. Furthermore, we indicate possible directions to

experimentally test the ecological feedback that is suggested by the results of our theoretical work.

Does autoinducer production reduce individual growth rate?
In our quorum-sensing model, it is assumed that the individual’s production degree of autoinducers

is negatively correlated with its growth rate (fi ¼ 1� spi). Is this assumption of growth impairment

for producing phenotypes justified (Parsek and Greenberg, 2005)? This would be the case if cellular

production of autoinducers directly causes a reduction of the cell’s growth rate. For example, in L.

monocytogenes populations, heterogeneous production was observed for an autoinducer oligopep-

tide that is synthesized via the agr operon (Garmyn et al., 2011, Garmyn et al., 2009). This signal-

ing oligopeptide incurs high metabolic costs through the generation of a larger pre-protein. For the

oligopeptide signal synthesized via the agr operon in Staphylococcus aureus, the metabolic costs

were conservatively estimated by Keller and Surette to be 184 ATP per molecule (metabolic costs

for precursors were disregarded in this estimate); see Keller and Surette, 2006 for details. In con-

trast, basically no costs (0–1 ATP) incur for the different signaling molecule Autoinducer-2 (AI-2) that

is considered as a metabolic by-product. As to what extent the production of oligopeptides for sig-

naling reduces an individual’s growth rate has, to our knowledge, not been studied quantitatively.

For quorum-sensing systems that involve N-acyl homoserine lactones (AHLs) as signaling mole-

cules, however, a reduced fitness of producers has been reported for microbial growth in batch cul-

ture (Ruparell et al., 2016; Diggle et al., 2007; He et al., 2003). Even though metabolic costs for

the synthesis of C4-HSL (one of the simplest AHL signaling molecules that is synthesized via the rhl

operon) were conservatively estimated with only 8 ATP per molecule (Keller and Surette, 2006), a

growth impairment was experimentally reported only recently for a C4-HSL-producing strain

(Ruparell et al., 2016). Furthermore, a strain producing a long-chain AHL (OC12-HSL, synthesized via

the las operon) showed a reduced fitness in both mono and mixed culture compared with a non-pro-

ducing strain. The reduced fitness of AHL-producers was attributed to (i) metabolic costs of autoin-

ducer production, in particular also to metabolic costs of precursors that were disregarded in the

estimates by Keller and Surette, 2006, and (ii) accumulation of toxic side products accompanying

the synthesis of autoinducers (Ruparell et al., 2016). As another example, the strain Sinorhizobium

fredii NGR234 synthesizes AHLs via both the ngr and the tra operon (Schmeisser et al., 2009), and

it was shown that gene expression related to autoinducer production reduces the strain’s growth

rate in mono culture (He et al., 2003). On the other hand, a heterogeneous expression of the corre-

sponding autoinducer synthase genes was observed during growth of NGR234 only recently

(Grote et al., 2014). As to what extent the production of AHLs reduces fitness of NGR234 in mixed

culture and, thus, whether the phenotypic heterogeneity observed in Grote et al., 2014 could be

explained through the ecological feedback proposed by our quorum-sensing model, remains to be

explored experimentally.

In the quorum-sensing model, even small growth rate differences between producer and non-pro-

ducer, which are quantified by the ratio (growth rate of producer) / (growth rate of non-producer)

¼ 1� s, may give rise to a bimodal production of autoinducers in the population. Furthermore, it

would be interesting to track the expression level of autoinducer synthase genes of a microbial strain
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during growth for which growth differences between the producing and the non-producing pheno-

type are known such as in the study of Ruparell et al., 2016. We emphasize that it would be desir-

able to report the full distribution of expression levels in the population in order to detect whether a

population splits into several subpopulations; note that variance or percentiles are not suitable

measures to characterize and compare the bimodality of distributions. A bimodal expression of auto-

inducer synthase genes in the population together with a tightly controlled average expression level

could be a signature of the feedback between ecological and population dynamics underlying the

observation of phenotypic heterogeneity as suggested by our results.

A question of spatio-temporal scales: How stable and how dispersed
are autoinducers in the environment?
Autoinducers are secreted into the environment where they get dispersed and are degraded. For

simplicity and to facilitate our mathematical analysis, we assumed in the quorum-sensing model that

individuals respond to the current average production level of autoinducers in the whole population.

Temporal availability and spatial dispersal of autoinducers determine whether this assumption is

valid or not. On the one hand, temporal availability of autoinducers in the environment for signaling

depends on many factors. For example, pH and temperature influence the stability of autoinducers

(Yates et al., 2002; Byers et al., 2002; Decho et al., 2009; Grandclément et al., 2016;

Hmelo, 2017). Biochemical mechanisms that inhibit or disrupt the functioning of signaling molecules

(commonly referred to as ’quorum quenching’) further determine the time scales at which autoin-

ducers are degraded in the environment (LaSarre and Federle, 2013; Grandclément et al., 2016;

Hmelo, 2017). On the other hand, spatial dispersal of autoinducers in the population depends, for

example, upon cellular mechanisms that import and export autoinducers into the cell from the envi-

ronment and vice versa, and upon the spatial structure of the microbial population (Platt and Fuqua,

2010; Hense and Schuster, 2015). The degree of dispersal determines whether autoinducers

remain spatially privatized to a single cell, diffuse to neighboring cells, or are spread evenly between

all cells of the population. Consequently, the spatio-temporal organization of the microbial popula-

tion determines as to what extent microbes sense rather the current average production level or a

time-integrated production of autoinducers, and to what extent they sense rather the global or a

local average production level. Our quorum-sensing model assumes that autoinducers are uniformly

degraded in a well-mixed environment. These assumptions do not hold true for a spatially structured

microbial biofilm, but should be fulfilled during the stationary phase of microbial growth in a well-

mixed batch culture (Yates et al., 2002; Byers et al., 2002).

How is production of autoinducers up-regulated at the single-cell level?
Monostable or bistable up-regulation of autoinducer synthesis at the single-
cell level
Our theoretical results also relate to the question of how cells regulate the production of autoin-

ducers upon sensing the level of autoinducers in the environment. In this work, we showed that posi-

tive feedback loops and, thus, up-regulation of cellular autoinducer production may give rise to

phenotypic heterogeneity. Positive feedback loops are mathematically introduced in our model as a

stable fixed point at the producing phenotype of the response function (up-regulation to the stable

‘on’ state at p ¼ 1; see Figure 1B). Such a positive feedback is not present in all autoinducer syn-

thase systems, but was reported for the strains L. monocytogenes and S. fredii NGR234

(Waters and Bassler, 2005; Garmyn et al., 2009; He et al., 2003; González and Marketon, 2003)

that showed a heterogeneous synthesis of autoinducers at the population level (Garmyn et al.,

2011; Grote et al., 2014). From an experimental point of view it is often not known, however,

whether autoinducer synthesis is up-regulated for all autoinducer levels or only above a threshold

level. Up-regulation at all production levels in the population corresponds to a monostable response

function with an unstable fixed point at the ‘off’ state at p ¼ 0, whereas up-regulation only above a

threshold level corresponds to a bistable response function with a stable fixed point at the ‘off’ state

at p ¼ 0 and an additional unstable fixed point at the threshold value (see Figure 1B). Most models

of quorum-sensing microbial populations explicitly or implicitly assume a bistable gene regulation

for positive feedback loops without experimental verification; see (Hense and Schuster, 2015) for

further discussion. Why might it be relevant to distinguish between bistable (for example, a Hill
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function with Hill coefficient > 1) and monostable (for example, a Hill function with Hill coefficient

� 1) regulation of autoinducer synthesis – apart from the insight on how regulation proceeds at the

molecular level? As the results of our quorum-sensing model show, the qualitative form of the regu-

lation could discriminate between different mechanisms that control phenotypic heterogeneity of

the autoinducer production at the population level as we describe in the following.

Heterogeneity through stochastic gene expression only for bistable gene
regulation
In recent years, a deeper mechanistic understanding of phenotypic heterogeneity has been achieved

by exploring how the presence of different phenotypes in a population of genetically identical cells

depends upon molecular mechanisms and stochasticity at the cellular level (Ackermann, 2015). For

example, a bistable gene regulation function enables cells to switch between an ‘on’ and an ‘off’

state with respect to the expression of a certain gene or operon. Depending on environmental cues,

cells are either in the stable ‘on’ or in the stable ‘off’ state. A noisy expression at intermediate con-

centrations of an environmental cue may then cause some cells to be in the ‘on’ state while others

are still in the ‘off’ state. Thus, stochastic gene expression explains the coexistence of different phe-

notypic states in one population in many experimental situations (Novick and Weiner, 1957;

Ozbudak et al., 2004; Kaern et al., 2005; Dubnau and Losick, 2006; Smits et al., 2006; Raj and

van Oudenaarden, 2008; Eldar and Elowitz, 2010). In the context of quorum sensing, the level of

autoinducers in the population is the environmental cue that triggers the stochastic switch between

‘on’ and ‘off’ state explaining heterogeneous autoinducer production when the response function is

bistable (Fujimoto and Sawai, 2013; Pérez-Velázquez et al., 2016; Goryachev et al., 2005;

Dockery and Keener, 2001). In other words, bistable regulation together with stochastic gene

expression can explain a bimodal autoinducer synthesis in the population. If, however, regulation of

autoinducer synthesis is monostable, an explanation of phenotypic heterogeneity in the autoinducer

production in terms of stochastic gene expression appears questionable to us.

Heterogeneity through an ecological feedback for monostable and for
bistable gene regulation
The analysis of our quorum-sensing model suggests that an alternative mechanism could explain a

heterogeneous production of autoinducers in quorum-sensing microbial populations. Our results

show that phenotypic heterogeneity may also arise dynamically as a collective phenomenon for

monostable regulation of autoinducer production when quorum sensing creates an ecological feed-

back by coupling ecological with population dynamics. Cells need to up-regulate their expression

with respect to the sensed production level in the population. A threshold-like, bistable response

function does not need to be assumed in the quorum-sensing model, but would work as well, to

establish a bimodal production of autoinducers in the population.

Therefore, if phenotypic heterogeneity of autoinducer synthesis is observed in a microbial popula-

tion and if cellular growth rate is correlated with the cell’s production degree of autoinducers, then

it would be worth testing experimentally whether regulation of autoinducer synthesis is monostable

or bistable. Monostable regulation would be an indicator that heterogeneity on the population level

is not caused by stochastic gene expression, but actually is caused by a different mechanism such as

the ecological feedback proposed here.

On which timescales do microbes respond to autoinducers in the
environment?
Furthermore, in our implementation of the quorum-sensing model, individuals respond to the envi-

ronment with response probability l upon reproduction. The rule that offspring individuals can only

respond at reproduction events represents a coarse-grained view in time to facilitate the mathemati-

cal analysis and to identify the ecological feedback. The response probability can actually be inter-

preted as the rate with which individuals respond to autoinducers in the environment. This cellular

response rate is then effectively measured in units of the cell’s reproduction rate (fi) in the quorum-

sensing model. Phenotypic heterogeneity of autoinducer production arises in the quorum-sensing

model if the time scale at which cells respond to autoinducers in the environment is of similar order

as or larger than the time scale at which growth rate differences affect the population dynamics. This
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can be inferred from the prefactors of the sense-and-response term and the replicator term in the

autoinducer equation (1): Effective changes of the distribution of autoinducer production in the pop-

ulation occur (i) through cellular response to autoinducers in the environment at rate ~2l and (ii)

through growth rate differences at rate ~s. Both contributions need to balance each other such that

a bimodal production in the population is established (quantified in our model by the ratio b ¼ 2l=s;

see also Box 1 for an illustration). This balance is robust against several kinds of perturbations and

noise as discussed above; see Appendix 1—figures 1 and 2. To understand how bacteria respond

to changes of autoinducer levels in the environment and to quantify response rates, experiments at

the single-cell level seem most promising to us at present.

Single-cell experiments
Some of the questions raised above may be addressed most effectively with single-cell experiments.

For example, it would be desirable to simultaneously monitor, at the single-cell level, the correla-

tions between autoinducer levels in the environment, the expression of autoinducer synthase genes,

and the transcriptional regulators that mediate response to quorum sensing. Upon adjusting the

level of autoinducers in a controlled manner, for example in a microfluidic device, one could charac-

terize how cells respond to autoinducers in the environment. This way, it might be possible to

answer questions of (i) how the cellular production of autoinducers is regulated (monostable or bista-

ble regulation, or a different form of regulation), (ii) whether response times to environmental

changes are stochastic and whether response rates can be identified, (iii) as to what extent cellular

response in the production of autoinducers depends on both the level of autoinducers in the envi-

ronment and on the cell’s present production degree, and (iv) how production of autoinducers is cor-

related with single-cell growth rate. In the context of the quorum-sensing model, the results of such

single-cell experiments would help to identify the form of the fitness function f and the response

function R, to quantify the selection strength s and response probability l, and to refine the model

set-up.

Different mechanisms at the cellular (microscopic) level may yield the same behavior at the popu-

lation (macroscopic) level. Therefore, observations at the population level might not discriminate

between different mechanisms at the cellular level. Is phenotypic heterogeneity in the production of

autoinducers an example of such a case? In this work, we discussed that phenotypic heterogeneity in

the autoinducer production could be the result of stochastic gene expression in bistable gene regu-

lation or, as suggested by our model, the result of the feedback between ecological and population

dynamics. We believe that the above-mentioned single-cell experiments could elucidate the mecha-

nisms that allow for phenotypic heterogeneity in quorum-sensing microbial populations, and help to

understand how population dynamics and ecological dynamics influence each other.

What is the function of phenotypic heterogeneity in autoinducer
production?
The purpose of the quorum-sensing model presented here is to explain how phenotypic heteroge-

neity in the autoinducer production arises and how it is controlled in quorum-sensing microbial pop-

ulations. With the current model set-up, however, we did not address its function. Why might this

phenotypic heterogeneity in the autoinducer production be beneficial for a microbial species on

long times? From an experimental point of view, the evolutionary contexts and ecological scenarios

under which this phenotypic heterogeneity may have arisen are still under investigation

(Garmyn et al., 2011; Grote et al., 2014, Grote et al., 2015). From a modeling perspective, one

could extend, for example, our chosen fitness function with a term that explicitly accounts for the

benefit of signaling either at the cellular or population level, and study suitable evolutionary contexts

and possible ecological scenarios (Pollak et al., 2016; Dandekar et al., 2012; Czárán and Hoek-

stra, 2009; Carnes et al., 2010; Hense and Schuster, 2015). Such theoretical models together with

further experiments might help to clarify whether heterogeneous production of autoinducers can be

regarded as a bet-hedging strategy of the population or rather serves the division of labor in the

population (Ackermann, 2015).
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Conclusion
Overall, our analyses suggest that feedbacks between ecological and population dynamics through

signaling might generate phenotypic heterogeneity in the production of signaling molecules itself,

providing an alternative mechanism to stochastic gene expression in bistable gene-regulatory cir-

cuits. Spatio-temporal scales are important for the identified ecological feedback to be of relevance

for microbial population dynamics: growth rate differences between producers and non-producers

need to balance the rate at which cells respond to the environment, degradation of signaling mole-

cules should be faster than time scales at which growth rate differences affect the population com-

position significantly, and signaling molecules should get dispersed in the whole population faster

than they are degraded. In total, if microbes sense and respond to their self-shaped environment

under these conditions, the population may not only respond as a homogeneous collective as is typi-

cally associated with quorum sensing, but may also become a robustly controlled heterogeneous col-

lective. Further experimental and theoretical studies are needed to clarify the relevance of the

different mechanisms that might control phenotypic heterogeneity, in particular for quorum-sensing

microbial populations.

Materials and methods

Derivation of the autoinducer equation (1)
The microscopic dynamics are captured by a memoryless stochastic birth-death process (a continu-

ous-time Markov process) as sketched in Figure 1. The state of the population p is updated by non-

genetic inheritance and sense-and-response through quorum sensing such that at most two individu-

als i and j 6¼ i change their production degree at one time. The temporal evolution of the corre-

sponding joint N-particle probability distribution Pðp; tÞ is governed by a master equation for the

stochastic many-particle process (Gardiner, 2009; Van Kampen, 2007; Weber and Frey, 2017),

whose explicit form is derived from Figure 1 and given in Appendix 2. This master equation tracks

the correlated microscopic dynamics of the production degrees of all N individuals. To make analyti-

cal progress, we focused on the reduced one-particle probability distribution �ð1Þðp; tÞ ¼

1=Nh
P

i dðp� piÞiP in the spirit of a kinetic theory (Kadar, 2007) starting from the microscopic sto-

chastic dynamics. �ð1Þ denotes the probability distribution of finding any individual at a specified pro-

duction degree p at time t; the numerically obtained histogram of �ð1Þ was plotted in Figure 2. The

temporal evolution of �ð1Þ is derived from the master equation, and couples to the reduced two-par-

ticle probability distribution and to the full probability distribution P through quorum sensing. By

assuming that correlations are negligible, one may approximate �ð1Þ by the mean-field distribution �,

which we refer to as the production distribution. The mean-field equation (1) for � is derived in

Appendix 2 and referred to as the autoinducer equation. Note that Equation (1) conserves normali-

zation of �, that is,
R
1

0
dp qt�ðp; tÞ ¼ 0.

We also proved that �ð1Þ converges in probability to � as N ! ¥ for any finite time if initial correla-

tions are not too strong. In other words, the autoinducer equation (1) captures exactly the collective

dynamics of the stochastic many-particle process for large N. To show this convergence, we intro-

duced the bounded Lipschitz distance d between � and �ð1Þ, applied Grönwall’s inequality to the

temporal evolution of d, and used the law of large numbers; see (Frey et al., 2017) for details. Simi-

lar distance measures and estimates have been used, for example, to prove that the Vlasov equation

governs the macroscopic dynamics of the above-mentioned classical XY spin model with infinite

range interactions (Braun and Hepp, 1977; Dobrushin, 1979; Spohn, 1991; Yamaguchi et al.,

2004).

Analysis of homogeneous stationary distributions of the autoinducer
equation (1)
Without quorum sensing (l ¼ 0), one finds the analytical solution for � by applying the method of

characteristics to Equation (1) in the space of moment and cumulant generating functions as:

�ðp; tÞ ¼ �0ðpÞe�stp=
R
1

0
dp e�stp�0ðpÞ; see Appendix 3 for details. Thus, the initially lowest production

degree in the population, plow, constitutes the homogeneous stationary distribution
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�¥ðpÞ ¼ dðp� plowÞ, which is attractive for generic initial conditions. Only d-peaks at production

degrees greater than plow are stationary as well, but they are neither attractive nor stable. The tem-

poral approach to the homogeneous stationary distribution is algebraically slow for continuous initial

distributions �0, and exponentially fast if plow is separated from all greater degrees by a gap in pro-

duction space; see Appendix 3 and Figure 2D.

With quorum sensing (l> 0), fixed points of the response function p� ¼ Rðp�Þ yield homogeneous

stationary distributions of the autoinducer equation (1) as �¥ðpÞ ¼ dðp� p�Þ. In particular, stable fixed

points of the response function (R0ðp�Þ< 1) constitute homogeneous stationary distributions that are

stable up to linear order in perturbations around stationarity. For l> s=2, these distributions are also

attractors of the mean-field dynamics (1) for all initial distributions; see Appendix 3. The temporal

approach towards homogeneous stationary distributions with quorum sensing is generically expo-

nentially fast (Figure 2E). This exponentially fast approach is illustrated for the special case of a lin-

ear response function and l ¼ 1=2, for which one finds the analytical solution as:

�ðp; tÞ ¼ yðtÞ�0ðpÞ þ ð1� yðtÞÞdðp� p0Þ with yðtÞ ¼ e�f0t. However, time scales at which stationarity is

approached may diverge at bifurcations of the response function. Such can be seen, for example, if

one chooses a supercritical pitchfork bifurcation of a polynomial response function and l ¼ 1=2; see

Appendix 1—figure 3 and Appendix 3.

Phase transitions from heterogeneity to homogeneity in the
autoinducer equation (1)
Here we discuss how the long-time behavior of the quorum-sensing model changes from heteroge-

neous to homogeneous populations as the response probability l vanishes or reaches the upper

threshold lup while the selection strength s is kept fixed. For small response probabilities, 0< l< lup,

the heterogeneous stationary distributions of the autoinducer equation (1) explain the long-lived,

heterogeneous states of the stochastic quorum-sensing process. The coexisting d-peaks at the low-

producing and high-producing degree in the heterogeneous stationary distribution are separated by

a gap in production space, which gives rise to the non-vanishing variance VarðpÞ
¥
in the phase of

heterogeneity (Figure 3C). As l ! lup, the gap closes, phigh ! RðphighÞ, and y ! 0, such that a homo-

geneous stationary distribution with VarðpÞ
¥
¼ 0 is recovered in a continuous transition. This non-

equilibrium phase transition from heterogeneity to homogeneity proceeds without any critical

behavior. As l ! 0, and under the assumption that 0 is an unstable fixed point of the response func-

tion (Rð0Þ ¼ 0 and 1<R0ð0Þ; we further assume R0ð0Þ<¥), the gap between the low-producing and

the high-producing peak closes as well because phigh ! 0. However, y does not approach 1, but the

value 1� 1=R0ð0Þ< 1. The probability weight at the low-producing mode jumps by the value 1=R0ð0Þ

and the homogeneous stationary distribution with VarðpÞ
¥
¼ 0 is recovered in a discontinuous transi-

tion. Therefore, a discontinuous phase transition in the space of stationary probability distributions

governs the long-time dynamics of the autoinducer equation (1) from heterogeneity to homogeneity

as the response probability l vanishes (for fixed selection strength s).
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Appendix 1—figure 1. Phenotypic heterogeneity in the quorum-sensing model arises for

diverse initial distributions. Bimodal quasi-stationary states arise for a broad class of initial

distributions if the value of the response probability l is small and an individual’s production

degree is upregulated by the sense-and-response mechanism through quorum sensing

(RðpÞ> p for some p 2 ½0; 1�). Depicted is the temporal evolution of the histograms of

production degrees (normalized values) as in Figure 2 of the main text. The monostable

response function RðpÞ ¼ pþ 0:2 � sin ðppÞ was chosen (see Figure 1B). (A, B) l ¼ 0:05.

Initially, the population consists of mainly non-producers (in (A) initial distribution

pi ~Betað0:5; 20Þ i.i.d. and in (B) initial distribution pi ~Betað4; 20Þ i.i.d.). Due to the balance of

fitness differences and sense-and-response through quorum sensing, the population splits

into a heterogeneous population with producers and non-producers coexisting for long

times. (C) l ¼ 0:02. If the initial distribution of production degrees is centered around high

production degrees (initial distribution pi ~Betað10; 5Þ i.i.d.), the population may still evolve

in time into a heterogeneous quasi-stationary state. However, the peak at the low-producing

degree is typically located away from 0, that is, plow > 0. These exemplary numerical results

(A–C) are confirmed by the results of our mean-field theory: heterogeneous stationary

distributions are the attractor of the mean-field dynamics (autoinducer equation (1) in the

main text) for a broad range of initial distributions if conditions (i) Rðp
¥
Þ ¼ phigh > p

¥
and (ii)

l< lup ¼ s=2 are fulfilled (see main text). Note that ‘i.i.d.’ abbreviates ‘independent and

identically distributed’. Parameters: selection strength s ¼ 0:2 and population size N ¼ 10
4.
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Appendix 1—figure 2. Phenotypic heterogeneity in the quorum-sensing model is robust against

noisy inheritance, noisy perception, and noisy response. Upon including either noisy inheritance

of the production degree (A–C), or noisy perception of the average production level and

noisy response to it (D–F), or both percx="">(G-I) into the model set-up, bimodal quasi-

stationary states still arise in the relevant parameter regimes (see Figure 2C). Depicted are

representative single realizations of the modified stochastic process (histogram over

normalized values of production degrees to make the comparison with Figure 2 possible).

(A–C) Noisy inheritance is implemented at reproduction events. Production degree pi is

passed on to an offspring as pi 7! pi þ hp with noise hp ~Nð0;spÞ sampled from a Normal

distribution (and are cut off such that pi þ hp 2 ½0; 1�), emulating noisy inheritance of the

phenotype. sp � 0 characterizes the strength of the noise (sp ¼ 0 recovers noiseless

inheritance). As sp increases, bimodal quasi-stationary states still arise, but the two peaks

become broader than in the noiseless case. (D–F) Noise in the sensing apparatus is

implemented as noisy perception of the average production level hpi 7! hpi þ hhpi with

Gaussian noise hhpi ~Nð0;shpiÞ, and noise in the response is implemented at the level of the

response function as RðhpiÞ 7!RðhpiÞ þ hR with Gaussian noise hR ~Nð0;sRÞ. Therefore, the

production degree of an individual is updated through sense-and-response to the

environment as pi ¼ RðhpiÞ 7!Rðhpi þ hhpiÞ þ hR in the quorum-sensing model. Again, as the

strength of both sense and response noise increase, bimodal quasi-stationary states still

arise, but the two peaks become broadened compared with the noiseless case. We

emphasize that shpi ¼ sR ¼ 0:1 corresponds to very strong noise on the interval ½0; 1�. (G–I)

Combined effect of noisy inheritance and noisy sense-and-response. Representative

trajectories demonstrate that bimodal quasi-stationary states also arise in the presence of

noise at all update steps. Thus, phenotypic heterogeneity in the quorum-sensing model is

qualitatively robust against noise at all steps. Initial distribution: pi ~Uniformð0; 1Þ,

independent and identically distributed; Parameters: selection strength s ¼ 0:2, response

probability l ¼ 0:05, response function RðhpiÞ ¼ hpi þ 0:2 � sinðphpiÞ, and population size

N ¼ 10
4.

DOI: 10.7554/eLife.25773.014

Bauer et al. eLife 2017;6:e25773. DOI: 10.7554/eLife.25773 22 of 38

Research article Computational and Systems Biology

http://dx.doi.org/10.7554/eLife.25773.014
http://dx.doi.org/10.7554/eLife.25773


A B

Population averageR
e
s
p
o
n
s
e
 f
u
n
c
ti
o
n

 = 0.1

Time

Bifurcation parameter
D

e
c
a
y
 c

o
n
s
ta

n
t

Time

Population averageR
e
s
p
o
n
s
e
 f
u
n
c
ti
o
n

Single realization Ensemble average Autoinducer equation

C D

Appendix 1—figure 3. Time scales at which stationarity is approached may diverge. The

response probability was set to l ¼ 1=2, and the nonlinear response function RðhpiÞ ¼

hpi þ 40 � hpiðhpi � ð0:5� �ÞÞðhpi � 0:5Þðhpi � ð0:5þ �ÞÞðhpi � 1Þ with bifurcation parameter

� was chosen, see Equation (48); � controls a supercritical pitchfork bifurcation of the

response function at the fixed point pcr ¼ 0:5 (RðpcrÞ ¼ pcr): For �> 0, the fixed point at pcr is

unstable and non-degenerate (sketch in (B)), and becomes stable and threefold degenerate

(z ¼ 3) as � ¼ 0 (sketch in (A)). (D) Away from the bifurcation of the response function (�> 0),

the approach of an absorbing state in the stochastic many-particle system is exponentially

fast (see inset of (D) for an exemplary measurement of hpiðtÞ � hpi
¥
for � ¼ 0:1, dashed line

denotes fit to exponential decay). The exponentially fast approach of stationarity is

confirmed by mean-field theory (pt � p
¥
~ e�t=t), see main text and Equation (51). Mean-field

theory also predicts that the time scale of this exponentially fast relaxation diverges as t ~ ��2

as the bifurcation is approached (�! 0), indicated by the black line in (D). This prediction

agrees with the numerical simulations of the stochastic quorum-sensing model, see (D) (blue

crosses denote values of the decay constants obtained from the exponential fits and black

dashed line indicates fit to t ~ 1=�g with g ¼ 1:95). The divergence of time scales reflects

critical slowing down as �! 0. (C) At the bifurcation of the response function (� ¼ 0), the

approach of an absorbing state is algebraically slow, pt � p
¥
~ t�1=n with critical exponent n ¼

z� 1 ¼ 2 obtained from mean-field theory (black line), see Equation (53). This prediction

agrees with our numerical simulations of the stochastic quorum-sensing model (black dashed

line in (C) indicates fit to hpiðtÞ � hpi
¥
~ ta with a ¼ �0:50). Initial distribution: unimodal

pi ~Betað1; 10Þ, independent and identically distributed; Parameters: Ensemble size M ¼ 100,

selection strength s ¼ 0:1, population size N ¼ 10
4.
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Appendix 2

From a microscopic description to a macroscopic
description of the quorum-sensing model

Description of the microscopic dynamics: Master equation of the
stochastic many-particle process
To describe the temporal evolution of the population, we introduced the joint N-particle

probability distribution Pðp; tÞ. The value Pðp; tÞdp1 . . . dpN denotes the joint probability of

finding the first individual with a production degree in the interval ½p1; p1 þ dp1�, the second

individual with a production degree in the interval ½p2; p2 þ dp2�, and so on at time t. The

stochastic dynamics are captured by a coupled birth-death process (continuous-time Markov

process) as described in the main text and in Figure 1 of the main text. An individual i

reproduces randomly after a time that is exponentially distributed with rate fi, which we

refer to as the individual’s fitness in the main text. One update step involves reproduction,

sense-and-response through quorum sensing, and non-genetic inheritance such that at most

two individuals i and j 6¼ i change their production degree at one time. We denote the state

of the population before the update step as epi;j ¼ ðp1; . . . ; pi�1; epi; piþ1 . . . ; epj; . . . ; pNÞ; the
production degrees of individual i and j, which might change during the update step, are

labeled with a tilde. For the sake of readability, we do not distinguish notationally between a

random variable and the value that this random variable attains; both are labeled with the

same symbol. The master equation for the joint N-particle probability distribution P for the

individuals’ production degrees p ¼ ðp1; . . . ; pNÞ at time t can be written as (Gardiner, 2009;

Van Kampen, 2007; Weber and Frey, 2017):

qtPðp; tÞ ¼
XN

i¼1

XN

j 6¼i

Z

½0;1�2

depidepj Pðepi;j; tÞfiðepi;jÞ jðepi;jÞAiðepi;j; iÞAjðepi;j; iÞ

�Pðp; tÞ
XN

i¼1

XN

j 6¼i

fiðpÞ jðpÞ ;

¼ gain� loss ;

(3)

with reproduction rate of individual i (fitness) given by (and selection strength 0 � s <1):

fiðpÞ ¼fðpiÞ ¼ 1� spi ; (4)

and death rate of individual j given by (random death):

 jðpÞ ¼
1

N� 1
: (5)

The transition probabilities Ai and Aj account for the ensuing changes of at most two

production degrees in the population due to non-genetic inheritance and sense-and-

response (see detailed description below Equation (6) and Equation (7)). The initial

condition to the master equation (3) is given as Pðp; t ¼ 0Þ ¼ p0ðpÞ.

The master equation (3) involves two contributions: gain terms yielding an increase and loss

terms yielding a decrease of the probability weight in state p at time t. Loss terms occur

when the population is in state p and an individual reproduces. The probability of finding

the population in this state is given by Pðp; tÞ. Individual i is selected for reproduction at rate

fiðpÞ and splits into two offspring individuals, and a different individual j 6¼ i is removed with

probability 1=ðN � 1Þ at the same time (random death). Gain terms involve all events that
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take the population from an arbitrary state epi;j to state p, and involve again reproduction for

individual i and neutral death for individual j. The transition probabilities Ai and Aj account

for these changes due to non-genetic inheritance and sense-and-response through quorum

sensing, and are given as:

Aiðepi;j; iÞ ¼ l � d pi�Rðhepi;jiÞ
� �

þð1�lÞ � d pi �epið Þ; (6)

Ajðepi;j; iÞ ¼ l � d pj �Rðhepi;jiÞ
� �

þð1�lÞ � d pj �epi
� �

: (7)

We abbreviate hepi;ji ¼ 1=N
P

kðepi;jÞk as the average production degree before the update

step. Both transition probabilities Ai and Aj quantify the probability of attaining the

production degrees pi and pj, respectively, for the two offspring individuals of ancestor i.

The first summand in both Ai and Aj captures the response to the perceived average

production (pi=j attains the value Rðhepi;jiÞ) with probability l as the updated production

degree, and the second summand accounts for the non-genetic inheritance of the

production degree from the ancestor i (pi=j attains the value epi) with probability 1� l. Note

that for the transition probability Aj, also pj attains the value epi due to our convention that

individual i is labeled as the reproducing individual and individual j is chosen for the death

event, see Figure 1 of the main text.

In our prescription of the master equation (3), the introduced gain and loss terms also

involve terms that actually do not change the state of the population. Such is the case, for

example, when the two individuals i and j have the same production degree (epi ¼ epj) and
both offspring individuals retain the production degree from their ancestor i (pi ¼ pj ¼ epi,
that is, both offspring individuals do not update their production through sense-and-

response). Such events do not change the state of the population (epi;j ¼ p), but are included

in the master equation (3). However, these terms always occur both in the gain and loss

terms. Therefore, they cancel each other and the master equation can be written in form of

Equation (3).

The master equation (3) conserves normalization of P because qt

R
½0;1�N dp Pðp; tÞ ¼ 0; see

analysis below.

Coarse-grained description: Reduced one-particle probability
distribution
The reduced one-particle probability distribution �ð1Þ is defined as:

�ð1Þðp; tÞ ¼
1

N

XN

i¼1

dðp� piÞ

* +

Pðp;tÞ

; (8)

¼

Z

½0;1�N�1

dp2dp3 . . .dpN Pðp; tÞ ¼ Pð1Þðp; tÞ ; (9)

and agrees with the marginal probability distribution for the production degree of the first

individual Pð1Þ. The equality between the normalized reduced one-particle distribution �ð1Þ

and the one-particle probability distribution Pð1Þ follows from the symmetry of P with respect

to permutation of identical (that is indistinguishable) individuals (Kadar, 2007).

We also define the more general reduced n-particle probability distribution:
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�ðnÞðp1; . . . ;pn; tÞ :¼
ðN� nÞ!

N!

XN

i1¼1

dðp1� pi1Þ . . .
XN

in¼1

in 6¼i2 ;...;in�1

dðpn � pinÞ

* +

Pðp;tÞ

; (10)

¼

Z

½0;1�N�n

dpnþ1dpnþ2 . . .dpN Pðp; tÞ ¼ PðnÞðp1; � � � ;pn; tÞ ; (11)

which agrees with the marginal probability distribution for the production degrees of the

first n individuals, PðnÞ. In particular, one also has Pðp; tÞ ¼ PðNÞðp; tÞ ¼ �ðNÞðp; tÞ.

Towards the macroscopic dynamics: Temporal evolution of the
reduced one-particle probability distribution
In the following we show that the temporal evolution equation of the reduced one-particle

probability distribution is obtained from the master equation (3) as:

qt�
ð1Þðp; tÞ ¼ 2l

Z

½0;1�N

dp1dp2 . . .dpN �
ðNÞðp; tÞ 1� spð Þdðp�RðhpiÞÞ (12)

� 2l �ð1Þðp; tÞ� s

Z
1

0

dp2 �
ð2Þðp;p2; tÞ p2

� �

þð1� 2lÞs

Z
1

0

dp2 �
ð2Þðp;p2; tÞ p2 � p�ð1Þðp; tÞ

� �
:

To derive the temporal evolution equation for �ð1Þ, we specify the production degree of one

particular individual (here p1), and integrate out the production degrees of the other N � 1

individuals in the master equation (3):

qt�
ð1Þðp1; tÞ ¼

Z

½0;1�N�1

dp2 . . .dpN
XN

i¼1

XN

j 6¼i

Z

½0;1�2

depidepj Pðepi;j; tÞ
fðepiÞ
N� 1

Aiðepi;j; iÞAjðepi;j; iÞ (13)

�

Z

½0;1�N�1

dp2 . . .dpN Pðp; tÞ
XN

i¼1

XN

j 6¼i

fðpiÞ

N� 1
;

¼

Z

½0;1�N�1

dp2 . . .dpN gain� lossð Þ ¼: Igain� Iloss :

For the loss term, we split the sum
P

i *ðiÞ into two contributions:

X

i

*ðiÞ ¼ *ði¼1Þ þ
X

i>1

*ðiÞ ; (14)

and deal with both contributions separately to obtain:

Iloss ¼NPð1Þðp; tÞ� spPð1Þðp; tÞ� sðN� 1Þ

Z
1

0

dp2 P
ð2Þðp;p2; tÞ p2 : (15)

For the gain term, we split up the sum
P

i

P
j 6¼i *ði;jÞ that occurs in the master equation (3)

into three terms as follows:
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X

i�1

X

j�1

j6¼i

*ði;jÞ ¼
X

j>1

*ði¼1;jÞþ
X

i>1

*ði;j¼1Þþ
X

i>1

X

j>1
j6¼i

*ði;jÞ : (16)

We also introduce the notation depi;j;k̂ :¼ dp1dp2 . . . depi . . . depj . . . dp̂k . . . dpN in which variables

in the superscript are labeled with a tilde in the product (indices i and j in the example), and

variables with a hat in the superscript are missing in the product (that is, they are not

integrated over; index k in the example). This way, the integral measure in the gain term can

be decomposed as follows:

Z

½0;1�N�1

dp2 . . .dpN
XN

i¼1

XN

j 6¼i

Z

½0;1�2

depidepj

¼

Z

½0;1�Nþ1

XN

j¼2

dep1;jdpj þ

Z

½0;1�Nþ1

XN

i¼2

dep1;idpi þ

Z

½0;1�Nþ1

XN

i¼2

XN

j¼2

j 6¼i

dp1̂;i;jdpidpj :

(17)

Upon plugging in the specific form of the transition probabilities and decomposing the

integral measure into the three contributions, the gain term can be written as follows (note

the asymmetry between the first summand (i ¼ 1 term) and the second summand (j ¼ 1

term); integration over suitable d-functions of the transition probabilities was carried out as

well, for example,
R
1

0
dpj Ajðepi;j; iÞ ¼ 1):

Igain ¼
1

N� 1

Z

½0;1�N

XN

j¼2

dep1;j Pðep1;j; tÞfðep1Þ ldðp1 �Rðhep1;jiÞÞþ ð1�lÞdðp1�ep1Þ
� �

þ
1

N� 1

Z

½0;1�N

XN

i¼2

depi;1 Pðepi;1; tÞfðepiÞ ldðp1 �Rðhepi;1iÞÞþ ð1�lÞdðp1 �epiÞ
� �

þ
1

N� 1

Z

½0;1�N�1

XN

i¼2

XN

j¼2

j6¼i

dep1̂;i;j Pðepi;j; tÞfðepiÞ :

(18)

Making use of the fact that P is symmetric with respect to permutation of individuals

(individuals are identical), carrying out possible integrals over d-functions, plugging in the

explicit form of the fitness function (4), and relabeling variables, one obtains for the gain

term:

Igain ¼ 2l

Z

½0;1�N

dp Pðp; tÞdðp�RðhpiÞÞð1� sp1Þ

þ 2ð1�lÞð1� spÞPð1Þðp; tÞ

þ ðN� 2ÞPð1Þðp; tÞ� sðN� 2Þ

Z
1

0

dp2 Pð2Þðp;p2; tÞ p2 :

(19)

Combining loss terms Iloss and gain terms Igain leads to the result for the equation of motion

of the reduced one-particle probability distribution �ð1Þ that is given in Equation (12).

Heuristic derivation of the macroscopic dynamics: Mean-field
approximation
Upon assuming that correlations are negligible, one may approximate �ð1Þ by its mean-field

approximation �, which we refer to as the production distribution. As described in the main

text, the temporal evolution equation for �ð1Þ serves as a suitable starting point to guess the
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mean-field equation for �, which is the mean-field approximation of �ð1Þ. Thus, we naively

approximate �ð1Þ » � and �ðNÞ »
QN �. From the temporal evolution of �ð1Þ in Equation (12),

the mean-field equation for � is suggested as:

qt�ðp; tÞ » 2l

Z

½0;1�N

dp1dp2 . . .dpN
YN

i¼1

�ðpiÞ 1� sptð Þdðp�RðptÞÞ

� 2l �ðp; tÞ� s

Z
1

0

dp2 �ðp; tÞ�ðp2; tÞp2

� �

þð1� 2lÞs

Z
1

0

dp2 �ðp; tÞ�ðp2; tÞp2� p�ðp; tÞ

� �
;

(20)

where �t denotes averaging with respect to � at time t. Further collection of terms yields the

mean-field equation (1) in the main text:

qt�ðp; tÞ ¼ 2lft

�
dðp�RðptÞÞ� �ðp; tÞ

�
þð1� 2lÞ

�
fðpÞ�ft

�
�ðp; tÞ ; (21)

with initial condition �ðp; t ¼ 0Þ ¼ �0ðpÞ, fðpÞ ¼ 1� sp, ft ¼ 1� spt, and pt ¼
R
1

0
dp p�ðp; tÞ.

Alternatively, this mean-field equation can also be written as:

qt�ðp; tÞ ¼ 2l
�
ftdðp�RðptÞÞ�fðpÞ�ðp; tÞ

�
þ
�
fðpÞ�ft

�
�ðp; tÞ : (22)

We emphasize that the mean-field equation (1) is to be understood in distributional sense,

that is, it needs to be integrated over observables (for example, suitable test functions g :

½0; 1� ! R, g smooth) and � is interpreted as a linear functional on the space of these

observables. This way, � can be a continuous probability density function or a discrete

probability mass function, or a probability distribution with both density parts and mass

parts. To keep notation accessible for a broad readership, we avoid a measure-theoretic

notation in this manuscript.

The proof that �ð1Þ converges in probability to � as N ! ¥ for any finite time if initial

correlations are not too strong will be presented in a forthcoming publication (Frey et al.,

2017).

Bauer et al. eLife 2017;6:e25773. DOI: 10.7554/eLife.25773 28 of 38

Research article Computational and Systems Biology

http://dx.doi.org/10.7554/eLife.25773


Appendix 3

Analysis of the mean-field equation of the quorum-sensing
model (autoinducer equation)

Mean-field equation for moment and cumulant-generating functions
The moment-generating function Mðu; tÞ for the production degree p, which is the random variable

of interest, and its corresponding cumulant-generating function Cðu; tÞ are defined as:

Mðu; tÞ :¼

Z
1

0

dp eup�ðp; tÞ ¼ L½��ð�u; tÞ ; (23)

Cðu; tÞ :¼ ln Mðu; tÞð Þ ; (24)

with argument u 2 ð�¥;¥Þ at time t. The moment-generating function M is the (one-sided)

Laplace transform L of � with negative argument at time t. Moments and cumulants of the

degree distribution � are obtained as:

MkðtÞ :¼ q
k
uMðu; tÞju¼0

; and CkðtÞ :¼ q
k
uCðu; tÞju¼0

; for k � 1 : (25)

For the mean production, that is, for the expectation value of the production distribution, it

holds that p ¼ M1 ¼ C1 and the variance is given by VarðpÞ ¼ p2 � p2 ¼ M2 �M2

1
¼ C2. By

applying transformations (23, 24) to the mean-field equation (1) and plugging in the form of

the fitness function in Equation (4), one obtains:

qtMðu; tÞ ¼ ð1� 2lÞs M1ðtÞMðu; tÞ� quMðu; tÞð Þþ 2l 1� sM1ðtÞð Þ euRðM1ðtÞÞ �Mðu; tÞ
� �

;

qtCðu; tÞ ¼ ð1� 2lÞs C1ðtÞ� quCðu; tÞð Þþ 2lð1� sC1ðtÞÞ euRðC1ðtÞÞe�Cðu;tÞ� 1

� �
:

(26)

Solution strategy for the moment and cumulant-generating functions:
Method of characteristics
This mean-field equation in moment/cumulant space (26) is more conveniently written as a

semilinear partial differential equation (PDE) of first order in t and u, for example for C:

qtCðu; tÞþ ð1� 2lÞsquCðu; tÞ ¼ FðC;u; tÞ ; (27)

with FðC; u; tÞ :¼ ð1� 2lÞsC1ðtÞ þ 2lð1� sC1Þ euRðC1ðtÞÞe�Cðu;tÞ � 1
� �

and initial condition

Cðu; t ¼ 0Þ ¼ C0ðuÞ. This PDE admits the straight lines rðu; tÞ ¼ u� ð1� 2lÞst as characteristics.

Restricted to these characteristic curves, the PDE reduces to a nonlinear ordinary differential

equation (ODE) of first order in time for zðr; tÞ ¼ Cðuðr; tÞ; tÞ:

d

dt
zðr; tÞ ¼ qtuðr; tÞquCðu; tÞþ qtCðu; tÞ ¼ FðCðuðr; tÞ; tÞ;uðr; tÞ; tÞ ¼ Fðz; r; tÞ ; (28)

with initial condition zðr; t ¼ 0Þ ¼ Cðuðr; t ¼ 0Þ; t ¼ 0Þ ¼ C0ðrÞ. The solution for the cumulant-

generating function is then obtained from the solution of the above ODE as

Cðu; tÞ ¼ zðrðu; tÞ; tÞ ¼ zðu� ð1� 2lÞst; tÞ. For the two cases l ¼ 0 and l ¼ 1=2 with linear

response function, an insightful, analytical solution of the mean-field equation (1) for the

production distribution for all times t was found this way; see below.
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Moment and cumulant equations
A different approach to characterize the dynamics of the quorum-sensing model is to analyze the

equations of motions for the moments and cumulants. The moment equations are derived from

Equation (26) by applying the definition of the moments (25), which yields for k � 1,

qtMkðtÞ ¼ ð1� 2lÞsðM1ðtÞMkðtÞ�Mkþ1ðtÞÞþ 2l 1� sM1ðtÞð Þ RkðM1ðtÞÞ�MkðtÞ
� �

: (29)

The equations for the first three cumulants are obtained as,

qtC1ðtÞ ¼�ð1� 2lÞsC2ðtÞþ 2lð1� sC1ðtÞÞ RðC1ðtÞÞ�C1ðtÞð Þ ;

qtC2ðtÞ ¼�ð1� 2lÞsC3ðtÞþ 2lð1� sC1ðtÞÞ �C2ðtÞþ ðRðC1ðtÞÞ�C1ðtÞÞ
2

� �
;

qtC3ðtÞ ¼�ð1� 2lÞsC4ðtÞþ 2lð1� sC1ðtÞÞ �C3ðtÞ
�

�3ðRðC1ðtÞÞ�C1ðtÞÞC2ðtÞþ ðRðC1ðtÞÞ�C1ðtÞÞ
3

�
:

(30)

For Figure 2E of the main text, the cumulant equations (30) were numerically integrated after

applying a Gaussian approximation, that is a cumulant closure with CiðtÞ ¼ 0 for i � 3 and all t,

and plotted for pt ¼ C1ðtÞ.

Without sense-and-response (l ¼ 0): Analytical solution and approach
of the homogeneous stationary distribution of non-producers
For the case without sense-and-response through quorum sensing, l ¼ 0, it is readily seen from

Equation (1) that stationary production distributions are given by d-peaks as �¥ðpÞ :¼ �ðp; t !

¥Þ ¼ dðp� plowÞ for all plow 2 ½0; 1�. However, the distribution with solely non-producers,

plow ¼ 0, is the only asymptotically stable solution of the mean-field equation (1); see below.

When sense-and-response is absent, the analytical solution of the mean-field equation (1) for �

can be obtained by applying the method of characteristics to Equation (27) as outlined above.

The implicit solution is given by:

Cðu; tÞ ¼C0ðu� stÞþ sthpit ; with hpit :¼ 1=t

Z t

0

dt0 pt0 (31)

as the temporal average of the mean production pt. Back-transformation and exploiting

normalization of � yields:

�ðp; tÞ ¼ �0ðpÞe
�stðp�hpitÞ ¼ �0ðpÞe

�stp=L½�0�ðstÞ : (32)

For example, if the initial production distribution �0 is a uniform distribution on ½0; 1�, � evolves

in time as �ðp; tÞ ¼ st=ð1� e�stÞe�stp, which is plotted in Figure 2A of the main text (black, solid

lines). Every production degree that is different from p ¼ 0 decays exponentially fast and the

time scale of the decay is set by the inverse of the value of that production degree. As p ! 0,

this time scale diverges and, hence, the stationary distribution,

�¥ðpÞ ¼ dðpÞ ; (33)

is approached algebraically slowly; see Figure 2D of the main text.

To quantify the dependence of the time scales to approach stationarity on the initial

distribution in more generality, we analyzed the temporal solution of the mean pt, which is

obtained from the solution for the cumulant generating function as:
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pt ¼�qv lnL½�0�ðvÞjv¼st : (34)

Therefore, the temporal evolution of the mean production depends only on the initial

distribution �0 via its Laplace transform L½�0�. For the asymptotic behavior of Laplace

transforms it is known that if �0ðpÞ~ p� as p ! 0 with �> � 1, then L½�0�ðvÞ~ 1=vð�þ1Þ for

v � 1 (Doetsch, 1976). Therefore, it follows that the mean evolves in time as pt ~ 1=t for t � 1

if the initial production distribution is a continuous probability density with non-vanishing

weight at plow ¼ 0 (chosen for simplicity as the lowest production degree). The condition that

the exponent satisfies �> � 1 is always fulfilled for a continuous probability distribution to

ensure integrability at zero. In the same manner, the decay of the variance is shown to evolve

in time algebraically as VarðpÞðtÞ~ 1=t2 for t � 1.

In contrast, if the lowest production degree is separated from all other degrees in the

population by a gap D> 0 in production space, mean and variance approach their stationary

value exponentially fast at a time scale set by D. To see this qualitative difference in the

approach of stationarity, we consider an initial probability distribution with probability mass

y0 > 0 at degree plow ¼ 0 (chosen again for simplicity) and a remainder probability distribution e�0
with support on ½D; 1�: �0ðpÞ ¼ y0dðpÞ þ ð1� y0Þe�0ðpÞI½D;1�ðpÞ (here I½D;1� denotes the indicator

function, which takes value 1 on the interval ½D; 1� and 0 otherwise, and highlights the support

of e�0 on ½D; 1�). Using this form for �0 and plugging in its Laplace transform into the solution for

the mean in Equation (34), one estimates pt <~ ð1þ DÞe�sD�t for t � 1. This result generalizes

the exponentially fast approach of stationarity that is known, for example, from the discrete

Prisoner’s dilemma in evolutionary game theory (Nowak et al., 2004; Traulsen et al., 2005;

Melbinger et al., 2010; Assaf et al., 2013).

In total, pt vanishes exponentially fast if and only if the production degree at the smallest

production degree is separated by a gap D from all other production degrees that are present

in the population. On the other hand, if the lowest production degree is part of an interval with

continuously distributed production degrees (that is, D ¼ 0), pt decreases algebraically slowly.

With sense-and-response (l> 0): Homogeneous stationary
distributions
For the case with sense-and-response through quorum sensing, l> 0, one obtains from

Equation (1) or from the cumulant equations (30) that stationary production distributions are

given by d-peaks as:

�¥ðpÞ ¼ dðp� p�Þ ; with Rðp�Þ ¼ p� 2 ½0;1� : (35)

In other words, fixed points of the response function give rise to homogeneous stationary

distributions. Whether these stationary distributions are stable against small perturbations

around stationarity depends on the stability of the fixed points (see linear stability analysis of

homogeneous stationary distributions below). Whether they are approached for long times

does not only depend on the stability of the fixed points, but also on the initial distribution, the

response function, and the value of l (see heterogeneous stationary distributions).

Linear stability analysis of homogeneous stationary distributions
Here, we supplement the statements from the main text on the stability of homogeneous

stationary distributions in the linear approximation around stationarity if sense-and-response is

present (l> 0). For the sake of simplicity and feasibility, we carry out the stability analysis in the

space of cumulants. To this end, we define the vector:

Bauer et al. eLife 2017;6:e25773. DOI: 10.7554/eLife.25773 31 of 38

Research article Computational and Systems Biology

http://dx.doi.org/10.7554/eLife.25773


CðtÞ ¼ ðC1ðtÞ;C2ðtÞ;C3ðtÞ; . . .Þ ; (36)

which is at stationarity (see Equation (35)):

Cðt!¥Þ ¼C¥ ¼ ðC1;¥;C2;¥;C3;¥; . . .Þ ¼ ðp�;0;0; . . .Þ : (37)

With this notation, the equations of motion for the cumulants of � are given as follows:

qtCiðtÞ ¼ FiðCðtÞÞ ; for i � 1 : (38)

Here, the functions Fi for i � 0 are defined by the right hand side of the cumulant equations

(30). Upon introducing the distance DC to the stationary vector C¥, that is DC ¼ C�C¥, one

obtains the temporal behavior of DC as:

qtDCiðtÞ ¼ FiðC¥þDCðtÞÞ ¼
X¥

j¼0

JijðC¥ÞDCjðtÞþOðkDCk2Þ ; for i � 0; (39)

with Jacobian JijðC¥Þ ¼
qFiðCÞ
qCj

jC¼C¥

, whose entries are obtained after some algebra as:

J11 ¼�2lð1� sp�Þð1�R0ðp�ÞÞ ; (40)

Ji;i ¼�2lð1� sp�Þ ; for i � 2 ; (41)

Ji;iþ1 ¼�ð1� 2lÞs ; for i � 1 ; (42)

Ji;j ¼ 0 ; otherwise : (43)

The eigenvalues of the upper triangular matrix J determine the stability of the stationary

distribution up to linear order in perturbations at the level of cumulants around stationarity.

Because of the upper triangular structure of the Jacobian J, its eigenvalues are given by the

diagonal entries of J:

g1 ¼�2lð1� sp�Þð1�R0ðp�ÞÞ ; (44)

gi ¼�ð1� 2lÞs < 0 ; for i � 2 : (45)

Thus, local stability of homogeneous stationary distributions (�¥ðpÞ ¼ dðp� p�Þ with Rðp�Þ ¼ p�)

is determined by the stability of the fixed points, that is whether R0ðp�Þ is less or greater than 1.

In total, homogeneous stationary distributions are unstable up to linear order in perturbations

at the level of cumulants around stationarity if R0ðp�Þ> 1. In other words, stationary distributions

located at a fixed point p� are linearly unstable if p� is an unstable fixed point of the response

function (R0ðp�Þ> 1). On the other hand, linear stability of the response function at p�

(R0ðp�Þ � 1) yields linearly stable homogeneous stationary distributions located at p�.

With sense-and-response (l ¼ 1=2) and linear response function
(RðpÞ ¼ p): Analytical solution and approach of homogeneous
stationary distribution
For the choice of linear response function (RðpÞ ¼ p, that is, R0ðpÞ ¼ 1 for all p 2 ½0; 1�) and l ¼ 1=2,

the mean remains constant in time (see Equation (30)). Furthermore, one obtains the analytical

solution of the mean-field equation (1) by applying the method of characteristics (most

conveniently in the space of moment generating functions) as:
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Mðu; tÞ ¼M0ðuÞe
�f0t þ eup0 1� e�f0t

� �
; (46)

which yields after back-transformation:

�ðp; tÞ ¼ yðtÞ�0ðpÞþ ð1� yðtÞÞdðp� p0Þ ; with yðtÞ ¼ expð�f0tÞ : (47)

The initial production distribution �0 decays exponentially fast on a time scale that is set by the

average initial fitness in the population f0, whereas a singular probability mass at the initial

mean production degree p0 builds up concomitantly due to sense-and-response through

quorum sensing. The population approaches the stationary distribution �¥ðpÞ ¼ dðp� p0Þ

exponentially fast.

With sense-and-response (l ¼ 1=2) and polynomial response function:
Divergence of time scales at bifurcations of parameters of the
response function
For l> s=2, the approach of stationarity is typically exponentially fast. However, upon fine-tuning

parameters of the response function one observes an algebraically slow approach of

stationarity. We exemplify this qualitative change in the temporal evolution by setting the

response probability to l ¼ 1=2 and by considering the following nonlinear response function,

see Appendix 1—figure 3 (for the sake of readability, we label the argument of R by p instead

of hpi):

RðpÞ ¼ pþA � pðp�ðpcr� �ÞÞðp� pcrÞðp�ðpcr þ �ÞÞðp� 1Þ ; (48)

with some real constant A> 0. The chosen response function (48) is a polynomial of fifth order

with Rð0Þ ¼ 0 and Rð1Þ ¼ 1, and parameter 0< pcr < 1, which is set to pcr ¼ 1=2 in Appendix 1—

figure 3. The bifurcation parameter 0 � � � minðpcr; 1� pcrÞ controls a supercritical pitchfork

bifurcation of the response function (48) at p� ¼ pcr: Whereas p� ¼ 0 and p� ¼ 1 are unstable

fixed points for all �, the fixed points at p� ¼ pcr � � are stable for �> 0 and merge with p� ¼ pcr

for � ¼ 0. The fixed point p� ¼ pcr is unstable for �> 0 and is a three-fold degenerate, stable

fixed point for � ¼ 0, see Appendix 1—figure 3A,B.

For l ¼ 1=2 and upon plugging in the explicit form of the response function (48), the temporal

evolution equation of the mean (30) is given by the ODE:

qtC1 ¼ Að1� sC1ÞC1ðC1�ðpcr� �ÞÞðC1� pcrÞðC1 �ðpcr þ �ÞÞðC1 � 1Þ ; (49)

with initial condition C1ðt ¼ 0Þ ¼ p0. From integrating this temporal evolution equation, one

obtains the implicit solution for the mean p ¼ C1 as:

t¼
X

p�

ap�

Z pt

p0

dC1

C1� p�
: (50)

The sum is performed over all non-degenerate fixed points of the right hand side of the

equation for the mean (49), that is over the roots p� 2 f0; pcr � �; pcr; pcr þ �; 1; 1=sg of both the

response function (48) and the mean fitness ft ¼ 1� spt. The coefficients ap� arise from the

partial fraction decomposition with apcr ;pcr�� ~Oð1=�2Þ and a0;1;1=s ~Oð�0Þ. Therefore, one

concludes that:
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jpt � p
¥
j~e�t=a ; for �>0 ; (51)

for large times and with a decay constant a that diverges as the bifurcation is approached as

a ~ 1=�2. In other words, stationarity is approached exponentially fast when all fixed points of

the response function (48) are non-degenerate, see Appendix 1—figure 3D inset. Which of

the two stable fixed points p� ¼ pcr � � constitutes the stationary distribution �¥ðpÞ ¼ dðp� p�Þ

depends on the initial distribution (and demographic fluctuations of the initial dynamics in the

stochastic process). The prediction that the decay constant t diverges as the bifurcation of the

response function is approached (�! 0) is in good agreement with numerical simulations of the

stochastic process, see Appendix 1—figure 3D.

In contrast to the exponentially fast approach away from the bifurcation, stationarity is

approached algebraically slowly at the bifurcation of the nonlinear response function, that is,

for � ¼ 0. Since the stable fixed point p� ¼ pcr is three-fold degenerate, one finds by integration

of Equation (50) the implicit solution for the mean as:

t¼
X

p� 6¼pcr

ap�

Z pt

p0

dC1

C1 � p�
þ
Xz

i¼1

aðiÞ
pcr

Z pt

p0

dC1

ðC1 � pcrÞ
i
: (52)

In addition to the sum over the non-degenerate fixed points (p� 6¼ pcr), a second sum accounts

for the degeneracy z ¼ 3 of the fixed point pcr, which is reflected by the singularities in the

integrand up to order z. Consequently, the mean production approaches its stationary value as:

jpt � p
¥
j~ t�1=n ; for �¼ 0 ; (53)

for large times with critical exponent n ¼ z� 1 ¼ 2, that is �1=n ¼ �1=2. Appendix 1—figure

3C shows the excellent agreement of our theoretical predictions with numerical simulations of

the stochastic process for the algebraically slow approach of stationarity at the bifurcation.

With rare sense-and-response (0< l< s=2): Heterogeneous stationary
distributions
To analyze heterogeneous stationary distributions, we decompose the production distribution as

follows:

�ðp; tÞ ¼ yðtÞ�lowðp; tÞþ ð1� yðtÞÞ�highðp; tÞ (54)

where �low and �high denote two probability distributions with support on the interval ½0; 1�.

Their respective means are denoted as:

plow;t ¼

Z
1

0

dp p�lowðp; tÞ ; and phigh;t ¼

Z
1

0

dp p�highðp; tÞ ; (55)

such that pt ¼ yðtÞplow;t þ ð1� yðtÞÞphigh;t; their stationary values are denoted as plow;¥ ¼: plow and

phigh;¥ ¼: phigh, respectively. We decompose the initial distribution �0ðpÞ ¼ y0�low;0ðpÞ þ ð1�

y0Þ�high;0ðpÞ such that minðsuppð�low;0ÞÞ ¼ minðsuppð�0ÞÞ. For a numerical integration of the

mean-field equation (1) that not only reproduces the stationary distribution, but also the

temporal approach towards stationarity, it turns out suitable to choose the following

decomposition: �low;0 ¼ �0; �high;0 ¼ dð� � Rðp0ÞÞ, and y0 ¼ 1� � with 0< � <
~

0:01.

With decomposition (54), the mean-field equation (1) for � can be rewritten in terms of

equations for �low; �high; and y as follows:
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qt�lowðp; tÞ ¼�sð1� 2lÞ
�
p� plow;t

�
�lowðp; tÞ ; (56)

qt�highðp; tÞ ¼�sð1� 2lÞ
�
p� phigh;t

�
�highðp; tÞþ 2l

1� spt

1� yðtÞ

�
dðp�RðptÞÞ� �highðp; tÞ

�
; (57)

qtyðtÞ ¼ yðtÞ
�
� 2lð1� splow;tÞþ sð1� yðtÞÞðphigh;t � plow;tÞ

�
: (58)

We note that the decomposition (54) of � with Equations (56–58) is not unique, but this

choice of decomposition enables the characterization of heterogeneous stationary distributions

and, thus, phenotypic heterogeneity.

The temporal evolution equation (56) for �low has the form of the continuous replicator

equation (see Equation (1) with l ¼ 0) with renormalized selection strength sð1� 2lÞ.

Following the analysis that resulted in Equation (32), the solution for �low is given by:

�lowðp; tÞ ¼ �low;0ðpÞe
�sð1�2lÞtp=L½�low;0�ðsð1� 2lÞtÞ ; with �low;0ðpÞ ¼ �lowðp; t¼ 0Þ ; (59)

if l � 1=2. As shown in the main text, the condition l � 1=2 is consistent with the condition

for the upper threshold of the response probability l � s=2< 1=2, above which heterogeneous

stationary distributions cannot occur. For the mean plow;t, one obtains:

plow;t ¼�qv lnL½�low;0�ðvÞjv¼sð1�2lÞt : (60)

In other words, �low approaches a stationary d-distribution:

�lowðp; t!¥Þ ¼ �low;¥ðpÞ ¼ dðp� plowÞ ;

with plow ¼ plow;¥ ¼minðsuppð�low;0ÞÞ ¼minðsuppð�0ÞÞ :
(61)

The temporal evolution equation (57) for �high has a similar form as the original mean-field

equation (1): it involves the sense-and-response term with prefactor 2l, and the replicator term

with prefactor 1� 2l. The sense-and-response term, however, couples to the full production

distribution � through the argument RðptÞ in the d-function and the prefactor

ð1� sptÞ=ð1� yðtÞÞ, whereas the replicator term does not couple to �low or y. Equation (57) is

most suitably analyzed in the space of moment and cumulant generating functions with:

Mhighðu; tÞ :¼

Z
1

0

dp eup�highðp; tÞ ; and Chighðu; tÞ :¼ ln Mhighðu; tÞ
� �

; u2 ð�¥;¥Þ : (62)

The moments and cumulants of �high are obtained as Mhigh;kðtÞ :¼ q
k
uMhighðu; tÞju¼0

and Chigh;kðtÞ :

¼ q
k
uChighðu; tÞju¼0

for k � 1. With this notation, it is phigh;t ¼ Mhigh;1ðtÞ ¼ Chigh;1ðtÞ. By applying

these transformations to the temporal evolution equation (57) of �high, one obtains:

qtMhighðu; tÞ ¼�ð1� 2lÞs quMhighðu; tÞ�Mhigh;1ðtÞMhighðu; tÞ
� �

þ 2l
1� spt

1� yðtÞ
euRðptÞ�Mhighðu; tÞ
� �

; (63)

qtChighðu; tÞ ¼�ð1� 2lÞs quChighðu; tÞ�Chigh;1ðtÞ
� �

þ 2l
1� spt

1� yðtÞ
euRðptÞe�Chighðu;tÞ� 1

� �
; (64)

in which the coupling of �high to �low and y is apparent explicitly through the occurrence of the

factor 1� yðtÞ and implicitly through the occurrence of pt ¼ yðtÞplow;t þ ð1� yðtÞÞphigh;t. The

corresponding equations of motion for the first three cumulants are, thus, obtained as:
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qtChigh;1ðtÞ ¼�ð1� 2lÞsChigh;2ðtÞþ 2l
1� spt

1� yðtÞ
RðptÞ�Chigh;1ðtÞ
� �

;

qtChigh;2ðtÞ ¼�ð1� 2lÞsChigh;3ðtÞþ 2l
1� spt

1� yðtÞ
�Chigh;2ðtÞþ ðRðptÞ�Chigh;1ðtÞÞ

2

� �
;

qtChigh;3ðtÞ ¼�ð1� 2lÞsChigh;4ðtÞþ 2l
1� spt

1� yðtÞ
�Chigh;3ðtÞ
�

�3ðRðptÞ�Chigh;1ðtÞÞChigh;2ðtÞþ ðRðptÞ�Chigh;1ðtÞÞ
3

�
:

(65)

At stationarity, it is qtyðtÞ ¼ 0 and yðtÞ � y¥ with (see Equation (58); recall also that

p
¥
¼ y¥plow þ ð1� y¥Þphigh):

2lð1� splowÞ ¼ sð1� y¥Þðphigh� plowÞ ; or equivalently ð1� 2lÞð1� splowÞ ¼ 1� sp
¥
: (66)

Thus, assuming that a stationary value 0< y¥ < 1 exists, it fulfils the self-consistency relation:

y¥ ¼ 1�
2l

s

1� splow

phigh� plow
¼

phigh� p
¥

phigh� plow
: (67)

Note that we denoted y¥ simply as y in the main text.

If 0< y¥ < 1 exists, it follows that the stationary solution for �high can be obtained via

Equation (63) in terms of the stationary moment generating function Mhigh;¥ðuÞ ¼ Mhighðu; t !

¥Þ with:

quMhigh;¥ðuÞ� plowMhigh;¥ðuÞ ¼ ðphigh� plowÞe
uRðp

¥
Þ ; and phigh ¼ quMhigh;¥ðuÞju¼0

; (68)

where the relation between plow; phigh; and y¥ in Equation (66) was exploited and the definition

phigh ¼ phigh;¥ translates into the boundary condition. In total, one obtains Mhigh;¥ðuÞ ¼ euphigh with

the self-consistency relation phigh ¼ Rðp
¥
Þ. In other words, �high approaches a stationary d-

distribution:

�highðp; t!¥Þ ¼ �high;¥ðpÞ ¼ dðp� phighÞ ;

with phigh ¼ phigh;¥ ¼ Rðp
¥
Þ ¼ Rð2l=sþð1� 2lÞplowÞ :

(69)

For plow ¼ minðsuppð�0ÞÞ ¼ 0, one recovers from Equations (61, 67, 69) the heterogeneous

stationary distribution (2) that was given in the main text.

For Figure 2F of the main text, equations (58, 60, and 65) were numerically integrated with

Chigh;iðtÞ ¼ 0 for i � 3 and for all t, and initial conditions y0 ¼ 0:99, �low;0 ~Uniformð0; 1Þ, and

�high;0 ~ dð� � Rð0:5ÞÞ. The choice of initial conditions, however, is not important for the

asymptotic behavior, see Appendix 1—figure 1.

Linear stability analysis of heterogeneous stationary distributions
Here, we supplement the statements from the main text on the stability of heterogeneous

stationary distributions (2) in the linear approximation around stationarity. For the sake of

simplicity and feasibility, we carry out the stability analysis in the space of cumulants. To this

end, we define the vector:

cðtÞ ¼ ðyðtÞ;Clow;1ðtÞ;Chigh;1ðtÞ;Clow;2ðtÞ;Chigh;2ðtÞ; . . .Þ ¼ ðc0ðtÞ;c1ðtÞ;c2ðtÞ; . . .Þ ; (70)

which is at stationarity:
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cðt!¥Þ ¼ c¥ ¼ ðy;Clow;1;Chigh;1;Clow;2;Chigh;2; . . .Þ ¼ ðy;plow;phigh;0;0; . . .Þ ¼ ðc0;c1;c2; . . .Þ : (71)

The cumulants of �low are obtained in the same way as for �high, that is as Clow;kðtÞ :¼

q
k
uClowðu; tÞju¼0

for k � 1 from Mlowðu; tÞ :¼
R
1

0
dp eup�lowðp; tÞ and Clowðu; tÞ :¼ ln Mlowðu; tÞð Þ for

u 2 ð�¥;¥Þ. With this notation, the equations of motion for yðtÞ in Equation (58) and the

cumulants of �low and �high, respectively, are cast into the compact form:

qtciðtÞ ¼ FiðcðtÞÞ ; for i � 0 : (72)

Upon introducing the distance Dc to the stationary vector c¥, that is Dc ¼ c� c¥, one obtains

the temporal behavior of Dc as follows:

qtDciðtÞ ¼ Fiðc¥þDcðtÞÞ ¼
X¥

j¼0

Jijðc¥ÞDcjðtÞþOðkDck2Þ ; for i � 0 ; (73)

and with Jacobian Jijðc¥Þ ¼
qFiðcÞ
qcj

jc¼c¥
, whose entries are obtained after some algebra as:

J00 ¼�syðphigh� plowÞ ; (74)

J01 ¼�syð1� yÞ
1� sphigh

1� splow
; (75)

J02 ¼ syð1� yÞ ; (76)

J10 ¼ 0 ; (77)

J11 ¼ 0 ; (78)

J12 ¼ 0 ; (79)

J20 ¼�sð1� 2lÞðphigh� plowÞ
2
R0ðp

¥
Þ ; (80)

J21 ¼ sð1� 2lÞyðphigh� plowÞR
0ðp

¥
Þ ; (81)

J22 ¼ sð1� 2lÞðphigh� plowÞðð1� yÞR0ðp
¥
Þ� 1Þ ; (82)

and,

Ji;iþ2 ¼�sð1� 2lÞ ; for i � 1 ; (83)

J2i;2i ¼�sð1� yÞðphigh� plowÞ ; for i � 2 ; (84)

Ji;j ¼ 0 ; otherwise : (85)

The eigenvalues of the matrix J determine the stability of the heterogeneous stationary

distribution up to linear order in perturbations at the level of cumulants around stationarity. Its

eigenvalues are given by:

. the two eigenvalues g1;2 of the 2� 2 matrix,

~J ¼
J00 J02

J20 J22

� �
(86)

¼
�syðphigh� plowÞ syð1� yÞ

�sð1� 2lÞðphigh� plowÞ
2
R0ðp

¥
Þ sð1� 2lÞðphigh� plowÞðð1� yÞR0ðp

¥
Þ� 1Þ

 !
; (87)

. one eigenvalue 0,

. and infinitely many pairs of eigenvalues with values 0 and �sð1� yÞðphigh � plowÞ< 0 (because

phigh � plow > 0 and 1� y> 0 for the considered bimodal distributions).
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For simplicity of the discussion, we assume plow ¼ minðsuppð�0ÞÞ ¼ 0 in the following, and also

introduce the parameter b ¼ 2l=s as in the main text. The two eigenvalues g1;2 of ~J are given

by:

g1;2 ¼
1

2
Trð~JÞ�

1

4
Trð~JÞ2 �Detð~JÞ

� �1=2

; (88)

with Trð~JÞ ¼ sð1� 2lÞðbR0ðbÞ�RðbÞÞ� sðRðbÞ�bÞ ; (89)

and Detð~JÞ ¼ s2ð1� 2lÞRðbÞðRðbÞ�bÞÞ : (90)

Linear stability for small l
Under the assumptions Rð0Þ ¼ 0 and 1<R0ð0Þ<¥, one checks that for 0< l � 1 the eigenvalues of

the Jacobian ~J in Equation (88) are given by:

g1;2 ¼�lðR0ð0Þ� 1ÞþOðl3Þ� il
�
ðR0ð0Þ� 1Þð3R0ð0Þþ 1ÞþOðlÞ

�1=2
; (91)

and, thus, Reðg1;2Þ< 0 as l & 0.

Therefore, for small response probabilities, the heterogeneous stationary distribution

(Equation (2) of the main text) is stable up to linear order in perturbations at the level of

cumulants around stationarity (here shown under the assumptions plow ¼ minðsuppð�0ÞÞ ¼ 0,

Rð0Þ ¼ 0, and 1<R0ð0Þ<¥).

Linear stability for the response function RðbÞ ¼ bþ k � sinðpbÞ
Upon choosing the response function RðbÞ ¼ bþ k � sinðpbÞ with b 2 ½0; 1� (that is l 2 ½0; s=2�) and

with k 2 ½0; 1=p�, one checks that all eigenvalues of the Jacobian ~J in Equation (88) have

negative real part.

Therefore, for the special choice of the response function that up-regulates the cellular

autoinducer production for all sensed average productions in the population, all

heterogeneous stationary distributions (Equation (2) of the main text) for choices of the

parameters l 2 ½0; s=2� and k 2 ½0; 1=p� are stable up to linear order in perturbations at the level

of cumulants around stationarity.
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