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Abstract

Objectives

The purpose of our study was to assess proton density (PD) and T2 relaxation time of usual

interstitial pneumonia (UIP) and nonspecific interstitial pneumonia (NSIP) and to evaluate their

utility in differentiating the two patterns. Furthermore, we aim to investigate whether these two

parameters could help differentiate active-inflammatory and stable-fibrotic lesions in NSIP.

Methods

32 patients (mean age: 69 years; M:F, 1:1) with pathologically proven disease (UIP:NSIP,

1:1), underwent thoracic thin-section multislice CT scan and 1.5T MRI. A total of 437 regions-

of-interest (ROIs) were classified at CT as advanced, moderate or mild alterations. Based on

multi-echo single-shot TSE sequence acquired at five echo times, with breath-holding at end-

expiration and ECG-triggering, entire lung T2 and PD maps were generated from each sub-

ject. The T2 relaxation time and the respective signal intensity were quantified by performing

a ROI measurement on the T2 and PD maps in the corresponding CT selected areas of the

lung.

Results

UIP and NSIP regional patterns could not be differentiated by T2 relaxation times or PD val-

ues alone. Overall, a strong positive correlation was found between T2 relaxation and PD in
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NSIP, r = 0.64, p<0.001; however, this correlation was weak in UIP, r = 0.20, p = 0.01. T2

relaxation showed significant statistical difference between active-inflammatory and stable-

fibrotic NSIP regions at all levels, p<0.05, while for the analysis of ventral lesions PD proved

no statistical difference, p>0.05.

Conclusions

T2 relaxation times and PD values may provide helpful quantitative information for differenti-

ating NSIP from UIP pattern. These parameters have the potential to differentiate active-

inflammatory and stable-fibrotic lesions in NSIP.

Introduction

Interstitial lung diseases comprise a group of diffuse parenchymal pulmonary diseases that are

classified together due to their similar clinical, radiologic, physiologic, and/or pathologic mani-

festations [1]. The new ATS/ERS/JRS/ALAT guidelines for idiopathic pulmonary fibrosis pro-

vide criteria to define the usual interstitial pneumonia (UIP) pattern, possible UIP pattern, and

patterns inconsistent with UIP on HRCT [2]. Idiopathic nonspecific interstitial pneumonia

(NSIP) was accepted as a subtype in 2008 [3], after Katzenstein and Fiorelli introduced the

term for those cases of interstitial pneumonia that cannot be pathologically categorized as

another type of idiopathic interstitial pneumonia [4]. The radiological patterns of UIP and

some NSIP may share criteria for possible UIP pattern. Moreover, a recent review proposed

that when a possible UIP pattern is identified, the clinical problem most frequently encoun-

tered is to distinguish UIP from NSIP [5].

In idiopathic disease, with the exception that patients displaying NSIP pattern are more

commonly female and generally have a younger mean age than those exhibiting UIP pattern

[6], there is substantial overlap in the clinical and physiologic features between the two forms,

both presenting insidious onset of dyspnea, dry cough and a restrictive ventilatory defect [7].

The recommended therapy and overall prognosis are distinct, however, making accurate

diagnosis of this two entities critical [8,9]. Progressive deterioration of lung function and early

death are specific for UIP pattern, regardless of its cause (idiopathic or connective tissue

related [10])–idiopathic pulmonary fibrosis carries the worst prognosis, with a 5-year survival

of approximately 30% [11]. On the other hand, for NSIP stabilization or improvement is more

characteristic [12].

Several reports have shown that, in some cases, the differential diagnosis between UIP and

NSIP by CT alone is not always straightforward, requiring additional surgical lung biopsy [13–

19]. However, lung biopsy carries some risk and morbidity [20,21], therefore the identification

of patients with UIP or NSIP by a noninvasive procedure, such as thoracic MRI, would prove

to be a valuable clinical resource. Yet, to date and to the best of our knowledge no study has

attempted to provide relevant evidence in this matter using MRI techniques.

Moreover, despite its importance for therapy decision-making and for prediction of treat-

ment response, the radiological distinction between active-inflammatory and stable-fibrotic

lesions in NSIP remains challenging. The feasibility of measuring lung water content and dis-

tribution by MRI techniques has been well recognized since the 1980s [22–25]. However, so

far quantitative techniques such as T2 relaxation and PD for inflammatory activity assessment

in chronic interstitial lung disease have only been performed on animal models of bleomycin
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induced fibrosis [26–28]. We aim to investigate for the first time the clinical utility of these

methods applied to a cohort of patients with NSIP using a clinical 1.5T MRI scanner.

Giving the histological differences between UIP and NSIP [1], we hypothesized that an

analysis using quantitative MRI parameters such as T2 relaxation times and proton density

(PD) values may reveal specific features of lung microstructure valuable for the distinction of

UIP and NSIP. The purpose of our study was to assess PD and T2 relaxation of UIP and NSIP

and to evaluate their utility in differentiating the two patterns. Furthermore, we aim to investi-

gate whether these two parameters could help differentiate active-inflammatory and stable-

fibrotic lesions in NSIP.

Materials and methods

Patients

This cross-sectional prospective study included 34 patients who displayed an UIP or NSIP pat-

tern, between January 2014 and February 2015. The ethics committee of the University of Hei-

delberg approved this study (clearance number S-318/2013). Written informed consent was

obtained from each patient before performing the study examinations. The inclusion criterion

was that the patient had pathologically confirmed UIP or NSIP pattern. All patients underwent

thoracic thin-section multislice CT scan and 1.5T MRI. Two patients were excluded because at

least one of the two examinations was incomplete. Informed consent was obtained from each

patient.

The 32 patients included were 16 males and 16 females, with a mean age of 69 years (range

40–81 years). All diagnoses were made, according to current guidelines, by consensus in a

multidisciplinary meeting, after reviewing the clinical findings, results of pulmonary function

and laboratory tests, thin-section CT scan and biopsy reports. There were 16 UIP cases (14 idi-

opathic pulmonary fibrosis and 2 connective tissue disease-related UIP) and 16 NSIP patients

(7 idiopathic and 9 with connective tissue disease-related NSIP; 8 with suspected inflammatory

activity and 8 with stable disease). The current clinical presentation, pulmonary function tests

and thin-section CT scan were used in all cases to categorize patients as having stable disease

or suspected inflammatory activity. Stable disease was considered when there was no interval

change in clinical presentation, pulmonary function tests and CT appearances from the previ-

ous assessment. Patients with suspected inflammatory activity presented with sudden worsen-

ing in symptomatology and pulmonary function tests. Possible infection was excluded

clinically and the patients underwent chest CT. When ground glass opacities were noted an

additional MRI of the lung was performed during the same day (6 cases), the subsequent day

(1 case), and the second day after the CT scan (1 case). Twelve patients were previously

included in a study analyzing the T2 relaxation time of different CT patterns in interstitial

lung disease [29].

CT imaging

The thin-section MDCT examinations were performed using a 64-detector CT system (Soma-

tom Definition AS, Siemens Medical Systems, Erlangen, Germany), with scans obtained from

the lung apex to the diaphragm, during breath-holding at the end of full inspiration. The heli-

cal scan protocol applied was: 64×0.6 mm collimation, 1.5 pitch, 0.33 s/rotation, 300–330 mm

field of view, 512×512 matrix, 120 kV, 70 mAs. Reconstructions of all thin-section CT images

were performed as contiguous slices of 1.0 mm thickness by means of a standard iterative algo-

rithm (I40) and a lung iterative algorithm (I70).

Proton density and T2 relaxation in UIP and NSIP
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MR imaging

MRI was performed on a clinical 1.5-T MR whole-body unit (Magnetom Aera, Siemens Medi-

cal Systems, Erlangen, Germany). Entire lung T2 sagittal maps were generated based on multi-

echo single shot turbo spin echo sequences [TE: 20, 40, 79, 140, 179 ms, each acquisition: 30

slices of 10 mm thickness and 3.125x3.125 mm pixel size (matrix: 104×128)], as described in a

previous article [29]. A nonrigid image registration [30], using the first acquisition (TE = 20ms)

as reference image, was applied to correct for residual motion mismatch between the volumes

at different TE. PD intensity maps, representing the approximation of the MR signal intensity

in the limit TE!0, were automatically produced from the acquired data set, together with the

T2 maps, using the commercial mapping tool pack provided by the MR system post-processing

software.

Image analysis and statistics

One thoracic radiologist (with >5 years of experience) defined the reference images and repre-

sentative regions of interest (ROIs) while reviewing the CT scans. The ROIs exhibited different

degrees of regional parenchymal impairment, according to the density of fibrosis on CT

images and presence of parenchymal architectural distortion (lung volume loss, bronchiectasis

or scaring), as follows: advanced fibrosis with marked architectural distortion (dense fibrosis

with severe lung volume loss and traction bronchiectasis, honeycombing or complete scaring),

moderate disease including reticulation with or without architectural distortion, and mild
alterations consisting of ground-glass opacities with minimal or no architectural distortion.

Honeycombing, reticulation and ground-glass opacities were defined according to the Fleisch-

ner Society nomenclature [31]. When a mixture of reticulation and ground glass opacity was

present, the region was included in the moderate disease category. The number of measure-

ments per patient was dependent on the extent of the disease and the extent of each regional

pattern.

The same radiologist involved in ROI definition quantified the T2 relaxation time on the

T2 maps and the respective signal intensities on PD maps, by performing a ROI measurement

in the corresponding CT selected areas of the lung. A circular or ovoid ROI was drawn as large

as possible to cover an area of>100 mm2 and was placed to avoid lesion borders to reduce par-

tial volume-averaging effects. Moreover, the ROI was positioned to avoid large blood vessels

and main airways. In order to minimize the clustering effect, only one ROI was selected for a

specific type of lesion on each map, or, if the same pattern was extensively present on the same

image, the different ROIs were chosen from distinct lung lobes.

Data normalization on the PD measurements was performed to correct for the signal

gain variability, using the spleen intensity value as a reference for each patient, since we

assumed this organ should have the most constant assessment between patients and none of

our patients had a diagnosis of splenic disease. Because the T2 relaxation time of ground-

glass opacities and reticulation seems to be different between the two lungs [29] and PD

should be affected by gravity, the analysis for each type of lesion was done according to

ROI’s topology.

Statistical analysis was performed using R statistical software version 2.15.1 (R Foundation

for Statistical Computing, Vienna, Austria). Continuous variables were summarized using

median [interquartile range]. The Wilcoxon rank sum test was used to assess the differences

between the selected types of lesions. The correlation between the PD intensity values and T2

relaxation times of stable disease was evaluated by Spearman rank correlation test. All proba-

bility values were 2-sided, with a level of significance of<0.05.

Proton density and T2 relaxation in UIP and NSIP
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Results

The findings in both imaging techniques correlated well on the one-to-one analysis between

CT and MR images and ROIs and all 32 patients tolerated well the examination. A total of 437

ROIs, with a median [interquartile] of 13 [10–17] selected sites per patient, were CT classified

into advanced (n = 175), moderate (n = 160) and mild (n = 102) lesions. Further details about

the number of measurements for each type of regional severity within the overall CT pattern

are presented in Tables 1 and 2.

The same tables show the median and interquartile range of T2 relaxation time and PD

respectively, for the three types of lesions according to their localization. No significant statisti-

cal difference was found between stable UIP and stable NSIP regarding T2 relaxation times, at

any of the analyzed levels, with the exception of moderate disease in the right lung, p<0.01. No

significant statistical difference was found between stable UIP and stable NSIP regarding PD,

at any of the analyzed levels, with the exception of advanced disease with dorsal localization,

where NSIP show significantly higher values as compared to UIP, p<0.001. For dorsal lesions,

a strong positive correlation was found between T2 relaxation and PD in stable NSIP, r = 0.64,

p<0.001; however, this correlation was weak in stable UIP, r = 0.20, p = 0.01.

Table 1. Median and range of T2 relaxation time (ms) for each regional and general pattern.

Pattern Location UIPc

Median[IQR]

NSIPstable
d

Median [IQR]

NSIPactive
e

Median [IQR]

P-value*{(UIP-NSIPstable)/ (NSIPstable-NSIPactive)}

Mild RLa 61 [60–63] 61 [59–65] 77 [75–80] {(0.87)/(<0.001)}

LLb 61 [60–66] 74 [65–77] 86 [80–96] {(0.86)/(0.04)}

ventral 62 [60–69] 71 [69–78] {/(<0.01)}

Moderate RL 77 [73–80] 73 [70–77] 82 [75–91] {(<0.01)/(<0.0001)}

LL 77 [74–79] 81 [77–83] 100 [91–106] {(0.08)/(<0.0001)}

ventral 74 [71–77] 104 [95–106] {/(0.02)}

Advanced 85 [80–91] 82 [79–88] {(0.05)/}

aright lung
bleft lung
cusual interstitial pneumonia (mild, n = 7; moderate, n = 59; advanced, n = 130)
dstable nonspecific interstitial pneumonia (mild, n = 24; moderate, n = 45; advanced, n = 45)
eactive nonspecific interstitial pneumonia (mild, n = 71; moderate, n = 56)

*from Wilcoxon rank sum test

https://doi.org/10.1371/journal.pone.0177689.t001

Table 2. Median and range of proton density (a.u.) for each regional and general pattern.

Pattern Location UIPa

Median [IQR]

NSIPstable
b

Median [IQR]

NSIPactive
c

Median [IQR]

P-value*{(UIP-NSIPstable)/ (NSIPstable-NSIPactive)}

Mild Ventral 52 [48–54] 51 [44–64] 57 [52–62] {(0.9)/(0.8)}

Dorsal 35 [32–40] 45 [41–61] 109 [96–126] {(0.06)/(<0.0001)}

Moderate Ventral 57 [54–71] 49 [46–56] 57 [54–67] {(0.2)/(0.2)}

Dorsal 89 [65–104] 79 [67–88] 101 [84–113] {(0.08)/(<0.0001)}

Advanced Ventral 57 [49–76] 57 [54–68] {(0.8)/}

Dorsal 80 [59–103] 96 [89–109] {(<0.0.001)/}

ausual interstitial pneumonia (mild, n = 7; moderate, n = 59; advanced, n = 130)
bstable nonspecific interstitial pneumonia (mild, n = 24; moderate, n = 45; advanced, n = 45)
cactive nonspecific interstitial pneumonia (mild, n = 71; moderate, n = 56)

*from Wilcoxon rank sum test

https://doi.org/10.1371/journal.pone.0177689.t002
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In NSIP, a strong statistical difference was present between the PD intensity values in active

vs. stable disease for both mild and moderate lesions with dorsal localization, p<0.0001, but

not for ventral lesions, p>0.05. A significant statistical difference was found between the T2

relaxation time of active-inflammatory vs. stable-fibrotic alterations at all levels, including ven-

tral lesions, p<0.05. Fig 1 shows two CT morphological similar cases for comparison of active-

inflammatory and stable-fibrotic mild alterations in NSIP.

Discussion

In this prospective study, we presented, to the best of our knowledge, the first quantitative

MRI description, using T2 relaxation times and PD values, in patients with pathologically

proven UIP and NSIP. Furthermore we have investigated for the first time the clinical utility of

these parameters for differentiating active-inflammatory from stable-fibrotic lesions, applied

on a cohort of patients with NSIP using a clinical 1.5T MRI scanner.

Fig 1. A 59 year old male patient with stable NSIP: image A is the sagittal reformat CT reference image, with the arrow indicating the region of interest,

followed by the T2 map, image B and PD intensity map, image C. Below is the case of a 65 year old male patient with NSIP and suspected inflammatory

activity and his corresponding images, D to F. Both cases show similar CT morphology and inhomogeneous T2 relaxation and PD of the lung; there is higher

T2 relaxation and PD intensity on both type of maps in the active disease case. Exemplary ROI placement in relevant pathological areas is demonstrated.

https://doi.org/10.1371/journal.pone.0177689.g001
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UIP and NSIP regional patterns could not be differentiated by T2 relaxation times or PD

intensity measurements individually. Yet, there seems to be a mismatch between the T2 relaxa-

tion time and PD values in stable UIP, whereas there appears to be a good correlation between

the two in stable NSIP. Moreover, patients with NSIP and suspected inflammatory activity

show significantly higher T2 relaxation times and PD values than those with stable disease.

However, T2 relaxation seems to be a more reliable parameter since for the analysis of ventral

lesions PD proved no statistical difference.

Regarding T2 relaxation time, the only statistically significant difference we found between

UIP and NSIP at regional level was for moderate alterations in the right lung. Suzuki et al.

reported a significant difference between the supine and prone positions in the right lung at

normal breathing of room air, but not for the left lung, in healthy subjects [32]. The authors’

explanation was that the right lung, having a greater volume and weight, may be more influ-

enced by gravity than the left lung. In our study, the higher values in moderate UIP lesions

might be due to a greater degree of perivascular fibrosis in NSIP [33], leading to hypoxic vaso-

constriction and lower amount of blood in the affected region. However, no such difference

was found regarding mild changes. We assume that the mild alterations were insufficient to

produce significant blood volume changes in the analyzed regions, therefore not enough T2

relaxation differences.

Regarding PD, we found a statistically significant difference between UIP and NSIP only

for advanced lesions with dorsal localization, UIP showing lower values in this case. This

might be due to the presence of air-containing honeycombing lesions (micro- and macro-

cysts) which decrease the mean proton density in the region.

The histopathologic hallmark of UIP is spatial heterogeneity, which refers to a patchy distri-

bution of dense parenchymal scar alternating with areas of less affected or normal parenchyma

[1]. The histologic abnormalities are based on temporal heterogeneity, reflecting different

stages in the evolution of fibrosis within the same biopsy specimen [6]. In contrast to UIP,

NSIP is characterized by relative spatial homogeneity of parenchymal lung involvement and

by temporal homogeneity of the injury (inflammation and/or fibrosis) [1]. Fibrosis may be

masked by partial volume averaging effects form healthy or less affected lung parenchyma,

resulting in lower averaged PD values. However, this is unlikely in NSIP due to its spatial

homogeneity and might have led to the strong positive correlation we found between T2 relax-

ation and PD in stable NSIP, and the rather weak one in stable UIP. Some of our ROI measure-

ments present outlying values probably due to presence of certain areas inconsistent with the

general pattern. Some studies revealed that different patterns of lung injury can be found in

different lobes within the same lung or even within the same lobe [5]. We found 9 ROIs with

marked outlying values in 3 patients with idiopathic NSIP. While reviewing the data, we

observed that the selected ROIs were classified as advanced disease. We believe this finding is

consistent with Silva et al. [16], who found that patients with idiopathic NSIP can progress to

an UIP pattern at long-term follow-up. Further studies on larger cohorts are needed to further

validate our findings, while extending the analysis by including other types of chronic ILD

such as hypersensitivity pneumonitis.

The distinction between active-inflammatory and stable-fibrotic lesions is considered a

major determinant of treatment response and long-term survival rate. On high-resolution CT,

active inflammation and fibrotic lesions may present similar morphology [34]. MRI is gener-

ally expected to facilitate differentiation of active-inflammatory and stable-fibrotic lesions,

with the advantage of being non-irradiating and noninvasive. The presence of high signal

intensity lesions proved to be a useful predictor of treatment response and clinical outcome

[35], while subsequent studies showed that regions with active inflammation had prominent

enhancement, whereas fibrotic lesions did not [34].

Proton density and T2 relaxation in UIP and NSIP
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T2 mapping proved useful in the assessment of edema in myocardial infarction and acute

myocarditis, and of hypokinetic regions in Takotsubo cardiomyopathy; furthermore, it may

improve detection of cardiac sarcoidosis [36]. Lung T2 has been observed to increase in experi-

mental pulmonary edema and has been found to correlate well with gravimetric measurement

of lung water content [25]. Furthermore, the T2 relaxation time and proton density are com-

plementary parameters in the assessment of lung water accumulation of different origins [25].

Our study shows that active-inflammatory lesions have high T2 relaxation times and PD values

and these parameters could allow for regional quantification of inflammation. However, T2

relaxation seems to be a more reliable parameter. T2 relaxation showed significant statistical

difference between active-inflammatory and stable-fibrotic NSIP lesions at all levels, while, for

the analysis of ventral lesions, PD proved no statistical difference. Despite that the values of

inflammatory lesions overlap with those of advanced fibrosis, the two can be morphologically

differentiated on thin-section CT scans. Moreover, giving that fibrotic lesions are less affected

by gravity [29], an additional examination in supine may prove valuable in the further differ-

entiation of stable-fibrotic and active-inflammatory lesions, the latter being under the influ-

ence of gravity effects due to the free water content.

Our findings suggest that further research on monitoring of these patients, with additional

discussion concerning cutoff values, is warranted. Follow-up studies have shown only minor

changes on HRCT, at visual assessment, in the first 6 months after diagnosis, but progressive

increase in the extent of fibrotic lesions at 1 year or more from initial diagnosis [11]. Recently,

we used another approach, by means of both visual assessment and a fully automatic histo-

gram-based quantitative evaluation, to follow-up IPF patients at 1 year interval, and found

substantial difference in Hounsfield unit changes of the 40th (representing mostly ground-

glass opacities) and of the 80th (representing mostly reticulation) percentiles of density histo-

gram between treated and untreated patients [37]. Giving that T2 relaxation times and PD val-

ues are dependent on water content and density of fibrotic tissue, we expect some earlier

changes at a local level, leading to increase of the two parameters values with disease progres-

sion and decrease with response to treatment. Such quantitative methods may prove useful in

future studies concerning follow-up of these patients and assessment of treatment response in

clinical trials. Shin et al. [38] showed that a high fibrotic score and a low carbon monoxide dif-

fusing capacity of the lung appear to be significant independent predictive factors of poor sur-

vival in patients with fibrotic idiopathic interstitial pneumonia. Our quantitative evaluation

shows increased T2 relaxation times both in advanced fibrosis and inflammatory lesions,

anticipating possible prognostic implications.

Our study is subject to several limitations. First, the study included only cases with histolog-

ical UIP or NSIP and this fact might have contributed to selection bias of cases with atypical

disease. Still, this setting is more comparable to clinical practice where typical cases can be

diagnosed with CT or through a multidisciplinary approach, without the need of biopsy or

advanced imaging. Second, we do not have a recent biopsy for the accurate diagnosis of

inflammatory activity. Such a procedure could not be justified in patients who previously

underwent a histological diagnosis of their disease due to the increased risk of exacerbation.

Third, we chose several ROIs from a single patient in order to have as many measurements for

each type of lesion as possible. On the other hand this lead to each patient contributing differ-

ent numbers of ROIs within the mild, moderate or severe lesion groups. These facts may cause

clustering effects that affect the results. However, we adjusted our analysis accordingly and the

overall large number of ROIs included (n = 437) should minimize this possible source of error.

Moreover, the severity of lesions was very broad, particularly in NSIP stable patients, and

patients with honeycombing contributed not only for severe lesions but also for mild or mod-

erate lesion if reticulation or ground glass opacities were present in a slice. Another limitation

Proton density and T2 relaxation in UIP and NSIP
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is that comorbidities, which are frequent in idiopathic pulmonary fibrosis (e.g. pulmonary

hypertension) [39], could have influenced the findings. In the present study, we aimed to find

differences between UIP and NSIP pattern, and between active-inflammatory and stable-

fibrotic lesions, respectively. Further analysis will be needed on larger patient cohorts to assess

possible effects of comorbidities that might influence the results.

Conclusions

The correlation between T2 relaxation times and PD values may prove helpful in differentiat-

ing NSIP from UIP pattern, thus decrease the amount of pathologically confirmed NSIP or

UIP pattern. The described quantitative MRI methods have the potential to differentiate

active-inflammatory and stable-fibrotic lesions in NSIP, therefore possibly allowing for a better

stratification of patients who might benefit from immunomodulatory therapy.
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