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Abstract 
 
The Arf GTPase controls formation of the COPI vesicle coat. Recent structural 

models of COPI revealed the positioning of two Arf1 molecules in contrasting 

molecular environments. Each of these pockets for Arf1 is expected to also 

accommodate an Arf GTPase-activating protein (ArfGAP). Structural evidence and 

protein interactions observed between isolated domains indirectly suggests that each 

niche may preferentially recruit one of the two ArfGAPs known to affect COPI, 

Gcs1/ArfGAP1 and Glo3/ArfGAP2/3, although only partial structures are available. 

The functional role of the unique non-catalytic domain of either ArfGAP has not been 

integrated into the current COPI structural model.  Here, we delineate key 

differences in the consequences of triggering GTP hydrolysis via the activity of one 

versus the other ArfGAP. We demonstrate that Glo3/ArfGAP2/3 specifically triggers 

Arf1 GTP hydrolysis impinging on the stability of the COPI coat. We show that the 

yeast homologue of AMP kinase, Snf1, phosphorylates the region of Glo3 that is 

critical for this effect and thereby regulates its function in the COPI-vesicle cycle. Our 

results revise the model of ArfGAP function in the molecular context of COPI. 
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Introduction 
 
Coated vesicles transport proteins and lipids between compartments of the secretory 

pathway. Coats are macromolecular assemblies that associate with membranes, 

selectively capture proteins and lipids, deform the underlying membrane to form 

vesicles, and help accurately target these vesicles to their physiological destinations.  

 
 The COPI coat is formed by an obligate heptamer – also termed coatomer – 

consisting of the α, β’, ε, β, γ, δ, and ζ subunits. Coatomer is recruited en-bloc to 

membranes (Hara-Kuge et al., 1994). Fundamentally, the COPI coat mediates the 

retrograde trafficking of proteins and lipids from the Golgi to the ER and within intra-

Golgi compartments (Arakel et al., 2016; Beck et al., 2009; Pellett et al., 2013; 

Spang and Schekman, 1998). Several reports have also implicated COPI in 

endosomal recycling and regulating lipid droplet homeostasis (Aniento et al., 1996; 

Beller et al., 2008; Xu et al., 2017).  

 
 Activation of the small GTPase Arf1 and its subsequent membrane anchoring, 

via the exchange of GDP for GTP by a guanine nucleotide exchange factor (GEF), 

promotes the recruitment of coatomer to membranes (Antonny et al., 1997; Yu et al., 

2012). Two COPI-associated Arf1 GTPase activating proteins (GAPs), ArfGAP1 and 

ArfGAP2/3 and their yeast homologues Gcs1 and Glo3, stimulate GTP hydrolysis in 

Arf1 (Spang et al., 2010; Weimer et al., 2008) (Fig. 1A and 1B). Inhibition of GTP 

hydrolysis results in deficient sorting and the accumulation of COPI on the 

membrane (Lanoix et al., 1999; Nickel et al., 1998; Presley et al., 2002; Tanigawa et 

al., 1993). Hence, GTP hydrolysis in Arf1 is thought to be bi-functional, effecting 

efficient cargo capture and vesicle uncoating.  
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 Both ArfGAPs contain an evolutionarily conserved catalytic zinc finger domain 

while their non-catalytical domains are structurally unrelated (Randazzo and Hirsch, 

2004; Schindler et al., 2009; Spang et al., 2010). Why COPI relies on more than one 

ArfGAP is a mystery. There is circumstantial evidence suggesting that 

Gcs1/ArfGAP1 and Glo3/ArfGAP2/3 fulfil different functions in the COPI vesicle 

cycle, yet the precise role of either ArfGAP remains elusive (Poon et al., 1999; Poon 

et al., 2001; Schindler and Spang, 2007; Schindler et al., 2009). Curiously, as 

opposed to many other GAPs and effectors of GTPases, COPI and ArfGAP do not 

compete for access to Arf1. Instead, all three exist in one complex, and the activity of 

either ArfGAP is significantly enhanced in the presence of COPI (Szafer et al., 2001; 

Weimer et al., 2008). A series of primarily in vitro reconstitution assays have helped 

to elucidate the intricacies of this process, unequivocally demonstrating that both 

ArfGAP1 and ArfGAP2 can initiate COPI vesicle uncoating (Weimer et al., 2008). 

 
However, little is known about the precise orchestration of GTP-hydrolysis in Arf1, 

which governs COPI function. The specific roles of the two COPI-associated 

ArfGAPs, which drive GTP hydrolysis in Arf1, remain unresolved due to their 

overlapping basic function, endowed by the highly conserved ArfGAP domain (Poon 

et al., 1999). Recent structural models of COPI, based on cryo-EM tomography 

(Bykov et al., 2017; Dodonova et al., 2017), have shed light on the complex interplay 

of proteins involved in the COPI vesicle cycle and now offer structurally motivated 

hypotheses to resolve these issues. Harnessing recent structural information in an in 

vivo dissection, we now demonstrate that the activity of both ArfGAPs and the 

subsequent GTP-hydrolysis in Arf1 effect distinct cellular processes despite the fact 

that their basic ArfGAP activities can substitute for each other since yeast strains 
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lacking one or the other can survive. Our dissection pinpoints key differences 

between the ArfGAPs and their spatially segregated regulation of Arf1. We also 

identify a novel phospho-regulatory mechanism that potentially serves as a 

molecular timer on the ArfGAP controlling basic aspects of COPI coat turnover. We 

provide a model, which solves the conundrum of the seemingly redundant functions 

of the ArfGAPs. Furthermore, we assign roles to each ArfGAP that fit the molecular 

environment in which they exist in COPI. 

 
 
Results 
 
Glo3, not Gcs1, is stably associated with COPI. 
 
The two ArfGAPs, Glo3/ArfGAP2/3 and Gcs1/ArfGAP1 regulate COPI function in 

yeast (Poon et al., 1999). Early studies implicated ArfGAP1 as the relevant GAP and 

proposed ArfGAP1 as a functional component of the coat (Yang et al., 2002). Others 

have demonstrated that COPI also associates with ArfGAP2/Glo3 (Frigerio et al., 

2007; Lewis et al., 2004). Elucidation of the structure of the COPI coat on 

reconstituted vesicles (Dodonova et al., 2017; Dodonova et al., 2015) and insights 

into the molecular interactions of either ArfGAP with coatomer (Rawet et al., 2010; 

Schindler et al., 2009; Suckling et al., 2014; Watson et al., 2004) leads to the 

hypothesis that they exist in contrasting molecular environments (Fig. 1A), just like 

the two Arf1 GTPase molecules associated with the coat (Dodonova et al., 2017). 

Interestingly, this hypothesis and a structure encompassing the ArfGAP domain of 

Glo3/ArfGAP2/3 (Dodonova et al., 2017) predicts that this ArfGAP occupies a niche 

where three Glo3/ArfGAP2/3 molecules come into close proximity at the center of a 

COPI triad (Fig. 1B).  

Jo
ur

na
l o

f C
el

l S
ci

en
ce

 •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



 Based on the different binding parameters of the molecular interactions 

underlying this hypothesis (Pevzner et al., 2012; Suckling et al., 2014; Watson et al., 

2004), we expected to observe differences in how stably the two yeast ArfGAPs 

interact with COPI and tested this hypothesis by affinity purification.  Enrichment of 

GFP-tagged Glo3 or Gcs1 from cytosol (Fig. 1C) or from detergent extracts (Fig. 1D 

and 1E) revealed that in contrast to Gcs1, COPI is strongly associated with Glo3, the 

yeast homolog of ArfGAP2/3. A number of other proteins that interact with COPI 

such as the Erv41-46 complex (Rhiel et al., 2018; Shibuya et al., 2015), the yeast 

homologue of ERGIC 2/3, specifically co-purified with Glo3  (Fig. 1E, Appendix Table 

S3). This suggests that COPI and Glo3, but not Gcs1, are in a stable complex.   

Glo3 binds COPI via the γ-COP appendage domain (Pevzner et al., 2012; Watson et 

al., 2004) and occupies a niche adjacent to Arf1 created by the polymerising coat 

(Dodonova et al., 2017). Gcs1 binds the μ-homology domain (μHD) of δ-COP via a 

C-terminal δL/ tryptophan-based motif (Cosson et al., 1998; Rawet et al., 2010; 

Suckling et al., 2014). Binding affinities of the δ-COP μHD for peptides containing 

the tryptophan motif were reported to be in the low micromolar range (Suckling et al., 

2014), possibly explaining why the COPI coat does not co-purify with Gcs1 (Fig. 1C, 

1D, 1E).   

 

The stable association between Glo3 and COPI maps to a unique domain of 

Glo3. 

To test whether the stable association between Glo3 and COPI was due to 

direct binding, we reconstituted the interaction from purified components. We 

recombinantly expressed Glo3, lacking a C-terminal amphipathic helix to aid protein 

Jo
ur

na
l o

f C
el

l S
ci

en
ce

 •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



solubility, and found it to associate stoichiometrically with coatomer purified from S. 

cerevisiae (Fig. 2A).  

Truncations of Glo3 were designed to reassess which domains of Glo3 are 

necessary and sufficient for the stable association of Glo3 and COPI (Schindler et 

al., 2009). Binding experiments with partial constructs of Glo3 containing the GAP 

domain and the Binding of Coatomer, Cargo and SNARE (BoCCS) domain, the 

BoCCS alone (137-375), the BoCCS and the evolutionarily conserved Glo3-

regulatory motif (GRM), or the GRM alone clearly revealed that the BoCCS domain 

of Glo3 is crucial to bind coatomer directly (Fig. 2B and 2C). A construct (296-459) 

lacking a stretch of positively charged residues in the BoCCS attributed to mediate 

COPI binding (Kliouchnikov et al., 2008; Schindler et al., 2009), did not bind COPI. 

Similarly, a charge reversal of the same positively charged residues in the Glo3 

BoCCS domain, to negatively charged glutamic acid residues, resulted in a loss of 

COPI binding (Fig. S1A). Glo3 and its mammalian homologues contain a highly 

conserved tandem repeat of an ISSxxxFG sequence (Yahara et al., 2006) and this 

GRM motif regulates the function of Glo3 (Schindler et al., 2009). Our binding data 

show that the GRM domain alone is not sufficient to confer a stable interaction 

between Glo3 and COPI. More generally, the direct and robust association of COPI 

and Glo3 raises the possibility that Glo3 fulfills an additional function beyond its 

recognised role in GTP-hydrolysis. 

GAP action on β- and γ-Arf1 is functionally distinct.  
 The intrinsic GTPase activity of Arf1 is negligible and requires an ArfGAP to 

catalyse GTP-hydrolysis (Kahn and Gilman, 1986; Randazzo and Kahn, 1994). 

Neither ArfGAP is essential in either yeast or mammals implying a certain degree of 

functional redundancy. However, the combined deletion of both causes lethality 

(Frigerio et al., 2007; Poon et al., 1999).   
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Arf1 binds virtually equivalent sites on the homologous β- and γ-COP subunits 

(Yu et al., 2012).  However, in the recently elucidated structural context of the 

membrane-associated COPI coat, β- and γ-Arf1 (denominated by the bound COPI 

subunit) occupy structurally distinct molecular environments within the coat lattice 

(Dodonova et al., 2017) (Fig. 1A and 1B). The GAP domain of ArfGAP2 was 

observed positioned only near γ-Arf1 and not β-Arf1 (Dodonova et al., 2017). Taking 

into consideration the positional restrictions imposed by the flexible, interacting 

domains of δ- and γ-COP, it is tempting to speculate that ArfGAP1/Gcs1 is 

positioned near β-Arf1.  

It remains unclear how the respective position of either Arf1 molecule, and by 

extension, of either ArfGAP, affects their function in the COPI vesicle cycle. The 

different molecular environments as well as the presence of non-conserved C-

terminal domains in the ArfGAPs suggest distinct functions, which are 

mechanistically unexplored.  

To unravel these distinct functions, we first sought to inhibit the most highly 

conserved domain between Glo3 and Gcs1. The GAP domain of Glo3 and Gcs1 

contains a highly conserved arginine residue (R54 in Gcs1 and R59 in Glo3). This 

arginine finger is essential for GAP function. Mutation of the arginine to a lysine 

dramatically impairs the GAP activity of both Gcs1 and Glo3 (Lewis et al., 2004; 

Yanagisawa et al., 2002). These dominant negative forms of either ArfGAP fill their 

respective niches unproductively. Expression of the GAP-dead mutants in strains of 

their respective deletion backgrounds (i.e. expression of Glo3 R59K in Δglo3 and 

Gcs1 R54K in Δgcs1 strains) resulted in remarkably distinct phenotypes (Fig. 3). 

Cells harbouring the Gcs1 GAP-dead mutant were viable (Fig. 3A) while expression 

of the GAP-dead Glo3 caused lethality (Fig. 3B). All proteins were expressed to high 
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steady-state protein levels (Fig. 3C) excluding the lack of expression as a trivial 

explanation for the cell’s ability to tolerate the GAP-dead Gcs1. 

Only a minor decrease in growth rate was observed in GAP-dead Gcs1 

expressing cells. To test whether this effect was COPI-related we compared variants 

of GAP-dead Gcs1 that affected membrane recruitment or COPI interaction. We 

introduced a mutation in the ALPS motif (L246D) that disrupts it and impairs the 

recruitment of Gcs1 to the membrane (Bigay et al., 2005; Xu et al., 2013). Similarly, 

we introduced a substitution combining the replacement of the C-terminal 

tryptophan-motif (Rawet et al., 2010; Suckling et al., 2014) and three upstream 

phenylalanine residues, a manipulation expected to affect the binding of Gcs1 to δ-

COP and to impair the targeting to its putative niche in the COPI coat. Both variants 

appeared to rescue the minor decline in growth (Fig. 3A).  

We also investigated the molecular determinants of the toxic effects exerted 

by GAP-dead Glo3. The lethality caused by the expression of GAP-dead Glo3 was 

reversed either by the deletion of the GRM or the mutation of a stretch of positively 

charged residues (Δ2x+ve) in the BoCCS, previously ascribed to coordinate COPI 

binding (Kliouchnikov et al., 2008; Schindler et al., 2009), which is consistent with the 

direct binding data presented in Fig. 2 and Fig. S1A. Importantly, those GAP-dead 

variants that did not negatively affect growth were also expressed to high steady-

state protein levels (Fig. 3C). In contrast, deletion of the conserved C-terminal 

amphipathic motif of Glo3, which governs the Golgi-localisation of ArfGAP3 

(Kliouchnikov et al., 2008), was unable to reverse the dominant-negative lethality 

induced by GAP-dead Glo3 (Fig. 3B). Deletion of the C-terminal amphipathic helix of 

Glo3 did not cause a change in its steady-state subcellular localisation or its 

association with COPI (Fig. S2). Based on its strongly reduced association with 
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COPI (Fig. S1), the COPI-binding deficient mutant (Δ2x+ve) may fail to target GAP-

dead Glo3 to the COPI coat, phenocopying ∆glo3. Cell viability upon deletion of the 

GRM domain in the GAP-dead mutant could either indicate a failed targeting of Glo3 

to COPI or report on the influence of an intact GRM in executing GAP-domain 

function. The interaction between Glo3 ∆GRM and COPI was unaltered (Figs. 2B, 

S2A), in favor of the latter hypothesis. 

This phenotypic difference in viability caused by the expression of either GAP-

dead mutant indicates that locking γ-Arf1 in its GTP-bound state via catalytically 

inactive Glo3, but not β-Arf1 via catalytically inactive Gcs1, is detrimental to the cell, 

in turn implying that GTP-hydrolysis in either Arf1 triggers mechanistically distinct 

outcomes.  

 
The Snf1/AMP-activated protein kinase phosphorylates the Glo3 motif. 

Since it is the BoCCS and not the GRM motif that is responsible for the stable 

interaction between Glo3 and COPI, we next explored determinants of toxicity in the 

GRM motif of GAP-dead Glo3 (Fig. 4A). The GRM contains four predicted 

phosphorylation sites (S389, S398, S423, S424) (Blom et al., 1999). Sequential 

mutation of these residues identified two phosphosites within the GRM, S389 and 

S398 (Fig. 4B and S3). Affinity purification following stabilizing cross-linking led to 

the identification of Snf1 as the kinase phosphorylating S389 (Fig. 4B and Fig. S3A-

E). The Snf1/AMP-activated protein kinase is a key sensor of cellular energy levels 

and plays a vital role in the subsequent adaptation to metabolic stress (Hardie et al., 

1998). Indeed, Glo3 appeared heavily phosphorylated when cells were starved for 

glucose (Fig. 4C), a condition that strongly activates Snf1.  
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To test whether this condition and hence Snf1 activation affects the presence 

of Arf1 on Golgi membranes, we used fluorescence recovery after photobleaching 

(FRAP) to investigate the dissociation kinetics of Arf1-GFP from Golgi membranes 

as identified by the polytopic membrane protein Vrg4-mCherry (Fig. 4D). 

Interestingly, glucose starvation increased the dissociation of Arf1 from these 

membranes (koff 0.234 s-1 versus 0.164 s-1) and decreased the immobile fraction of 

Arf1-GFP (Table S4). Similarly, expression of a phosphomimetic mutant of Glo3 

(S389,398D), which was designed to simulate glucose starvation, increased the 

dissociation of Arf1 from Golgi membranes (Fig 4E and Table S4). In contrast, 

expression of the S389,398A mutant of Glo3 led to a decrease in the dissociation of 

Arf1 from Golgi membranes. These results support the notion that COPI-dependent 

vesicular traffic is less active under conditions of glucose starvation, when the GRM 

domain of Glo3 is phosphorylated.  We conclude that phosphorylation of Glo3 by 

Snf1 contributes to this regulation. In fact, Snf1 has previously been implicated in 

phosphorylating a number of proteins involved in vesicle trafficking, including Gcs1, 

Glo3 and Age2 (Braun et al., 2014). A study in HeLa cells also demonstrated that 

AMPK plays a crucial role in inhibiting vesicular transport pathways upon energy and 

nutrient starvation (Yang et al., 2018). Consistent with this study, we demonstrate 

that in addition to Glo3, the other ArfGAP Gcs1 also appears to be post-

translationally modified upon glucose starvation, based on the observed 

electrophoretic migratory differences following SDS-PAGE (Fig 4C). However, for 

Glo3 a second serine – S398 was phosphorylated in the absence of Snf1 implicating 

a second unidentified kinase acting on this ArfGAP (Fig. 4B, Fig. S3C). These 

findings suggest that the regulation of Glo3 by phosphorylation of the GRM is 

complex.   
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Phosphorylation of the Glo3 motif regulates Glo3 function. 

We hypothesized that regulation via the identified phosphosites might converge on 

the same crucial function that was revealed by the fact that the GRM was required to 

render a GAP-dead Glo3 toxic (Fig. 3B). Therefore, we combined the Glo3 

(S389,398D) and the Glo3 (S389,398A)  mutants with the catalytically inactive R59K 

substitution (Fig. 5A). Expression of the un-phosphorylated GAP-dead mutant 

caused lethality while the phospho-mimetic counteracts the dominant-negative 

lethality, supporting growth (Fig. 5A). All proteins were expressed to high steady-

state protein levels (Fig. 5B). Thus, phosphorylation of the GRM, like deletion of the 

entire GRM, rescued the GAP-dead toxicity, indicating that phosphorylation 

inactivates the GRM. 

Next, we tested the possibility that Glo3 binding of coatomer could also be 

regulated by phosphorylation of the GRM domain. In contrast to the mutation of a 

stretch of positively charged residues coordinating COPI binding via the BoCSS 

domain (Fig. 3B and Fig. S1A), which led to a loss of coatomer association with 

Glo3, both phospho-site variants and truncated Glo3, lacking its GRM, were found 

associated with COPI to a similar extent (Fig. 5C). These results rule out defective 

targeting of Glo3 to COPI as the basis of viability in the presence of the phospho-

mimetic residues in the GRM domain (Fig. 5A). Instead, our findings implicate GRM 

regulation as a determinant of viability in cells expressing a catalytically inactive form 

of Glo3 (Fig. 5D). This would indicate that in the presence of a functional GRM 

domain, GTP-hydrolysis in γ-Arf1 is essential. It moreover suggests that the GRM 

domain senses conformational changes triggered by GTP-hydrolysis and its 

phosphorylation/ dephosphorylation status impinges on its functionality. In line with 

this conclusion, substitution of serine 389 to either alanine (constitutively un-
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phosphorylated) or aspartic acid (phospho-mimetic) precluded the ability of wild-type 

Glo3 to suppress the growth phenotype of a COPI hypomorph (sec26FW) (Fig. S3F). 

This result suggests that robust COPI function under different growth conditions 

relies on the regulation of Glo3 by phosphorylation and dephosphorylation as 

expected for a reversible posttranslational modification. 

 
 
Cargo sorting occurs in the molecular environment of β-Arf1. 
 
Deletion of either Glo3 or Gcs1 is tolerated by yeast cells, indicating that the 

presence of one of the GAPs is sufficient to mediate COPI-dependent transport. 

Therefore, the question arises whether the model is correct that COPI associates 

with both ArfGAPs simultaneously. To test the model, we enriched Glo3-associated 

coat  and probed for the presence of Gcs1 (Fig. 6A). Consistent with the low affinity 

of Gcs1 to the µ-homology domain of delta-COP (Suckling et al. 2014) no 

endogenous Gcs1 co-purified with Glo3. When overexpressed, Gcs1 weakly co-

precipitated with Glo3 and COPI. The overexpressed GAP-dead R54K mutant 

appeared to associate more stably with the coat (Fig. 6A). This association was lost 

upon mutation of the tryptophan motif present at the C-terminus of Gcs1. Curiously, 

mutation of the ALPS motif strongly increased co-purification of Gcs1 with Glo3 

(presumably via COPI). This stabilisation possibly reflects a decrease in Gcs1 

dissociation from COPI due to a loss of curvature sensing via the ALPS motif or 

could indicate that the ALPS motif may mask the tryptophan motif in solution. We 

conclude that COPI can bind Glo3 and Gcs1 simultaneously and that this in vitro 

transient complex between Glo3/ArfGAP2/3, coatomer, and Gcs1/ArfGAP1 can be 

stabilized by manipulating Gcs1/ArfGAP1. This substantially strengthens our 

hypothesis that the two different ArfGAPs, akin to the two Arf GTPases, occupy 
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distinct molecular niches within the COPI coat (Fig. 1A and B; Dodonova et al. 2017; 

Suckling et al 2014).  

The niche harboring β-Arf1 and plausibly also Gcs1/ArfGAP1 (Fig. 1A and 6A) 

plays an important role in the retrieval of HDEL/KDEL containing proteins. In this 

region of COPI, a recently discovered helix-b of δ-COP (Arakel et al., 2016; 

Dodonova et al., 2017) binds the switch and interswitch of β-Arf1, a region in Arf1 

that is occluded by the NO amphipathic helix in its inactive state (Dodonova et al., 

2017). Given its ascribed role in cargo-sorting (Arakel et al., 2016), its association 

with Arf1 (Dodonova et al., 2017) and the recognised coupling of Arf1 GTP-

hydrolysis to cargo sorting (Lanoix et al., 1999; Nickel et al., 1998), it is plausible that 

the helix translates GTP-hydrolysis in β-Arf1 to COPI. 

  Perturbation of genes encoding for machinery involved in retrograde trafficking 

results in the secretion of HDEL- (KDEL- in higher eukaryotes) bearing soluble and 

luminal ER residents such as chaperones (Aguilera-Romero et al., 2008; Belden and 

Barlowe, 2001). Secretion of HDEL containing proteins can occur either due to the 

inefficient retrieval of the HDEL receptor (Erd2) or the activation of the unfolded 

protein response (UPR) where the capacity of the HDEL-retrieval pathway is 

overwhelmed by the elevated expression of HDEL-bearing chaperones. Both 

situations are entwined and not mutually exclusive. 

Deletion of Gcs1 leads to the secretion of HDEL-bearing Pdi1 (Fig. 6B and 

6C) and the induction of UPR (Jonikas et al., 2009). Deletion of the δ-COP helix-b 

which contacts β-Arf1 also results in the secretion of Pdi1 (Fig. 6B and 6C). 

Expression of functional Gcs1, but not GAP-dead Gcs1 rescues the observed 

secretion phenotype in a Gcs1 deletion strain, implying that GAP-stimulated GTP 

hydrolysis regulates HDEL retrieval. The upstream role of this specific ArfGAP and 
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the downstream role of the δ-COP helix-b in the retrieval of the HDEL-bearing Pdi1 

imply that δ-COP may relay the GTP-hydrolysis in β-Arf1 to COPI. 

Deletion of Glo3 also leads to the secretion of HDEL-bearing Pdi1 (Fig. 6B-

6E) and the induction of UPR (Jonikas et al., 2009). Expression of Glo3 rescues the 

observed phenotype in a Glo3 deletion strain (Fig. 6D & 6E). However, expression of 

the only two viable GAP-dead (R59K) mutants, the GRM deletion mutant and the 

S389, 398D phospho-mimetic mutant, did not rescue the secretion phenotype. In 

contrast, expression of the same mutants in combination with a functional GAP 

domain led to a complete rescue of the secretion phenotype (Fig. 6D & 6E). This 

suggests that the GRM domain of Glo3 does not play a crucial role in HDEL-cargo 

sorting while the GAP-domains of both Glo3 and Gcs1are central to efficient 

retrieval.  

 

 

Discussion 
 
Unlike the COPII vesicle coat, where GAP activity is exerted by the Sec23 coat 

subunit (Yoshihisa et al., 1993), COPI relies on at least two accessory GAPs to 

stimulate GTPase activity in Arf1. In COPII, assembly of the inner Sec23/24 coat 

complex with the outer cage (Sec13/31) further stimulates the GAP activity of Sec23 

toward Sar1 (Antonny et al., 2001; Bi et al., 2007). Similar to COPII, COPI-

associated ArfGAPs have higher activity when bound to both, Arf1 and COPI 

(Goldberg, 1999; Pevzner et al., 2012). COPI and both ArfGAPs bind Arf1 non-

competitively unlike other GTPases, which bind GAPs or their effectors in a 

competitive manner (Chen et al., 2012; Clabecq et al., 2000; Puertollano et al., 

2001). This mechanism would require that the COPI-associated ArfGAPs are subject 
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to regulation at multiple levels. ArfGAPs have also been implicated in cargo 

recognition and binding (Lee et al., 2005; Rein et al., 2002). Once bound, cargo 

regulates the activity of the ArfGAPs potentially contributing to yet another tier of 

regulation (Goldberg, 1999; Luo et al., 2009). It is therefore not surprising that the 

precise orchestration of GTP-hydrolysis in Arf1 has remained a perplexing question 

in the COPI vesicle cycle.  

 ArfGAP1 activity is enhanced with increasing membrane curvature. This feature 

has been attributed to an amphipathic helix (ALPS) in ArfGAP1/Gcs1, which is 

unstructured in solution (Bigay et al., 2005; Bigay et al., 2003). This helix senses 

lipid-packing defects, caused by the continual membrane curvature during vesicle 

formation, thereby determining the timing of catalytic activity in ArfGAP1. Like 

ArfGAP1, the activity of ArfGAP2 is enhanced in the presence of an intact coat 

(Goldberg, 1999; Luo et al., 2009; Pevzner et al., 2012; Szafer et al., 2001; Weimer 

et al., 2008). However, increasing membrane curvature does not enhance ArfGAP2 

activity. The ArfGAP2 catalytic domain occupies a niche adjacent to γ-Arf1 that is 

formed only upon coat polymerisation, potentially providing one layer of regulation 

regarding its catalytic activity (Dodonova et al., 2017).  

 Owing to their overlapping functions, which may become apparent only under a 

strong selection pressure, both Gcs1 and Glo3 are non-essential. However, the 

combined deletion of both is lethal (Poon et al., 1999). Cell viability is not 

compromised upon the defective targeting of either Gcs1 and Glo3 to COPI. Deletion 

of the μHD (Arakel et al., 2016), mutation of the tryptophan-motif in Gcs1 (Suckling 

et al., 2014), deletion of the γ-appendage domain or mutation of its COPI binding site 

(Watson et al., 2004) or the mutation of the COPI binding region in Glo3 did not 

affect cell growth (Fig. 3B). However, using GAP-dead mutants in vivo, we now 
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establish that cell viability is compromised when a GAP-dead Glo3 occupies its 

niche. This is in marked contrast to a GAP-dead Gcs1, where cell viability remains 

unaffected.  

 Inhibition of GTP-hydrolysis in γ-Arf1 appears to abrogate the execution of a 

function essential for cell survival. Our findings reveal that cell viability is restored by 

impeding the function of the Glo3 regulatory motif (GRM) either by its deletion or 

through its phosphorylation (phosphomimetic substitution), suggesting that GTP-

hydrolysis in γ-Arf culminates in the execution of a critical function through the GRM 

domain (Fig. 7A). Conceivably, GTP-hydrolysis in γ-Arf1 executes this critical role 

through a conformational change, relayed either directly or indirectly to the GRM 

domain (Fig. 5D). 

 Inhibition of GTP hydrolysis by employing a GTP locked form of Arf1[Q71L] or 

the use of non-hydrolysable analogues prevents membrane release of COPI 

(Presley et al., 2002; Tanigawa et al., 1993). Vesicle uncoating is a prerequisite of 

fusion and for the recycling of all coat components and occurs as a direct 

consequence of GAP-driven GTP hydrolysis. Given the importance of vesicle 

uncoating, the recycling of coat components and the crucial nature of the GTP-

hydrolysis in γ-Arf1, it is tempting to speculate that γ-Arf1, seated at the heart of a 

COPI triad (Dodonova et al., 2017), is primarily responsible for triggering coat 

disassembly.  

 We propose that at the centre of the triad (Fig. 7B), Glo3, which is tethered to 

the appendage domain of γ-COP, contacts other neighbouring Glo3 molecules or 

adjacent COPI heptamers of the triad via their GRM domain, effectively cross-linking 

individual coat molecules of the triad (Fig. 7C and 7E). GTP hydrolysis in γ-Arf1 and 

the subsequent conformational change in the GRM domain would disengage such a 
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lock, freeing individual coat molecules for disassociation (Fig. 7D). In a mutant 

lacking GAP activity, this feedback would be lost rendering individual coat molecules 

incapable of efficient disassembly from the triad and the membrane. Deletion of the 

GRM or electrostatic repulsion between its phosphorylated side chains possibly 

prevents the formation of such a lock alleviating its adverse impact in the GAP-dead 

mutant. Moreover, or alternatively, phosphorylation may accelerate the unlocking of 

the COPI triad. In addition to the γ-appendage sandwich subdomain contacting β’-

COP (Dodonova et al., 2017), a mechanism in which the GRM domains interact 

homotypically (Fig. 7C) or crosslink individual COPI heptamers in the triad (Fig. 7E) 

may help further stabilise the COPI triad.  

 Such a model would help clarify why the over-expression of Glo3, with an intact 

GRM domain, mitigates the temperature-sensitivity of mutants harbouring mutations 

in the appendage domain of β-COP or in Arf1 (De Regis et al., 2008; Yahara et al., 

2006). Mutations in the β-COP appendage, which serves as the main link between 

the cage-like (outer) and adaptor-like (inner) subcomplexes of the coat, (Dodonova 

et al., 2017), potentially destabilise the structure of the COPI coat and undermine its 

stability on membranes. The over-expression of Glo3 possibly ensures that its 

availability is not rate limiting and facilitates adequate buttressing of the triad (Fig. 7).  

 Phosphorylation and dephosphorylation of the GRM domain of Glo3 influences 

the dissociation of Arf1 from Golgi membranes (Fig 4E). By influencing the dwell-

time of COPI on membranes, this model would also help explain both the 

‘productive’ and ‘discard/futile states’ in the formation of COPI vesicles (Goldberg, 

2000; Nie and Randazzo, 2006; Springer et al., 1999). The phospho-regulation of the 

possible stabilizing effect by Snf1 may additionally serve as a kinetic timer that 

delineates productive from unproductive cycles or accelerates unlocking of the triad. 
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S432 in human ArfGAP2 and S431 in mice, corresponding to S389 in Glo3, has 

been detected to be phosphorylated in nearly 50 high-throughput studies 

(www.phosphosite.org) suggesting that this phosphorylation of the Glo3 motif by 

AMPK is evolutionarily conserved and physiologically relevant. Indeed, our finding 

fits other observations that suggest a regulation of retrograde traffic in the Golgi by 

AMPK (Miyamoto et al., 2008). 

 Our model also explains why the deletion of Glo3 leads to a secretion of HDEL-

bearing Pdi1. Curtailing the dwell time of COPI on the membrane by the deletion of 

Glo3 possibly affects the efficient sorting of cargo. In a similar manner, plasma 

membrane localised Snc1, whose recycling involves the first propeller domain of β’-

COP (Xu et al., 2017),  is mislocalised upon deletion of either Glo3 or Gcs1 (Kawada 

et al., 2015; Robinson et al., 2006). Although culminating in phenotypically similar 

outcomes the underlying mechanism by which Gcs1 or Glo3 deletion causes HDEL-

protein secretion is likely distinct. 

 Why have the two ArfGAPs evolved seemingly different affinities for the COPI 

coat? It is not known if ArfGAP2/Glo3 is associated with coatomer in the cytosol and 

recruited to membranes en bloc or if the detected stable association of COPI and 

Glo3 (Fig. 1) represents COPI triads undergoing dissociation in the cytosol. 

 β-Arf, which occupies a region of the coated vesicle where the membrane is 

more exposed (Dodonova et al., 2017), is conceivably more actively involved in 

cargo-sorting and release (Fig. 6). The δ-COP helix-b potentially relays the GTPase 

activity of β-Arf1 to COPI by functionally translating this signal into a cargo-

binding/release directive. The region adjoining the longin domain of ζ-COP is also 

predicted to form an α-helix equivalent to the δ-COP helix-b (Alisaraie and Rouiller, 

2012). It is unknown if such a helix does exist or if GTP-hydrolysis in γ-Arf1 is 
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relayed to the coat. The pivotal role of GTP-hydrolysis in γ-Arf1 raises the possibility 

that this may have contributed to the evolutionary selective pressure underlying the 

gene duplication event in γ-COP, ζ-COP and ArfGAP2/3. The alternative isoforms of 

γ-COP, ζ-COP and ArfGAP2/3 (Kliouchnikov et al., 2008; Moelleken et al., 2007) 

suggest additional plasticity of GTP-hydrolysis in mammalian γ-Arf1, which may be 

modulated depending on the associated COPI isoform and ArfGAP2/3.  

 

Although we can still only speculate about the precise mechanism by which COPI 

and ArfGAPs communicate, our data culminates in a model that reconciles the 

convoluted reports regarding the roles of Gcs1/ArfGAP1 and Glo3/ArfGAP2/3 in 

COPI vesicle biogenesis and uncoating.  

 
 
 
Materials & Methods: 

 

Yeast strains and plasmids. 

The CloNAT cassette was amplified from the pAG25 vector. The cassette was 

inserted in the yeast genome by homologous recombination into the respective 

strains, deleting GLO3 or GCS1. The knockout strains were verified by PCR from 

genomic DNA, using ORF-specific primers and antibodies against Glo3 and Gcs1. 

Yeast strains and plasmids employed in this study have been listed in Appendix 

Tables S1 and S2 respectively. 

 

Affinity chromatography 

Yeast cells were grown to mid-logarithmic phase and harvested. The cell pellet was 

flash-frozen in liquid nitrogen, crushed by hand and resuspended in lysis buffer 25 
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mM Tris pH 7.4, 50 mM KCl, 10 mM MgCl2, 5% glycerol, 1% Triton X-100. Detergent 

was not added to the lysis buffer for the preparation of cytosolic extracts. After 

thawing, the samples were incubated on ice for 15 minutes. The extracts were 

centrifuged and the supernatant incubated with Miltenyi µMACS GFP micro-beads 

for 30 minutes at 4°C. The affinity matrix and bound complexes were separated 

using Miltenyi µMACS isolation columns. The matrix was washed four times with 

lysis buffer and eluted with SDS-sample buffer containing 100 mM DTT. The 

samples were either analysed by SDS-PAGE and Western blotting or by LC-MS/MS 

analysis. 

 

Spotting assays 

To control the expression, genes were placed downstream of the repressible Met25 

promoter. Yeast cells were transformed with the indicated plasmids and grown on 

synthetic complete media lacking leucine (auxotrophic marker) and containing 

excess methionine (800 μM) to repress gene expression. Transformed cells were 

normalised (OD600) and spotted on low methionine containing synthetic complete 

media to induce gene expression. Cells were grown at 30°C for 3 days prior to 

analysis.  

 

In vitro reconstitution of the COPI-Glo3 complex 

Rosetta (DE3) and BL21 (pREP4) Escherichia coli strains containing the MBP fusion 

constructs were induced by the addition of 0.2 mM IPTG at OD600 0.8 for 3 h at 

30°C. Cells were harvested and sonicated in lysis buffer [50 mM NaH2PO4, 300 mM 

NaCl, 15 mM imidazole, pH 8.0]. Lysates were cleared first at 5,000 × g for 5 min 

and subsequently at 100,000 × g for 30 min. The MBP fusion- proteins/baits were 
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purified by incubating lysates with Ni-IDA resin. The affinity matrix was washed five 

times with lysis buffer and eluted with elution buffer [50 mM NaH2PO4, 300 mM NaCl, 

250 mM imidazole, pH 8.0]. The baits were dialyzed overnight in dialysis buffer (200 

mM NaCl, 20 mM HEPES, pH 7.4, and 1 mM DTT) before use in in vitro 

reconstitution assays. 

The TAP purification of COPI was performed as described in (Arakel et al., 2016). 

TAP-immobilised COPI was incubated with a molar excess of MBP-Glo3 (ΔAmpH) 

for 20 minutes at 4oC. The affinity matrix was washed three times with lysis buffer 

and once with TEV cleavage buffer (10 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.1% 

Triton X-100, 0.5 mM EDTA, and 1 mM DTT). The COPI-Glo3 complex was eluted 

by TEV cleavage for 1 h at 16oC. The eluates were incubated with amylose resin to 

deplete MBP. 

 

Fluorescence recovery after photobleaching, data processing and analysis 

Cells were grown in YPD media overnight, diluted and grown for 4-6 hr to mid-log 

phase in YPD or selective HC media supplemented with adenine. Glucose starvation 

was carried out for 2 hours prior FRAP measurement. Cells were washed and 

mounted in HC complete or selective media onto 1.6% agarose pad either with or 

without glucose. FRAP measurements were performed using Leica SP5-II-Matrix 

confocal microscope equipped with an oil immersion objective HCX Plan-

Apochromat 63× NA 1.40-0.6 oil, Lbd Blue CS (± glucose experiment, Fig. 4D) or 

Leica TCS SP8 confocal microscope equipped with an oil immersion objective HC 

Plan-Apochromat 63x NA 1.4 oil, CS2 (Glo3 phosphomutants experiment, Fig. 4E) at 

27°C. Data acquisition was performed in 512x512–pixel format with pinhole 2.62 

Airy, at speed 1,000 Hz in bidirectional mode and 8-bits resolution. Bleaching (0.3 s) 
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was performed with a circular spot 1.0 µm in diameter using the 488 nm Ar line at 

100% laser power. Fluorescence recovery was monitored at low laser intensity (2–

5%) at 0.26 s intervals until reaching the plateau of recovery, in total for 43 seconds 

after bleach. 25-30 separate FRAP measurements were performed for each sample. 

All FRAP curves were double normalized to whole cell fluorescence loss during 

acquisition and background. Curve fitting was performed in GraphPad Prism 

software using the one-phase association fit assuming the protein turnover at the cis-

Golgi to be an elementary association/dissociation process. All individual curves 

were fitted at once to obtain mean and 95% confidence interval of the desired 

parameters, rate constant koff and the mobile fraction Fm. 

 

Secretion assay 

Secretions assays were performed as described in (Arakel et al., 2016) 

 

Statistics 

All experiments were reproduced no less than 3 times. The data was plotted as 

mean ± s.e.m. Statistical significance (P<0.05) was assessed by a two-tailed t-test. 

 

Detection of Glo3 phosphorylation  

Yeast strains expressing either Glo3-FLAG or variants thereof were grown to early-

to-mid logarithmic phase in HC-Leu medium. Fifty OD600 per strain were harvested 

and resuspended in 500 μl of lysis buffer (25 mM Tris-HCL pH7.5, 250 mM KCl, 100 

mM glycine, 1 mM β-mercaptoethanol, 1 μM ZnCl2, 0.1% TritonX 100, 0.1 mM 

PMSF, protease inhibitor cocktail (Roche)). An equal volume of glass beads was 

added and the cells were lysed using Fast-Prep (MP Biomedical; 4x 15 sec at 6.5, 

Jo
ur

na
l o

f C
el

l S
ci

en
ce

 •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



with 5’ intervals on ice. After lysis, phosphatase inhibitors (10x: 100 mM NaF, 100 

mM NaN3, 100 mM pNPP, 100mM NaPPi, 100 mM β-glycerophosphate) were added 

when needed. Unbroken cells and debris were removed by centrifugation for 2 min 

at 3,000 rpm and 4°C. The supernatant was incubated with 20 μl of M2 anti-FLAG 

beads (Sigma) per 3 mg of cell lysate for 2 hrs at 4°C. The beads were washed 3x in 

lysis buffer and 3x in wash buffer (25 mM Tris-HCl pH 8.0, 150 mM NaCl). The 

samples were analysed either by gel electrophoresis or mass spectrometry. When 

indicated, samples were treated with alkaline phosphatase for 1 hr at 37°C prior to 

further analysis.  

For gel analysis, samples were separated on 10% Phos-tag gels (Nard 

Technologies), transferred onto nitrocellulose and decorated with either a 

homemade or a commercially available anti-FLAG antibody and developed using a 

secondary anti-mouse-HRP antibody (Pierce 1:10,000) and ECL (GE Healthcare). 

For LC/MS/MS analysis, the beads were resuspended in 50 µl wash buffer. Protein 

digestion was started by adding 0.25 μg of ELC (Wako chemicals) and incubated for 

2 hrs at 37°C. Digestion was continued with another 0.25 μg of ELC and 2 hr-

incubation at 37oC. This was followed by a 2-step digestion with trypsin (1x 0.25 µg, 

2 hr, 37°C and 1x 0.25 µg, over night at 37°C). The peptides were collected by 

centrifuging the beads for 2 min at 2,000 rpm and the supernatant was acidified by 

the addition of 1/20 vol. of 10% trifluoro-acetic acid. The samples were desalted 

using Microspin Vydac C18 silica columns according to the manufacturer’s 

recommendation (The Nest group, Southborough, MA). The desalted peptides were 

dried and phosphopeptides were enriched with TiO2 according to [1]. The 

phosphopeptide pool was desalted as above and analyzed on an Orbitrap Elite 

instrument as described in [2].  
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Glo3 purification for kinase assay 

Glo3, Glo3(214-493) [Glo3-H], and Glo3(214-493 S->A)[Glo3-H13] were expressed 

in a 1 l culture of E. coli BL21* as N-terminal His-SUMO fusion proteins. Bacterial 

pellets were lysed in 30 ml of 20 mM Tris-HCl pH 7.8, 200 mM KCl, 1% Tween 20 in 

the presence of 1 mg/ml lysozyme and protease inhibitor through sonication. The 

lysate was spun for 30’ at 24,000 g and 4°C. The supernatant was incubated with 

0.4 g Protino Ni resin (Machery & Nagel) for 1hr at 4°C rotating end to end. The 

beads were washed 4x with 20 mM Tris-HCl pH 7.8, 200 mM KCl, 0.1% Tween 20, 

2x with 20 mM Tris-HCl pH 7.8, 1 M KCl, 0.1% Tween 20 and again once with 20 

mM Tris-HCl pH 7.8, 200 mM KCl, 0.1% Tween 20. Proteins were eluted with 250 

mM imidazole in 20 mM Tris-HCl pH 7.8, 200 mM KCl, protein containing fractions 

were pooled and dialyzed 3x against PBS 5% glycerol. The proteins were snap 

frozen in liquid N2 and stored at -80°C. 

 

Snf1 kinase assay 

The Snf1 kinase assay is based on [3,4]. Cells expressing Snf1-HA or the kinase 

mutant Snf1-K84R-HA or ∆snf1 were collected by filtration, resuspended in SC 

complete (0.5% glucose) and incubated under shaking at 30°C for 20 min, collected 

again by filtration and stored at -80°C. After cell lysis through vortexing in 50 mM 

Tris-HCl pH 7.5, 50 mM NaF, 5 mM Na+ pyrophosphate, 1 mM EDTA, 0.5% TX100, 

10% (vol/vol) glycerol and protease inhibitor cocktail (Pierce), the lysate was spun 10 

min, 13,000 g, 4°C, the supernatant transferred to a fresh microfuge tube and spun 5 

min, 13,000 g, 4°C. The supernatant was incubated with 40 µl 50% slurry of anti-HA 

beads (Thermo Scientific) for 2 hrs at 4°C under end to end rotation. The beads 
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were washed 3x with 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 50 mM NaF, 1 mM 

EDTA, 1 mM DTT and protease inhibitors (Pierce) and 2x in 1x kinase buffer (20 mM 

HEPES pH 7.5, 100 mM NaCl, 0.5 mM EDTA, 5 mM MgAc2, 0.5 mM DTT. The IP 

efficiency was evaluated by immunoblot. Snf1-HA or the kinase mutant were 

incubated with 6 µg of Glo3 or Glo3 variants in 1x kinase buffer and the presence of 

100 µCi/ml 32P-ATP (SRP-301) and 1 mM ATP in a total reaction volume of 30 µl for 

60 min at 30°C. 13 µl of the reaction was separated on a 4-15% SDS-PAGE gradient 

gel. The gel was stained with Coomassie blue and a picture was taken of the gel 

before drying it on a filter paper for autoradiography.  
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Figures 

 

 

 

 

Fig. 1. COPI and Glo3 are stably associated 

(A) Schematic illustration of the heptameric COPI coat in complex with two Arf1-

molecules (β-Arf1 and γ-Arf1) and the two ArfGAPs (Glo3 and Gcs1). The thickness 
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of the arrow indicates the differential affinity between COPI and the two ArfGAPs 

based on reports utilizing isolated domains (Suckling et al., 2014; Watson et al., 

2004). 

(B) Schematic illustration of the COPI triad, the symmetric basic unit of the coat. γ-

Arf1 occupies the centre of a triad while β-Arf1 lies at the periphery where the 

membrane surface is more exposed. 

(C) Eluates were analysed by Western blot detecting coat subunits (top) or the 

respective GFP fusion proteins (bottom) Affinity chromatography of GFP-tagged 

proteins isolated from the cytosol of the three indicated strains.  

(D) Volcano plot analysis of proteins identified by mass spectrometry following the 

affinity chromatography of Glo3 and Gcs1 from detergent extracts of the indicated 

strains. The -log10 of the p-value indicating significance is plotted against the log2 of 

the enrichment. Coatomer subunits and the identified interaction partners, which are 

significantly enriched (>3σ), are coloured green and orange respectively.  

(E) List and spectral counts of interaction partners identified by mass spectrometry 

following the affinity chromatography of Glo3 and Gcs1 from detergent extracts of 

the indicated strains. COPI and Glo3 appear to be in a stable complex. Compare 

Appendix Table S3 for a full list of co-purifying proteins.  
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Fig. 2. Glo3 forms a stoichiometric complex with COPI in vitro 

(A) In vitro reconstitution of a COPI-Glo3 complex using TAP-purified coatomer and 

recombinantly expressed and purified Glo3, lacking its distal amphipathic helix (459-

493). Eluate obtained by tobacco-etch virus (TEV) protease elution of TAP-tagged 

β’-COP after incubation with Glo3 (1-459) was stained by Coomassie (Top) or 

analysed by Western blot (Bottom) using a coat antiserum detecting five of the seven 

subunits, or a Glo3 antibody.  

(B) Binding of coatomer to MBP fusion proteins of Glo3 from yeast lysates. The 

bound fraction was eluted and analysed by SDS/PAGE. Western blots were detected 

Jo
ur

na
l o

f C
el

l S
ci

en
ce

 •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



with a coat antiserum recognising five of the seven coatomer subunits.  

(C) Schematic illustration of the MBP-tagged truncations of Glo3. GTPase activating 

domain (GAP), Binding of Coatomer, Cargo and SNARE domain (BoCCS), Glo3 

motif (GRM), amphipathic helix (AmpH). 
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Fig. 3. Gcs1 and Glo3 regulate distinct cellular functions 

(A) Growth assay. Growth of Δgcs1 strains harbouring the indicated constructs on 

synthetic dropout media was assayed in MET25-promoter repressing (high 

methionine; control indicated by scheme of a repressed promoter) and inducing 

(normal methionine; test indicated by scheme of an induced promoter) conditions. A 

GAP-dead mutant of Gcs1 (R54K) supports growth at 30oC. Gcs1 L246D – ALPS 
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mutant; Gcs1 AxxA – alanine substitution of C-terminal tryptophan-based COPI 

recognition signal; Gcs1 Δ3xF AxxA – alanine substitution of C-terminal tryptophan-

based COPI recognition signal and three upstream phenylalanine’s. GTPase 

activating domain (GAP), ArfGAP1 lipid packing sensor (ALPS). 

(B) Growth assay. Growth of Δglo3 strains harbouring the indicated constructs on 

synthetic dropout media was assayed in MET25 promoter repressing (high 

methionine; Control) and inducing (normal methionine; Test) conditions. A GAP-dead 

mutant of Glo3 (R59K) does not support growth at 30oC indicating that GTP-

hydrolysis stimulated by Glo3 in γ-Arf1 is essential. Glo3 ΔC – deletion of 

amphipathic helix; Glo3 ΔGRM-ΔC – combined deletion of the amphipathic helix and 

Glo3 motif; Glo3 Δ2x+ve – alanine substitution of COPI binding region. GTPase 

activating domain (GAP). Binding of Coatomer, Cargo and SNARE domain (BoCCS), 

Glo3 motif (GRM), amphipathic helix (AmpH).  

(C) Expression analysis of proteins in the indicated strains grown in Met25 promoter 

inducing (normal methionine; Test) conditions.  
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Fig. 4. Snf1 phosphorylates Glo3 serine 389 

(A) Sequence alignment of the GRM domain of S. cerevisiae Glo3 and human 

ArfGAP2 and ArfGAP3. Asterisks indicate fully conserved residues, colons and stops 

indicate residues that are either strongly or weakly conserved. Regions of highest 
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conservation, when comparing other eukaryotes, are highlighted in orange.  

(B) Δglo3 strains harbouring the indicated constructs under the control of a Tef1 

promoter were analysed by Phos-tag PAGE. The electrophoretic mobility shift 

(arrowhead) indicates that S389 and S398 are phosphorylated in the presence and 

absence of the Snf1 kinase respectively. Treatment with λ-phosphatase (Ppase) 

resulted in dephosphorylation. 

(C) Analysis of proteins by Phos-tag PAGE and SDS-PAGE following glucose 

starvation (± Glucose; ±D) for 3 hours in BY4741. 

(D) Arf1-GFP fluorescence recovery after photobleach (FRAP) in the presence (+D) 

or absence (-D) of glucose. Cells were grown to mid-logarithmic phase and glucose 

starved for a period of 2 hours prior to FRAP measurement. The plot, reflecting the 

recovery of Arf1-GFP at Golgi membranes (Vrg4-mCherry), represents the mean 

FRAP curves with the fits.  

(E) Arf1-GFP fluorescence recovery after photobleaching (FRAP) analysis in Δglo3 

strains expressing the indicated Glo3 constructs. Cells were grown to mid-

logarithmic phase and glucose starved for a period of 2 hours prior to FRAP 

measurement. The plot, reflecting the recovery of Arf1-GFP at Golgi membranes 

(Vrg4-mCherry), represents the mean FRAP curves with the fits. 
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Fig. 5. Phosphorylation/dephosphorylation regulates Glo3 function 

(A) Growth assay. Growth of Δglo3 strains harbouring the indicated constructs on 

synthetic dropout media was assayed in MET25-promoter repressing (high 

methionine; control indicated by scheme of a repressed promoter) and inducing 

(normal methionine; test indicated by scheme of an induced promoter) conditions. 

The phospho-mimetic mutant of the Glo3 motif rescues the dominant negative effect 

of the GAP-dead Glo3 indicating that phosphorylation/ dephosphorylation of the Glo3 

motif regulates Glo3 function. 
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(B) Expression analysis of proteins in the indicated strains grown in Met25 promoter 

inducing (normal methionine; Test) conditions. 

(C) Affinity chromatography of GFP-tagged Glo3 variants from detergent extracts of 

Δglo3 strains harbouring the indicated GFP-tagged constructs and subsequent 

evaluation of COPI association. Glo3 ΔGRM-ΔC – combined deletion of amphipathic 

helix and Glo3 motif; Glo3 S389,398A – alanine substitution of the indicated serines- 

non-phosphorylated mimetic; Glo3 S389,398A – aspartic acid substitution of the 

indicated serines- phosphomimetic. Glo3 Δ2x+ve – alanine substitution of COPI 

binding region. 

(D) Summary. The Glo3 motif regulates the function of the GAP domain. Inactivation 

of the Glo3 motif by truncation or phosphorylation (phosphomimetic) rescues the 

dominant negative lethality caused by a non-functional GAP domain. Inferred 

functionality of the GRM domain is highlighted in brown. GTPase activating domain 

(GAP), Binding of Coatomer, Cargo and SNARE domain (BoCCS), Glo3 motif 

(GRM), amphipathic helix (AmpH). 
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Fig. 6. Manipulating Gcs1 or COPI in the beta-Arf niche have similar effects on 

cargo sorting 

(A) Affinity chromatography of GFP-tagged Glo3 from detergent extracts of Δgcs1 

strains harbouring the indicated Gcs1 constructs and subsequent evaluation of COPI 
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and Gcs1 association. Gcs1 (R54K) – GAP-dead mutant of Gcs1; L246D – ALPS 

mutant; Gcs1 AxxA – alanine substitution of C-terminal tryptophan-based COPI 

recognition signal. 

(B) Secretion assay of the indicated strains harbouring the indicated plasmids. 

Proteins secreted into the culture medium were analysed by SDS-PAGE and 

immunoblot analysis using antibodies specific for Pdi1. Cell pellets from the same 

cultures were also analysed using antibodies specific for Pgk1 and Gcs1. 

(C) Plot of the relative amounts of Pdi1 secreted into the culture medium by the 

indicated strains, as quantified by the densiometric analysis of immunoblots. 

Quantification of three independent experiments. Error bars depict s.e.m. 

(D) Secretion assay of the indicated strains harbouring the indicated plasmids. 

Proteins secreted into the culture medium were analysed by SDS-PAGE and 

immunoblot analysis using antibodies specific for Pdi1. Cell pellets from the same 

cultures were also analysed using antibodies specific for Pgk1 and Glo3. 

(E) Plot of the relative amounts of Pdi1 secreted into the culture medium by the 

indicated strains, as quantified by the densiometric analysis of immunoblots. 

Quantification of four independent experiments. Error bars depict s.e.m. 
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Fig. 7. The GRM domain regulates Glo3 function  

(A) Table summarising the key results obtained by manipulating the GAP and the 

GRM domain. 

(B) Model: Adjacent GRM domains interconnect individual coat molecules at the 

heart of the triad effectively locking the triad together and stabilising COPI on the 

membrane. 

(C) Model: GTP hydrolysis in γ-Arf triggers a conformational change in the GRM 

domain and uncouples adjacent GRM domains effectively unlocking the triad and 

promoting the dissociation of COPI. 

(D) Schematic illustration of the COPI triad for structural orientation.  

(E) Model: The GRM domains of Glo3 interconnect individual coat molecules at the 

heart of the triad effectively locking the triad together and stabilizing COPI on the 

membrane. In this depiction, the GRM domain interconnects adjacent coat 

heptamers within a triad rather than adjacent GRM domains of neighboring Glo3 

molecules 
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No. Strain  Genotype    Source 
______________________________________________________________ 
1. BY4741  MATa his3∆0 leu2∆0 met15∆0 ura3∆0  Arakel et al. 2016 
 
2. Ret2LD2α (BY4743 Spore) MATa his3∆1 leu2∆0 met15∆0      Arakel et al. 2016 

ura3∆0; YFR051c::kanMX4; p415 ret2LD2α 
 

3. Ret2LD (BY4743 Spore) MATa his3∆1 leu2∆0 met15∆0   Arakel et al. 2016 

ura3∆0; YFR051c::kanMX4; p415 ret2LD 
 

4.  Δgcs1  MATa his3∆0 leu2∆0 met15∆0 ura3∆0;   This study 

YDL226C::CloNAT 

 
5.  Δglo3  MATa his3∆0 leu2∆0 met15∆0 ura3∆0;   This study 

YER122C::CloNAT 

MATa his3-11,15  leu2, trp1, ura3, ade2   Estrada et al., 2014 

glo3::HIS3 

6.      GFP-Glo3  MATa his3∆0 leu2∆0 met15∆0 ura3∆0;   This study 

Nop1prom-GFP- YER122C:: ura3   
 
 

7.  Δgcs1  MATa his3∆0 leu2∆0 met15∆0 ura3∆0;  This study 
        GFP Glo3 YDL226C::CloNAT; Nop1prom-GFP-  

YER122C:: ura3  
 
8.         sec26FW MATa his3-11,15 leu2, trp1, ura3, ade2  This study 
     (F856A, W860A) 
 

9. YAS4326   MATa Snf1::Snf1K84R-3HA(TRP) leu2,3,  This study 

             Snf1K84R-HA  his 3-11, trp1-∆1 ura3-1 ade2-1 

 

10. YAS3787 MATa Snf1::His3 leu2,3,    This study 

                   Δsnf1 his 3-11, trp1-∆1 ura3-1 ade2-1 

 

11. YAS3098   MATa Snf1:: Snf1-3HA(TRP) leu2,3,   This study 
   his 3-11, trp1-∆1 ura3-1 ade2-1 

 
12.  YAS4516 MATa ARF1::ARF1-yEGFP (kanMX),   This study 

VRG4::VRG4-mCherry (hphNTI) glo3::URA3  
leu2-∆1, lys2-801 ade2-101c his3-∆200  
p415 Glo3  

 
  

 

 Table S1. Yeast strains used in this study 
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Table S2. Plasmids used in this study 
 
All plasmids used in this study from the Schwappach lab have been deposited 

with the Addgene plasmid repository. A detailed description of those plasmids 

is available at: https://www.addgene.org/Blanche_Schwappach/  

 
No. Plasmids    Addgene ID  Database ID 
1.  p415 Gcs1    112646  AU2328  

2. p415 Gcs1 R54K   112647  AU2329 

3. p415 Gcs1 R54K L246D  112648  AU2330 

4.  p415 Gcs1 R54K AxxA  112649  AU2331 

5. p415 Gcs1 Δ3xF AxxA  112650  AU2332 

6. p415 Glo3    112651  AU2333 

7. p415 Glo3 R59K   112652  AU2334 

8. p415 Glo3 R59K ΔC   112653  AU2335 

9. p415 Glo3 R59K ΔGRM-ΔC  112654  AU2336 

10. p415 Glo3 R59K Δ2x+ve  112655  AU2337 

11. p415 Glo3 R59K S389,398 A  112656  AU2338 

12. p415 Glo3 R59K S389,398 D  112657  AU2339 

13. p415 GFP-Glo3   112658  AU2340 

14. p415 GFP-Glo3 ΔGRM-ΔC  112659  AU2341 

15. p415 GFP-Glo3 S389,398 A  112660  AU2342 

16. p415 GFP-Glo3 S389,398 D  112661  AU2343 

17. p415 GFP-Glo3 Δ2x+ve  112662  AU2344 

18. p415 Met25 Glo3 ΔGRM-ΔC  129487 

19.  p415 Met25 Glo3 S389,398 A 129485 

20. p415 Met25 Glo3 S389,398 D 129486 

21. A102 GAP-BoCCS-GRM  123286 

22. A102 GAP-BoCCS   123287 

23. A102 BoCCS-GRM   123288 

24. A102 par-BoCCS-GRM  123289 

25. A102 BoCCS    123290 

26.   A102 GRM    123291 

27.  A102 Glo3 Δ AmpH Δ2x+ve  129484 

28. p425TEF Glo3-FLAG 

29. p425TEF Glo3-FLAG S389D 

30. p425TEF Glo3-FLAG  

SS389/390AA  

 
 
 

J. Cell Sci.: doi:10.1242/jcs.232124: Supplementary information

Jo
ur

na
l o

f C
el

l S
ci

en
ce

 •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n



Table S3. Proteins co-purifying with Glo3 and Gcs1.  
 
List of complete protein identification results from LC-MS/MS analysis of 

affinity purified Glo3 and Gcs1. Contains spectral counts of identified proteins 

and their UniProt accession identities. See Excel file.  

 

Table S4. Arf1-GFP FRAP parameters.  

Auxiliary to Fig. 4D and 4E.  

Kinetic parameters derived from the FRAP data obtained by FRAP analysis of 

Arf1-GFP turnover at the Golgi. Mean with 95% confidence interval for 

dissociation rate koff and mobile fraction Fm are shown.  

 
Protein 

analyzed 
Strain 

background D Dissociation rate koff [s-1] Mobile fraction Fm [%] 
mean 95% CI mean 95% CI 

Arf1 GFP 

WT + 0.164 0.154 to 0.173 0.769 0.761 to 0.776 

WT - 0.234 0.219 to 0.249 0.854 0.849 to 0.859 

Δglo3 +EV + 0.198 0.182 to 0.213 0.713 0.707 to 0.719 

Δglo3 +Glo3 WT + 0.209 0.192 to 0.226 0.706 0.701 to 0.712 

Δglo3 +Glo3 AA + 0.283 0.258 to 0.308 0.622 0.618 to 0.627 

Δglo3 +Glo3 DD + 0.196 0.177 to 0.215 0.765 0.756 to 0.773 

 
Calculated parameters derived from FRAP analysis of Arf1 GFP at the cis-Golgi 
compartment. CI – confidence interval. D – Glucose. 

 

 
Table S5. Antibodies used in this study 

Unique 
Identifier 
 

Antibody Species Source 

Ab0559 Coat 
(COPI) 

Polyclonal Rabbit Hans Dieter Schmitt, MPI for 
Biophysical Chemistry, Germany 
 

Ab0172 GFP Polyclonal Rabbit Torrey Pines biolabs (TP401) 
 

Ab0234 MBP Monoclonal Mouse New England BioLabs (E8032S) 
 

Ab0180 Glo3 Polyclonal Rabbit Anne Spang, Biozentrum University of 
Basel, Switzerland. 
 

Ab0162 Gcs1 Polyclonal Rabbit Anne Spang, Biozentrum University of 
Basel, Switzerland. 
 

Ab0270 Pgk1 Monoclonal Mouse Thermo Fisher Scientific (459250) 
 

 

 

Click here to Download Table S3
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http://www.biologists.com/JCS_Movies/JCS232124/TableS3.xlsx


Supplementary figures: 
 
Fig. S1. COPI binds the BoCCS domain of Glo3. 
Related to Figure 2 

Binding of TAP-purified coatomer to MBP fusion proteins of Glo3. The bound fraction 

was eluted and analysed by SDS/PAGE. Western blots were detected with a coat 

antiserum recognising five of the seven coatomer subunits. Glo3 Δ2x+ve – alanine 

substitution of COPI binding region within the BoCCS domain. 
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Fig. S2. Deletion of the Glo3 C-terminal amphipathic helix does not perturb its 
intracellular localization or its association with COPI.  
Related to Figure 3 

(A) Affinity chromatography of GFP-tagged Glo3 variants from detergent extracts of 

Δglo3 strains harbouring the indicated GFP-tagged constructs and subsequent 

evaluation of COPI association. Western blots were detected with a coat antiserum 

recognising five of the seven coatomer subunits. 

(B) Steady-state localisation analysis of GFP tagged proteins (expressed under the 

Met25 promoter) in a Δglo3 strain. Scale bar, 5 µm. 
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Fig. S3. S389 of the GRM domain is phosphorylated by the Snf1 Kinase. 
Related to Figure 4 

(A) Schematic representation of the Glo3 variants used in (B and C). 

(B) Immunoprecipitation of HA-tagged Snf1 for use in (C). 

(C) Kinase assay demonstrating direct phosphorylation of Glo3 by Snf1. Purified 

Glo3 and variants thereof were incubated in the presence of Snf1, a kinase dead 

Snf1 mutant (K84R) or in its absence, subjected to SDS-PAGE and detected by 

autoradiography. 

(D) Quantification of S389 phosphorylation in the presence or absence of the Snf1 

kinase using a S398A construct. 

(E) Quantification of S398 phosphorylation in the presence or absence of the Snf1 

kinase using a S389A construct. 

(F) Growth assay. Growth of sec26FW Δglo3 strains harbouring the indicated 

constructs. 
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Fig S4. Phosphorylation/ dephosphorylation of the Glo3 GRM domain alters 
Arf1 dynamics on Golgi membranes. 
Related to Figure 4 

Live cell imaging of C-terminally GFP tagged Arf1 and C-terminally mCherry tagged 

Vrg4 in a ∆glo3 strain expressing the indicated constructs. Arrows indicate 

fields/regions of co-localisation of Arf1 and the Golgi marker Vrg4 used for 

fluorescence recovery after photobleaching (FRAP) experiments to study the 

dynamics of Arf1 at the Golgi. Scale bar, 5 µm. 
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