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Background: To explore the impact of KRAS, NRAS and BRAFmutations as well as KRASmutation variants in patients
with metastatic colorectal cancer (mCRC) receiving first-line therapy.
Patients and methods: A total of 1239 patients from five randomized trials (FIRE-1, FIRE-3, AIOKRK0207,
AIOKRK0604, RO91) were included into the analysis. Outcome was evaluated by the Kaplan–Meier method, log-rank
tests and Cox models.
Results: In 664 tumors, no mutation was detected, 462 tumors were diagnosed with KRAS-, 39 patients with NRAS- and
74 patients with BRAF-mutation. Mutations in KRAS were associated with inferior progression-free survival (PFS) and overall
survival (OS) [multivariate hazard ratio (HR) for PFS: 1.20 (1.02–1.42), P = 0.03; multivariate HR for OS: 1.41 (1.17–1.70),
P < 0.001]. BRAF mutation was also associated with inferior PFS [multivariate HR: 2.19 (1.59–3.02), P < 0.001] and OS
[multivariate HR: 2.99 (2.10–4.25), P < 0.001]. Among specific KRAS mutation variants, the KRAS G12C-variant (n = 28)
correlated with inferior OS compared with unmutated tumors [multivariate HR 2.26 (1.25–4.1), P = 0.001]. A similar trend for
OS was seen in the KRAS G13D-variant [n = 71, multivariate HR 1.46 (0.96–2.22), P = 0.10]. More frequent KRAS exon 2
variants like G12D [n = 152, multivariate HR 1.17 (0.86–1.6), P = 0.81] and G12V [n = 92, multivariate HR 1.27 (0.87–1.86),
P = 0.57] did not have significant impact on OS.
Conclusion: Mutations in KRAS and BRAF were associated with inferior PFS and OS of mCRC patients compared with
patients with non-mutated tumors. KRAS exon 2 mutation variants were associated with heterogeneous outcome
compared with unmutated tumors with KRAS G12C and G13D (trend) being associated with rather poor survival.
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introduction
KRAS exon 2–4 and NRAS exon 2–4 mutations (=RAS muta-
tions) are found in ∼50% of metastatic colorectal cancer
(mCRC) tumors and exclude affected patients from epidermal
growth factor receptor (EGFR)-directed therapy [1–3]. Besides
their negative predictive value, RAS mutations may also carry
distinct prognostic information [4–6]. Some studies suggest that
EGFR inhibition may even be detrimental in patients with
RAS-mutant mCRC [1, 7] maybe due to interaction with the
chemotherapeutic backbone [8–10]. Furthermore, low preva-
lence of the different RAS mutation variants limits conclusions
concerning the impact of different subtypes of RAS mutation on
prognosis so far.
BRAF V600E mutation occurs in ∼5%–10% of mCRC tumors

[1, 5, 11]. Despite the limitation of sample size in single trials,
BRAF mutation represents a consistently poor prognostic marker
in the context of mCRC treatment [1, 11, 12], associated with
rapid clinical deterioration after progression to initial therapy [12].
However, promising data with combination regimens as well as
experimental treatment options may lead to routine assessment of
this mutation in mCRC in the near future [5, 13].
This analysis was designed to explore the prognostic impact of

mutations in RAS genes, their subtypes and BRAF on outcome
of mCRC patients treated within randomized trials of the AIO
colorectal cancer study group. With respect to potentially con-
founding factors of EGFR-based treatment, patients receiving
EGFR-targeted agents as first-line therapy were not included.

patients andmethods

studies
This analysis is based on individual patient data from five first-line trials in
mCRC: FIRE-1 [14, 15], FIRE-3 (only bevacizumab-arm) [2, 16, 17], AIO
KRK 0604 [18], AIO KRK 0207 [19] and RO91 [20]. Protocols, responsibil-
ities, declarations of Helsinki, ethical approvals, definitions, treatment sche-
dules and results of the studies were reported previously [2, 14, 18–20].

molecular assessment
Patients were derived from molecularly characterized subsets of the original
study-populations (that were evaluated for KRAS exon 2 mutations and BRAF
V600E mutation). FIRE-1, FIRE-3 and AIO KRK 0207 were additionally ana-
lyzed for mutations in KRAS exon 3–4 as well as NRAS exon 2–4. Methods of
testing have been reported in previous publications [15–19, 21]. Patients were
only included into the analysis if a single specified (i.e. including base-ex-
change) RAS/BRAFmutation or no RAS/BRAFmutation was present.

patient data
The following information was assessed for all patients: sex, age, mutation
information, treatment, ECOG, location of primary tumor (colon versus
rectum), metastatic spread, prior adjuvant chemotherapy, progression-free
survival (PFS), overall survival (OS) and response information.

PFS and OS
PFS was defined as interval between randomization or registration and pro-
gression or death from any cause. OS was defined as interval between ran-
domization or registration and death from any cause. For AIO KRK 0207,
PFS and OS were calculated from the initial registration (start of induction
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therapy, and not from randomization for maintenance treatment arms) in
order to enable comparison of efficacy parameters [19].

influence of treatment on outcome
The outcome of molecular subgroups was also analyzed in the context of dif-
ferent treatment regimens (oxaliplatin- versus irinotecan-based therapy as
well as bevacizumab versus non-bevacizumab therapy). For the assessment
of irinotecan- versus oxaliplatin-based treatment, the mIROX arm of the
FIRE-1 trial was excluded from the dataset.

statistical analysis
PFS and OS were assessed by the Kaplan–Meier method and compared with
log-rank tests. Hazard ratios (HRs) were calculated by the Cox regression
models stratified by study and treatment if appropriate. Multivariate tests
were carried out using the Cox models adjusted for study treatment, ECOG,
sex, adjuvant chemotherapy, liver-limited disease and number of involved
organs. Comparisons of patients with mutation variants to patients with
wild-type mCRC were adjusted for multiplicity (Dunnett’s test). The

significance level was set to 0.05. All statistical analyses were carried out
using SAS 9.2 (SAS Institute Inc., Cary, NC), IBM SPSS Statistics 22 (IBM
Corporation, Armonk, NY) and R (version 3.2.2).

results
For this analysis, data of 1239 patients were available. Distribution
of patients across studies according to molecular characteristics is
summarized in Table 1.

mutations
Of 1239 analyzed tumors, in 664 tumors (53.6%), no mutation
was detected, whereas 462 tumors harboring KRAS (37.3%)
mutations and 39 NRAS (3.1%) mutations were found.
Additionally, a total of 74 tumors (6.0%) were carrying BRAF
V600E mutations (supplementary Table S1, available at Annals
of Oncology online).

Table 2 Baseline characteristics according to molecular subgroups

No mutation (n = 664) KRASmutation (n = 462) NRASmutation (n = 39) BRAFmutation (n = 74) P-value

Age
Median (range) 65 (25–82) 64 (25–83) 64 (32–81) 62 (29–82) 0.17
Missing data 0 0 0 0

Sex
Male (%) 460 (69.3) 292 (63.2) 21 (53.8) 37 (50.7) 0.002
Female (%) 204 (30.7) 170 (36.8) 18 (46.2) 36 (49.3)
Missing data 0 0 0 1

Primary tumor site
Colon (%) 414 (63.1) 286 (61.9) 23 (59.0) 56 (77.8) 0.06
Rectum (%) 236 (36.0) 175 (37.9) 15 (38.5) 15 (20.8)
Colon + rectum (%) 6 (0.9) 1 (0.2) 1 (2.6) 1 (1.4)

Missing data 8 0 0 2
ECOG performance status
0 (%) 340 (51.3) 225 (49.7) 18 (46.2) 33 (45.8) 0.64
1 (%) 297 (44.8) 206 (45.5) 20 (51.3) 33 (45.8)
2 (%) 26 (3.9) 22 (4.9) 1 (2.6) 6 (8.3)
Missing data 1 9 0 2

Prior adjuvant treatment
Adjuvant treatment (%) 140 (21.1) 87 (18.9) 10 (25.6) 11 (15.1) 0.43
Missing data 2 1 0 1

Metastatic lesions
Liver (%) 550 (83.2) 366 (80.6) 33 (84.6) 57 (78.1) 0.54
Missing data 3 8 0 1
Liver limited (%) 290 (43.9) 164 (36.1) 15 (38.5) 22 (30.1) 0.02
Missing data 3 8 0 1
Lung (%) 196 (29.7) 184 (40.5) 13 (33.3) 17 (23.3) <0.001
Missing data 3 8 0 1
Peritoneum 30 (5.5) 20 (5.2) 5 (12.8) 12 (20.0) <0.001
Missing data 120 80 0 14
Lymph nodes 80 (29.7) 29 (17.8) 9 (39.1) 13 (40.6) 0.005
Missing data 395 299 16 42
>2 organs involved 99 (15.0) 77 (17.0) 11 (28.9) 15 (20.5) 0.10
Missing data 4 9 1 1

P values by χ2 tests, except for age: Wilcoxon’s test. Calculations based on non-missing data. Metastastic spread reported to different extent in studies with
evaluable data for all trials concerning liver and lung metastases and no of involved organs. Karnofsky performance status was translated into ECOG for the
FIRE-1 study: Karnofsky 100 = ECOG 0; Karnofsky 80–90 = ECOG 1; Karnofsky 70 = ECOG 2.
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baseline characteristics
Distributions of baseline characteristics in molecular subgroups
are summarized in Table 2.

prognostic role of KRAS, NRAS and BRAF mutation
PFS and OS were significantly influenced by molecular sub-
groups (Figures 1A and B and 2A and B). Univariate and multi-
variate comparisons of PFS and OS in patients with mutant
tumors (KRAS, NRAS, BRAF) versus patients with non-mutated
tumors revealed a negative prognostic effect of KRAS and BRAF
mutations (Figure 2A and B). Interestingly, the negative prog-
nostic role of KRAS and BRAF mutations was consistently
observed across different treatment regimens (subgroups of iri-
notecan- and oxaliplatin-treated as well as in bevacizumab- and
non-bevacizumab-treated) (Figure 2A and B).

prognostic role of single RAS mutation variants
The median PFS of patients with KRAS exon 2 mutant tumor
subtypes ranged from 8.8 [95% confidence interval (CI) 7.6–
10.0] months (G13D mutation) to 10.5 (95% CI 9.0–11.9)
months in (G12D variants). The median OS widely ranged
between 16.8 (95% CI 15.6–18.0) months (G12C) and 25.2
(95% CI 22.2–28.2) (G12D variants) (Figure 1C and D). Besides
KRAS exon 2 variants, KRAS mutations A146T (n = 18) and
Q61H (n = 17) as well as NRAS mutation G12D (n = 11) were
separately evaluated for efficacy end points, all other variants
were less frequent (supplementary Table S1, available at Annals
of Oncology online).
Comparisons of PFS and OS (univariate and multivariate)

of patients with mutation variants to patients with non-
mutated tumors revealed the KRAS exon 2 G12C-variant
(n = 28) to correlate with inferior OS compared with non-
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No mutation: 26.9 (25.2–28.5) mo
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KRAS exon 2 variant KRAS exon 2 variant
G12A: 9.8 (7.7–11.8) mo
G12C: 10.1 (6.4–13.8) mo
G12D: 10.5 (9.0–11.9) mo
G12S: 9.3 (7.1–11.4) mo
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P (log-rank) < 0.001

Figure 1. Prognostic role of alterations in KRAS-, NRAS- and BRAF-genes. (A) Progression-free survival (PFS) according to molecular subgroups. (B) Overall
survival (OS) according to molecular subgroups. (C) PFS in KRAS exon 2 variants. (D) OS in KRAS exon 2 variants, P values below 0.05 by log-rank test indi-
cate at least one significant difference between two groups.
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mutated tumors [multivariate model HR 2.26 (1.25–4.1),
P = 0.001] (Figure 2C and D). A similar trend was seen in the
KRAS exon 2 G13D-variant [n = 71, multivariate model HR 1.46
(0.96–2.22), P = 0.10]. More frequent KRAS exon 2 variants like
G12D [n = 152, multivariate model HR 1.17 (0.86–1.6), P = 0.81]
and G12V [n = 92, multivariate model HR 1.27 (0.87–1.86),
P = 0.57] did not have significant impact on OS. The G12V muta-
tion variant had a negative prognostic effect on PFS in the multi-
variate analysis (Figure 2C).

discussion
The present analysis was motivated by the limited clinical data
regarding the prognostic impact of RAS mutation variants in
patients with mCRC receiving first-line systemic treatment
without EGFR-targeted therapy. Our analysis comprises data of
1239 patients and therefore represents one of the largest datasets
available.
KRAS (37.3%) and NRAS (3.1%) mutations were a little less

frequent in our cohort compared with other series. [1, 22].

Selection of KRAS exon 2 wild-type for inclusion in the FIRE-3
trial as well as lack of testing for KRAS exon 3–4 and NRAS exon
2–4 in AIO KRK 0604 and RO91 may have contributed to this
result. The lack of testing in these two studies might cause a small
negative bias on outcome of patients with unmutated tumors.
Baseline characteristics compared between molecular sub-

groups reflected more aggressive disease in patients with mutated
tumors (in particular in patients with BRAF-mutant mCRC).
BRAF mutation seemed associated with female sex and tumor lo-
cation (colon). These results confirm previous observations [23].
PFS of patients evaluated by molecular subgroups demonstrated

a strong negative prognostic effect of BRAF mutation (HR 2.19,
P < 0.0001) as well as a smaller, but also significant negative effect
of KRASmutation, both compared with non-mutated tumors (HR
1.2, P = 0.03). The differences in outcome associated with molecu-
lar subtype were pronounced in OS. Of note, the median OS
reported in patients with non-mutated tumors was 26.9 (95% CI
25.2–28.5) months. Taking into account that not all patients had
access to EGFR-targeted agents since these were partly unavailable
at the time of study conduct of FIRE-1/RO91, this result compares
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mCRC. (A) Progression-free survival (PFS) according to molecular subgroups. (B) Overall survival (OS) according to molecular subgroups. (C) PFS according
to mutation variants. (D) OS according to mutation variants; hazard ratios (HR) with 95% confidence intervals (95% CI) adjusted for multiplicity indicate
results drawn from the multivariate model. An HR >1 indicates a higher hazard rate for death or progression in patients with mutated tumors compared with
patients with unmutated tumors. Only mutation variants with >10 patients were included into the analysis in C and D. All variants in C and D represent re-
spective KRASmutations except NG12D, NRAS G12D; V600E, BRAF V600E; bev., bevacizumab; WT, unmutated tumors.
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well with recent reports of first-line treatment in mCRC [5, 24].
Outcome of patients with KRAS or BRAF-mutant mCRC demon-
strated significantly shorter medians of OS: 21.0 (18.5–23.5) and
11.7 (9.7–13.6) months, respectively, translating to HRs of 1.41
(P < 0.001) for KRAS and 2.99 (P < 0.001) for BRAF. Availability of
later-line treatment (i.e. EGFR-targeted agents) in patients with
non-mutated tumors might have impacted on OS for those
patients. However, the also present differences in PFS in patients
with non-mutated tumors compared with patients with KRAS-
mutant mCRC support the hypothesis that KRAS is a prognostic
factor per se and differences in outcome are not only mediated by a
subset of patients receiving later-line EGFR-inhibitors. The
number of patients with NRAS-mutant tumors in this dataset was
probably too small to allow for significant effects on outcome.
In this pooled dataset, the prognostic effect of molecular sub-

groups (i.e. KRAS and BRAF mutation) in comparison with
non-mutated tumors was consistently observed in all subsets of
patients being treated with irinotecan- or oxaliplatin combina-
tions as well as in bevacizumab- or non-bevacizumab-treated
patient. Considering that microsatellite-instable tumors are rare
in stage IV mCRC, these findings compare well with a recent
analysis of the adjuvant PETACC-8-trial that identified KRAS
and BRAF mutations as prognostic markers in microsatellite-
stable (but not microsatellite-instable) tumors [25]. Further
classification of mCRC might be seen in differentiation of left-

sided versus right-sided primary tumor location, probably
being a surrogate for molecular profiles that have not been
understood in full extent [26]. Unfortunately, primary tumor
location was not recorded during study conduct for the majority
of patients in this cohort and cannot be taken into account for
our analysis.
KRAS exon 2 mutation variants were associated with heteroge-

neous outcome concerning OS as well as PFS. The G12V muta-
tion variant, representing one of the most frequent subtypes, was
associated with a significantly worse PFS compared with patients
without any mutation (HR = 1.48, P = 0.02). OS was also inferior
—however not significant—in G12V and G13D 1 subtypes, and
significantly inferior in G12C mutations variants compared with
patients with non-mutated tumors. This observation supports the
hypothesis that KRAS exon 2 mutation variants are associated
with a differing spectrum of clinical outcome [4, 8, 27]. It might
be speculated that the reason for differing outcomes could be
mediated by differing activation of KRAS-depending pathways by
distinct mutation variants, as suggested previously with high base-
line activation and potentially aggressive biology in G12C variants
[28]. In addition, the poor outcome of patients with G12C mutant
mCRC might be of clinical relevance as allele-specific inhibitors
may provide therapeutic options in the future [29, 30]. In this
context, also the mutation rate of KRAS could be a factor that
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Figure 2. Continued
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impacts significantly on prognosis of KRAS-mutant mCRC [31].
Unfortunately, this information is not available for our cohort.
In general, despite high data quality, pooled datasets of different

randomized trials may always lead to cohorts with study-specific
bias. Although multivariate models can adjust calculations for
some (obvious) factors, retrospectively evaluated, pooled data
invoke uncertainties. Pooling data from five studies has enlarged
the number of some mutation variants (i.e. NRAS as well as
KRAS exon 2 mutation variants) to a level that consecutively
enabled survival analysis. However, absolute numbers in these
subgroups are still unsatisfactory and the analyses appear under-
powered to allow for definite conclusions, especially in rare muta-
tion variants. In particular, false-negative results cannot be
excluded as potential limitations in this setting. Given that some
biomarkers (i.e. KRASmutation variants) were identified as poten-
tial prognostic markers, validation of our findings within alterna-
tive study-sets appears justified.
In conclusion, our data suggest that mutations in KRAS and

BRAF are associated with inferior PFS and OS of mCRC patients

compared with patients with non-mutated tumors. Whereas
role of chemotherapy and treatment with or without bevacizu-
mab did not affect these findings, KRAS exon 2 mutation var-
iants differed, with G12C being associated with shorter OS
when compared with patients with non-mutated tumors, while
G13D mutations were showing a similar trend.
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