
REVIEW Open Access

The role of B cell antigen receptors in
mantle cell lymphoma
Michael Fichtner1,2, Martin Dreyling3, Mascha Binder2 and Martin Trepel2,4*

Abstract

Mantle cell lymphoma (MCL) is characterized by an aggressive clinical course and secondary resistance to currently
available therapies in most cases. Therefore, despite recent advances in the treatment of this disease, it is still
considered to be incurable in the majority of cases. MCL B cells retain their B cell antigen receptor (BCR) expression
during and after neoplastic transformation. BCRs in MCL show distinct patterns of antigen selection and ongoing
BCR signaling. However, little is known about the involved antigens and the mechanisms leading to lymphomagenesis
and lymphoma progression in MCL. Recent preclinical and clinical studies have established a crucial role of the BCR and
the potential of inhibiting its signaling in this disease. This has established the B cell antigen receptor signaling cascade as
a very promising therapeutic target to improve outcome in MCL alone or in combination with chemo-immunotherapy in
recent years.
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Background
The adaptive human immune system is able to recognize
nearly any possible antigen even if it was never encoun-
tered before [1, 2]. This high variability is mediated by cell
clone-specific, adaptive receptors on B and T cells, called
B cell receptors (BCRs) and T cell receptors (TCRs). The
development of B and T cells includes the introduction
and repair of deoxyribonucleic acid (DNA) double strand
breaks to form functional receptors [3]. During this
process, erroneous DNA recombination might lead to
overexpression of proto-oncogenes, resulting in uncon-
trolled proliferation of single lymphocytes, eventually
transforming into lymphoma [4]. Almost 90% of these
neoplasms derive from B cells [5, 6]. Despite the fact that
the term Non-Hodgkin lymphoma is still widely used, it
has been abandoned in the 2016 revision of the World
Health Organization classification of lymphomas. There-
fore, we use the currently accepted term of mature B cell
neoplasm throughout this review [7].
Mantle cell lymphoma (MCL), accounts for 3–10% of

all lymphomas in Europe and the United States [8–10].

The median survival in the overall population of MCL pa-
tients is unsatisfying with no plateau in Kaplan Meier sur-
vival curves. Similar to most lymphomas, MCLs occur
predominantly in the elderly with a median age at diagno-
sis of 65 years and is more frequent in males (ratio 3–4:1)
[10, 11]. MCL has several features clearly differentiating it
from other lymphomas. Besides its distinct morphology
and immunophenotype, it has a pathognomonic chromo-
somal translocation, t(11;14) which causes a fusion of the
cyclin D1 gene to the immunoglobulin heavy chain pro-
moter leading to constitutive expression of cyclin D1. This
is a diagnostic hallmark of the disease and of high patho-
biological relevance as cyclin D1 plays a major role in cell
cycle control and therefore in proliferation (see below).
MCL also has a distinct clinical course and is frequently
diagnosed in advanced stages. Except for a few indolent
cases, MCL typically has a rapid growth requiring imme-
diate treatment, which places MCL in clinical proximity
to other aggressive lymphomas such as diffuse large B cell
lymphoma (DLBCL). It also responds to similar immune-
chemotherapeutic treatments (e.g., a combination of the
anti-CD20 antibody rituximab and cyclophosphamide,
doxorubicin, vincristine, and prednisone (R-CHOP)). Such
treatment paradigms in MCL have been refined in recent
years, and the clinical outcome has been significantly im-
proved [12]. In fact, younger and fit patients treated
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upfront with intensified protocols like R-CHOP/R-DHAP
(rituximab, dexamethasone, high-dose AraC, cisplatin)
followed by high-dose chemotherapy with subsequent au-
tologous stem cell transplantation or R-Hyper-CVAD/MA
(rituximab with cyclophosphamide, doxorubicin, vincris-
tine, dexamethasone, methotrexate, AraC) have a median
progression-free survival of more than 7 years [13–16].
Very recent data suggest that survival after autologous
stem cell transplantation can be further improved by ri-
tuximab maintenance therapy over 3 years [17]. Also, even
elderly patients achieve ongoing remissions due to better
tolerated R-bendamustine [18]. Nevertheless, in contrast
to other aggressive lymphomas, after achieving remission
of the disease, MCL usually relapse within several years.
In this situation, treatment options are limited. Previously,
only few patients could be salvaged with very aggressive
treatments including allogeneic stem cell transplantation
[19]. In recent years, however, several molecularly targeted
therapeutic strategies have been introduced that have fur-
ther improved the outcome of relapsed MCL patients not
eligible for or prior to allogeneic stem cell transplantation
(see below). In this regard, targeting the B cell receptor
signaling pathway in MCL has been the most promising
step forward, both in view of understanding the pathobiol-
ogy of this disease as well as in view of advancing its treat-
ment. These two issues will be reviewed in the following
sections.

Overview on BCR development
The B cell receptor consists of a membrane-bound im-
munoglobulin that is associated with the transmembrane
proteins CD79a and CD79b [20]. The latter facilitate sig-
nal transduction into the cell via phosphorylation of
their cytoplasmic immunoreceptor tyrosine-based activa-
tion motifs (ITAMs) after binding of the ligand to the
immunoglobulin [20–22]. The immunoglobulin itself
consists of two identical light and two identical heavy
chains which together form a Y-shaped molecule that
harbors two identical antigen-binding sites at the N-
terminal ends. Antigen binding is facilitated by three
highly variable regions, called complementarity deter-
mining regions (CDRs), which are located in the variable
domains of each immunoglobulin chain [23]. In contrast
to most other proteins, the gene sequence of the variable
immunoglobulin regions is not directly encoded in the
germline. Instead, the development of a functional BCR
requires multiple chromosomal rearrangements and tar-
geted induction of point mutations to generate a very
specific BCR with high affinity against a foreign antigen
but no reactivity against self-antigens [3, 23]. This process
includes a random rearrangement of specific heavy chain
gene segments called V(ariable)-, D(iversification), and
J(oining)-gene segment as well as V- and J-gene segments
of the light chain [24]. The CDR3-regions of the heavy

and light chains are formed independently of antigen con-
tact by the combination of the V-(, D-) and J-gene seg-
ments in the bone marrow (reviewed in [23]). After
successful recombination of the gene segments on one
allele, the other allele becomes silenced (allelic exclusion)
to ensure that every B cell is committed to only one dis-
tinct BCR [25, 26].
With a recombined BCR, the naïve B cells migrate to-

wards the secondary lymph organs where they come in
contact with foreign antigens. Germinal centers (GCs)
are formed in the lymph follicle, and naïve B cells are
displaced from the GCs leading to the formation of an
own compartment called the B cell mantle, the differen-
tiation stage at which mantle cell lymphoma occurs.
Within the GCs, the B cells actively mutate their BCR to
further increase its affinity to the encountered antigen
[23, 24, 27].

The B cell receptor and its involvement in genetic
alterations in mature B cell neoplasms
The abovementioned process of genetic recombination
is tightly controlled. Nevertheless, erroneous DNA re-
combination or mutations in checkpoint proteins can re-
sult in B cells with the ability to proliferate and
eventually form B cell lymphomas [4]. Some of these
have specific chromosomal translocations bringing onco-
genes under the control of the immunoglobulin (Ig)
heavy chain promoter on chromosome 14q32 [4, 8]. In
rare cases, these oncogenes juxtapose to the κ-or λ-
promoter (on chromosome 2 or 22, respectively) [4, 28].
Since immunoglobulin promoters are highly active in B
cells, the translocated oncogenes are overexpressed.
The genetic hallmark in MCL is the chromosomal

translocation t(11;14)(q13;q32). This aberration leads to
immunoglobulin promoter-driven constitutive expres-
sion of the cell cycle regulator Cyclin D1 (encoded by
the CCND1 gene), which is usually not expressed in B
cells [29]. Cyclin D1 dimerizes with cyclin-dependent-
kinases (CDK4/6) which, in turn, phosphorylate the ret-
inoblastoma (Rb) tumor suppressor protein [30]. Phos-
phorylation inactivates the Rb protein, enabling the cell
to switch from the G1- to the S-phase in the cell cycle
and to proliferate. Some MCL cases without the specific
CCND1 translocation but similar morphological appear-
ance have been described, as well [31–35]. However,
these often carry translocations of other cyclin genes like
CCND2 or CCND3 [33–35].
Of note, B cells in healthy individuals may also harbor

chromosomal translocations like the ones found in B cell
lymphoma [36, 37]. The chromosomal aberrations deemed
‘specific’ in the lymphoma B cells are therefore probably
only an important first step in lymphoma development,
and the interplay of additional mutations are required for
the B cell to undergo malignant transformation [33]. In line
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with this hypothesis, MCL shows a massive dysregulation
in the RNA levels of multiple cell cycle-related and anti-
apoptotic proteins [33, 38].
As outlined above, the major functional role of a B cell

is the expression of a BCR and, upon its terminal differ-
entiation into a plasma cell, the secretion of highly spe-
cific immunoglobulins. All B cells keep expressing their
clone-specific immunoglobulin throughout the life span
of the individual cell. In recent years, it became increas-
ingly clear that the BCR retains its important role for
survival and cell proliferation even after transformation
of the B cells in many if not most B cell neoplasms [4].
The BCR in lymphoma B cells has received tremendous
interest after several studies showed an activated BCR-
signaling pathway in these cells, and early clinical studies
with BCR pathway inhibitors have yielded very promis-
ing results in lymphoma patients (see below). In fact, an
increasing body of evidence, gained in recent years,
strongly supports the theory that the BCR plays an im-
portant functional role in the pathogenesis and progres-
sion of several lymphomas. This is particularly well
characterized for diffuse large B cell lymphoma (DLBCL)
and for chronic lymphocytic leukemia (CLL). For ex-
ample, the gene expression profiling of lymphoma cells
separates DLBCL into two distinct sub-entities—one of
them characterized by ongoing BCR signaling [39–41]
and consequently designated as activated B cell-like
(ABC-) DLBCL [39, 40, 42]. In CLL, the role of the B
cell receptor is even more pronounced. CLL cases with
mutated immunoglobulins (M-CLL) have a more indo-
lent course of their disease and a more favorable clinical
outcome compared to patients with unmutated BCRs
(UM-CLL) [43]. Moreover, the immunoglobulin reper-
toire in CLL B cells is much less diverse than expected if
transformation occurred randomly in a given B cell. In
the latter scenario, one would expect an almost unlim-
ited diversity of different B cell receptors in CLL with
unique BCR rearrangements in all individual patients.
However, this is not the case. For example, there are
multiple BCR-stereotypes with the same variable heavy
chain regions and identical or highly similar CDR3 re-
gions [44]. In addition, CLL can be categorized into only
few classes of distinct patterns of epitope recognition
[45]. These studies strongly point towards shared epi-
topes recognized by B cell receptors of different CLL pa-
tients [44]. Although not quite as striking as in CLL,
studies in MCL have revealed a similar bias with stereo-
types in the immunoglobulin repertoire in MCL [46] as
described in detail below.

Mechanisms of BCR-activation in lymphoma
The BCR and BCR signaling configurations in several B
cell neoplasms suggest an antigen-driven or otherwise
BCR-driven selection of B cell clones during or prior to

the process of transformation. Some of the distinct
mechanisms of this drive might be specific for certain
entities while others could be similar among various en-
tities. In this regard, CLL is the disease investigated in
most detail so far. Several distinct epitopes and/or anti-
gens recognized by CLL BCRs have been described.
Most of them are autoantigens such as the myosin heavy
chain IIA, vimentin and neoantigens generated by oxida-
tion of proteins [45, 47–51]. These findings imply that
most, if not all, CLL cells derive from autoreactive B
cells. This might link lymphomas to systemic auto-
immune disorders [47]. A subset of MCL samples also
showed autoantigen binding (see below).
In addition, a large proportion of CLL cells show cell-

autonomous BCR signaling induced by self-recognition
of the BCR [52, 53]. This unusual cell activation mech-
anism seems to be a unique feature of CLL cells and has
not been described in other entities so far. Other lymph-
oma subtypes may use different ways of BCR signaling
activation instead, such as mutated CD79 ITAMs which
result in the formation of BCR clusters similar to acti-
vated BCRs and thus also maintain a chronic active BCR
signaling, as described in about 20% of ABC-DLBCL
[41]. MCL cells, however, show no autonomous signal-
ing and harbor no mutations in the CD79 domains [54].
Follicular lymphoma cells show highly mutated immuno-

globulin sequences with an acquisition of N-glycosylation
sites in the antigen-binding sites [55–57]. Normally, the
introduction of N-glycosylation sites is a potential mechan-
ism for a B cell to recover from self-reactivity [58] but the
introduced N-glycans might also be bound by opportunis-
tic bacteria [59]. Although the MCL-derived BCRs show
no enrichment of N-glycosylation sites, an infection-
associated lymphoma development is a conceivable
scenario in all lymphomas including MCL. Even the
development of autoimmune diseases and therefore
the development of autoreactive CLL cells can be
linked to encountered infections [60–62].

Functional involvement of the B cell receptor in
mantle cell lymphoma
Due to the low frequency of MCL with the resulting lack
of large cohorts and patient sample repositories, the
current knowledge on MCL BCRs is more limited than
in CLL, follicular lymphoma (FL), or DLBCL. Thus, the
antigens of MCL BCRs or the general mechanisms of
their activation are very incompletely understood. Phos-
phoproteomic analyses revealed that the BCR signaling
pathways are active in MCL cells and inhibition of key
molecules of these pathways triggers apoptosis in MCL
cells in vitro [63]. An ongoing BCR signaling was also
found in MCL samples in vivo [64]. Moreover, BCR sig-
naling inhibitors like the Bruton tyrosine kinase (BTK)
inhibitor ibrutinib showed very promising efficacy in

Fichtner et al. Journal of Hematology & Oncology  (2017) 10:164 Page 3 of 12



MCL patients (see below) which further suggest an im-
portant and ongoing role of the BCR in MCL [65]. Re-
cently, single cell profiling studies revealed that MCL
cells showed an increased phosphorylation of multiple
BCR pathway molecules, like AKT and STAT [66, 67].
Triggering BCR activation led to very strong BCR signal-
ing in MCL cells, but not in CLL and healthy B cells,
further highlighting the prominent role of the BCR in
MCL. Of note, the phosphorylation patterns and the α-
BCR-induced signaling in MCL showed a strong interpa-
tient variability and correlate inversely with susceptibility
to BTK and spleen tyrosine kinase (SYK) inhibitors in
MCL [67].
Despite the differences in the phosphorylation pattern,

MCL and CLL patients seem to benefit more from BCR
signaling inhibitors than other entities like follicular
lymphoma [65]. It is therefore reasonable to assume that
these diseases might share more similarities, and some
of the findings on the BCRs in CLL might also be ob-
served in MCL. In line with this hypothesis, MCL BCRs
show similar redundancies and stereotypies as CLL
BCRs, even though in a lower proportion of cases [46].
This clearly points towards an antigen-driven lympho-
magenesis in both entities. However, the BCR subsets
observed in MCL are different from the subsets de-
scribed in CLL (Fig. 1). In fact, only four Ig heavy chain
genes (in order of their abundance: IGHV3–21, IGHV4–
34, IGHV1–8, and IGHV3–23) are found in almost half

of all MCL-derived BCRs [46]. The isotype distribution
of the light chain is biased as well, with a lambda/kappa
ratio of about 2:1, representing an inversed ratio to what
is found in normal B cell populations (lambda/kappa:
1:2) [68–70]. As a result of the specific expansion of a
single cell clone expressing only one distinct BCR, it is
also possible to determine the light chain corresponding
to the identified heavy chain of the lymphoma-derived
immunoglobulin in tissue samples. Although only a few
studies focused on MCL light chains, the analysis of
heavy and light chain pairings revealed a possible MCL
subtype which is characterized by the distinct expression
of the IGHV3–21 gene together with the IGLV3–19-
gene [71]. MCL patients of this subtype seem to have a
slightly better prognosis than patients with different
MCL-derived BCRs [71]. The reason for this difference
remains unknown so far but, once more, shows the het-
erogeneity of this disease.
Compared to other B cell lymphomas, the mutational

load of MCL-derived immunoglobulins is low. Several
studies showed that only a subset of 20–29% of MCL
harbor immunoglobulins with more than 2% deviation
from the germline sequence [46, 72–74]. In CLL, this 2%
cutoff was often used to distinguish between mutated
and unmutated CLL, with marked prognostic implica-
tions (see above) [43, 75]. In MCL, however, the useful-
ness of this cutoff remains questionable and does not
seem to be applicable. Hadzidimitriou and colleagues pro-
posed a more detailed differentiation. They showed that
29.5% of all MCL-derived Ig heavy chains are completely
unmutated (which has not been described to this extent in
any other lymphoma) and only 13.8% showed more than
3% deviation from the germline sequence [46, 76]. The
difference in the mutational load of the BCR has led to
the assumption that MCL develops from two different
pathways. The classical MCL derives from SOX11-
positive cells with unmutated or minimally mutated
IGHVs and shows a more aggressive behavior. The
leukemic non-nodal MCL, on the other hand, develops
from IGHV-mutated SOX-negative B cells and usually has
a more indolent course [7, 38].
There is little knowledge on potential ongoing changes in

the BCR once MCL has developed into a clinically detect-
able disease. Towards this end, we recently analyzed the
MCL-derived immunoglobulin repertoire of two sequential
biopsies of the same patient by next-generation sequencing
(unpublished data). We saw virtually no ongoing mutations
in the analyzed MCL-derived Ig sequences over a 4-year
period, which is in great contrast to observations made in
follicular lymphoma with an ongoing mutation pattern of
the FL-derived immunoglobulins over time [77]. However,
the molecular pathogenesis of FL and MCL differs pro-
foundly and FL-derived immunoglobulin rearrangements
always have a very high mutational load. Although our

Fig. 1 IGHV-gene distribution of MCL-, CLL- and naïve B cell-derived
antigen receptors. Studies of the MCL BCRs revealed a biased
immunoglobulin repertoire. The differences in the amount of the
most abundant IGHV-genes in comparison to CLL and naïve B cells
are highlighted with lines between the bars. Data are based on refs
[44, 46, 116]
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observation was made only in a single patient, it might indi-
cate that even minor mutations in the MCL-BCR could di-
minish the B cells’ ability to proliferate and might therefore
be negatively selected. Nevertheless, further analysis of a
missing or ongoing mutation of MCL immunoglobulins,
and lymphoma immunoglobulins in general, is needed to
foster our understanding of immunoglobulin stability in
these diseases. High-throughput methods like next-
generation sequencing will help in the analysis of the
changes which occur in the different B cell lymph-
omas entities over time.
Unmutated (UM) immunoglobulins are often regarded

as polyreactive, and it was shown that UM-CLL-derived
immunoglobulins bind to autoantigens presented by
HEp-2 cells [48]. A similar study with MCL-derived im-
munoglobulins demonstrated that about one third of all
MCL-derived immunoglobulins bind HEp-2 antigens
[49], an observation which is confirmed by our group
(unpublished data). However, this amount of autoreac-
tive immunoglobulins in MCL is lower than the ob-
served amount in M-CLL (approximately 56.7%) and
much lower compared to UM-CLL cells which expressed
autoreactive BCRs in 89.6% of all cases [48]. In fact, the
observed HEp-2 reactivity of MCL-derived immunoglob-
ulins is comparable to the HEp-2 reactivity of immature
B cells (approximately 40%) and is therefore slightly
higher than the rate in naïve B cells (approximately 20%)
[78]. Nevertheless, we think that these results should be
interpreted with caution as they do not necessarily prove
the complete absence of autoreactive B cells in two
thirds of all MCL patients. Alternatively, MCL BCRs
may have a very low affinity, which would result in false-
negative experiments, or may bind to autoantigens not
expressed in HEp-2 cells. In light of a study which ob-
served varying activity of the activation-induced cytidine
deaminase (AID), it seems that the tumor microenviron-
ment plays a crucial role in MCL development which is
not sufficiently represented by a single cell line like HEp-2
cells [30, 79]. The influence of the microenvironment dur-
ing lymphoma development is further highlighted in a
study showing a biased usage of the IGHV1–8 gene in
splenic MCL cases compared to nodal and extranodal
cases [80]. The observed bias in the immunorepertoire
might represent a distinct immunopathogenic and antigen
selection process in splenic MCLs.

Superantigenic B cell receptor interaction as a
potential pathogenic factor in mantle cell
lymphoma
As an alternative to classical antigens which are bound
by the antigen-binding site of the BCR, recent research
proposed an involvement of superantigens in MCL de-
velopment [76]. Superantigens were first described for T
cell receptors and represent proteins which bind to the

framework regions (FR) of TCRs and BCRs, instead of
being bound by the complementarity determining re-
gions (CDRs) [81, 82]. Since the FRs are necessary for
the structural integrity of the immunoglobulins, they are
far less variable than CDRs. As a result, superantigens
can stimulate multiple T or B cells harboring similar
variable domains but not necessarily recognize the same
epitope or even antigen. Over the years, several superan-
tigens were identified that bind to different amino acid
motifs in the variable domains of BCRs (reviewed in
[82]). One of the best-characterized immunoglobulin-
binding superantigens is the Staphylococcus aureus pro-
tein A (SpA) [83, 84]. Staphylococcus aureus is a com-
mon pathogen. Up to 50%, the healthy population is
temporarily and about 20% are persistently colonized
with this bacterium [85, 86]. Protein A is a well-known
protein in molecular biology research labs due to its
strong affinity to the constant domain of IgGs and thus
its usefulness during the purification of antibodies. Like
most superantigens, SpA is probably expressed by S.
aureus to evade the host immune defense by binding the
antibodies at the ‘wrong site’ and therefore thwart the ef-
fector function of the immunoglobulin. However, in
addition to the well-known ability of SpA to bind the
Fc-part of the antibody, it can bind a clearly defined
motif in the FR of immunoglobulins (Fig. 2). This bind-
ing motif consists of 13 amino acids at specific positions
in the variable immunoglobulin domain (represented as
spheres in Fig. 2), which is present in nearly all immuno-
globulins with the IGHV3-family [83]. SpA binding can
crosslink the membrane-bound BCRs without occupying
their specific antigen-binding site which can be seen in
Fig. 2. Earlier studies have shown that stimulation of hu-
man blood cells with SpA in vitro leads to a biased im-
munoglobulin repertoire and induces selective
proliferation of IGHV3-expressing B cells [87]. Import-
antly, the IGHV3-gene family is the most abundant
IGHV-family and about half of all MCL- and CLL-cells
express an IGHV3-gene. Nearly every MCL-BCR ex-
pressing an IGHV3 immunoglobulin also presents the
SpA motif, and it was shown that these BCRs can be ac-
tivated by SpA [76]. In healthy and matured B cells, the
SpA motif is often mutated and the BCR cannot be acti-
vated by SpA anymore. Given the low mutational load
and the biased usage of certain immunoglobulin genes
like the IGHV3–21-gene in MCL, it seems to be a rea-
sonable assumption that superantigens in general and
SpA in particular might play an important role in the
development and/or progression of MCL. Moreover, the
intact SpA binding motif is also present in other entities
like Burkitt lymphoma and CLL, raising the question
whether different lymphoma entities might be caused by
such triggers as well [88, 89]. Although merely hypothet-
ical at this point, a superantigenic activation of a very
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large amount of early B cells appears to be a plausible
first step in the development of lymphomas in general.
On the other hand, in vivo experiments showed a

strong decrease of B cells expressing the IGHV3-gene
after SpA exposition which is probably a result of the in-
creased B cell proliferation and the concomitant over-
consumption of cytokines and the lack of secondary
signals [90]. However, early lymphoma B cells might
overcome this lack of signals as a result of previous mu-
tations, and since whole B cell subpopulations are acti-
vated and proliferated, certain already mutated B cells
might escape apoptosis and eventually transform into
neoplasia. Although highly speculative at this point, the
outlined superantigen-dependent lymphoma develop-
ment could be an additional path in lymphomagenesis,
besides the ones described above such as the cell-
autonomous signaling in CLL and the—also infection-
associated—development of FL via bacterial lectins. Mul-
tiple further superantigens are known that are able to
bind to immunoglobulins from MCL, CLL, and Burkitt
lymphoma [46, 88, 89]. These include the carbohydrate
I/i (binding to IGHV4–34) and the Peptostreptococcus
magnus protein L (binding to κ-light chains) [91, 92].
Despite these advances in understanding, more re-

search is necessary to evaluate if an ongoing infection
promotes or is needed for lymphoma progression, if the

eradication of the infection may improve clinical out-
come, or if a single superantigenic trigger might be suffi-
cient for lymphoma development followed by other B
cell activation mechanisms promoting lymphoma
progression.

Targeting the BCR signaling cascade in MCL
The introduction of the anti-CD20 antibody rituximab
almost two decades ago has tremendously altered the
treatment paradigms of mature B cell lymphoma [93, 94].
This has remained the biggest advancement in lymph-
oma therapy in a very long time, making it part of the
standard treatment in all CD20-positive lymphomas (i.e.,
the majority of lymphomas). Although rituximab is also
effective in MCL and enhances its sensitivity towards
chemotherapy [95], MCL continues to have a prognosis
considerably worse than most other lymphomas. And
this is despite recent advances in upfront treatment (see
above) and inclusion of treatment algorithms such as
high-dose chemotherapy and stem cell transplantation
into first line therapy settings that are used only in the
relapsed or refractory situation in other lymphoma en-
tities. Except for the few indolent forms of MCL, the ma-
jority of patients relapse within years after initial
treatment and treatment options have been limited in
this situation. The recognition of the role of the BCR in

Fig. 2 Cartoon representation of an IGHV3-Fab domain with the Domain D of Staphylococcus aureus protein A (SpA). Schematic depiction of the
BCR on a B cell (left) and the crystallographic structure of its human Fab fragment in association with SpA (in the circle). The heavy chain is shown
in blue, the light chain is shown in red and the antigen-binding site with all CDRs is highlighted in purple. In addition, the amino acids which are
necessary for the interaction of SpA (orange) with the Fab are depicted by spheres. Note that all but one amino acid are located in the framework
region of the Fab. Neither the light chain nor the antigen-binding site contributes to SpA binding. Image adapted from the crystallographic structure
published previously [83]. PDB: 1DEE
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the pathobiology of several lymphoma entities has also
prompted the development of a class of novel drugs with
profound activity in these diseases. In consequence, in-
hibition of the BCR downstream signaling cascade has
evolved as a promising new treatment option (reviewed
in [65]), but not for all lymphomas alike. Most data exist
on ibrutinib which inhibits Bruton tyrosine kinase (see
below). The observed activity in clinical trials on various
lymphoma entities ranges from efficacy in almost all pa-
tients such as in CLL [96] to hardly any significant activ-
ity as a monotherapy in GCB (germinal center B cell like)
subtypes of DLBCL [97]. In view of the fact that most
MCL cells appear to depend on BCR signaling, it has
been pertinent to test BCR signaling inhibition in this en-
tity. In fact, it has turned out that this approach is a
major step forward in the treatment of relapsed and

refractory patients and in the future maybe as part of the
first line treatment in MCL (see below).
There are several key molecules involved in BCR signal-

ing (Fig. 3). After BCR crosslinking and subsequent phos-
phorylation of the CD79 ITAMs, the spleen tyrosine
kinase (SYK) is recruited to the ITAMs. Thus, this first
step in the BCR signaling cascade is the first potential
drug target to block B cell proliferation [98]. Interestingly,
SYK is overexpressed in many clinical cases of MCL and
in several MCL cell line models and SYK inhibition leads
to apoptosis induction in vitro, which is particularly strong
in cells with high SYK expression [63, 99]. However, in an
early phase clinical study, SYK-inhibition did not yield the
expected efficacy and resulted in only limited objective
response rates (ORR), especially compared to other
BCR-inhibitors in CLL patients [100].

Fig. 3 Direct and indirect targeting of the B cell receptor signaling pathway. Direct inhibition of BCR signaling is highlighted in red, potential
additional and/or synergistic inhibition strategies with available drugs or drugs in advanced clinical development are shown in blue. Only one
example per class of inhibitors is shown
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Another key element in the BCR-signaling cascade is
BTK. This kinase directly affects B cell differentiation
and proliferation and thus is a valuable target for inhib-
ition [101]. In addition, BTK is overexpressed in MCL
and CLL cells [102, 103]. Ibrutinib is a highly selective
BTK inhibitor. It binds covalently to Cys-481 of BTK,
leading to an irreversible inhibition of its kinase activity
[104]. Several clinical trials showed very promising re-
sponse rates of ibrutinib in patients with MCL and CLL
[105–107], making these two entities paradigmatic for
clinical benefits of BCR signaling inhibition. In a pivotal

phase II trial, the BTK inhibitor achieved a response rate
of 68% (CR 21%) in heavily pretreated MCL patients
[105]. Also ibrutinib has been shown to be superior to a
previously established MCL salvage treatment, with the
mTOR inhibitor temsirolimus. In this trial, it achieved
considerably better response rates (72 vs. 40%) and me-
dian progression-free survival was markedly improved
(14.6 vs 6.2 months) [108]. Consequently, BCR-targeted
therapeutic concepts have been adapted as one of the
standard regimens in relapsed MCL [12]. Nevertheless,
approximately one third of the MCL patients did not

Fig. 4 Four potential ways of B cell receptor activation in the pathogenesis of mantle cell lymphoma. a Antigen binding to the CDR3 of the BCR.
b Antigen-independent autologous signaling of the BCR. c Superantigen-triggered BCR activation. d Superantigens facilitating BCR activation by
classical may be low affinity antigen binding or CD79 aberrations
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respond to ibrutinib treatment. Also, multiple MCL cell
lines are intrinsically resistant against this drug in vitro
and early progressions under ibrutinib monotherapy
with a very aggressive course in the clinical setting have
been observed [30, 109, 110]. This resistance might be
related to the strong interpatient molecular variability of
the BCR activation pattern in MCL characterized previ-
ously [67]. Some MCL cells may activate the NF-κB-
pathway through the BCR-independent NIK kinase path-
way, which in turn might be an additional treatment tar-
get [109]. Nevertheless, ibrutinib has been approved as a
treatment option after failure of previous therapy in
MCL and is currently probably the most widely applied
targeted treatment strategy in this setting. Ongoing clin-
ical trials such as the TRIANGLE trial (ClinicalTrials.-
gov; NCT02858258) also evaluate BTK inhibition as part
of the intensive multimodal front line therapy in MCL,
and in view of the novel understanding of MCL pathobi-
ology, we believe it to be very likely that the results of
such trials will be positive.
Also, since nearly every downstream signaling mol-

ecule in the BCR pathway could be the ‘Achilles heel’ of
the lymphoma, further targets are being evaluated in
preclinical and clinical studies. For instance, inhibitors
of PI3K, PKC and AKT are currently under development
and tested for their effectiveness [101, 111–113]. In vitro
results suggest a significant synergy of combined ap-
proaches targeting the BCR pathway.

Conclusions
In the past 20 years, our knowledge about the molecular
similarities and differences of the lymphoma entities has
greatly increased. As outlined above, this has led to the
development of novel treatment options and an im-
proved survival of lymphoma patients. Nevertheless, not
all patients seem to benefit from these new agents and
the potential to predict outcome after certain treatments
is limited. Although established prognostic clinical
scores like the Mantle Cell Lymphoma International
Prognostic Index [114, 115] or certain molecular fea-
tures help to guide intensity of front line treatment,
there continues to be a need for more personalized ther-
apy of lymphoma in MCL. More research is required to
identify the various causes of resistance to the various
treatments like ibrutinib in MCL. Besides the urgent
need for new predictive biomarkers, it is important to
further deepen our understanding of how the different
lymphomas develop in the first place. The analysis of the
BCR repertoire in mature B cell neoplasms points to-
wards an antigen involvement in the genesis of several
lymphomas which might even reveal the opportunity to
prevent the actual tumor development. However, despite
recent advances such as the discovery of superantigens
activating MCL BCRs, there is still too little knowledge

about potential BCR-interacting antigens in MCL cells
not harboring superantigen-binding sites. While a few
MCL BCRs might bind to autoantigens similar to bind-
ing patterns described in CLL, the activation mecha-
nisms of other MCL BCRs remains elusive. In principle,
there appear to be four potential ways of triggering an
activated B cell receptor in the pathogenetic course
towards mantle cell lymphoma development: (i) “clas-
sical antigenic drive” by antigen binding to the CDRs of
the BCR, (ii) antigen-independent autologous signaling
of the BCR, e.g., by aberrations within CD79, (iii)
superantigen-triggered BCR activation, or (iv) a combin-
ation of (i) and (iii) with superantigens facilitating BCR
activation by low level (may be due to low affinity) anti-
gen binding or CD79 aberrations (Fig. 4). Future studies
have to clarify at which time point in lymphomagenesis
the antigenic stimulus takes place and whether it might
be compensated by other low affinity interactions during
later stages of lymphoma development. Answering these
questions will further improve the perspective towards
the cure of an increasing percentage of MCL patients in
the near future.
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