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1. SUMMARY 

 

Hepatitis B virus (HBV) is a blood-borne human pathogen of worldwide importance. It 

replicates in the hepatocytes in the liver and causes a disease known as Hepatitis B. 

Approximately 3% of the world population are chronically infected with HBV. Chronic 

Hepatitis B (CHB) is the number one cause of hepatocellular carcinoma in the world 

leading to close to 1 million deaths every year. Treatment options are limited and none 

of them are curative due to persistence of the viral covalently closed circular (ccc)DNA, 

a plasmid-like molecule which serves as the template for viral transcription and 

replication. New therapies are urgently needed that would decrease the global burden 

of HBV. A better understanding of the HBV immunobiology and host-virus interactions 

is critical in this regard. Due to the narrow species and tissue tropism, research in this 

area has been hindered by a lack of suitable experimental in vivo models of HBV 

infection leaving a lot of gaps in our understanding of the viral immunobiology. For 

example, HBV interaction with the host innate immune system has been a matter of 

debates for years. Although most viruses trigger various pathogen recognition 

receptors (PRRs) in the cells they infect leading to the induction of interferons and an 

antiviral state, HBV does not seem to do that. It remained controversial however, 

whether this is because HBV is invisible to PRRs (i.e. acting as a “stealth virus”) or 

because it efficiently suppresses innate immune responses very early after infection. 

Another example is HBV immune control. In the natural history of CHB most of the 

patients reach the so called HBeAg-negative chronic infections stage, when the virus 

is under control characterized by no or a very low viral load in the absence of 

noticeable immune activity that is otherwise known to control the HBV replication. 

In this thesis we used human liver biopsy material from a large biobank of the 

University Hospital Basel in order to shed light on host-virus interactions in chronic 

hepatitis B. We established a novel short-term ex vivo liver biopsy culture system, 

allowing to study innate immune activation in situ in the human liver. We successfully 

used this system to demonstrate that HBV does not induce innate immune responses 

in the human liver in CHB. Importantly, HBV did also not interfere with the experimental 

induction of innate responses, suggesting that it behaves like a “stealth virus” staying 

under the radar of the cell’s defense systems. As a follow-up to this study, we discuss 
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the implication of these findings on the potential use of modulators of innate immunity 

as novel therapeutics for the treatment of chronic hepatitis B. 

In a separate study, we sought to get an insight on how the host controls the virus 

during the HBeAg-negative chronic infection (ENCI) stage. By carefully analyzing HBV 

replication intermediates in the liver biopsies of patients of different stages of CHB, we 

have discovered that HBV replication is specifically inhibited downstream of pre-

genomic (pg)RNA production during the ENCI stage of CHB. Our findings provide a 

starting point for further studies in this direction that eventually should identify the 

mechanism behind this inhibition and harness it for therapeutic use. 
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2. ABBREVIATIONS 

 

ALT    alanine aminotransferase 

APOBEC  apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 

AVT    antiviral therapy 

cccDNA   covalently closed circular DNA 

cGAS   cyclic GMP-AMP Synthase 

CHB    chronic hepatitis B 

EDTA   ethylenediaminetetraacetic acid 

EPCHB   HBeAg-positive chronic hepatitis B 

EPCI   HBeAg-positive chronic infection 

ENCHB   HBeAg-negative chronic hepatitis B 

ENCI    HBeAg-negative chronic infection  

(F)ISH   (fluorescent) in situ hybridization 

HAV   Hepatitis A virus 

HBV    Hepatitis B virus 

HBcAg  Hepatitis B virus “core” antigen 

HBeAg  Hepatitis B virus “e” antigen 

HBsAg  Hepatitis B virus “S” antigen 

HIV   Human immunodeficiency virus 

IF   immunofluorescence 

IRF   Interferon-regulatory factor 

ISG    Interferon-stimulated gene 

IFN   Interferon 

IL6    Interleukin-6 

NDC    nuclear DNA contamination 

NDV   Newcastle disease virus 

NF-kB   nuclear factor kappa B 

NUC    nucleos(t)ide inhibitor 

(p)STAT1   (phospho) signal transducer and activator of transcription 1 

PAMP   pathogen-associated molecular pattern 

PKR   protein kinase R 

PRR    pattern recognition receptor 
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RIG-I    Retinoic acid-inducible gene I 

repDNA   DNA replicative intermediates 

RLR    RIG-I-like receptor 

RT    reverse transcription 

SeV    Sendai virus 

TLR    Toll-like receptor 

TNFa   Tumor necrosis factor alpha 
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3. INTRODUCTION 

 

3.1 Hepatitis B virus research 

Hepatitis B virus (HBV) is a small DNA virus that belongs to the hepadnaviridae family 

[1]. This family consists of 2 genera: mammalian orthohepadnaviruses (with human 

HBV being a prototype virus) and avian avihepadnaviruses (prototype – Duck 

Hepatitis B Virus (DHBV)) [1]. HBV is a blood-borne pathogen that naturally infects 

humans and can also infect chimpanzees causing a disease known as Hepatitis B [2]. 

Although a possible existence of an infectious agent causing post-transfusion chronic 

hepatitis was evident since at least the 1940s, the first connection to the virus was 

made only in the 1960s, with the identification of a hepatitis-specific serum antigen in 

serum of Hepatitis B patients, who coincidentally happened to be predominantly 

Australian aborigines [3, 4]. This antigen, named therefore “Australia Antigen” (AuAg) 

later turned out to be a component of the infectious agent, HBV [5, 6]. These 

discoveries led to establishment of screening technologies and clinical diagnostic 

tools. Subsequent identification of similar viruses in other species, such as 

Woodchuck Hepatitis Virus (WHV) in woodchucks and DHBV in Peking ducks 

significantly accelerated HBV research [7, 8]. Because of their similarity to HBV, WHV 

and DHBV served as indispensable models for studying the molecular biology of 

hepadnaviruses and for drug screening [9]. Chimpanzees have been the most 

physiologically relevant and informative model of HBV infection over many years [10], 

however recent ethical considerations effectively shut down academic research in 

these animals [11], emphasizing the need for alternative models and bringing forward 

human liver biopsies as the only (and very rare) source of information about chronic 

HBV infection in the liver. In the absence of suitable immunocompetent animal model 

systems, human liver biopsies are currently a gold standard for validation of the results 

obtained in cell culture systems or in other animal models. 
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3.2 Molecular Biology of HBV 

3.2.1 HBV particle structure and composition 

 

 

Figure 1. A schematic representation of HBV viral and subviral partic les. Infectious virion 
(Dane part icle) is shown on the left. Subviral particles are on the right (filaments and 
spheres). Red – envelope, black – capsid. HBV genomic DNA with covalent ly attached 
HBV polymerase (green) is schematically depicted inside the capsid. RT, reverse 
transcriptase domain of HBV polymerase; pr,  primase domain. HBsAg, HBV surface 
antigen; HBcAg, HBV core antigen. LHBs, MHBs and SHBs are Large, Middle and Small 
HBs antigens, respectively. Figure modified from Gehrlich et al., (2013) [2]. 

Mature infectious HBV virions are called “Dane particles” after the scientist who first 

described them (Figure 1) [5]. A particle is ~42 nm in diameter and it carries 1 copy of 

the HBV genome, a ~3.2 kb relaxed circular partially double-stranded DNA molecule 

(rcDNA) (Figure 1 and 2) [5, 12, 13]. Both strands of the genomic DNA have gaps and 

the circular conformation is maintained due to overlapping complementary regions in 

the 5’-ends of each strand [14]. The minus(-)-strand is slightly overlength and carries 

a P (“polymerase”) protein covalently attached to its 5’-end [14]. The plus-strand is 

incomplete and its 5’-end is constituted by an RNA primer. HBV genome is 

encapsulated in the virus-encoded capsid which consists of the C (“core”) protein (or 

“HBV core antigen” (HBcAg)) homodimers [14]. Capsid is enveloped in a host derived 

lipid membrane containing glycosylated HBV L (“Large”), M (“Middle”) and S (“Small”) 

envelope proteins, collectively known as “HBV surface antigens” (HBsAg) [15]. The N-
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terminal domain of the L protein is myristoylated [15]. In addition to Dane particles, 

serum of HBV infected individuals also contains smaller non-infectious "subviral" 

particles devoid of nucleic acids but containing viral envelope proteins that occur as 

filaments and spheres depending on their composition (Figure 1) [16] [15]. The 

subviral particles are present in large excess over infectious Dane particles [16].  

 

Figure 2. HBV genome organization. Blue 
and grey lines depict HBV genomic DNA in 
the form of relaxed circular (rc)DNA, as it 
exists in the virion. P, HBV polymerase 
covalent ly attached to 5’-end of the minus-
strand DNA. Red wiggly line is the 5’-
capped RNA primer on the plus-strand. 
Open reading frames (ORF) are shown in 
the center. Green arrows indicate four 
internal promoters. Enh I and Enh II are 
transcriptional enhancers. DR1 and DR2 – 
direct repeats. Outer lines are HBV 
transcripts, produced from covalently 
closed circular (ccc)DNA. Arrowheads 
denote transcription start sites. e  - RNA 
encapsidation signal on pregenomic 
(pg)RNA. Pre-core transcript is slightly 
longer than pgRNA and is not separately 
shown. Figure modified from Nassal et al., 
(2016) [14].  

3.2.2 HBV life cycle 

3.2.2.1 HBV entry and nuclear translocation 

Initial attachment of the virus to cells seems to happen through weak non-specific 

interactions with negatively charged heparan sulfate proteoglycans (HPSG) (Figure 3) 

[17]. This interaction is essential, but not sufficient for infection [18]. The initial 

attachment is followed by a specific interaction of the N-terminal part of the L-HBsAg 

with the cognate HBV receptor hepatocyte-specific bile acid transporter sodium-

taurocholate cotransporter polypeptide (NTCP), that determines cell-type and species 

specificity of HBV [19, 20]. Upon receptor-mediated entry, the genome-containing 

capsid is released into the cytoplasm and actively transported into the nuclear basket 

with the help of the transport factors importin alpha and beta [21]. What happens next 

is not well understood, however it seems that capsid interaction with nuclear pore 

e 

pgRNA 
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proteins results in capsid disassembly and release of HBV genome into the nucleus 

[22]. 

3.2.2.2 cccDNA  

In the nucleus, the HBV genome undergoes a series of modifications by nuclear 

enzymes. The molecular mechanisms of these modifications still remains obscure, but 

in general, the following events must take place: 1) synthesis of the plus-strand is 

completed, 2) terminal redundancy is eliminated from the minus-strand 3) HBV 

polymerase is cleaved off the minus-strand 5’-end, 4) RNA primer is eliminated from 

the 5’-end of the plus-strand, 5) the DNA ends are ligated together on both strands 

[14]. It is conceivable that the infected cell mistakes viral rcDNA for damaged cellular 

DNA and activates the DNA repair machinery, which then performs all the steps listed 

above. The resulting molecule is a double-stranded, covalently closed circular DNA 

(cccDNA) molecule, which is central for the HBV life cycle and for persistence (Figure 

3) [14].  

Figure 3. HBV life cycle (modified from Guidotti and Chisari, 2006 [23]. See text for 
details. NTCP, sodium taurocholate co-transporting polypeptide; HSPG, heparan sulfate 
proteoglycans. intDNA, integrated HBV DNA 
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CccDNA exists in the nucleus as an episome (or “minichromosome”) and is 

indistinguishable from cellular DNA by virtue of its association with histones that even 

carry epigenetic markers (e.g. histone modifications) [24]. CccDNA appears to be 

extremely stable as it can persist for years in the liver, including during antiviral therapy 

and even after resolution of infection [25, 26]. Elimination of cccDNA from the 

hepatocytes is a “holy grail” of anti-HBV drug development, however none of the 

current therapies specifically targets this molecule [27]. 

3.2.2.3 HBV transcription and proteins 

HBV cccDNA serves as the template for transcription which is mediated by the cellular 

RNA polymerase II machinery and is regulated by liver-specific transcription factors 

(Figure 2) [14, 28]. The dependency on the liver-specific transcription factors is 

another parameter determining the hepatotropism of HBV. The viral transcripts contain 

a 5’-cap structure and 3'-poly-A tail and thus are indistinguishable from cellular RNA 

[29]. Unspliced viral RNAs are exported from the nucleus and translated by the cellular 

protein synthesis machinery. 

Information in the HBV genome is very densely packed using all three reading frames 

(Figure 2, in the center) [30]. The HBV genome encodes for 7 different proteins which 

are produced from 5 different but partially overlapping transcripts (Figure 2, outer 

lines). While all HBV transcripts are terminated at the same poly-A site, they each are 

initiated at unique transcriptional start sites defined by 4 RNA pol II promoters and two 

enhancer elements (Figure 2, green arrowheads, Enh I and Enh II). The shortest 

transcript is 0.7 kb long and codes for the X protein (HBx). X is expressed early in 

infection and facilitates transcription of all other HBV RNAs [31]. It does so via binding 

to and targeting for degradation the “structural maintenance of chromosomes” (Smc) 

protein complex Smc5/6, which inhibits episomal DNA transcription [32]. The 2.1 kb 

PreS2/S mRNA codes for Middle and Small envelope proteins, while the large 

envelope (LHBs) protein is produced from a longer 2.4 kb PreS1 transcript. The 3.5 

kb larger-than-genome pre-genomic RNA (pgRNA) transcript has two functions: 1) it 

encodes C (core) and P (polymerase) proteins and 2) serves as the template for HBV 

replication (discussed below). HBV core makes up the viral capsid and the polymerase 

replicates the viral genome. The precursor of pre-core protein, also known as “HBV e 

antigen” (HBeAg), is produced from a pre-core mRNA that, at the 5’-end is just a few 

nucleotides longer than the pgRNA [29]. This precursor is proteolytically processed to 
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form mature HBeAg that is efficiently secreted into the serum [33]. HBeAg is not 

essential for viral replication and its function is rather unclear [34]. It is believed to act 

as an immune modulator, ensuring “immune tolerance” to HBV infected cells [35, 36]. 

3.2.2.4 Replication 

Hepadnaviruses are “pararetroviruses”, meaning that similar to retroviruses their 

replication involves a reverse transcription step. However, contrary to retroviruses, 

that have an RNA genome and replicate via a DNA intermediate, hepadnaviruses are 

DNA viruses that replicate via an RNA intermediate [29]. The HBV polymerase 

possesses both RNA- and DNA-dependent DNA polymerase and RNase H activities 

and therefore can perform all steps required for complete HBV replication [30]. The 

complete mechanism of HBV replication has recently been reviewed in detail by Hu 

and Seeger (2015) [30]. Here, I will briefly summarize the main steps of this complex 

process as outlined in Figure 4. HBV replication starts with a tripartite interaction 

between HBV polymerase, pgRNA and core. Specifically, polymerase first binds to a 

5’-proximal stem-loop structure on the pgRNA called epsilon (e) for “encapsidation”. 

This binding triggers packaging of the pgRNA-polymerase complex into a newly 

forming nucleocapsid and initiates the reverse transcription reaction which then takes 

place inside the viral capsid. A Tyr residue in the N-terminal domain of the polymerase 

serves as a primer for minus-strand DNA synthesis by providing an -OH group to which 

the first nucleotide will be attached. As a result of this protein-mediated priming, 

polymerase becomes permanently covalently attached to the newly synthesized 

negative DNA strand. First ~3 nucleotides are added to the growing (-)-strand using 

the e element as a template, then the synthesis is transferred to a matching acceptor 

motif in the 3’-proximal direct repeat 1 (DR1) (first template switch; see Figure 4A). 

The polymerase then continues (-)-strand DNA synthesis until it reaches the 5’-end of 

the pgRNA thus producing a unit-length minus-strand DNA with a short redundancy 

(‘r’) on its 3’-end. pgRNA is directly degraded during the process by the RNase H 

activity of the polymerase, except for the last ~10 nucleotides which then serve as the 

primer for plus(+)-strand DNA synthesis (Figure 4B). To that end, the RNA primer is 

transferred to DR2 at the 5'-end of the (-)-strand (2-nd template switch, Figure 4C) and 

(+)-strand DNA synthesis is initiated and continues until it reaches the 5’-end of the (-

)-strand (Figure 4D). The presence of short identical DNA sequences (‘r’) at the 5’- 

and 3’-ends of the (-)-strand allows the polymerase to “jump” from the 5’-end to the 3’-
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end of the (-)-strand (3-rd template switch, Figure 4E) and continue (+)-strand DNA 

synthesis from there (Figure 4F). The (+)-strand synthesis does not proceed until the 

end, leaving a large (up to ~1000 nt) gap, supposedly because at this point the virions 

are exported out of the cell where no more nucleotides are available to continue DNA 

synthesis. The resulting HBV genome molecule is therefore a partially double-

stranded relaxed circular DNA that has a P protein covalently attached to the 5’-end 

of the slightly overlength (~10 nt) (-)-strand, and an incomplete (+)-strand whose 5’-

end is composed of an RNA primer. There is about a 10% chance that the 2-nd 

template switch does not occur resulting in in situ priming with the polymerase simply 

following all the way back along the minus-strand (Figure 4G-H). This generates a 

non-functional double-stranded linear (dsl) DNA genome. 

Figure 4. HBV replication scheme (Hu and Seeger, 2015 [30]). See text for details. Steps 
A, B, C, … à F result in the production of correct rcDNA HBV genomes. Steps A, B à 
G, H result in replicat ion-deficient double-stranded linear (dsl)DNA. The core protein 
which is required for init iation of the replication is not shown. 

Capsids containing mature genomes (rcDNA or dslDNA), but not immature capsids 

containing RNA or ssDNA, translocate into multivesicular bodies (MVB) where they 

associate with the envelope proteins and get exported out of the cells [37]. This step 

is limited by the availability of the HBV surface proteins, especially the L-HBsAg. In 

case of insufficient amount of envelope proteins, the mature capsids can be 

transported into the nucleus and recycled, resulting in genomic DNA being released 
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into the nucleus and converted to a cccDNA, thus amplifying the cccDNA pool [38]. 

The evidence for this process is coming from experiments in the duck DHBV system 

where this mechanism has been shown to contribute significantly to the cccDNA pool 

formation. The data for human HBV suggest that this mechanism either does not exist, 

or at least does not play a significant role in HBV infection in humans [39, 40]. 

3.2.2.5 HBV integration 

In contrast to retroviruses, the HBV viral life cycle does not include obligatory 

integration of its genome into the host genome [29]. Nevertheless, integrated HBV 

DNA is often found in the late stages of chronic hepatitis B (CHB) and in hepatocellular 

carcinomas (HCC) [41, 42]. The preferred source for HBV integration is dslDNA [43]. 

When a cell is infected with a virion containing dslDNA several outcomes are possible: 

i) dslDNA is degraded ii) dslDNA is converted into cccDNA by non-homologous end 

joining DNA repair pathway, often resulting in functionally defective cccDNA 

molecules, or iii) it can integrate into the host genome (Figure 3) [43]. Since integration 

is not obligatory for the HBV life cycle, it is not clear whether it plays any role at all in 

HBV infection [44]. Integrated HBV DNA cannot generate new virions, because it 

cannot produce full-length pgRNA, however the HBsAg coding ORFs are intact and 

can be actively expressed from their own promoters [45, 46]. In addition, truncated 

forms of HBx might be produced [47]. Expression of core and polymerase genes is 

only possible if HBV DNA integrates in the proximity of an active promoter in the host 

DNA, because the endogenous promoters are typically separated from the 

transcriptional start site in the linear copy of the integrated HBV DNA. Integration 

appears to happen randomly, without any preferred location in the human genome 

[48]. The extent of integration in chronically infected human liver is unknown, but is 

estimated to be ~0.01-1% in the late stages [42, 48]. There is no direct link between 

HBV integration and the incidence of HCC, however it is reasonable to assume that 

given the random nature of HBV integration, some of these integrations can be pro-

oncogenic [42, 43, 48, 49].  
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3.3 Hepatitis B pathogenesis 

3.3.1 Global importance of HBV  

Hepatitis B virus infection in humans causes a disease known as Hepatitis B. The 

majority of adult infections result in self-limited acute Hepatitis B (AHB). However, 

most vertical transmissions from mother to child and ~5% of adult infections become 

chronic. Chronic Hepatitis B (CHB) progresses gradually over time, resulting in 

continuous liver damage and eventually leading to cirrhosis and/or to liver cancer. 

CHB is the underlying cause of more than half of liver cancers worldwide and leads to 

close to 1 million liver-related deaths every year [50, 51]. HBV is highly endemic in 

Sub-Saharan Africa and South-East Asia (Figure 5). It is estimated that ~3% of the 

world population is chronically infected with HBV, whereas in some highly endemic 

areas endemicity can reach close to 25% [51, 52]. Due to an efficient vaccination 

program, HBV spread has been contained in many regions of the world, however it 

still has a significant impact globally [51]. 

Figure 5. HBV endemicity (1957-2013). Figure modified from Schweitzer et al. (2015) 
[52] 

3.3.2 Acute Hepatitis B 

Acute Hepatitis B has been extensively studied in chimpanzees – another natural host 

for HBV infection and the only non-human primate in vivo model [10]. Upon initial 

infection HBV replicates to very high titers for several weeks before the immune  
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Figure 6. Natural history of chronic Hepatit is B. See text for details. The names of the 
stages according to the latest nomenclature [57] are given on top. Note that the 
progression of the infection following HBeAg loss is not linear (dashed arrows in the 
upper part of the scheme). HBeAg, HBV E antigen; HBsAg, HBV S antigen. Figure 
modified from Trépo, Chan and Lok (2014) [53]  

system finally starts to fight the virus [53]. Strong T cell responses suppress viral 

replication via cytolytic and non-cytolytic mechanisms and eliminate most of the 

infected cells causing acute liver disease [53]. This typically leads to complete 

resolution of the infection with the loss of HBsAg and appearance of anti-HBs 

antibodies as a hallmark of successful clearance [53]. Despite clinical resolution, some 

HBV genomes can persist in the hepatocytes as cccDNA, without any HBV markers 
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being detectable in the serum. This state is sometimes referred to as “occult” infection 

(Figure 6) [54]. Typically, that would not lead to a recurrent hepatitis, because of the 

immune memory and circulating anti-HBV antibodies, however a reactivation can 

occur if the host’s immune system is impaired (e.g. due to an immunosuppressive 

therapy) [55, 56]. 

3.3.3 Chronic Hepatitis B 

Chronic Hepatitis B is defined by the presence of HBsAg in the serum for longer than 

6 months [53]. CHB occurs mostly after vertical transmission, infection of infants under 

1 year of age, but also in ~5% of adult infections [53]. The reasons for HBV chronicity 

are not well understood. In case of vertical transmission neonatal tolerance is believed 

to be responsible. It could be caused by HBeAg that is able to cross the placenta and 

has been shown to induce tolerance in HBV transgenic mice [35, 36]. In the rare cases 

of adult HBV infections becoming chronic, weak CD4+ and CD8+ T cell responses are 

considered to be the main reason for not clearing the infection [58]. Viral escape 

mutants, inhibition of adaptive immune responses by viral proteins and the size of viral 

inoculum can potentially contribute to this weak immune response and persistence 

[23, 59, 60]. The natural history of CHB is complex and can be divided into 5 different 

stages according to the clinical practice guidelines of the European Association for 

Study of the Liver (EASL) (Figure 6) [57]. The classification is based on the viral load, 

presence/absence of liver disease, inflammation and HBV antigens. The first stage is 

called “HBeAg-positive chronic infection” (EPCI). During this phase the virus replicates 

to very high titers (up to 1010 IU/ml), however, and for unknown reasons, there is no 

apparent immune response active and therefore this phase is normally asymptomatic. 

Besides high viral load this stage is characterized by the presence of HBeAg in the 

serum, high serum HBsAg levels and no detectable liver disease/inflammation. This 

stage can last for several decades before the onset of an active immune response 

resulting in suppression of viral replication and cell death. The latter is clinically known 

as hepatitis and measured as an increase of serum alanine aminotransferase (ALT) 

as a result of hepatocyte destruction. Furthermore, the necroinflammatory activity is 

clearly visible at the histological level. Accordingly, this stage is called “HBeAg-positive 

chronic hepatitis B” (EPCHB) and it lasts until antibodies against pre-core/core (anti-

HBc) appear and HBeAg disappears from the serum (HBeAg seroconversion), 

followed by an HBeAg-negative phase. If at this time the virus suppressed to very low 
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or undetectable levels (<2000 IU/ml) in the absence of an apparent immune activity 

(i.e. no liver inflammation), but HBsAg is still secreted, then the disease is considered 

to be in the “HBeAg-negative chronic infection” (ENCI) stage. Alternatively, the fight 

between the immune system and the virus can continue in a “HBeAg-negative chronic 

hepatitis B” (ENCHB) stage, with fluctuating viral loads (typically >2000 IU/ml) and 

persistent liver disease (elevated ALT) being the main markers of this stage. The two 

stages of the HBeAg-negative phase can transit into one another and back over time. 

The constant liver damage caused by the immune activity in the “chronic hepatitis” 

stage accumulates over time leading to liver fibrosis, cirrhosis and potentially liver 

cancer [53]. Spontaneous resolution of chronic infection, (transition into the last phase 

of CHB, HBsAg-negative stage) defined as the loss of HBsAg and often appearance 

of anti-HBs antibodies (HBsAg seroconversion), can happen with a frequency of ~1% 

per year in HBeAg-negative patients [61]. As in the case of AHB, virus is never 

completely cleared from the liver, as cccDNA persists in some hepatocytes even after 

clinical resolution of CHB [53]. An important question in CHB is what (and how) is 

controlling the virus during the ENCI (and maybe also the HBsAg-negative) stage? By 

definition, there is no apparent immune activity or inflammation detectable in these 

patients, that would otherwise suppress the virus. However, immunosuppression can 

lead to a reactivation of the virus, arguing that the immune system plays an active role 

in keeping the virus under control in this stage [62]. 

3.3.4 HBV vaccine 

The first commercial HBV vaccine has been introduced in 1971 and was based on 

inactivated HBsAg positive patient serum [63]. Recombinantly produced HBsAg soon 

replaced the inactivated serum as a vaccine and is still in use today [64]. Vaccination 

has greatly reduced HBV morbidity worldwide, especially in the Western world [51]. 

The current vaccination however, only protects from infection, but has no effect on 

chronic HBV. Vaccination mediated eradication of HBV is still elusive however, 

because the vaccination coverage remains low in some highly endemic regions of the 

world [51]. 

3.3.5 Treatment of CHB 

While most of the current antiviral therapies are very efficient in controlling viral 

replication, they are, despite many years of research, not curative as they cannot 
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actively eliminate the viral cccDNA from the liver [27]. Available options include 

interferon alpha (IFNa) and nucleos(t)ide analogues (NUCs) and will be described in 

the next paragraphs. 

3.3.5.1 Interferon 

IFNa is an innate immunity cytokine that acts through induction of hundreds of antiviral 

genes in the cells and through promoting the activation and/or differentiation of 

immune cells [65]. Interferon could be an exception compared to the other anti-HBV 

therapies, because it can induce cellular APOBEC3-family nucleic acid-editing 

enzymes, which could potentially modify or degrade cccDNA and/or pgRNA [66, 67]. 

However, the evidence for this mechanism is not compelling and also no correlation 

was found between APOBEC3A (A3A), A3B and A3G expression and cccDNA levels 

in the livers of CHB patients [68]. In 1992, interferon-alpha (IFNa) was approved as 

the first drug for treatment of CHB. It was soon replaced by its pegylated (conjugated 

with polyethylene glycol (PEG) molecule) form, which has better pharmacokinetics 

and a longer half-life. Peg-IFNa can suppress viral replication and even cure some 

patients and therefore it is still used in clinical practice. However, it is only effective in 

10-40% of patients, with many patients not responding to the treatment or having a 

relapse after cessation of therapy [27, 57]. Patients receiving IFNa as therapy should 

be carefully selected and monitored because of the many side effects of interferon. 

Taken together, the combination of poor efficiency and side effects greatly limits the 

use of IFNa. 

3.3.5.2 Replication/RT inhibitors 

Drugs inhibiting reverse transcription were borrowed into HBV clinical practice mostly 

from human immunodeficiency virus (HIV) research (e.g. nucleos(t)ide analogues 

(NUCs) such as lamivudine, adefovir, tenofovir). That was possible because the HBV 

polymerase is structurally similar to the HIV reverse transcriptase (RT), so that the RT 

inhibitors that were already approved for treatment of HIV were found to be active 

against HBV. Another drug, entecavir, was originally developed against herpes 

simplex virus. These small molecules very efficiently inhibit HBV replication at the level 

of reverse transcription, but do not prevent viral antigen expression [27]. Nevertheless, 

and for unknown reasons, NUC therapy leads to an amelioration of the HBV 

associated inflammation in the liver [2, 27]. Lamivudine therapy is rarely used today 
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because it is frequently associated with the emergence of drug-resistant HBV mutants 

[69]. Adefovir has mostly been replaced by the structurally very similar tenofovir, which 

is superior in terms of resistance rate and side effects and is currently the drug of 

choice for treatment of CHB [70]. Entecavir is efficient in treatment-naïve patients and 

sometimes also used in combination with tenofovir [69]. Tenofovir and entecavir have 

little side effects, a low resistance rate and can be given lifelong [27]. The latter is 

crucial, because cccDNA is very stable, has a long half-life in the liver and therefore 

forms a persistent reservoir that can most likely only be depleted by loss during 

hepatocyte division or by cell killing or [26, 39]. Thus, replication inhibitors have to be 

administered to CHB patients lifelong or at least until functional cure occurs (HBs 

seroconversion), because the virus rebounds when the therapy is stopped [57]. 

3.3.5.3 Entry inhibitors 

Myrcludex B is a synthetic peptide derived from the N-terminus of HBV large envelope 

protein. It functions as a competitive inhibitor of HBV attachment to its cellular receptor 

NTCP [71]. It is currently undergoing clinical trials, but limited available data from 

Phase 2 studies suggests it could be efficient against hepatitis B [72]. It should be 

noted however, that entry inhibitors have an inherent limitation because they can only 

prevent reinfection and infection of new cells, but would not affect the cells which are 

already infected. 

3.3.5.4 Novel therapies 

Future attempts to find a cure therefore focus on targeted degradation or silencing of 

cccDNA [73]. Cristoph Seeger pioneered this approach by implementing CRISPR-

Cas9 technology, however it is still a long way until such an approach could possibly 

be used in humans [74]. There are many other anti-HBV therapeutic approaches 

currently under development, including, for example, core inhibitors [75], modulators 

of innate immunity [76], antisense oligonucleotides [77], immunotherapy [78], etc. 

Whether any of these new therapies might be efficient against cccDNA however, 

remains to be determined.  
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3.4 Host-Virus Interactions 

3.4.1 Detection of viral infection by the host cell 

All vertebrate cells are equipped with an ancient system of recognizing viral infections 

[79]. This system represents a network of pattern recognition receptors (PRRs) that 

detect virus-specific molecular signatures typically not present in the cell, so-called 

pathogen-associated molecular patterns (PAMPs), and trigger a response directed at 

destroying the pathogen (Figure 7) [80, 81]. This pathogen detection and elimination 

system is known as innate immune system and it represents a cell's first line defense 

against incoming pathogens. In addition, the signals produced by a virus-infected cell 

upon pathogen recognition are central for the activation of the effector cells of the 

adaptive immune system [82].  

Figure 7. Activation of the interferon response triggered by viruses (modified from Bowie 
and Unterholzner (2008) [83]. See text for details. ssRNA, single-stranded RNA; 
dsRNA/dsDNA, double-stranded RNA/DNA; IFN, interferon; IFNAR, IFN-alpha receptor;  
IFNLR, IFN lambda receptor; TLR, Toll-like receptor; RIG-I, retinoic acid inducible gene 
I; MDA5, melanoma differentiation associated gene; IPS1, IFN-beta promoter stimulator 
1; IRF, interferon regulatory factor; NF-kB, nuclear factor kappa B; cGAS, cyclic GMP-
AMP synthase; STING, stimulator of interferon genes; STAT1/2, signal transducer and 
activator of transcription 1/2.  



 16  

Pattern recognition receptors can be largely divided into two categories – cell surface 

or endosomal membrane bound Toll-Like Receptors (TLRs; 9 functional receptors are 

known in humans – TLR1-9) [80] and cytoplasmic receptors, such as RNA-sensing 

retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) and DNA sensors, such as 

cyclic GMP-AMP synthase (cGAS) (Figure 7) [81]. Typical virus-specific molecules 

recognized by these receptors are, for example, uncapped single-stranded (ss)RNA 

(recognized by TLR7/8, RLRs), viral double-stranded (ds)RNA (TLR3, RLRs), viral 

DNA and RNA:DNA hybrids (cGAS, TLR9) and viral structural proteins (TLR1/2/4) [80, 

81, 84, 85]. Recognition of PAMPs by PRRs triggers a downstream signaling cascade 

ultimately activating a set of transcription factors, such as interferon-regulatory factor 

(IRF) family and nuclear factor kappa B (NF-kB), leading to the induction and secretion 

of type I/III interferons (IFNs) and various pro-inflammatory cytokines (e.g. tumor 

necrosis factor alpha (TNFa) or interleukin 6 (IL-6)) (Figure 7) [80, 81, 86, 87]. 

Interferons in turn bind to their cognate cell surface receptors on the infected, as well 

as neighboring uninfected cells and trigger a signaling cascade leading to expression 

of hundreds of interferon stimulated genes (ISGs) that limit viral replication and spread 

(Figure 7) [88]. IFNs and pro-inflammatory cytokines also link innate immunity to 

adaptive immunity by activating cells of the adaptive immune system and recruiting 

them to the site of infection [89]. 

3.4.2 Viral evasion of immune responses 

Given the cell’s ability to sense and restrict viral infection at a very early stage it is not 

surprising that many viruses have evolved to counteract either recognition by PRRs 

or the effector functions of the innate immune response. For example, Hepatitis A virus 

(HAV) expresses a protease that can degrade mitochondrial antiviral-signaling protein 

(MAVS), an adaptor molecule required for induction of IFNs by RLRs, thereby limiting 

type I IFN response in experimentally infected chimpanzees [90, 91]. Similarly, the 

VP35 protein of Ebola virus and the NS1 of Influenza virus can inhibit activation of 

IRF3, a transcription factor required for induction of IFNs [92]. V proteins of mumps 

virus (SV5) and Newcastle disease virus (NDV) can degrade signal transducer and 

activator of transcription 1 (STAT1), a key component in type I/III IFN signaling, thus 

preventing the induction of an antiviral state [93, 94]. Vaccinia virus and Hepatitis C 

virus (HCV) can prevent synthesis of antiviral proteins in the infected cells by shutting 

down cap-dependent translation via inhibition of protein kinase R (PKR) [95, 96]. 
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Finally, some viral proteins can counteract specific antiviral effectors, for example HIV 

Vif protein that targets host APOBEC3 family enzymes and prevents their entry into 

progeny virions [97].  

3.4.3 HBV-host interactions 

Hepatitis B infection, contrary to many other viruses does not seem to trigger an innate 

immune response (Figure 8) [98]. Experimental infection in chimpanzees did not result 

in the induction of a type I/III IFN response signature in the liver (Figure 8) [99]. Similar 

results were obtained with HBV in human liver chimeric mice and in woodchucks with 

WHV [100, 101]. Moreover, data available from humans with acute hepatitis B 

confirmed the lack of an innate immune response signature during acute infection 

[102, 103]. These observations have led to the hypothesis that HBV behaves as a 

“stealth virus” by remaining invisible to the PRRs [98].  

 

Figure 8. Host innate immune responses to 
HBV infection in chimpanzee liver 
(modified from Wieland (2015)). Gene 
expression prof iling was performed in the 
liver of chimpanzees experimentally 
infected with HBV. Blue l ines show viremia,  
red lines – gene expression. Genes 
correlated with viremia (innate immune 
response genes) are shown (no genes).  

 

However, this concept remained controversial because it could be demonstrated that 

HBV indeed could trigger an innate immune response in in vitro HBV infection systems 

[104], but was able to suppress the innate immune system within 24 hours after 

inoculation [105]. Those findings suggested that HBV is a weak inducer, but strong 

suppressor of innate immune signaling and thereby appears not to trigger an innate 

response. Indeed, most HBV proteins have been shown to have some suppressive 

activity on different components of the innate immune system [106, 107]. However, 

many of these studies have been hampered by the lack of optimal HBV infection model 

systems and thus, their results remained controversial [104, 105]. Indeed, the 

sensitivity of HBV replication to IFNa or to TLR agonist induced antiviral mechanisms 
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in chimpanzees, HBV transgenic mice and in in vitro systems does not support the 

notion that HBV can efficiently suppress innate responses [108-111]. In an effort to 

resolve these contradictory results, we have for the first time investigated the interplay 

between HBV and the host innate immune system at the cellular level in the liver of 

HBV infected patients [112] (see section 5.1). As described in Suslov et al. [112] these 

studies unequivocally demonstrated that HBV does neither induce nor suppress the 

innate immune responses in the human liver and thus beaves like a stealth virus (see 

section 5.1) [112]. These conclusions were further supported by recent publications 

from other groups using state of the art cell culture systems [113, 114]. 

3.4.4 Immune control of HBV 

Acute HBV infection is very efficiently controlled by the adaptive immune response 

[115, 116]. Cytotoxic CD8+ T lymphocytes play a central role in controlling and 

resolution of HBV infection by killing infected cells and IFN-gamma (IFNg) secretion 

that in turn non-cytolytically inhibits viral replication [23, 115, 116]. Specifically, CD8 T 

cell derived IFNg seems to be responsible for strong suppression of HBV during the 

early phase of viral clearance with no or little signs of liver disease [115, 116]. 

Interestingly, these non-cytopathic mechanisms seem also to contribute to cccDNA 

elimination from hepatocytes, at least to a certain degree [116]. Final termination of 

acute HBV infection is associated with increased intrahepatic CD8+ T cell activity and 

surge of serum ALT indicating extensive killing of HBV infected cells [116]. 

Considering the stealth quality of HBV, it remains to be determined what exactly 

triggers the adaptive immune response to HBV in the absence of the activating signals 

from virus infected cells. Recently, Cheng et al. proposed that high titer HBV could 

trigger monocyte-derived macrophages to produce pro-inflammatory cytokines [113]. 

This hypothesis would be in line with the known capacity of Kupffer cells (i.e. liver 

resident macrophages) and dendritic cells to constantly sample their environment for 

the presence of pathogens without being productively infected [117, 118]. Thus, it is 

conceivable that HBV, once it reaches a high enough titer during viral spread, could 

activate macrophages to produce the cytokines necessary to activate the cellular and 

humoral immune response targeting HBV. However, further investigation will be 

required to validate this hypothesis in natural acute HBV infection.  
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As previously mentioned, in CHB, T cell responses are not capable of clearing the 

infection. Viral clearance still can happen in some patients, but with a very low 

frequency (~1% per year, [61]). In the HBeAg-negative phase of CHB, however, 70-

90% of patients will have the virus under control, with viral load becoming undetectable 

and with no signs of inflammation (low serum ALT, minimal necroinflammation) or 

disease progression [53]. In this so-called “HBeAg-negative chronic infection” (ENCI) 

stage only presence of serum HBsAg marks the infection. At the moment it is unclear 

what (and how) is controlling the virus during the ENCI stage, as there is no 

measurable immune activity. However, as in the case of a resolved hepatitis B, 

immunosuppression can lead to a reactivation of the virus, arguing that immune 

system plays an active role in keeping virus under control in this stage [62]. From our 

own work, performed as a part of this thesis (see section 5.3) it appears that HBV 

replication is specifically inhibited in the ENCI patients compared to ENCHB patients 

and HBeAg-positive patients, at a step downstream of pgRNA production (see section 

5.3). The mechanisms of such inhibition are currently under investigation. 

Understanding these mechanisms of control could lead to therapeutic strategies 

inducing this “natural” state of viral suppression.  
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4. AIMS OF THE THESIS 

 

As of today, a robust and versatile immunocompetent HBV infection model is still 

elusive. Therefore, many aspects of HBV immunobiology are still poorly understood. 

Consequently, therapeutic options are currently mostly limited to replication inhibitors. 

Although they are very effective, they do not eliminate the viral cccDNA and thus are 

not curative. It is widely accepted that resolution of HBV infection will depend on 

effector functions of the innate and/or adaptive immune systems. However, studying 

intrahepatic host-virus interactions has become increasingly difficult since research 

involving chimpanzees, the only non-human primate HBV infection model, has been 

severely restricted for ethical reasons. To overcome this limitation, we sought to 

address these questions in surplus human liver needle biopsy tissue collected for 

diagnostic purposes. Access to freshly obtained liver biopsy tissue and a large human 

liver biopsy biobank at the University Hospital Basel provided the unique opportunity 

for us to study specific intrahepatic host-virus interactions as outlined below. A better 

understanding of these aspects will hopefully facilitate development of novel HBV 

therapy approaches.  

1. A long-standing controversy in the HBV field is i) whether HBV can be sensed by 

infected hepatocytes and thereby triggers an innate immune response, and ii) whether 

HBV can efficiently suppress induction and/or effector functions of innate immune 

responses in the liver. To answer these questions, we first established a short-term ex 

vivo liver biopsy culture system using freshly obtained liver needle biopsy collected 

from chronically HBV infected and uninfected control patients. We then used this 

system to determine whether the innate immune system is activated in the liver of CHB 

patients and whether experimentally triggered innate immune responses are blocked 

the HBV positive (and/or negative) cells in the HBV infected liver. The results of this 

work have been published in Suslov et al. [112] and are presented in section 5.1. The 

potential therapeutic implications of these results for are then discussed in the section 

5.2. 

2. As described above, the hallmarks of the "HBeAg-negative chronic infection" (ENCI) 

phase of CHB are very low/no viral load in the absence of any liver disease. The 

mechanism(s) responsible for the efficient suppression of virus production in this 
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phase however are not very well understood. Likewise, it is not known what steps in 

the viral life cycle are inhibited in the liver of ENCI patients. In a first step to address 

these questions, we used selected human biopsy samples of different disease phases 

of CHB to identify the step(s) in the viral life cycle that are inhibited in the liver of ENCI 

patients. The results of these studies are presented as a manuscript draft in the section 

5.3. These studies will be instrumental in identifying the host cellular mechanism(s) 

that control HBV in this phase and ultimately might provide the basis for the 

development of novel HBV therapy strategies. 
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5. METHODS, RESULTS AND DISCUSSION 

 

5.1 Hepatitis B virus does not interfere with innate immune 
responses in the human liver 

 

Suslov, A., Boldanova, T., Wang, X., Wieland, S. and Heim, M.H. Hepatitis B Virus 

Does Not Interfere With Innate Immune Responses in the Human Liver. 

Gastroenterology, 2018. 154(6): p. 1778-1790. 

 

For supplementary material please refer to the Appendix A of this thesis. 
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BACKGROUND & AIMS: Most viruses are detected at early
stages of cell infection and induce an innate immune response
mediated by production of interferons (IFNs). IFNs induce
expression of hundreds of IFN-stimulated genes (ISGs). Infection
of chimpanzees with hepatitis C virus, but not hepatitis B virus
(HBV), induces ISG expression in the liver. HBV might not induce
an innate immune response because it is not detected by pattern
recognition receptors (the stealth properties of HBV) or because
HBV suppresses IFN production or signaling despite detection by
pattern recognition receptors. We studied innate immune
signaling in liver biopsies from patients with different stages of
chronic HBV infection and uninfected individuals (controls).
METHODS: We obtained liver within 10 minutes after collection
from 30 patients with chronic HBV infection (hepatitis B e
antigen-positive or -negative, with or without hepatitis) and 42
controls (most with fatty liver disease). The liver tissues were
analyzed by histology, immunohistochemistry, quantitative
reverse-transcription polymerase chain reaction, in situ hybridi-
zation, HBV RNA quantification, and HBV genotyping; some
specimens were incubated with toll-like receptor (TLR) ligands
(polyinosinic-polycytidylic acid) or infectedwith Sendai virus and
then analyzed. RESULTS: Liver specimens from patients with
HBV infection were not expressing more IFN or ISGs than those
from control patients, indicating that chronic HBV infection did
not activate an innate immune response. However, liver

specimens from patients with HBV infection did produce IFN and
induce expression of ISGs following activation of TLR3 with
poly(I:C) or Sendai virus infections, so the innate immune
response is not suppressed in these tissues. CONCLUSION: Liver
tissues from patients with chronic HBV infection do not have in-
duction of an innate immune response, but this response can be
activated by other factors (TLR3 binding, Sendai virus infection)
in HBV-infected liver tissue. These findings support the hypoth-
esis that HBV is invisible to pattern recognition receptors.
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Most viruses activate the innate immune system in
the cells they infect, because they bring along, or

generate so-called pathogen-associated molecular patterns
(PAMPs) (typically viral genomes or replication in-
termediates) that the host cell recognizes as foreign.1 Cells
detect those PAMPs using pattern recognition receptors
(PRRs), such as cytoplasmic retinoic acid–inducible gene I
(RIG-I)-like receptors (RLR) that specifically detect
5ʹ-triphosphate-containing RNA and double-stranded RNA
(dsRNA) in the cytoplasm of infected cells, and endosomal
toll-like receptors (TLRs) that detect incoming dsRNA
(TLR3), single-stranded RNA (ssRNA) (TLR7/8), or CpG
motif-containing unmethylated DNA (TLR9).1 The activation
of these sensory pathways results in production of
interferons (IFNs) and expression of interferon-stimulated
genes (ISGs) that limit viral replication and spread.2 During
evolution, viruses have developed numerous strategies to
escape from the host innate immune system, often involving
active suppression of corresponding sensory pathways.3

Hepatitis B virus (HBV) is a small hepatotropic, non-
cytopathic DNA virus infecting humans and chimpanzees.4

On primary infection, HBV spreads throughout the liver
infecting up to 100% of hepatocytes and producing very
high virus titers (up to w109 – 1010 particles per mL of
serum) until after 6 to 10 weeks the adaptive immune
response takes control over the virus, which happens in
approximately 90% of immunocompetent adults.4,5

Approximately 5% to 10% of adult HBV infections and
virtually all mother-to-infant transmissions result in chronic
infection. Chronic hepatitis B (CHB) can lead to cirrhosis and
liver cancer. It is estimated that HBV infections cause up to
approximately 800,000 liver-related deaths per year
worldwide.6,7

In vivo studies with experimentally infected chimpan-
zees showed that HBV does not induce an IFN/ISG response

in the infected hepatocytes when it spreads through the
liver.8 In agreement with that, no induction of type I/III IFN
was detected in the serum of human patients with acute
hepatitis B infection.9 These results suggested that the virus
might not be detected by PRRs in infected cells, leading to
the concept of HBV behaving like a “stealth virus.”10 Alter-
natively, HBV could actively interfere with downstream
sensory pathways and suppress IFN induction despite being
detected by PRRs. Evidence for such a transient activation
followed by viral suppression of sensory pathways comes
from recent work in cell culture.11–14 Of note, one report
described that early after HBV infection cells lose their
ability to induce IFN-b in response to stimulation with
poly(I/C) or Sendai virus (SeV) infection.12 Finally, HBV
could also block IFN-stimulated signal transduction through
the JAK-STAT (Janus-associated kinase–Signal Transducer
and Activator of Transcription) pathway to inhibit ISG
induction in the liver. It is well known that efficient ISG
induction depends on the amplification of the initial danger
signal through autocrine stimulation of the IFN receptors
followed by JAK-STAT signaling.15 Inhibition of IFN
signaling by HBV infection or overexpression of viral pro-
teins has been demonstrated in cell culture work16–18 and
more recently in a humanized mouse model.19

Despite this substantial evidence for an active role of
HBV in suppressing innate immunity, our knowledge of the
innate immune response to HBV is still hampered by tech-
nical limitations. HBV in vitro model systems do not accu-
rately reflect the situation of in vivo HBV infection, as they
are typically conducted with much higher virus and subviral
particle concentrations than those achieved during natural
HBV infection in humans or chimpanzees. Data from early
infection states in humans are very sparse because of the
difficulty in recruiting patients at the earliest presymp-
tomatic stages of HBV infections. Experiments with chim-
panzees are limited by ethical constraints and high costs.

In the present work, we developed and validated an
ex vivo method using freshly obtained liver biopsies from
patients with different stages of chronic HBV infection and
from controls. Although we could not investigate patients
with early acute HBV infection, we reasoned that inhibition
of innate immunity by HBV should by detectable in ex vivo
liver tissue when liver cells would be stimulated with TLR
agonists or by productive viral infections.

The ex vivo analysis of liver tissue turned out to be a
robust and highly informative experimental system. Freshly
obtained human liver biopsies could be cultured for a least
24 hours without significant cell death or RNA degradation.
The samples could be treated with TLR agonists and infec-
ted with SeV. Induction of IFNs and ISGs was readily
detectable and quantifiable. Comparing liver biopsies from
HBV-infected patients with uninfected controls, we could
not detect any inhibition of innate responses by HBV. In situ
hybridization (ISH) and immunostaining techniques
allowed confirmation of this finding at the cellular level.
Collectively, our data unequivocally demonstrate that the
cell-autonomous innate immune system in HBV-infected
human liver is intact, and support the hypothesis that HBV
behaves like a “stealth” virus in vivo.

EDITOR’S NOTES

BACKGROUND AND CONTEXT

Unlike hepatitis C virus (HCV), hepatitis B virus (HBV) does
not induce expression of hundreds of interferon (IFN)-
stimulated genes (ISGs) in early stages of cell infection.

NEW FINDINGS

Liver tissues from patients with chronic HBV infection do
not have induction of an innate immune response, but this
response can be activated by other factors in HBV-
infected liver tissue.

LIMITATIONS

The authors did not obtain biopsies from acutely HBV
infected patients; overwhelming contribution of
uninfected, normally functioning liver cells could have
interfered with analysis.

IMPACT

These findings support the hypothesis that HBV is
invisible to pattern recognition receptors. Further study
is needed to decipher how HBV avoids detection and
immune activation.
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Materials and Methods
Patients and Liver Biopsies

Liver biopsies from patients with HBV infections and from
noninfected controls were obtained in the outpatient clinic of
the Division of Gastroenterology and Hepatology, University
Hospital Basel, Switzerland. Liver biopsies were done using an
ultrasound-guided coaxial needle technique that allowed for
single-stick, multiple-pass biopsies (BioPince; Peter Pflugbeil
GmbH, Zorneding, Germany). The individual biopsies are
approximately 29 mm long and have a diameter of 1 mm. One
cylinder was used for routine histopathological diagnostic
purposes. After obtaining written informed consent, an addi-
tional biopsy cylinder was used for the ex vivo experiments
described in this article. The use of biopsy material was
approved by the local ethics committee (Ethikkommission
Nordwest- und Zentralschweiz, Basel, Switzerland). Formalin-
fixed liver biopsy tissue was used for histological analysis for
standard ISHAK classification (ie, determination of liver
inflammation and fibrosis) and for routine immunohistochem-
ical staining for HBV surface protein (HBsAg) and HBV core
protein (HBcAg). For the HBV sample set, the histopathological
analysis (ISHAK grading, HBsAg- and HBcAg-positive hepato-
cyte fraction), the clinical data (transaminases, HBV viral load
in the serum, stage of infection, quantitative HBsAg in the
serum, hepatitis B e antigen [HBeAg] status) and a summary of
the ex vivo experiments performed with each biopsy are shown
in Supplementary Table 1. For the control sample set,
the underlying liver disease and a summary of the ex vivo
experiments performed with each biopsy are shown in
Supplementary Table 2.

Ex Vivo Liver Biopsy Culture and Stimulation
Right after completion of the biopsy procedure, the liver

tissue cylinders were rinsed with an excess volume of 0.9%
NaCl at room temperature, followed by another wash with
1.5 mL of fresh culture medium, and cut into pieces of
approximately 3 to 9 mm length for experimentation. As a
baseline control, pieces were immediately snap-frozen in liquid
nitrogen and embedded in optimum cutting temperature
compound (OCT) for subsequent total liver RNA and histolog-
ical analysis, respectively. Ex vivo liver biopsy culture was
initiated within 10 minutes after the biopsy procedure by
transferring the biopsy pieces into individual 2-mL tubes con-
taining fresh culture medium (Dulbecco’s modified Eagle’s
medium þ 10% fetal bovine serum [Gibco, Waltham, MA])
followed by addition of TLR ligands or SeV. The tubes were
then placed in a temperature-controlled Eppendorf tube shaker
and incubated at 37"C with 5 seconds shaking at 800 to 1000
rpm every 55 seconds. Samples were collected after the
appropriate time of incubation and one-third (2–3 mm) and
two-thirds (4–6 mm) of each biopsy piece were snap-frozen in
liquid nitrogen and embedded in OCT for subsequent total liver
RNA and histological analysis, respectively. For TLR 2/4/7/8/9
stimulation, 3- to 4-mm pieces of biopsies were used and only
snap-frozen samples for total RNA analysis were collected.

TLR Ligands, SeV, and Recombinant HBsAg
The following reagents were used in this study (abbrevia-

tions and final concentrations are given in parentheses): TLR3

ligand polyinosinic-polycytidylic acid (poly(I:C); 100 mg/mL),
TLR2 ligand peptidoglycan from Staphylococcus aureus
(PGN-SA; 20 mg/mL), TLR4 ligand lipopolysaccharide from
Escherichia coli 0111:B4 strain (LPS; 20mg/mL), TLR7 ligand
imiquimod (R837; 10 mg/mL), TLR8 ligand single-stranded
RNA (naked ss-poly(U); 50 mg/mL), TLR9 ligand CpG DNA
(ODN 2216; 1 mM), SeV H4 strain (SeV; approximate multi-
plicity of infection ¼ 10), recombinant HBsAg (3.3 mg/mL). All
TLR ligands except poly(I:C) (Sigma-Aldrich, Buchs,
Switzerland) were purchased from InvivoGen (San Diego, CA).
SeV (H4 strain) was a gift from Prof Dominique Garcin (Uni-
versity of Genève, Genève, Switzerland). Chinese hamster
ovary cell produced recombinant HBsAg was purchased from
Jena Bioscience (Jena, Germany; cat# PR-1197).

Results
Ex Vivo Culture, TLR Stimulation, and SeV
Infection of Human Liver Biopsies

Liver biopsies can provide valuable material to study
host-virus interactions in HBV infections. They have been
mainly used after immediate chemical (formalin-fixed) or
thermal fixation (shock freezing in liquid nitrogen or dry
ice) to avoid degradation processes that presumably start
shortly after removing biopsies from the liver. To gain
further insights into viral interference with innate immu-
nity, we sought to develop a method to keep intact pieces of
biopsies viable for enough time to perform TLR stimulation
and SeV infection experiments. To this end, biopsy cylinders
were washed with saline, cut into pieces of 3 to 9 mm length
and put into fetal bovine serum–complemented Dulbecco’s
modified Eagle’s medium at 37"C within 10 minutes of the
biopsy procedure (ex vivo). Biopsy pieces were then further
incubated at 37"C with occasional gentle shaking that did
not affect the integrity of the biopsy tissue (Supplementary
Figure 1A). In a dose-finding experiment, we found that
stimulation of biopsy pieces with poly(I:C) at a concentra-
tion of 100 mg/mL induced readily detectable expression of
IFNb, IFNl1, and IFNl2/3 as compared with untreated
controls (Supplementary Figure 2). Using this concentration,
we next performed a kinetic analysis of poly(I:C)-stimulated
IFN gene induction in liver biopsy pieces over a period of
36 hours. IFNb, IFNl1, and IFNl2/3 expression was induced
within an hour and remained elevated during the entire
period, with a peak of expression between 3 and 6 hours,
while it remained unchanged in untreated samples
(Figure 1A and Supplementary Figure 3A). In agreement
with reports from experiments with primary human hepa-
tocytes, IFNa2 was not induced by poly(I:C).20,21

The slight decline of poly(I:C)-induced IFN expression at
later time points could be due to cell death. Indeed, histo-
logical analysis of biopsy pieces revealed the appearance of
necrotic areas by 24 and 48 hours of ex vivo culture
(Supplementary Figure 1B). This is consistent with the
number of dead cells in the biopsies, as visualized by dead
cell staining, that increased from 3.5% at time point 0 hour to
7.1%, 17.7%, and 37.0% at times points 6 hours, 24 hours,
and 48 hours, respectively (Supplementary Figure 1C).
Treatment of biopsies with poly(I:C) had no impact on the

1780 Suslov et al Gastroenterology Vol. 154, No. 6

BASIC
AND

TRANSLATIONAL
LIVER



 27  

  

kinetics or the extent of cell death (Supplementary
Figure 1D). Of note, RNA integrity analysis of equal vol-
umes of RNA samples isolated from different pieces of the
same biopsy revealed no apparent RNA degradation for up to
48 hours of ex vivo culturing (Supplementary Figure 4A). The
expression of liver-specific genes for albumin, HFN-1b and
CYP3A4, was maintained during the first 12 hours, and
HNF-4a during the first 6 hours in culture (Supplementary
Figure 4B). Albumin secretion was detectable in the first
24 hours in culture (Supplementary Figure 4C).

We next infected ex vivo–cultured biopsy pieces with the
SeV strain H4 that produces defective interfering dsRNA
genomes and induces IFNs via RIG-I/MDA5.22–24 As shown
in Figure 1B, all IFNs, including IFNa2, were strongly
induced by SeV during ex vivo culturing of liver biopsy
pieces, albeit with kinetics slightly different from poly(I:C)-
induced responses, reaching maximal levels 9 to 12 hours
after addition of the virus (Figure 1A and B, Supplementary
Figure 3A and B). Of note, SeV stimulation induced up to
10-fold higher peak levels of IFNs compared with
poly(I:C) (Figure 1A and B). To test if induction of IFNs in

the ex vivo–treated liver biopsies translates into a functional
response through stimulation of IFN signal transduction,
we analyzed the expression of a classical interferon-
stimulated gene ISG15. Both poly(I:C) and SeV strongly
induced ISG15 expression (Figure 1C and D, Supplementary
Figure 3). As expected for a secondary response, the kinetics
of ISG15 expression was delayed compared with that of the
IFN genes.

To determine whether IFN and ISG induction was
triggered in the parenchymal and/or nonparenchymal
compartment in the liver, we performed multiplex ISH in
frozen sections of ex vivo poly(I:C)-treated or SeV-infected
and -untreated control liver biopsies. We used an
albumin-specific probe to mark hepatocytes, and costained
the sections with probes for IFNb or ISG15. Although IFNb
expression was detectable in SeV-infected samples
(Figure 2A), it was undetectable in poly(I:C)-treated
samples (data not shown), most likely because its expres-
sion is 10 times lower in poly(I:C)-treated samples. IFNb
was detected both in hepatocytes and in nonparenchymal
cells (Figure 2A). Both poly(I:C) and SeV induced strong

Figure 1. Ex vivo stimulation of human liver biopsies with poly(I:C) or SeV induces IFN and ISG expression. Fresh biopsies of
patients without viral infections were cut into several pieces and immediately stimulated ex vivo with poly(I:C) (100 mg/mL) or
SeV (multiplicity of infection w10) or left untreated for up to 36 hours. Expression of IFN mRNA (A, B) and ISG15 mRNA (C, D)
was analyzed by reverse-transcription–quantitative polymerase chain reaction at the indicated time points. LoD, Limit of
Detection; nd, not detected. Shown are the data from representative patients (C740 in A and C, D166 in B). Additional samples
are shown in Supplementary Figure 3.
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expression of ISG15 in albumin-positive and -negative cells
(Figure 2B and C, respectively), indicating that (1) IFN
proteins are produced and secreted by liver cells, and
(2) IFN signaling is not restricted to a specific cell type in
the ex vivo–cultured liver biopsy pieces. Taken together,
these results demonstrate that ex vivo–cultured liver biopsy
pieces are suitable to study both IFN induction and IFN
signaling.

IFNs Can Be Induced Normally in Ex Vivo Liver
Biopsies From HBV-Infected Patients

The ex vivo biopsy technology was then used to study
innate immune responses in the liver of patients with chronic
HBV infections.We selected a total number of 30HBV-infected
patients who represent all the different stages of chronic HBV

infection, including HBeAgþ infection,25 HBeAgþ hepatitis,25

HBeAg" infection,25 HBeAg" hepatitis,25 and patients un-
dergoing antiviral therapy (Supplementary Table 1). Clinical
data, routine histopathology, HBV immunohistochemistry,
intrahepatic HBV RNA quantification, and HBV genotyping
are shown in Supplementary Table 1. Our HBV-infected
cohort included samples of equally high HBsAg/HBcAg posi-
tivity (ie, >80%) in the liver, but also some patients of dis-
proportionally high HBsAg positivity in the liver. Although the
latter situation is frequently observed in CHB, the underlying
molecular explanation is not known. As a control cohort,
42 patients without any viral infection were included. Most
suffered from alcoholic or nonalcoholic fatty liver disease
(Supplementary Table 2).

As expected from our pilot experiments described pre-
viously, there was no induction of IFNs in the untreated

Figure 2. Induction of IFNb
and ISG15 expression in
parenchymal and non-
parenchymal cells in hu-
man liver biopsy tissue
upon ex vivo stimulation
with poly(I:C) or SeV. Fresh
liver biopsy pieces of pa-
tients without viral in-
fections were stimulated
ex vivo with SeV (multi-
plicity of infection w10),
100 mg/mL poly(I:C) or left
untreated for the indicated
time periods. The tissue
was embedded in OCT,
cryopreserved, and then
subjected to ISH analysis.
(A) Multiplex detection of
IFNb mRNA (magenta) and
human albumin mRNA
(green) in human liver
biopsy pieces stimulated
ex vivo with SeV. Non-
parenchymal cells are
indicated with yellow
arrows. (B, C) Multiplex
detection of ISG15 mRNA
(magenta) and albumin
mRNA (green) in human
liver biopsy pieces stimu-
lated ex vivo with poly(I:C)
(B) or SeV (C). Non-
parenchymal cells are
indicated with yellow
arrows. Biopsy IDs are
given in the upper left
corner. Scale bar ¼ 20 mm.
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samples, whereas poly(I:C) strongly induced IFNb, IFNl1,
and IFNl2/3 in samples from patients without HBV
infection (Figure 3A and B, uninfected control [CTRL]).
This was not different in samples from HBV-infected
patients (Figure 3A and B, HBV). The results remained
the same in subsets of samples with >90% of HBsAg-
positive hepatocytes or HBcAg-positive hepatocytes
(Supplementary Figure 5A and B), confirming that
signaling in HBV-positive cells was not suppressed. In
addition, exogenous addition of HBV and viral antigens in
the form of CHB patient–derived serum or recombinant
HBsAg did not alter poly(I:C)-induced interferon

expression in ex vivo–cultured liver biopsies
(Supplementary Figure 6A and B).

Of note, levels of HBsAg and HBV DNA were increasing
in the culture supernatants of HBV-positive samples over
time (Supplementary Figure 7A and B), indicating that
active HBV gene expression and replication continued in
the ex vivo–cultured biopsy pieces. These results indicate
that ongoing HBV infection does not suppress TLR3-
mediated IFN induction in the liver. Furthermore, base-
line IFN levels were not elevated in HBV-infected samples,
suggesting that HBV does not induce IFNb or IFNls in
human liver.

Figure 3. poly(I:C)- and SeV-induced IFN expression is not suppressed in the HBV-infected liver. Fresh liver biopsy pieces
obtained from HBV-infected (HBV) and uninfected control (CTRL) patients were cut into several pieces and incubated for 3 to
12 hours or immediately processed as a baseline control (0 hour). (A) Biopsy pieces were cultured in complete medium only
(untreated) or (B) stimulated with 100 mg/mL poly(I:C) or (C) infected with SeV (multiplicity of infection w10). Total RNA was
isolated from the baseline and treated samples and subjected to IFN-b, IFN-l1, and IFN-l2/3 specific reverse-transcription–
quantitative polymerase chain reaction. Data are shown as box plots (n ¼ 15–24) for (A) and (B), or dot plots (n ¼ 5–9) with lines
indicating the median for (C). Nonparametric Mann-Whitney test was used to compare IFN expression between HBV and CTRL
groups (*P < .05, **P < .01, ***P < .001). LoD, limit of detection; nd, not detected.
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HBV infection and HBV proteins have been shown to
interfere with the expression and/or function of several
other innate immune sensors and signaling pathways in cell
culture or in mouse models, including various TLRs (TLR 2/
4/7/8/9) and also RLRs (response to SeV infection) and
IFNa signaling.12,17,19,26–30 We therefore extended our
analysis to other TLR family members and measured
induction of type I/III IFNs in ex vivo–treated biopsies.
Because for some TLRs (eg, TLR2) ligand binding mostly
results in the production of proinflammatory cytokines, but
not IFNs,1 we also measured induction of the proin-
flammatory cytokines tumor necrosis factor alpha and
interleukin-6. Stimulation of TLR8 and TLR9 with ssRNA
and CpG, respectively, had no effect on the expression of
these IFNs and cytokines, compared with untreated control
samples (Supplementary Figure 8). This is not surprising,
because TLR8 and TLR9 expression in the liver is very low,
and signaling through these receptors has been so far
mostly ascribed to immune cells (eg, plasmacytoid dendritic
cells, which are low-abundant in human liver).1,31 Further-
more, ssRNA (TLR8 ligand) most likely would need to be
complexed with cationic lipids to produce a response.32

Stimulation of TLR2, TLR3, TLR4, and TLR7 induced 2 or
more of the tested cytokines. But importantly, there was
again no difference between HBV-infected and -uninfected
liver biopsy samples (Supplementary Figure 8).

We then tested whether HBV could prevent induction of
innate immune responses by another virus. To that end,
liver biopsy samples from HBV-infected and -uninfected
patients were infected with SeV-H4. The induction of IFNs
was measured by reverse-transcription–quantitative poly-
merase chain reaction at different time points after infec-
tion. Again, we could not detect an inhibition of SeV-induced
IFN (Figure 3C) and other cytokine (Supplementary
Figure 9) expression in HBV-infected samples or in nonin-
fected samples incubated with recombinant HBsAg
(Supplementary Figure 6C).

Taken together, these results demonstrate that sensory
pathways downstream of PRRs are not inhibited in
HBV-infected human liver biopsy samples.

IFN Induction Is Intact in HBV-Infected
Human Hepatocytes

The analysis of IFN induction using extracts from liver
biopsy pieces reflects an average response from all cells in
the biopsy, those that are HBV-infected as well as uninfected
cells. It is therefore conceivable that we missed an inhibitory
effect of HBV on sensory pathways because of the contri-
bution of noninfected cells. The fact that >50% of our
samples contained !90% of HBV-positive cells, and still
had no impaired response to poly(I:C) (Supplementary
Figure 5A) provides strong evidence against such a
scenario. Nevertheless, we wanted to address this question
directly, and analyzed IFNb induction at the cellular level in
a liver biopsy from an HBV-infected patient (80% HBsAg-
positive hepatocytes by immunohistochemistry) on stimu-
lation with SeV. We used multiplex ISH to simultaneously
detect HBV RNA and IFNb mRNA. In accordance with our

previous results in noninfected biopsy (Figure 2A) IFNb
mRNA was detectable by ISH in the SeV-infected, but not in
uninfected control biopsies, and more importantly, IFNb
mRNA was also detected in HBV RNA-positive hepatocytes
(Figure 4). These results demonstrate that HBV does not
interfere with IFNb induction in infected hepatocytes.

HBV Does Not Block IFN-induced
JAK-STAT Signaling and ISG Induction in
Human Hepatocytes

Having established that IFN induction is not blocked in
HBV-infected human hepatocytes in vivo, we analyzed
whether HBV could interfere with IFN signaling and sub-
sequent ISG induction, as was previously reported in
chimeric mice with HBV-infected human hepatocytes.19 We
chose nuclear translocation of phosphorylated STAT1
(pSTAT1) as a marker of IFN signaling. We selected 2 liver
biopsies that showed positivity for HBsAg and HBcAg in
99% and 70% to 80% of hepatocytes, respectively (patients
C787 and C799, Supplementary Table 1). The biopsies were
treated ex vivo with 100 mg/mL poly(I:C) or left untreated
for 6 hours. We then costained the biopsies with antibodies
against pSTAT1 and HBcAg. Because both signals are
nuclear, this approach allowed an unequivocal detection
of double-positive cells. pSTAT1 was clearly detected in
HBcAg-positive nuclei (Figure 5), indicating that IFN
signaling is not suppressed by HBV in the infected cells. Of
note, the frequency of pSTAT1-positive cells was not
higher in the subset of HBcAg-negative cells compared with
HBcAg-positive cells (Figure 5). A similar analysis using
antibodies against HBsAg and pSTAT1 confirmed that IFN
signaling was also not blocked in the HBsAg-positive cells
(Supplementary Figure 10). The overall percentage of
pSTAT-positive cells was not different between the HBV-
positive biopsies and the control biopsy and reached
approximately 32%, 45%, 55%, and 44%, respectively
(Supplementary Figure 10). Again, in the HBV-infected
sample C765 with 70% HBsAg-positive hepatocytes, the
frequency of pSTAT1-positive cells was not higher in the
subset of HBsAg-negative cells compared with HBsAg-
positive cells (Supplementary Figure 10).

Next, we analyzed whether IFN induction and signaling
in the ex vivo poly(I:C)-stimulated biopsies translates into
induction of ISG expression. As shown in Figure 6, baseline
(0 hour) ISG expression as well as expression in untreated
samples was independent of HBV infection, in agreement
with the lack of IFN expression in HBV-infected samples
(Figure 3A) and indicating that ISGs are neither up- nor
down-regulated during chronic HBV infection. On stimula-
tion with poly(I:C), all 3 ISGs were induced in both groups of
biopsies and with the exception of Mx1 (interferon-induced
GTP-binding protein Mx1) at 6 hours of stimulation, the
induction did not differ between the 2 groups (Figure 6B).
Although there was a statistically significant difference in
absolute Mx1 transcript levels between HBV and CTRL
group after 6 hours of poly(I:C) stimulation, the overall fold-
change induction remained similar (w9-fold change in HBV
vs w11-fold change in CTRL; data not shown). Again,
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experiments with SeV-infected ex vivo biopsies confirmed
that HBV infection does not inhibit ISG induction by heter-
ologous viral stimulation of PRR sensory pathways
(Figure 6C). Poly(I:C)- and SeV-induced ISG expression in ex
vivo–cultured liver biopsies was also not affected by adding
serum from patients with CHB or recombinant HBsAg to the
culture medium (Supplementary Figure 6D–F).

Analysis of ISG induction in ex vivo–treated liver
biopsies during a time period of up to 12 hours of stim-
ulation with TLR 2/3/4/7/8/9 ligands (Supplementary
Figure 11), and up to 24 hours of stimulation with SeV
(Supplementary Figure 12), revealed the same pattern of
ISG induction as was observed for IFNs (Supplementary
Figure 8). No ISG induction could be detected on treat-
ment with TLR 8 and 9 ligands (data not shown), corre-
lating with the lack of significant IFN induction under the
same conditions (Supplementary Figure 8). For other
stimuli (TLR 2/3/4/7 ligands and SeV), induction of ISGs
correlated with the induction of IFNs under the same
conditions (Supplementary Figures 8, 9, 11, 12). The lack
of ISG induction in the TLR2-stimulated samples

(Supplementary Figure 11) suggests that the minor
induction of IFNl2/3 (Supplementary Figure 8) is not
sufficient to trigger IFN signaling. Most importantly,
whenever ISG induction was triggered by any given
treatment, the induction was not different between HBV
and CTRL biopsies (Supplementary Figure 11).

To exclude that ISG induction was restricted to
HBV-negative (ie, noninfected) hepatocytes, we again per-
formed multiplex ISH analysis of sections from liver biopsies
after ex vivo treatment with poly(I:C) or infection with SeV
H4. HBV-infected cells were visualized using a HBV RNA-
specific probe and ISG induction was tested using an
ISG15 mRNA-specific probe. ISG15 expression was strongly
induced by poly(I:C) and by SeV (Figure 7). Importantly,
ISG15 was readily detected in HBV-positive cells, demon-
strating that HBV does not interfere with ISG induction at a
cellular level (Figure 7).

Together, these results demonstrate that IFN and ISG
expression is not induced during chronic HBV infection
and that HBV does not interfere with induction of innate
responses or with IFN signaling in the human liver.

Figure 4. HBV-infected
hepatocytes are not
refractory to induction of
IFN expression. Fresh liver
biopsy pieces obtained
from HBV-infected patients
(Supplementary Table 1,
D167, D190) were
embedded in OCT after 9
hours of incubation in the
presence of SeV (multi-
plicity of infection w10) or
immediately processed as
a baseline control (un-
treated). OCT-embedded
tissues were processed
for multiplex ISH analysis
of IFNb mRNA (magenta)
and total HBV RNA (green)
as described in Material
and Methods. The biopsy
ID is given in the upper
right corner of each image.
Scale bar ¼ 20 mm.
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Discussion
The apparent lack of an innate immune response to HBV

reported in studies with experimentally infected chimpan-
zees8 has led to the concept that HBV is not recognized by
the sensory systems that activate the transcription of IFN
genes in infected cells (the “stealth virus concept”).10

However, the lack of IFN-stimulated gene induction could
also result from active viral interference with sensory
pathways or with IFN signaling, and indeed, recent work in
cell culture models of HBV infection provide evidence
for this scenario.11–14 In the present work, we wanted to
address this question in the most relevant system, the
infected human liver. For obvious ethical reasons, experi-
mental exploration of mechanisms of viral interference with
cellular processes is not possible in humans in vivo. Patient-
derived cell culture systems such as primary human hepa-
tocytes or organoid cultures have the disadvantage of

disrupting the 3-dimensional architecture of the liver. We
therefore developed and validated a novel ex vivo liver
biopsy technique. The system is unexpectedly robust and
allows keeping human liver biopsy pieces alive for at least
24 hours. The cells can be stimulated with cytokines and
TLR agonists, and even be productively infected with SeV.
Further work will address the usefulness of this system for
addressing pharmacodynamics questions, such as mecha-
nism of action of drugs (for example, in patients with
nonalcoholic or alcoholic steatohepatitis or in viral hepati-
tis). In a time of growing interest in personalized health,
the system might prove to be highly valuable to address
mechanisms of interindividual variations of hepatic
responses to insults, viruses, and drugs.

In the present study, we applied the short-term (up to
24 hours) ex vivo liver biopsy culture system to examine
the impact of HBV infection on innate immune responses.

Figure 5. IFN signaling is not blocked in HBV-infected hepatocytes. Fresh liver biopsy pieces from 2 highly HBV-viremic
patients (Supplementary Table 1, C787, C799) stimulated ex vivo with 100 mg/mL poly(I:C) or left untreated for 6 hours
were embedded in OCT for cryosectioning. Cryosections were subjected to simultaneous immunofluorescence detection of
nuclear HBcAg (magenta) and phospho(p)STAT1 (green). HBcAg and pSTAT1 double-positive nuclei appear white. The
percentage of nuclear pSTAT1-positive cells in HBV-positive (HBcAgþ) and -negative (HBcAg") cells was quantified for the
entire sections (right panels). The biopsy ID is given in the upper left corner of each image. Scale bar ¼ 20 mm.
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Consistent with previous reports in humans9 and chim-
panzees,8 we did not observe any IFN and/or ISG induction
in the liver of chronically HBV-infected patients irrespective
of disease status, viral load, or HBV genotype. By stimulating
ex vivo–cultured liver biopsies with different TLR ligands
and SeV, we demonstrated that induction of innate immune
responses as measured by IFN and ISG expression did not
differ between HBV-infected and noninfected samples,
suggesting that HBV infection neither induces nor interferes
with innate immune responses. Of note, inductions of innate
responses were very similar in all CHB samples despite
them containing samples of both very high and low viremia
and antegenimia and also of varying levels of liver disease.

These results suggest that innate response induction was
not only independent of the presence of HBV, but also the
magnitude of infection and liver disease.

Although our study tested the impact of HBV on innate
responses triggered by most TLRs and RLRs, we did not
specifically interrogate effects on cytoplasmic DNA sensing
by cGAS/STING because hepatocytes have been reported to
be virtually deficient in DNA sensing.33,34

Incidentally, a study by Mutz and colleagues35 also
demonstrates a lack of IFN induction and suppression of
innate responses in fully HBV permissive cell culture
models. Together, these results differ from the observed
HBV-mediated induction of innate immune responses in cell

Figure 6. poly(I:C)- and SeV-induced ISG expression is not suppressed in the HBV-infected liver. Transcriptional induction of 3
typical ISGs (ISG15, Mx1, RSAD2 [Radical SAM domain-containing 2]) was analyzed by reverse-transcription–quantitative
polymerase chain reaction in the same HBV-infected and control (CTRL) groups of untreated (A), poly(I:C)-treated (B), and SeV-
treated (C) biopsies of HBV-infected (HBV) and uninfected (CTRL) patients used for IFN mRNA analysis in Figure 3. Reverse-
transcription–quantitative polymerase chain reaction data display and statistical analysis was performed as described in the
legend to Figure 3.
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culture models11–13 and the apparent suppression of innate
responses by HBV that were previously reported.12,17,19,29

The discrepancies to our data could likely be a reflection
of specific limitations of the different in vitro culture and
murine models, including lack of proper human paren-
chymal and nonparenchymal liver tissue organization and
artificially induced HBV gene expression and replication,
that would not apply to studies in the human liver biopsy
ex vivo culture system. Our results also differ from publi-
cations that reported a down-regulation of a number of
genes belonging to multiple innate immunity pathways36 or
a down-regulation of TLR2 on hepatocytes and Kupffer
cells26 in liver biopsies of patients with CHB. Again, meth-
odological differences between these studies and our work
might underlie the discrepancies. On the other hand, our
results are consistent with several other studies in
patients,9,37 chimpanzees,8 and other HBV model
systems33,38,39 that did not detect a stimulatory or inhibi-
tory effect of HBV on innate immunity.

Our ex vivo experimental approach has some short-
comings. First, we could not obtain biopsies from acutely
HBV-infected patients, and, therefore, we cannot exclude
that in the early phase of HBV infection the virus is actively
suppressing IFN-inducing sensory pathways or IFN
signaling. However, even in the chronic phase of HBV
infection there is ongoing de novo infection of hepatocytes,
and we should therefore have detected HBV interference
with cellular innate immune pathways even in our chroni-
cally infected patients.

The second potential shortcoming concerns the spatial
resolution of our analysis. In other words, it could be
possible that HBV indeed interferes with innate immune
pathways in infected hepatocytes, but our analysis missed
this interference because of the overwhelming contribution
of uninfected, normally functioning liver cells. We think that

this is highly unlikely because we included several samples
with very high hepatic infection rates documented by HBsAg
and/or HBcAg positivity of hepatocytes. Indeed, we
observed no statistically significant difference in IFN
induction or ISG induction according to the extent of HBsAg
and/or HBcAg staining in our entire study cohort. Finally,
we addressed this concern directly in costaining experi-
ments that showed nuclear phospho-STAT1 in hepatocytes
that were positive for HBsAg or HBcAg (Figure 5 and
Supplementary Figure 10) and by multiplex ISH studies that
showed ISG mRNA expression in cells with detectable HBV
RNA (Figure 7). In both analyses, we did indeed observe
HBV-infected cells without signs of IFN effects (nuclear
pSTAT1 or ISG mRNA expression). However, IFN effects
were stochastically distributed in uninfected cells as well;
that is, not all uninfected cells were positive for pSTAT1 or
ISG mRNA expression, and indeed, we did not observe an
overall difference in the percentage of nuclear pSTAT1-
positive cells between uninfected and HBV-infected
samples (Figure 5, Supplementary Figure 10).

In summary, we demonstrate that ex vivo liver biopsy
culturing represents a valid tool for experimentation. We
applied this system to the study of HBV host interactions in
the liver of HBV-infected patients. We show that, in contrast
to reports from cell culture and murine systems, there is no
difference in ex vivo induced innate immune responses in
HBV-infected livers at the whole tissue level as well as at the
cellular level. Furthermore, baseline IFN and ISG expression
levels did not differ between HBV-infected and noninfected
control patients. Together, these results suggest that HBV
does not induce or interfere with innate immune responses
in vivo in the liver of HBV-infected patients, which is
consistent with the observed lack of innate responses
during acute HBV infection in experimentally infected
chimpanzees8 and the apparent sensitivity of HBV to

Figure 7. HBV-infected hepatocytes are not refractory to induction of ISG expression. Fresh liver biopsy pieces obtained from
HBV-infected patients (Supplementary Table 1, C799 and D183) were embedded in OCT after 6 or 12 hours of incubation in
the absence (untreated) or presence of 100 mg/mL poly(I:C) or SeV (multiplicity of infection w10) (SeV), respectively. OCT-
embedded tissues were processed for multiplex ISH analysis of ISG15 mRNA (magenta) and total HBV RNA (green) as
described in Material and Methods. The biopsy ID is given in the upper right corner of each image. Scale bar ¼ 20 mm.
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TLR-mediated induction of innate responses.40–43 As such,
and contrary to many other viruses including hepatitis C
virus44 and hepatitis A virus,45 these results support the
hypothesis that HBV behaves like a stealth virus10 by stay-
ing under the radar of the pathogen detection system.12

Supplementary Material
Note: To access the supplementary material accompanying
this article, visit the online version of Gastroenterology at
www.gastrojournal.org, and at https://doi.org/10.1053/
j.gastro.2018.01.034.
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The first line defense mechanisms against viral infection are

mediated by the innate immune system. Viral components are

detected by infected cells and/or innate immune cells that

express different sensory receptors. They in turn mediate

induction of direct antiviral mechanisms and further modulation

of innate and adaptive immune responses. For evading the

innate system, most viruses have evolved efficient mechanisms

to block sensing and/or antiviral functions of the innate

response. Interestingly, hepatitis B virus (HBV) seems to act like

a stealth virus that escapes cell intrinsic antiviral mechanisms

through avoiding recognition by the innate system rather than

blocking its effector functions. In line with this concept,

agonistic activation of innate immunity has emerged as a

promising novel anti-HBV therapy approach with several

compounds having advanced to the clinical stage.
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Introduction
The innate immune system represents the first line
defense of a host cell to viral infection. It consists of cell
surface and intracellular pattern recognition receptors
(PRR) such as cytoplasmic retinoic acid-inducible gene
I (RIG-I)-like receptors (RLRs) and DNA sensors, or
membrane-bound toll-like receptors (TLRs) that recog-
nize pathogen-specific structures called pathogen-associ-
ated molecular patterns (PAMPs). Incoming viruses can
be sensed at the cell surface by TLRs typically recogniz-
ing PAMPs exposed on virions (TLR2, TLR4) [1,2].
Intracellularly, endosomal TLRs recognize double
stranded (ds)RNA (TLR3), single stranded (ss)RNA

(TLR7/8), or CpG motif-containing unmethylated
DNA (TLR9) derived from incoming or replicating
viruses [2]. Cytoplasmic RLRs (e.g. RIG-I, MDA5)
detect virus derived dsRNA or ssRNA, while DNA sen-
sors (e.g. cGAS, IFI16) recognize viral DNA [1]. PAMP
recognition by PRRs typically results in rapid induction of
type I/III interferons (IFNs) and/or other inflammatory
cytokines in the infected cell [1–4]. Secreted IFNs signal
to surrounding cells and induce expression of a large
number of interferon-stimulated genes (ISGs) that inhibit
viral replication and protect naı̈ve cells from de novo
infection [5]. Besides infected cells, also innate immune
cells can respond to viral infection upon either directly
sensing virus-infected cells (e.g. natural killer (NK) cells
[6]), or engulfing viral components (e.g. dendritic cells
(especially plasmacytoid (p)DCs) [7] and macrophages
[8]). In the liver, also liver sinusoidal endothelial cells
(LSEC) and hepatic stellate cells (HSC) contribute to
innate immune responses [9]. Not surprisingly, most
viruses evolved to counteract cellular innate immune
responses by often actively suppressing PAMP recogni-
tion, IFN induction, IFN signaling and/or ISG activity
[10,11!]. Here we briefly summarize the current under-
standing of the interplay between HBV and the different
aspects of the innate immune system and how this
knowledge is exploited for the development of novel
therapies to combat chronic HBV infection.

Lack of innate response signature during HBV
infection
Consistent with observations for many different viruses,
innate immune induction is also evident for infections
with hepatotropic viruses including hepatitis A virus [12],
hepatitis C virus (HCV) [13], hepatitis D virus (HDV)
[14] and hepatitis E virus [15] all of which are associated
with an intrahepatic IFN/ISG response [12,13–15]. Sur-
prisingly however, HBV infection does not induce an
intrahepatic IFN/ISG response in chimpanzees [16].
Likewise, no intrahepatic IFN/ISG response was associ-
ated with early-acute infection in the woodchuck model
[17] and only minimally or not at all evident in HBV-
infected human hepatocyte chimeric mice [14,18!!,19].
Similarly, virtually no cytokine induction was detected in
the serum of human patients with acute HBV infection
[20,21]. These results suggest that HBV acts like a stealth
virus efficiently spreading throughout the liver without
alerting the innate immune system [16,22].

Although early studies in in vitro model systems sug-
gested that HBV could transiently induce an innate
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response in the infected cell, these results might have
been hampered by the lack of optimal model systems at
the time [23,24]. Indeed, recent studies by Cheng et al.
[18!!] and Mutz et al. [25!!] using newly developed
efficient in vitro HBV infection systems revealed that
also in vitro HBV infection does not trigger a cell intrinsic
innate immune response. Taken together, the stealth
characteristic of HBV seems to enable the avoidance of
innate recognition in its host organ and cell.

Innate response modulation by HBV
Many viruses have evolved to actively counteract PAMP
recognition, IFN induction/signaling and/or ISG function
in the infected cells. Thus, it is possible that the lack of
innate responses to HBV infection is due to a very robust
and effective suppression of those responses by HBV.
Indeed, it has recently been suggested that intrahepatic
innate immune response pathways could be downregu-
lated in chronic hepatitis B (CHB) [26 ]. This however, is
contradictory to similar studies in patients [20,21], chim-
panzees [16 ], and other HBV model systems [14,18!!,27 ]
where no suppression of these pathways was observed.
Furthermore, innate responses can not only be easily
induced in the presence of HBV but in turn also effi-
ciently inhibit HBV replication. For example, it has been
recognized early on that poly(I/C) mediated IFN-a/b
induction in HBV-infected chimpanzees resulted in a
reduction in many viral parameters [28]. Likewise,
HBV replication in a transgenic mouse model is strongly
inhibited by TLR activation [29,30]. Furthermore, and as
will be discussed below, agonistic activation of TLR7
induces prolonged suppression of HBV in different CHB
models [31!!,32]. Also, HBV superinfection of chronically
HCV-infected chimpanzees is strongly attenuated [33],
suggesting that HBV is also sensitive to the HCV-trig-
gered innate responses. Finally, HDV superinfection
triggers an innate response inhibiting preexisting HBV
replication in vitro [34!].

Nevertheless, several studies suggested that HBV pro-
teins and replicative intermediates can interfere with
innate immune responses in different in vitro HBV sys-
tems (reviewed in [35]). It has to be noted however, that
most of these studies involved over-expression of viral
components which might not reflect the situation during
natural infection. Indeed, new studies utilizing recently
developed efficient in vitro HBV infection models
unequivocally demonstrate that HBV does not interfere
with PRR mediated induction of innate responses in the
HBV infected cell [18!!,25!!]. Furthermore, using ex vivo
cultured human liver biopsies, we could show that PRR-
mediated IFN and ISG induction is not suppressed in the
HBV-infected hepatocytes in the liver of CHB patients
[36 ]. In summary, the data from in vivo studies and state of
the art in vitro models would suggest that HBV, besides
not inducing innate responses, does also not interfere
with innate immunity mechanisms in the infected cell.

HBV and innate immune cells
Apart from cell intrinsic innate immune responses,
viruses can also trigger innate responses in cells they
do not infect such as innate immune cells. In the liver,
these include a number of non-parenchymal cells (NPCs)
such as pDCs, NK cells and liver resident macrophages
(Kupffer cells). Indeed, in vitro exposure of human liver
derived NPCs [37 ] or primary monocyte-derived macro-
phages [18!!] to high doses of HBV induces cytokine
production, suggesting that Kupffer cells might sense
HBV in the liver. While Kupffer cell activation might
therefore contribute to HBV clearance [37 ], studies in
mice suggest that macrophage activation by HBV might
also promote HBV persistence through negative modula-
tion of HBV-specific adaptive immune responses
[38!,39,40]. In addition, HBV proteins have also been
implicated in downregulation of TLRs on Kupffer cells
(and other cells) in CHB, possibly contributing to a
proviral environment [41,42].

NK cells. Although NK cells are highly enriched in the
human liver [43], data on the interplay of HBV with NK
cells in patients is mostly derived from analysis of blood-
derived NK cells [20,44–46 ]. Although early activation of
NK cells was observed in acute HBV infection [20,45], in
some cases their non-cytolytic antiviral functions seem to
be suppressed at the peak of viremia [20] and also during
chronic infection [44,46 ]. Since NK cells can kill HBV-
specific T-cells [47 ] and exacerbate HBV-related liver
damage [48,49], it appears that antiviral and host damag-
ing effects of NK cells need to be carefully balanced to
achieve HBV clearance.

pDCs. pDCs are specialized in IFN production upon
recognition of captured viruses or viral-derived nucleic
acids and therefore are indispensable for mounting a
robust immune response during many viral infections
(reviewed in [7 ]). Interestingly however, exposure of
pDCs to HBV does not trigger IFN-a production,
although it interferes with their capacity to respond to
TLR9 stimulation [50,51]. Considering that pDC fre-
quencies and functions otherwise are not altered in
HBV-infected patients (reviewed in [52!!]), it remains
to be determined what role pDCs might play during HBV
infection.

Vertical HBV transmission
It is noteworthy that most studies on the interaction of
HBV with different aspects of the innate immune system
are focused on chronic or acute HBV infection in adults.
In contrast, comparatively little is known about these
interactions in newborns during vertical HBV transmis-
sion even though this is the more common route of HBV
infection today. Nonetheless, experiments in animal
models have suggested that HBV might induce an immu-
notolerant state in newborns and thereby establish per-
sistent HBV infection [38!,53,54]. While these studies
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provided an attractive explanation for the high rate of
chronicity of vertically transmitted HBV infection, they
are at odds with the observation that infants born to HBV-
positive mothers respond well to HBV vaccination [53].
Furthermore, a recent study showed that HBV exposure
in utero can even induce a state of trained immunity both
for innate and adaptive immune functions [55!!]. Taken
together, these results show that the virus host interac-
tions during vertical transmission of HBV are complex
and warrant further investigation.

Innate immune activation in HBV therapy
Since chronic HBV infection does not trigger a cell
intrinsic innate immunity within liver, compounds capa-
ble of activating an intrahepatic, anti-HBV specific innate
response are evaluated as novel therapeutic interventions
of CHB [35,56–59,60!!,61]. Agonistic acting immunomo-
dulators that have already advanced to the clinical stage
are discussed (Figure 1).

IFN-a
Conventional and pegylated IFNs are the only immuno-
modulators currently approved for treatment of CHB.
Compared to standard treatment with nucelos(t)ide ana-
logs (NAs), a higher, although still modest, rate of func-
tional cure is attained with IFN-a in patients during a
finite treatment course [61,62 ]. Unlike the oral availabil-
ity and safety of NAs [63,64 ], IFN-a treatment includes
parenteral delivery and substantial systemic effects, mak-
ing it impractical to administer this cytokine to all
patients.

Despite clinical use for over two decades, and due to its
pleiotropic effects, the mechanistic understanding of
IFN-a interference with HBV is still limited [65].
IFN-a displays immunomodulatory [66–69] and direct
antiviral effects [70–73,74 !!,75]. A study in woodchucks
addressed the mechanisms of IFN-a activity after sub-
cutaneous administration for 15 weeks [76]. Comparable
to patients [77], treatment reduced replication of the
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and other recombinant cytokines) and modulators that act specifically and locally (e.g. agonists of cytoplasmic PRRs, IFN signaling pathway
molecules, and endosomal TLRs). Available IFN-a preparations include Intron A (IFN-a 2b; Merck) and Pegasys (pegylated IFN-a 2a; Genentech).
SB 9200 (Spring Bank Pharmaceuticals) is an agonist of RIG-I. GS-9620 (Gilead Sciences), RG7854 or RO7020531 (Hoffmann-La Roche), and AL-
034 (Janssen) are agonists of TLR7. GS-9688 (Gilead Sciences) is an agonist of TLR8. CpG 21798 (Pfizer) and AIC649 (AiCuris) are agonists of
TLR9. Upon stimulation of PRRs or TLRs by their respective ligands, downstream signaling pathways are activated, including key molecules such
as STING or MyD88, leading to the nuclear translocation of the transcription factors NF-kB, IRF3 and IRF7, and subsequent transcription of IFNs,
pro-inflammatory cytokines, and ISGs. Note that the figure only indicates the main cell subsets and cellular compartments that are targeted by
IFN-a and agonists but does not depict any systemically induced innate immunity by these modulators as it is known for IFN-a due to the
pleiotropic nature of this cytokine. IFNAR, interferon-a/b receptor; STING; stimulator of interferon genes; IKK, Kinase involved in the upstream NF-
kB signal transduction cascade; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B-cells; IRF; interferon regulatory factor; IRSE,
interferon-responsive sequence element; and MyD88, myeloid differentiation primary response gene 88.
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HBV-like woodchuck hepatitis virus (WHV) at varying
degree in responder, partial responder, and non-
responder animals, with maximum mean declines in
WHV DNA and WHsAg of 3.2 and 2.0 logs, respectively.
Most woodchucks experienced viral rebound after the
end of treatment, although viremia and antigenemia
stayed suppressed in responder animals, with one achiev-
ing a functional cure. The differential treatment response
to IFN-a in individual woodchucks, however, did not
correlate with the intrahepatic induction of most ISGs.
Instead, induction of NK and T-cell markers, elevation in
liver inflammation, consistent with migration and/or pro-
liferation of these cells, and increase in IFN-g expression
were observed, indicating that cytolytic and non-cytolytic
mechanisms play a pivotal role in the IFN-a treatment
response. As also described for patients [66,67], the anti-
viral response mediated by IFN-a in woodchucks closely
correlates with its immunomodulatory effects. Alto-
gether, these results suggest that immunomodulators,
which activate antiviral immune cells in the liver like
IFN-a, but are without its limitations, are promising
compounds for the treatment of CHB.

TLR agonists
Selective activation of TLRs within pDCs by agonists for
the local induction of IFNs is increasingly investigated.
The oral TLR7 agonist GS-9620 reduced HBV DNA in
chimpanzees by 2.2 logs on average after two rounds of 4-
week treatment [31!!]. Durable suppression of viremia
persisted at least for 2–4 months and was associated with a
50% reduction in HBsAg and HBeAg levels. In wood-
chucks, one of the GS-9620 treatment regimens produced
a functional cure in all woodchucks [32]. GS-9620 was
initially administered for 2 weeks, halted due to throm-
bocytopenia in some animals, and then reinitiated with
half of the original dose for an additional 2 weeks. Short-
term treatment resulted in a rapid decline in WHV DNA
of 6.2 logs on average. Viremia stayed suppressed for more
than 7 months and was accompanied by undetectable
WHsAg in all woodchucks, and by anti-WHs seroconver-
sion in a subset of animals. The antiviral effect mediated
by GS-9620 in liver of chimpanzees and woodchucks
following induction of IFN-a and antiviral ISGs was
facilitated, at least in part, by the cytolytic activity of
CD8+ T-cells and/or NK cells. In the subsequent phase
Ib clinical trial, GS-9620 administered to treatment-naı̈ve
and NA-suppressed patients once or twice was well
tolerated, but did not result in significant changes in
HBV markers [78]. Since induction of hepatic flares or
autoimmunity are main concerns in any immunomodula-
tory therapy, the maximum dose applied to patients was
approximately 15–45-fold lower than those tested in
animals. Phase II clinical trials of GS-9620, testing longer
treatment duration and higher doses, alone or in combi-
nation with tenofovir, are ongoing (NCT02166047 and
NCT02579382).

RG7854 [79] is another oral TLR7 agonist, which induced
functional cure in woodchucks (Menne et al., unpub-
lished). The compound is currently evaluated in a phase
I clinical trial (NCT02956850). The oral TLR7 agonist
AL-034 showed efficacy against HBV in a mouse model
[80], and is also in phase I clinical development
(NCT03285620).

Agonists of TLR8 are considered important activators of
innate immunity since they induce the secretion of IL-12
and IL-18 from monocytes within human liver, which in
turn leads to the production of IFN-g by intrahepatic
innate immune cells such as mucosal-associated invariant
T cells (MAIT) and NK cells [81]. IFN-g has been shown
to mediate HBV clearance in chimpanzees [82] and to
suppress viral replication in HBV transgenic mice, wood-
chucks and CHB patients following treatment with IL-12
or IL-18 [83–86]. IL-12 can further rescue the antiviral
function of exhausted HBV-specific CD8+ T cells in  vitro
[87].

GS-9688, an oral TLR8 agonist, was tested in wood-
chucks [88]. Treatment for 8 weeks reduced
WHV DNA by 5 logs in most animals. Three wood-
chucks with sustained suppression in viremia had unde-
tectable WHsAg, and developed anti-WHs antibody
and WHV-specific T-cell responses. Comparable to
patients [89], the latter suggested that the T-cell dys-
function present in CHB is reversible. A phase
Ib clinical trial of GS-9688 is initiated
(ACTRN12617000235303).

CpG oligodeoxynucleotides are TLR9 agonists that
induce IFN-a following stimulation of pDCs and B-cells
[90]. CpGs have been tested during HBV vaccine devel-
opment [91,92]. Subcutaneous treatment of woodchucks
with CpG 21798 in combination with entecavir (ETV)
reduced WHV DNA and especially WHsAg to undetect-
able levels much earlier than ETV monotherapy, and
delayed viral relapse [93!]. CpG monotherapy, however,
was only modestly efficacious.

AIC649, an inactivated parapoxvirus ovis particle prepa-
ration, targets antigen presenting cells via TLR9 and
leads to cytokine release, including IFN-a [94,95]. The
antiviral efficacy of AIC649 was evaluated in woodchucks
during 36 weeks of intravenous/intramuscular adminis-
tration, alone or in combination with ETV during the
initial 12 weeks [96]. The AIC649 dose was equal to the
high dose administered to patients in an ongoing phase I
clinical trial (AiCuris website). The previously observed
bi-phasic response pattern [97] was confirmed during
AIC649 monotherapy. Combination treatment with
AIC649 and ETV produced maximum mean reductions
in WHV DNA and WHsAg of 7.6 and 4.1 logs, respec-
tively, and WHsAg became undetectable in a subset of
woodchucks. WHV suppression was quite durable, but
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viral rebound eventually occurred, although viremia and
antigenemia stayed below pretreatment level at the end
of the study. The treatment response was further associ-
ated with WHV-specific T-cell responses and anti-WHs
antibodies in most woodchucks. The overall results from
these studies indicate that TLR9 agonists can exhibit
additive effects, when administered in combination with
NAs.

Intracellular PRR agonists
Since the above TLRs are mainly found within pDCs, but
are barely expressed in other cells, PRRs that are located
within the cytoplasm of HBV-replicating hepatocytes are
another attractive target for stimulating antiviral innate
immunity. Activation of RIG-I induces not only IFNs but
has also been suggested to block HBV through sensing of
the epsilon-structure within pre-genomic RNA [19]. SB
9200, a selective, oral prodrug of the dinucleotide SB
9000 has been shown in woodchucks to activate RIG-I
expression in liver and to increase its protein level in
hepatocytes [98]. RLR upregulation further induced the
intrahepatic expression of key innate immune response
molecules, including STING and IRF3, and was consis-
tent with the induction of IFN-a/b and antiviral ISGs.
Induction of innate immunity, likely in addition to the
direct antiviral effect mediated by activated RIG-I, then
contributed to the dose-dependent antiviral response
observed with SB 9200 in woodchucks. In this context,
it is noteworthy that the murine STING agonist DMXAA
induced an IFN-a/b mediated cytokine release in macro-
phages, which suppressed HBV replication in mouse
hepatocytes and liver [99]. In another woodchuck study,
short-term ETV treatment was sequentially applied
before or after SB 9200 treatment for 12 weeks [100].
Activation of innate immunity by SB 9200 followed by
ETV resulted in maximum mean reductions in WHV
DNA and WHsAg of 6.4  and 3.3 logs, respectively. The
antiviral effect was transient, but WHV markers stayed
suppressed until the end of the study. These results
suggested that activation of intrahepatic innate immunity
in CHB patients prior to initiation of standard treatment
may be beneficial for augmenting the antiviral effect.
This concept is investigated in a phase IIa clinical trial of
SB 9200 (NCT027519968). Treatment-naı̈ve CHB
patients were pretreated with SB 9200 for 12 weeks, then
switched to tenofovir, and followed for additional
12 weeks [101]. SB 9200 treatment resulted in a mean
reduction in HBV DNA of 0.6 logs, and 5 of 16 patients
experienced a greater than 0.5 log decline in HBsAg. The
antiviral efficacy observed in patients is noteworthy con-
sidering that the applied SB 9200 dose is approximately
80-fold lower than the woodchuck dose. Following the
switch to tenofovir, an enhancement of the antiviral effect
was noted in HBeAg-positive patients, suggesting an
added benefit of immunomodulation followed by stan-
dard treatment.

Challenges for therapeutic use of agonistic
acting immunomodulators
Although the preclinical results overall are promising,
targeting innate immunity by agonists comprises chal-
lenges that need to be addressed before application in
CHB patients. While clinical trials with the above ago-
nists have not concluded, it has been suggested that the
utilized animal models, in contrast to patients, may be
more sensitive to this kind of therapy or may tolerate
doses exceeding those considered to be physiological and
safe in patients. This proposition is based on the rather
disappointing outcome of monotherapy with GS-9620 in
patients so far [78] using doses and dosing frequencies
significantly different to the treatment applied to chim-
panzees and woodchucks [31!!,32]. Since monotherapy
with agonistic activators of innate immunity sometimes
failed to induce pronounced antiviral effects in animal
models as well as patients and, unlike standard drugs,
cannot be administered indefinitely, combination treat-
ment with NAs will be required for achieving sustained
suppression of HBV. Such treatment regimens (sequen-
tial or concomitant) may further allow reducing the dose
of an agonist and shortening the duration of immunomo-
dulation in patients, whereby limiting the risk that the
activated adaptive immune response could target most or
all HBV-infected hepatocytes and result in fatal liver
damage.

Conclusions
Considering the different models used for studying the
interplay between HBV and the innate immune system, it
emerges that HBV is neither sensed nor interferes with
the innate immune response of the cell it infects, thus
acting like a stealth virus in this regard. On the other
hand, the consequences of the interplay between HBV
and different cells of the innate immune system seem to
substantially influence whether an HBV infection will be
resolved or become persistent. The encouraging results
from the above preclinical and clinical studies indicate
that agonistic activation of innate immunity, most likely
in combination with NAs, holds great promise for treat-
ment of CHB.
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5.3 Hepatitis B virus replication is inhibited downstream of 
pre-genomic RNA in HBeAg-negative chronic infection 
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ABSTRACT 

A hallmark of the transition to the HBeAg-negative state during the natural history of 

chronic hepatitis B (CHB) is a strong reduction in serum HBV DNA levels and to lesser 

extent of the intrahepatic cccDNA content. However, there is no correlation between 

cccDNA levels and viremia, which could be attributed to partial inhibition of viral 

transcription. While the apparent immune activity in the HBeAg-negative chronic 

hepatitis (ENCHB) phase could explain this antiviral effect, it is not clear whether HBV 

is similarly inhibited in the HBeAg-negative chronic infection (ENCI) phase. This is of 

particular interest as the ENCI phase is characterized by even lower viremia, absence 

of liver disease and only minimal hepatic necroinflammatory activity compared to the 

ENCHB phase.  

We now compared the relative HBV transcriptional activity and replication efficiency 

in the liver of CHB patients of different disease stages to identify what step(s) in the 

viral life cycle might be controlled in the ENCI phase. To this end, we used human liver 

biopsy tissue obtained from CHB patients to quantify intrahepatic HBV DNA and RNA 

replicative intermediates in different phases of CHB.  

Our results demonstrate that viremia and cccDNA levels are, respectively, ~2.1 log 

and ~1.3 log lower in the ENCI compared to the ENCHB phase. But, there is no 

difference in the HBV pgRNA production rate between the two groups. However, we 

found that the intrahepatic HBV replication efficiency in the ENCHB phase was not 

different from that in HBeAg-positive patients, while it was ~ 16-fold lower in the ENCI 

phase. 

Taken together our results reveal an HBV replication inhibitory activity that affects 

some step(s) downstream of pgRNA production in the viral life cycle in the ENCI 

phase. Importantly, this inhibitory activity is specific to the ENCI phase of CHB and 

thus, might be the key event discriminating the “immune control” phase (ENCI) from 

the “immune active” ENCHB phase. 
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INTRODUCTION 

Chronic Hepatitis B virus (HBV) infection is a global health burden affecting ~3% of 

the world population causing ~800 000 deaths per year due to cirrhosis and 

hepatocellular carcinoma [1, 2]. The causative agent, HBV is a small hepatotropic DNA 

virus belonging to the Hepadnaviridae family [3]. Upon infection of a hepatocyte, the 

viral genome is converted into a covalently closed circular (ccc)DNA molecule that 

persists in the hepatocyte nucleus as a stable episome [4]. CccDNA serves as a 

template for transcription of several RNAs that all encode viral proteins, and one of 

which, the so called pre-genomic (pg)RNA, serves as a template for HBV reverse 

transcription and HBV progeny production [4]. HBV encodes its own DNA polymerase 

which also functions as a reverse transcriptase that first converts viral pgRNA into 

complementary genomic minus(-)-strand DNA and then synthesizes the second, 

genomic plus(+)-strand DNA using the (-)-strand as template [5]. HBV polymerase is 

the main target of most currently available anti-HBV therapies [6]. 

The natural history of chronic hepatitis B (CHB) is divided into 5 stages which are 

defined by clinical and virological parameters and have been recently given a new 

nomenclature by the European Association for the Study of the Liver (EASL) [2]. The 

first stage, HBeAg-positive chronic infection (EPCI), is characterized by very high 

viremia (>107 IU/ml) and antigenemia in the absence of any disease. This phase can 

last for a few weeks or decades. It is typically followed by the HBeAg-positive chronic 

hepatitis B (EPCHB) phase characterized by elevated alanine aminotransferase (ALT) 

values (>40 IU/ml) indicating the presence of an antiviral immune response and is 

associated with a 3-5 log reduction in viremia. This disease phase is normally followed 

by a loss of HBeAg in the serum leading to a HBeAg-negative phase which is divided 

into HBeAg-negative chronic infection (ENCI) and HBeAg-negative chronic hepatitis 

B (ENCHB). During ENCI, the virus remains undetectable or contained (<2000 IU/ml) 

and there is no evidence of liver disease (ALT <40 IU/ml). ENCHB on the other hand 

is associated with persistent liver disease (ALT >40 IU/ml) and fluctuating viral loads 

>2000 IU/ml. Lastly, the HBsAg-negative stage (also known as “occult HBV infection”, 

or resolved hepatitis B) is defined by the disappearance of serum HBsAg and absence 

of liver disease, with or without the appearance of anti-HBs antibodies. While 

spontaneous resolution in CHB patients only occurs at a rate of ~1% per year, 95% of 

infections in adults will resolve within 6 months [2, 7]. But, despite the apparent clinical 
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resolution (“functional cure”), a hidden reservoir of viral cccDNA persists in the nuclei 

of some hepatocytes [8].  

The ENCI patients can maintain viral control for many years without clear signs of 

immune system activity [2]. Nevertheless, exposure to an immunosuppressive 

therapy, cancer chemotherapy, or certain biologic therapies for managing 

inflammatory conditions can lead to HBV reactivation, indicating that the mechanisms 

of viral control are tightly connected to the activity of the immune system [9]. However, 

what step(s) in the viral life cycle are targeted by these activities and the cellular 

mechanism(s) involved are not well understood. Based on the mode of action of 

therapies that lead to HBV reactivation, such mechanism might include B-cell and T-

cell-mediated control, cytokine signaling, lymphocyte proliferation and activation, and 

epigenetic regulation [9]. 

Precisely defining the key steps/events in the HBV life cycle that are controlled by the 

immune system during CHB are a prerequisite for determining the corresponding 

antiviral mechanism(s). Indeed, previous reports demonstrated a reduction in 

transcription and cccDNA in HBeAg-negative patients [10, 11]. However, it is not clear 

how ENCI compares to ENCHB. Also, previous studied did not take into account the 

possible contribution of integrated HBV DNA in measuring intrahepatic HBV replicative 

intermediates [10, 11]. Accordingly, in this study we compared the infection rate, 

cccDNA transcriptional activity and HBV replication efficiency between different 

disease stages using human liver biopsy material. Particularly, we focused on ENCI 

and high-viremia ENCHB stages, since the difference between them could highlight 

the key events required for full control over virus in ENCI compared to no control in 

ENCHB. To do so, we optimized extraction and analysis of HBV DNA replicative 

intermediates in order to avoid contributions of integrated HBV DNA.  

Using this optimized procedure, we quantified the levels of cccDNA, replicative 

intermediates, total HBV DNA and pre-genomic RNA in liver biopsies of CHB patients 

from different stages of infection including HBeAg-positive (HBe+), ENCI, ENCHB, 

and patients undergoing antiviral therapy (AVT). We demonstrate that cccDNA 

transcriptional activity is similarly inhibited in the liver of ENCI and ENCHB compared 

to HBe+ patients. However, the HBV replication efficiency is specifically inhibited in 

ENCI, but not in ENCHB. Together, these results suggest the existence of antiviral 

mechanism(s) that are only active during ENCI.  
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MATERIALS AND METHODS 

Patients and liver biopsies 

Liver biopsies from patients with HBV infections and from non-infected controls were 

obtained in the outpatient clinic of the Division of Gastroenterology and Hepatology, 

University Hospital Basel, Switzerland. Liver biopsies were done using an ultrasound 

guided coaxial needle technique that allowed for single-stick, multiple pass biopsies 

(BioPince®, Peter Pflugbeil GmbH, Zorneding, Germany). The individual biopsies are 

29mm long and have a diameter of 1mm. One cylinder was used for routine 

histopathological diagnostic purposes. After obtaining written informed consent, an 

additional biopsy cylinder was used for cryopreservation and subsequent extraction of 

nucleic acids. The use of biopsy material was approved by the local ethics committee 

(Ethikkommission Nordwest- und Zentralschweiz, Switzerland). Formalin fixed liver 

biopsy tissue was used for histological analysis for standard ISHAK classification (i.e. 

determination of liver inflammation and fibrosis) and for routine immunohistochemical 

stainings for HBV surface protein (HBsAg) and HBV core protein (HBcAg). For the 

HBV sample set, the histopathological analysis (ISHAK grading, HBsAg- and HBcAg-

positive hepatocyte fraction) and the clinical data (transaminases, HBV viral load in 

the serum, stage of infection, serum HBsAg and HBeAg status) are shown in 

supplementary Table S1. 

RNA isolation and quantification 

Total RNA was extracted from fresh-frozen biopsy pieces using the Trizol reagent 

(Invitrogen), or using ZR-DuetTM DNA/RNA MiniPrep Plus kit (cat. No. D7003, Zymo 

Research Corp., Irvine, CA, USA), according to manufacturer’s instructions. Total 

RNA extracted with TRIzol was subjected to DNase I treatment using the DNA-free™ 

DNA Removal Kit (Ambion) according to manufacturer’s instructions. Total RNA 

extracted with ZR-DuetTM DNA/RNA MiniPrep Plus kit was subjected to on-column 

DNase I treatment (provided in the kit). The RNA concentration was determined using 

a NanoDrop 2000 spectrophotometer (Thermo Scientific). 

DNA extraction 

Total DNA, nuclear DNA, cytoplasmic DNA and cccDNA were extracted from the same 

piece of snap-frozen liver biopsy. Tissue was homogenized in NP-40 lysis buffer (50 
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mM Tris-HCl (pH 8), 1 mM EDTA, 0.2% Nonidet P-40, 0.15 M NaCl) using a Dounce 

homogenizer (loose pestle). 60% and 20% of the homogenate were directly used to 

extract cccDNA and total DNA, respectively, as previously described [12]. The 

remaining homogenate (20% of the total lysate) was centrifuged for 5 min at 500xg 

and +4°C to pellet the nuclei. The supernatant containing predominantly replicative 

forms of HBV DNA was centrifuged again to remove any residual insoluble material 

yielding the pure cytoplasmic fraction. Pelleted nuclei were washed three times by 

resuspending them in the NP-40 lysis buffer and re-pelleting. After the last wash, the 

nuclei were resuspended in 100 µl of NP-40 lysis buffer (nuclear fraction). Both, 

nuclear and cytoplasmic fractions were further processed exactly in the same way as 

the samples for total DNA extraction. Extracted DNA was resuspended in 0.1x TE. 

CccDNA preparations were treated with 10 units of Exonuclease V (ExoV) (M0345S, 

New England BioLabs, Ipswich, MA, USA) for 120 min at 37°C. The reaction was 

stopped by adding EDTA to a final concentration of ~11 mM and heating to 70°C for 

30 min. The reactions were then directly used for qPCR. 

Reverse transcription and quantitative PCR 

cDNA was synthesized from 300 ng of total RNA using MultiScribe™ Reverse 

Transcriptase (Applied Biosystems™) and random hexamer primers in a 25µl 

reaction. RT reactions omitting the reverse transcriptase served as no RT (-RT) 

controls. 1/10 of each RT reaction was used for subsequent SYBR-green based 

quantitative real-time PCR (qPCR) using the primers listed in Table S2 on an ABI 7500 

Real Time PCR System (Applied Biosystems™). QPCR data were analyzed with the 

7500 Software v2.0.6 (Applied Biosystems™). All reactions were performed in 

triplicate. Besides “-RT” controls, RT reactions without any template, qPCR reactions 

without any template and qPCR reactions with water as template served as negative 

controls on every qPCR plate.  

Intrahepatic cellular and HBV DNA was analyzed by qPCR using 2.5 µl of the different 

DNA preparations. Genomic DNA was quantified by qPCR of the single-copy gene 

IMAP using serial dilutions of human genomic DNA with known concentration as a 

reference. Cell numbers were estimated based on the assumption that one cell 

contains a single diploid genome with the mass of ~7.18 pg without considering 

possible hepatocyte ploidy. Cell numbers estimated in the total DNA extracts were 
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used as a reference for calculating the amount of DNA per cell in the cytoplasmic 

fractions. The percentage of nuclear DNA contamination (%NDC) in the cytoplasmic 

fractions was calculated by dividing the IMAP signal in the cytoplasmic fraction by that 

in the total DNA fraction multiplied by 100. HBV DNA and pgRNA were quantified with 

the corresponding primers (Table S2) and using a standard curve prepared from a 

serial dilution of an HBV containing plasmid. The cytoplasmic HBV DNA level devoid 

of any signal from integrated HBV DNA was calculated by subtracting the HBV signal 

corresponding to the %NDC of the total DNA fraction from the HBV signal in the 

cytoplasmic fraction.  
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RESULTS 

Patient cohort 

The study included total of 16 HBe+ patients, 56 patients with ENCHB, 23 patients 

with ENCI and 7 patients undergoing antiviral treatment with NUCs (Table S1). The 

HBe+ group was defined only by the HBeAg-positivity without differentiating between 

the “chronic hepatitis B” and “chronic infection” stage. Median viral load in this group 

was ~1.7x108 IU/ml and the median ALT level was 63.5 IU/ml. The viral load is 

approximated because in many patients it was above the upper limit of quantification. 

In a similar way, the ongoing antiviral treatment was the only inclusion criterion for the 

AVT group, in which 6 out of 7 patients was HBeAg-negative. Viral load was 

undetectable in all 7 AVT patients and the median ALT level was 28 IU/ml. ENCHB 

and ENCI groups were defined based on the EASL guidelines: ENCHB included 

patients with a viral load >2,000 IU/ml (median ~19,274 IU/ml) with or without elevated 

ALT values (median 51 IU/ml), whereas the ENCI group included patients with a viral 

load <2,000 IU/ml (median 192 IU/ml) and normal ALT (median 25 IU/ml). 

According to the EASL definitions, patients with a viral load between 2,000 and 20,000 

IU/ml can be considered as ENCI if their ALT levels are persistently normal. Because 

ALT can be elevated due to other, non-HBV related comorbidities, the HBeAg-

negative patients with viral load <20,000 IU/ml are in a “gray zone” of classification. 

To avoid possible result bias due to misclassification of ENCI as ENCHB patients, for 

specific experiments we analyzed an ENCHB sub-group with a viral load >20,000 

IU/ml (median of 2.71x105 IU/ml) which we refer to as ENCHB-high. 

CccDNA level reduction alone cannot explain low viremia in ENCI 

It has been previously shown that a pronounced 3-5 log reduction in viral load upon 

HBeAg seroconversion is accompanied by only a modest 1-2 log decrease in cccDNA 

levels [10, 11]. Those studies however, did not discriminate between the patients with 

active high-level replication (ENCHB) and the ENCI group whose viral load is very low 

or absent. We now analyzed cccDNA levels separately in the ENCHB and ENCI 

groups and also in HBe+ and AVT patients, and correlated them with the changes in 

viral load among the same patients. As expected, the viral load (in IU/ml) was 

decreasing from a median of 1.7x108 in the HBe+ group to ~2.5x104 in the ENCHB 

group (-3.84 log) and to ~2x102 in the ENCI group (-2.09 log to ENCHB) (Figure 1A). 
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There was no detectable viral load in all the patients undergoing antiviral therapy with 

NUCs (Figure 1A). The corresponding cccDNA levels were 3.35 copies/cell in HBe+, 

~0.13 copies/cell in ENCHB and only ~0.006 copies/cell in the ENCI group (Figure 

1B). With ~0.016 copies/cell, the AVT group showed slightly higher cccDNA levels 

than the ENCI group (Figure 1B), supporting previous observations that viral 

suppression with NUCs has only a limited effect on cccDNA levels [13]. The correlation 

between median cccDNA levels and viremia among the different stages of CHB 

suggests that the amount of cccDNA in the liver is indeed a limiting factor for virus 

production. However, in both the ENCHB and ENCI stages the viral load decreased 

much more than cccDNA levels compared to HBe+ patients (Figure 1A, B) confirming 

previous reports comparing HBe+ with HBe- patients ([10, 11]). Moreover, there was 

no correlation between viral load and cccDNA in the ENCHB group (Fig. 1C), 

suggesting that viral transcription and/or replication could also be reduced in the 

ENCHB group. Similarly, there was no correlation between viremia and cccDNA in the 

ENCI group (Figure 1D). Taken together, our results are in agreement with previous 

studies showing a non-linear decrease in viral load and cccDNA in HBeAg-negative 

patients [10, 11]. 

HBV transcriptional activity in ENCI is similar to that of high-viremia HBeAg-

negative patients 

It has been previously shown that HBeAg loss is associated with reduced 

transcriptional activity of cccDNA [10, 11]. To address whether lower cccDNA 

transcriptional activity could be the reason for the low viremia in ENCI patients we 

compared the transcription efficiency in ENCI patients with that in ENCHB patients 

with high viral load (ENCHB-high). To do so, we monitored intrahepatic pgRNA in the 

different patient groups. We focused on pgRNA as this is the template for virus 

production and is typically not produced from integrated HBV DNA  [14].  

As expected, HBV transcriptional activity measured as amount of pgRNA per cccDNA 

molecule was the highest in the HBeAg-positive samples with a median of 195 

copies/cccDNA (Figure 2A). Again, as previously reported, the pgRNA production 

activity was reduced ~8-11 fold in the HBe-negative patients [10, 11]. Interestingly 

however, there was no difference in transcriptional activity between the ENCHB-high 

and ENCI group (Figure 2A), suggesting that transcriptional suppression is not a major 

factor driving the ENCI state. Transcriptional activity in AVT patients (most of which 
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are HBeAg-negative) was similar to that of both HBeAg-negative groups (Figure 2A), 

in agreement with the mechanism of action of NUCs, that inhibit HBV DNA synthesis, 

but not transcription. Taken together, these results suggest, that there is a general 

downregulation of cccDNA transcription upon HBeAg seroconversion, but this does 

not appear to be the factor that distinguishes patients with active hepatitis (ENCHB) 

from patients that have HBV replication under control (ENCI). Total intrahepatic 

pgRNA production correlated with viremia in ENCHB patients (Figure 2B), suggesting 

that the combination of cccDNA and transcriptional reduction can largely explain the 

reduced viral load at this stage. These results also suggest that viral replication steps 

downstream of pgRNA production are not critically affected in ENCHB. In contrast, 

pgRNA production in ENCI patients did not correlate with viremia (Figure 2C), further 

suggesting that additional steps of the HBV life cycle are suppressed in these patients.  

HBV replication inhibition in ENCI 

To determine, whether the HBV replication efficiency is indeed lower in ENCI 

compared to high-viremia ENCHB (ENCHB-high) patients, we analyzed production of 

replicative intermediates (repDNA) between the different patient groups. To avoid 

signals from integrated HBV DNA to impact the data, we performed subcellular 

fractionation of liver biopsy material and extracted DNA specifically from the 

cytoplasmic fraction as described in “Materials and Methods”. DNA from nuclear 

fraction as well as from the total biopsy lysate were extracted as control. Using this 

approach, we were able to keep genomic DNA contamination in the cytoplasmic 

fraction between 0.19% – 8.4% (Figure S1A), which enabled separation of replicative 

intermediates from nuclear HBV DNA in samples with very low intrahepatic levels of 

replication intermediates. As shown in Figure S1B, integrated DNA apparently affected 

quantification of HBV DNA replicative intermediates in cases with very low levels of 

<1 copy per cell. As expected however, analysis of higher levels of HBV DNA 

replicative intermediates was no longer affected by signals from integrated DNA 

(Figure S1B, triangles) and thus, was done using total DNA. 

The total levels of repDNA per cell clearly separated by disease stage, with almost 

non-overlapping distribution between groups (Figure 3A). Interestingly, the repDNA 

levels in patients under treatment (AVT) were similar to the patients who control the 

virus (ENCI) (Figure 3A), suggesting that suppression of the viral replication in ENCI 

is similar to the NUC therapy induced suppression. Moreover, replication per cccDNA 
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was reduced ~11-fold more than the transcriptional activity in the liver of ENCI 

patients, while there was a similar reduction of replication per cccDNA and 

transcriptional activity in the ENCHB patients (Figure 2A and 3B). These results 

suggest that while the difference in replication between HBe+ and ENCHB-high might 

be due to differences in cccDNA transcriptional activity, the difference between 

ENCHB-high and ENCI requires specific inhibition of replication downstream of 

pgRNA. To test this hypothesis, we calculated the amount of replicative intermediates 

generated per pgRNA in the different CHB stages (Figure 3C). Indeed, the replication 

efficiency per pgRNA in the liver of ENCI patients is ~11-fold lower than that in 

ENCHB-high patients Figure 3C) with the latter not differing from that seen in HBeAg-

positive patients. Taken together, these results clearly demonstrate that HBV 

replication in patients from the ENCI group is specifically suppressed downstream of 

pgRNA production. 

 

DISCUSSION 

The HBeAg-negative chronic infection (ENCI) stage in the natural history of chronic 

HBV infection is characterized by low or non-detectable viral load the absence of liver 

disease and low to non-existent immune activity [2]. This can be potentially achieved 

in many different ways by controlling various steps/events in HBV life cycle, for 

example, through elimination of the majority of infected hepatocytes, transcriptional 

suppression of cccDNA (e.g. via epigenetic modifications), inhibition of HBV 

replication, modified stability of replicative intermediates, inhibition of capsid 

assembly, or decreased virion formation and release. In the current study we 

compared different replication steps and their activity in the ENCI stage with those in 

high-viremia stages of CHB in order to find out which of these steps are inhibited and 

thus might account for the low viremia in the ENCI phase of CHB. Given the very low 

HBV replication levels in ENCI, measuring intrahepatic HBV replicative intermediates, 

however, might be influenced by signals derived from integrated HBV DNA. Indeed, 

recent reports estimated that hepatocytes containing integrated HBV DNA can 

account for at least 0.01-1% of all hepatocytes in the liver [15, 16]. In low replicating 

HBeAg-negative patients, the frequency of infected cells can be lower than 1% (based 

on the cccDNA levels) [12], which might lead to a situation where integrated HBV DNA 
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and replicating HBV DNA would be indistinguishable. To avoid this problem, that might 

have influenced the results of previous studies [10, 11, 17], we prepared and analyzed 

cytoplasmic DNA that contains replicative intermediates, but is devoid of integrated 

HBV DNA.  

In agreement with a central role of cccDNA in the HBV life cycle we found that CHB 

stages with lower viremia had on average also less cccDNA (Figure 1A, B), suggesting 

that cccDNA availability is indeed rate-limiting for HBV replication. However, cccDNA 

levels alone could not explain the viremia within the HBeAg-negative stages (Figure 

1C, D). Furthermore, our results confirm that regulation of cccDNA transcriptional 

activity contributes to the reduced viral load in HBeAg-negative patients [10, 11]. 

Importantly however, our study revealed that in ENCI patients in addition to 

transcriptional control, also HBV replication efficiency is specifically inhibited.  

We could not exclude in this study that some factors downstream of HBV genome 

replication, such as modified stability of replicative intermediates, inhibition of capsid 

assembly, or decreased virion formation and release could further contribute to 

establishing the ENCI state. Patients undergoing NUC treatment, however achieve a 

state of viral control similar to ENCI due to the inhibition of replication alone. 

Interestingly, the ENCI and AVT patients in our study showed similar levels of total 

intrahepatic replication (Figure 3A), suggesting that the combination of low cccDNA 

levels, transcriptional suppression and inhibition of replication in ENCI is sufficient to 

achieve viral control. 

Besides inhibition of transcription and replication, anti-HBV antibodies in the serum, 

or accumulation of deficient cccDNA forms as a result of dslDNA to cccDNA 

conversion could contribute to the discrepancy between cccDNA and viremia [4]. Our 

observation that pgRNA production per cccDNA is similar in ENCHB and ENCI 

patients would however, suggest that deficient forms of cccDNA are not significantly 

affecting virus production in CHB. Likewise, the positive correlation of pgRNA and 

viremia in the ENCHB patients suggests that antibodies do not play a major role in 

controlling viremia in this phase of CHB. Rather, it appears that the combination of 

lower cccDNA levels and reduced transcriptional activity determine the viral load in 

ENCHB patients. A contribution of antibodies to the low viremia in ENCI patients 

however, cannot be ruled out.  
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Given the apparent lack of immune activity in ENCI, the mechanisms by which host 

achieves and maintains inhibition of HBV replication remain to be determined. HBV 

DNA synthesis requires 3 factors – pgRNA, core and polymerase, with both, core and 

pol being produced from the pgRNA [5]. Since pgRNA production is not suppressed 

in the ENCI patients compared to high-viremia ENCHB patients (Figure 2A), pgRNA 

is most likely not the limiting factor. Mutations in core and polymerase however could 

result in inhibition of capsid assembly and inhibition of HBV DNA synthesis by the 

polymerase, respectively. Therefore, it would be interesting to analyze whether such 

mutations are overrepresented in cccDNA of ENCI patients.  

Studies in HBV transgenic mice and chimpanzees have shown that in addition to direct 

killing of the infected cells, T-cells also control HBV infection by non-cytolytic 

mechanisms, through the activity of cytokines such as interferon-gamma (IFNg) and 

tumor necrosis factor alpha (TNFa) [18-20]. Suppression of replication downstream of 

pgRNA is compatible with the mechanism of action of IFNg, that is produced by T cells 

and was shown to interfere with pgRNA packaging and capsid formation [21]. 

Importantly, it is well documented that both suppression of immune cell proliferation 

and/or functions as well as specific inhibition of TNFa can lead to HBV reactivation, 

suggesting that TNFa and other cytokines produced by immune cells (e.g. IFNg 

produced by T cells) play an important role in controlling the virus in the chronic 

infection stage and in resolved hepatitis B [9]. 

B-cell depleting therapies (e.g. Rituximab) also often lead to HBV reactivation, 

indicating that anti-HBV antibodies (most likely anti-HBsAg antibodies) are also crucial 

for controlling the virus probably acting via preventing the infection of new cells [9]. 

The mechanism of transcriptional downregulation of cccDNA is also not well 

understood. Although many HBeAg-negative patients accumulate mutations in HBV 

pre-core / basal core promoter, a study by Volz et al. [10] has shown that such 

mutations are actually mostly beneficial for viral replication and that ~50% of patients 

did not even have such mutations. On the other hand, cccDNA is amenable to 

epigenetic modulation (for example by cytokines) that could change its transcriptional 

activity [22]. 

In conclusion, we identified a specific suppression of HBV replication efficiency 

downstream of pgRNA which might be the key event that discriminates between viral 
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control and lack thereof in HBeAg-negative patients. Future studies will be aimed at 

revealing the mechanism(s) that control HBV replication in the ENCI phase of CHB 

and might open new opportunities for developing novel and effective HBV therapies.  
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FIGURE LEGENDS 

 

Figure 1. Relationship between HBV viral load and cccDNA levels in different 
groups of CHB patients. Serum HBV DNA levels (A) and intrahepatic cccDNA levels 

(B) in four groups of CHB patients (HBe+ (n=10), HBeAg-positive; ENCHB, HBeAg-

negative chronic hepatitis B (n=31); ENCI, HBeAg-negative chronic infection (n=18); 

AVT, antiviral therapy (n=5)). Correlation between HBV viral load and intrahepatic 

cccDNA levels among ENCHB (C) and among ENCI (D) patients. Samples with viral 

load below detection limit were excluded from correlation analyses. Dotted line in (A) 

represents the lower limit of quantification; neg, negative for serum HBV DNA. Red 

lines show the median. HBV cccDNA levels are shown as copies per cell, based on 

the total DNA quantification and cell number estimation (see Materials and Methods). 

Statistical analysis of the correlations was performed using a nonparametric 

Spearman correlation. r, Spearman rank coefficient; n, number of samples. 

 

Figure 2. Production of pgRNA is inhibited in the HBeAg-negative patients. A) 
CccDNA transcriptional activity in four groups of CHB patients: HBe+ (n=9), ENCHB-

high (viral load >20,000 IU/ml) (n=13), ENCI (n=14), AVT (n=3). Red lines denote the 

median. B, C) Correlation of intrahepatic pgRNA production with viral load in ENCHB 

patients (B) and in ENCI patients (C). RNA values are expressed as copy numbers 

per cell, assuming that one hepatocyte contains ~30pg of total RNA. Statistical 

analysis of the correlations was performed using a nonparametric Spearman 

correlation. Non-parametrical Mann-Whitney test was used for group comparison. *, 

p<0.05; **, p<0.01; ns, not significant (p≥0.05); r, Spearman rank coefficient; n, 

number of samples. 

 

Figure 3. HBV DNA replication is inhibited in ENCI patients. HBV replicative 

intermediates (repDNA) were extracted from the cytoplasmic fraction of liver biopsy 

tissue as described in “Materials and methods” and quantified by qPCR. Shown are 

the amounts of replicative intermediates per cell (A) per cccDNA (B) and per pgRNA 

(C). The number of patients was HBe+: n=12, ENCHB-high: n=22, ENCI: n=8, AVT: 
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n=3 in (A), HBe+: n=10, ENCHB-high: n=16, ENCI: n=7, AVT: n=3 in (B) and HBe+: 

n=10, ENCHB-high: n=17, ENCI: n=7, AVT: n=2 in (C). HBV DNA measurements are 

expressed as copies per cell, based on the total DNA quantification and cell number 

estimation (see Materials and Methods). Non-parametrical Mann-Whitney test was 

used for group comparison. *, p<0.05; **, p<0.01; ***, p<0.001; ns, not significant 

(p≥0.05). 
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6. CONCLUDING REMARKS 

 

Despite decades of research, hepatitis B virus still remains a global health burden and 

development of new curative treatments capable of eliminating viral DNA from the liver 

are urgently needed. This is however hampered by our limited understanding of the 

host-virus interactions in the human liver. With the experimental work described in this 

thesis we attempted to shed some light onto some of these interactions, that so far 

have been difficult to study because of a lack of a fully permissive immunocompetent 

HBV infection model. Using human liver biopsy material, we were able to overcome 

some of these limitations. 

Liver biopsies are typically used in research as fixed tissue (formalin-fixed or 

cryopreserved) which limits the range of experiments that can be performed. We now 

developed a method to keep liver biopsies viable long enough to perform short-term 

(up to 24 hours) experiments. This allowed us to study, at the cellular level, the impact 

of HBV infection on the induction of innate immune responses by viral infection or TLR 

ligands. These experiments demonstrated that the presence of HBV in the liver does 

not affect the ability of the liver to respond to such stimuli, indicating that the virus does 

not interfere with the pathways leading to the induction of innate immune responses 

in the human liver. Lack of any HBV-associated innate immune response signature in 

the liver of CHB patients at a steady-state finally confirmed the hypothesis that HBV 

is a “stealth” virus which in contrast to other known viruses is invisible to the host cell’s 

innate immune system. The inability of HBV to suppress the innate immune responses 

explains the apparent sensitivity of the virus to some innate immune stimuli and 

cytokines (see section 5.2) and warrants the development of innate immune 

modulators as potential therapeutic agents for treatment of CHB. Indeed, several 

innate immune modulatory therapeutics are currently undergoing clinical trials and 

show efficiency against HBV (see section 5.2). Importantly, activation of the innate 

immune system by such therapeutics might even have the potential to eliminate 
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cccDNA by the IFNa or TNFa mechanisms proposed to degrade cccDNA (see section 

5.2).  

In a separate effort we wanted to identify the step(s) in the HBV viral life cycle whose 

control determines the very low viral load in the HBe-negative chronic infection phase 

of CHB. Those studies showed that the host can exert viral control at the level of 

cccDNA amounts, transcriptional control and also suppression of viral replication. 

Interestingly, all the antiviral activities are active even though there is no indication for 

any immune activity. Future studies defining the mechanism(s) responsible for these 

antiviral activities will certainly be instrumental in designing novel and effective HBV 

therapies that hopefully will be curative.  

Aside from HBV, our method of short-term ex vivo liver biopsy culture might prove 

useful also in other areas of liver-related research. With the growing interest in 

precision medicine, this experimental system could be valuable for investigating 

interindividual differences in liver function and responses to various stimuli or drugs in 

other chronic liver diseases. 

Taken together, during the work performed as a part of this thesis we developed and/or 

optimized methods and tools for analysis of host-virus interactions and the HBV life 

cycle in the human liver. Although we specifically used these tools to study HBV, their 

use is not limited to HBV research. Using these tools, we addressed several 

unanswered questions in the HBV field and gained new insights into HBV-host 

interactions in the human liver. We hope that our techniques and findings will prove 

useful for developing novel therapeutics against HBV and, finally, a long-sought, but 

still missing cure. 
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Materials and Methods 
	
RNA isolation and quantification 
Total RNA was extracted from fresh-frozen biopsy pieces using the Trizol reagent 

(Invitrogen) according to the manufacturer's instructions, with minor modifications. 

Specifically, after addition of chlorophorm and initial phase separation the aqueous 

phase was re-extracted once with phenol/chlorophorm mixture (5:1) (Fisher Scientific) 

and then once again with chlorophorm (Merck) alone. Total RNA was subjected to 

DNase treatment using the DNA-free™ DNA Removal Kit (Ambion) according to 

manufacturer’s instructions. The RNA concentration was determined using a 

NanoDrop 2000 spectrophotometer (Thermo Scientific) and RNA quality/integrity was 

assessed with an Agilent 2100 BioAnalyzer using RNA 6000 Nano Kit (Agilent 

Technologies).  

 

Reverse transcription and quantitative PCR (RT-QPCR) 
cDNA was synthesized from 400ng of total RNA using MultiScribe™ Reverse 

Transcriptase (Applied Biosystems™) and random hexamer primers in a 25µl reaction 

volume. For all samples “-RT” controls (reactions omitting the reverse transcriptase) 

were performed. Either 1/10 (IFNa2, IFNb, IFNl1, IFNl2/3) or 1/20 (TNFa, IL6, 

ISG15, Mx1, RSAD2, GAPDH, HBV RNA) of each RT reaction was used in 

subsequent SYBR-green based qPCR reactions, that were performed using an ABI 

7500 or 7500 Fast Real Time PCR System (Applied Biosystems™) and analyzed with 

the 7500 Software v2.0.6 (Applied Biosystems™). All reactions were performed at 

least in duplicates. Besides “-RT” controls, RT reactions without any template and 

qPCR reactions without any template served as negative controls on every qPCR 

plate. Target gene expression levels were quantified based on standard curves 

(comprised of serial dilutions of plasmids containing either cloned cDNA of the 

corresponding gene or a cloned PCR product) and expressed as copy numbers per 

40ng of total RNA. Cutoff for transcript detection was set at 3 copies per reaction 

(designated as LoD (limit of detection) on the corresponding graphs). Differences in 

gene expression levels were tested for significance by non-parametrical Mann-

Whitney test using GraphPad Prism 7 software (GraphPad Prism, Inc.). Differences 

with p-values <0.05 were considered significant. Sequences of all the primers used 
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for qPCR are listed in Table S1. Please note, that due to the high sequence similarity 

of IFNl2 and IFNl3 mRNA (97%), they were quantified together using one primer pair 

that binds to both IFNl2 and IFNl3 (designated as IFNl2/3). 

 

H&E staining and dead cell staining and quantification 
Biopsy pieces were incubated ex vivo for the indicated periods of time without any 

stimulation and then either directly processed for H&E staining or incubated with 

NUCLEAR-ID® Red/Green cell viability reagent (Enzo Life Sciences, Inc.,) for another 

30 minutes for staining of dead cells. At the end of the incubation, biopsy pieces were 

immediately embedded in OCT, cryosectioned (10µm thickness) in a cryostat and 

mounted onto Superfrost Plus Gold glass slides (Thermo Fischer Scientific). 

Consecutive sections were used to visualize total number of cells (mounting with 

DAPI) and dead cells (mounting without DAPI), respectively. Images, corresponding 

to the same biopsy area were acquired from the two consecutive sections using an 

Olympus BX63 upright microscope (Olympus Corporation) and 10x objective. Total 

and dead cells were counted manually on the corresponding images of the 

consecutive sections. Percentage of dead cells was calculated as (dead cells/total 

cells)x100. For H&E staining, biopsy sections were fixed for 30 min in 4% 

formaldehyde at room temperature, rinsed twice with 1x PBS and then subjected to 

standard H&E staining. Images were acquired on an Olympus BX63 upright 

microscope (Olympus Corporation). 

 

In Situ Hybridization 
In situ hybridization was performed using the ViewRNA system (Thermo Fisher 

Scientific) and commercially available probe sets (Thermo Fisher Scientific) as 

previously described 20. Commercial type 6 probe sets were used to detect human 

albumin mRNA (cat# VA6-13354) and HBV RNA (cat# VF6-11745) and type 1 probe 

sets for detection of human IFNb (cat# VA1-11281) and human ISG15 mRNA (cat# 

VA1-11634). A negative control (section of an untreated biopsy piece) was mounted 

together with experimental sections onto the same slide and hybridized under the 

same conditions. Before microscopy, slides were counterstained with Meyer’s 

hematoxylin and embedded with DAPI-containing aqueous mounting medium (Roti-

Mount FluorCare DAPI, Roth, Arlesheim, Switzerland). The images were acquired 
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using a laser scanning confocal microscope (LSM710, Carl Zeiss Microscopy) and 

Zen2 software (Carl Zeiss Microscopy). The high-power images (212.3 x 212.3µm) 

were acquired using the 40x objective. Colors of each fluorescent dye were assigned 

during acquisition (red for Fast Red substrate, green for Fast Blue substrate, and blue 

for DAPI). The pictures were saved in the Zeiss confocal file format (.lsm), including 

multicolor layers, and further processed using ImageJ software. 

 

Immunostaining 
Frozen liver biopsy sections were fixed in freshly prepared 4% formaldehyde for 15 

min at room temperature. After washing with PBS, they were permeabilized in cold 

methanol (-20°C) for 10 minutes. Samples were blocked with 5% normal goat 

serum/0.05% Tween-20 for 1h. Phosphorylated STAT1 (pSTAT1) was detected using 

an anti-pSTAT1 rabbit antibody 58D6 (Cell Signaling), HBsAg – using a monoclonal 

mouse anti-HBs antibody (Abnova) and HBcAg using a chicken anti-HBc antibody (gift 

from Prof. Ralf Bartenschlager, Heidelberg, Germany) in blocking buffer. For signal 

visualization, the following secondary antibodies conjugated to Alexa Fluor dyes 

(Invitrogen) were used: anti-mouse Alexa-488 or Alexa-647, anti-rabbit Alexa-568 or 

Alexa-647 and anti-chicken Alexa-555 in blocking buffer. Sections were mounted with 

Mount FluorCare DAPI (Carl Roth GmbH). Images of entire tissue sections were 

acquired on a Nikon Ti microscope using either a 10x or 20x objective, saved in the 

Nikon file format (.nd2) and further processed using ImageJ software. 

 

Albumin, HBsAg and HBV DNA measurement in the biopsy culture supernatant 

Biopsy culture supernatant was collected at the time of tissue harvest and stored at -

80°C. HBsAg levels were measured in undiluted biopsy culture supernatant using the 

Architect HBsAg assay (Abbott, Chicago, IL). For HBV DNA quantification, 400 µl of 

biopsy culture supernatant was mixed with 5x DNA lysis buffer (5% SDS, 100 mM 

EDTA, 200 mM Tris, pH 8.0) and treated with proteinase K (0.5 mg/ml) for >4h at 

45°C. Total DNA was then extracted with phenol/chlorophorm (5:1) (Fisher Scientific), 

then once again with chlorophorm (Merck) alone and precipitated with isopropanol in 

the presence of 0.3M sodium acetate. Precipitated DNA was washed twice with 70% 

ethanol and dissolved in 0.5x TE buffer. HBV DNA was quantified by QPCR using a 

standard curve based on a plasmid containing a full-length HBV genome. For albumin 
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measurement in biopsy culture supernatants, liver biopsies were washed for 2-3 min 

with an excess volume of 0.9% NaCl at room temperature and then washed with 1.5 

ml of fresh culture medium for another 10 min, cut into pieces and cultured ex vivo. 

Human albumin levels were measured in 50 µl undiluted cell culture supernatant using 

a Human Albumin ELISA Kit (AssayPro, St. Charles, USA; Cat# EA3201-1) according 

to manufacturer’s instructions 

 

HBV genotyping 
The same starting material that was used for HBV DNA quantification was also used 

for HBV genotyping. Genotyping was performed as described by Lebosse et al., J 

Hepatol 2017;66:897-909. 
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Supplementary Table 1. Primer sequences 

Target Gene Primer direction Sequence 5' --> 3' 

GAPDH 
Forward GCTCCTCCTGTTCGACAGTCA 
Reverse ACCTTCCCCATGGTGTCTGA 

IFNa2 
Forward TCGTATGCCAGCTCACCTTTT 
Reverse TCAGTCAGCATGGTCCTCTGTA 

IFNb 
Forward AGTAGGCGACACTGTTCGTG 
Reverse AGCCTCCCATTCAATTGCCA 

IFNl1 
Forward CACAGGAGCTAGCGAGCTTCA 
Reverse TTTTCAGCTTGAGTGACTCTTCCA 

IFNl2/3 
Forward GCCAAAGATGCCTTAGAAGAG 
Reverse CAGAACCTTCAGCGTCAGG 

TNFa 
Forward CTCTCTAATCAGCCCTCTGGC 
Reverse GCTTGAGGGTTTGCTACAACA 

IL-6 
Forward AATTCGGTACATCCTCGACGG 
Reverse GGTTGTTTTCTGCCAGTGCC 

ISG15 
Forward TCCTGCTGGTGGTGGACAA 
Reverse TTGTTATTCCTCACCAGGATGCT 

Mx1 
Forward GTGCATTGCAGAAGGTCAGA 
Reverse TCAGGAGCCAGCTGTAGGTGT 

RSAD2 
Forward CTTTGTGCTGCCCCTTGAG 
Reverse TCCATACCAGCTTCCTTAAGCAA 

HBV RNA 
Forward TGGCCAAAATTCGCAGTCCC 
Reverse GATGAGGCATAGCAGCAGGATG 

Albumin 
Forward TGCCAAAGTGTTCGATGAAT 
Reverse AGCGCATTCTGGAATTTGTA 

HNF-1b 
Forward GGATGCTCAGTGAGGACCCT 
Reverse GTTGAGATGCTGGGAGAGGT 

HNF-4a 
Forward TCAACCCGAGAAAACAAACC 
Reverse ACCTGCTCTACCAGCCAGAA 

CYP3A4 
Forward TGTGCCTGAGAACACCAGAG 
Reverse GTGGTGGAAATAGTCCCGTG 
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Supplementary Table 2. HBV patient characteristics and performed experiments  

ID Geno
-type 

Log 
Viral 
Load 

(IU/ml) 

Log 
HBV 
RNA 

Copies
/ 40 ng 

qHBs 
(IU/ml) 

HBs 
IHC 
(%) 

HBc 
IHC 
(%) 

HBeAg ALT 
(U/L) 

ISHAK 
stage 

ISHAK 
grade 

Stimulated Receptor 

TLR RLR 
(SeV) 3 2 4 7 8 9 

HBeAg+ infection; (Immune tolerant (IT))a  

C799 B >8.23b 6.38 1477 99 80 pos 25 0 2 +             
D190 D 6.34 5.26 -c 100 5 pos 31 1 1             + 

HBeAg+ hepatitis; (HBeAg+ Immune Active (IA))  

C787 D >8.23 6.01 - 99 70 pos 46 1 5 +             
C921 B 3.83 5.80 - 95 0 pos 66 0 2 +             

HBeAg- infection; (Inactive carrier (IC))  

C968* A 1.90 4.60 6060 90 0 neg 8 1 3     +         
C812 A 1.76 5.24 3127 99 0 neg 17 0 3 +             
C889 A 3.00 4.80 - 90 0 neg 43 1 3 +             
C912* C 2.70 5.53 2099 99 0 neg 21 0 2 +             
D012* D 3.14 3.80 2371 0 0 neg 25 1 3 + +     +     
D055* D 2.67 4.48 6626 0 0 neg 22 - - +             
D061 B 3.38 4.36 - 30 0 - 44 4 1 + + + +       
D459 D 1.46 4.72 5891 5 0 neg 28 1 2 +      + 

HBeAg- hepatitis; (HBeAg- Immune Active (IA))  

C982** B 4.17 5.81 - 90 - neg 45 0 2   +   +   +   
D021* A 3.46 5.38 4572 90 0 neg 30 1 4   + + + + +   
D054* D 3.62 4.55 - 10 0 neg 22 2 1 +   +         
C765 D 5.78 4.90 - 70 1 neg 344 1 3 +             
C786 D 1.76 5.29 2116 99 1 neg 72 0 3 +             
C887 D 3.59 4.78 - 5 0 neg 40 1 3 +             
C911* E 4.23 4.70 - 30 0 neg 31 0 3 +             
C920 A 2.58 5.47 - 90 0 neg 45 0 3 +             
C926 D 3.41 4.23 - 10 0 neg 57 2 3 +             
C930* E 3.59 - - 80 0 neg 30 2 3        
D010* D 5.77 5.45 4931 0 40 neg 124  3 6 +       +     
D139** C 6.08 5.36 5276 95 5 neg 35 1 3             + 
D167** D 4.33 5.05 - 80 0 neg 19 0 2             + 
D183** D 6.66 5.36 4926 100 0 neg 40 2 4             + 

Under therapy  

D445d,e D 1.83 5.28 2156 90 0 neg 157 4 17 +      + 
C706f D <1.30g 4.40 6125 20 0 neg 32 3 4 +             
C809h D <1.30 4.08 297 10 1 pos 26 3 1 +             

D187i, ** D <1.30 3.79 7408 - - neg 24 3 5             + 
a Nomenclature according to old EASL guidelines (in parentheses) 
b Outside maximal assay range 
c No information 
d interferon therapy for three months, but stopped due to adverse effects and biopsied 1 month later.   
e co-infection with Hepatitis D virus (HDV), but immunohistologically negative for HDV Ag 
f Lamivudine treatment for 12 years. Biopsy obtained 1 year after stop of therapy. � 
g Below detection limit 
h Initially under Interferon therapy followed by different combinations of Lamivudin, Adefovir and Tenofovir for 4 years and 4 years 
on Tenofovir at the time of biopsy. 
i Interferon therapy followed by 11 years of Lamivudin including at the time of biopsy 
* HBsAg and HBV DNA measured in biopsy culture supernatant (at 6 and 12 hours) 
** HBsAg and HBV DNA measured in biopsy culture supernatant (at 6, 12 and 24 hours) 
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Supplementary Table 3. Control patient characteristics 
and performed experiments 

ID Diagnosis 
Stimulated Receptor 

TLR RLR 
(SeV) 3 2 4 7 8 9 

D477 AIH        
C824 ALD +       

D438 ALD +       
D478 ASH        
C778 ASH, Cirrhosis +       

NN2 ASH, Cirrhosis +       

C927 ASH, Cirrhosis +       

D191 ASH, Cirrhosis       + 
D052 ASH/NASH  + +     

D116 ASH/NASH       + 
C917 ASH/NASH +       

D486 ASH/NASH        
D093 ASH/NASH, Cirrhosis       + 
D107 Cirrhosis       + 
C888 DILI +       

C981 DILI     + +  

D198 DILI       + 
D364 DILI (40% steatosis)        
D439 DILI +       
D450 DILI +      + 
D149 GvHD       + 
D480 GvHD        
C817 Med-Tox +       

C780 Minimal unspecific hepatitis +       

C823 NAFLD +       

C826 NAFLD +       

C890 NAFLD +       

C980 NAFLD     +   

D057 NAFLD +       

C740 NASH +       

C956 NASH +       

D005 NASH  + + + + +  

D042 NASH + + + +    

D137 NASH, Cirrhosis       + 
C928 NASH, high grade fibrosis +       

NN1 Non-tumour part of HCC liver +       

D006 Normal    +  +  

C814 Steatosis +       

D166 Toxic hepatopathy       + 
D060 Transplant rejection       + 
D437 Unspecific steatosis +       
D461 Cholestatic liver disease +      + 
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Figure S1. Macroscopic and microscopic biopsy integrity and cell viability during 

short-term ex vivo culture. (A) Pieces of a fresh liver biopsy (D486, Table S2) were cultured 

for up to 48h without any stimulation and photographed at the indicated time points (scale bar, 

1 mm) (B) Pieces of a fresh liver biopsy (D364, Table S2) were cultured for the indicated time 

points and embedded in OCT, cryosectioned and subjected to H&E staining. (C) Human liver 

biopsy pieces obtained from patients without viral infection were cultured ex vivo for the 

indicated time periods. Dead cells were stained by an additional incubation for 30 min in the 

presence of NUCLEAR-ID® Red/Green reagent. Biopsies were then embedded in OCT for 

cryosectioning. Consecutive cryosections were analyzed by fluorescence microscopy for 

visualization of dead cells (green, top panels) and following DAPI staining for nuclei (bottom 

panels, blue). Dashed white lines outline the edges of the biopsies. (D) Parallel human liver 

biopsy pieces were cultured ex vivo in the presence of 100 µg/mL poly(I:C) and processed for 

dead cell visualisation as in (C). 
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Figure S2. Dose-dependent induction of IFN in poly(I:C) stimulated ex vivo cultured 
human liver biopsy tissue. Fresh biopsy pieces of a patients without viral infection were 

incubated with two doses of poly(I:C) or left untreated for 3h and expression of IFN was 

analyzed by RT-QPCR. nd, not detected. 
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Figure S3. IFN and ISG expression upon ex vivo stimulation of human liver biopsies 
with poly(I:C) or Sendai virus. Fresh biopsies of patients without viral infection were cut into 

several pieces and immediately stimulated ex vivo with poly(I:C) (100µg/mL; n=6) for up to 12 

hours (A) or with SeV (MOI ~10; n=5) (B) for up to 24 hours. Expression of IFNs and ISG15 

mRNA was analyzed by RT-QPCR at the indicated time points. LoD, limit of detection. The 

following biopsies were used (C740, C917, C927, C956 and D042 in (A); D093, D116, D137, 

D149 and D166 in (B); Table S3). 
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Figure S4. RNA integrity and liver functions are preserved during short-term ex vivo 
culture. (A) Total RNA extracted from human liver biopsy pieces without viral infection 

cultured ex vivo for the indicated time periods was analyzed using an Agilent 2100 BioAnalyzer 

as described in materials and methods. Each lane contains RNA from a different piece of the 

same biopsy. The same volume of RNA sample was loaded in each lane. RNA integrity 

numbers (RIN) are shown. L – RNA ladder; scale bar, 200µm. B) Liver biopsies of several 

patients (D060, D093, D116, D139, D166, D167, D183; Table S2 and S3) were cut into pieces 

and cultured for the indicated time before total RNA extraction. Expression of albumin, HNF-

1b, HNF-4a and CYP3A4 mRNA was analyzed by RT-QPCR at the indicated time points. 

Data are shown as threshold cycle (CT) values of corresponding RT-QPCR reactions. (C) Liver 

biopsies of three patients (D477, D478, D480) were washed two times, cut into pieces and 

maintained in culture as described. Supernatants were harvested after 10 min, 6, 12 and 24 

hours albumin levels were measured by ELISA as described in materials and methods. The 

culture medium was changed after 10 min, 6 and 12 hours. The albumin measured in the 

supernatant was secreted during the indicated time intervals.  
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Figure S5. Subgroup analysis of transcriptional induction of IFN in poly(I:C) treated ex 

vivo cultured biopsy tissues of HBV-infected (HBV) and uninfected (CTRL) patients. The 

IFN gene expression analysis shown in Figure 3B was analysed in subsets of patients with 

(A) >90% of HBsAg-positive hepatocytes (by IHC) or (B) detectable HBcAg (by IHC). The 

group of 8 patients with >90% HBsAg positive cells included 1 patient with HBeAg+ infection, 

2 with HBeAg+ hepatitis, 3 with HBeAg- infection, and 2 with HBeAg- hepatitis. The group of 

6 patients with positive HBcAg staining included 1 patients with HBeAg+ infection, 1 with 

HBeAg+ hepatitis, 0 with HBeAg- infection, and 4 with HBeAg- hepatitis. Data display and 

statistical analysis was performed as described in Figure 3. 
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Figure S6. HBV antigen and DNA production during ex vivo biopsy culture. Culture 

supernatant from ex vivo cultured CHB liver biopsies (Table S2, asterisk) was collected at the 

indicated time points (6h, 12h, n=14; 24h, n=5) and was either directly used to measure HBsAg 

(A), or was subjected to HBV DNA extraction and quantification (B) as described in materials 

and methods. IU – international unit; GE – genome equivalent. Non-parametric Wilcoxon 

match-pairs signed rank test was used to compare gene expression between different time 

points (*P<.05). 
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Figure S7. Exposure to exogenous HBV antigens does not prevent poly(I:C)- and SeV-
mediated IFN and ISG induction. Interferon (A) and ISG (D) induction in liver biopsies (D437, 

D438, D439; Table S3) stimulated with 100 µg/ml poly(I:C) (6h) in the presence of 10% CHB 

patient serum (Serum#, HBsAg (IU/ml), HBeAg pos/neg, Log viral load (IU/ml)): #1, 748, pos, 

9; #2, 5212, neg, 2.95; #3, 4941, neg, 6.23; #4, 6621, neg, 7.4; #5, 297, pos, <1.3). Interferon 

(B, C) and ISG (E, F) induction in liver biopsies (D445, D450, D459, D461, Tables S2 and S3) 

in the presence of 3.3 µg/ml recombinant HBsAg and stimulated with 100 µg/ml poly(I:C) (B, 

E) or infected with SeV (MOI~10) (C, F). Expression of IFN (A-C) and ISG15 (D-F) mRNA was 

analyzed by RT-QPCR at the indicated time points. Each color in the graphs represents an 

individual donor with duplicate samples for some donors and time points. Black lines show the 

mean. Dashed lines represent the limit of detection; nd, not detected. 
  



 100  

 

 

LoD

2

1

3

4

LoD

2

1

3

4

LoD

2

1

3

4

LoD

2

1

3

4

2

3

4

5

LoD

2

4

6

Untreated

Hours

Hours

Hours

Hours

Hours

Hours

TLR3 TLR4 TLR2 TLR7 TLR8 TLR9

IL
-6

IF
N
β

TN
Fα

IF
N
α

2
IF

N
λ1

IF
N
λ2

/3

Lo
g 10

(m
R

N
A 

co
pi

es
/4

0 
ng

 to
ta

l R
N

A
) 

Stimulated pathway

0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12

0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12

0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12

0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12

0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12

0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12

CTRL HBV

nd

nd nd nd

nd

nd nd nd nd

ndnd

nd nd nd nd nd

A



 101  

 

 

LoD

LoD

-2
-1

-3
-4

-2
-1

-3
-4

-2
-1

-3
-4

-2
-1

-3
-4

-2

-1

-3

0

LoD

LoD

LoD

-3

-1

1

Untreated

Hours

Hours

Hours

Hours

Hours

Hours

TLR3 TLR4 TLR2 TLR7 TLR8 TLR9

IL
-6

IF
N
β

TN
Fα

IF
N
α

2
IF

N
λ1

IF
N
λ2

/3

Lo
g 10

(m
R

N
A 

ex
pr

es
sio

n 
re

la
tiv

e 
to

 G
A

P
D

H
) 

Stimulated pathway

0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12

0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12

0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12

0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12

0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12

0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12

CTRL HBV

nd

nd nd nd

nd

nd nd nd nd nd

ndnd

nd nd nd nd nd

B



 102  

Figure S8. Induction of IFNs and proinflammatory cytokines is not suppressed in the 
liver of HBV-infected patients upon ex vivo stimulation with different TLR ligands. Fresh 

biopsies obtained from HBV infected patients (HBV, magenta) and uninfected control patients 

(CTRL, black) were cut into several pieces and stimulated with the TLR ligands poly(I:C) 

(TLR3), LPS (TLR4), PGN-SA (TLR2), R837 (TLR7), ssRNA (TLR8) and CpG DNA (TLR9) 

for stimulation of TLR3, TLR4, TLR2, TLR7, TLR8 and TLR9, respectively. Total RNA was 

isolated from the ex vivo cultured biopsy pieces at the indicated time points after TLR ligand 

addition and as a baseline control (0h) right before TLR ligand addition. Cytokine expression 

was analyzed by RT-qPCR and is shown as copy numbers per 40 ng of total RNA (A), or as 

relative levels normalized to GAPDH (B). Results are shown as dot-plots with a line showing 

the mean. N=11-19 (0, 3, 6h) for IFNs, N=3-8 (0, 3, 6h) for TNFa and IL-6; N=2-6 (9, 12h) for 

all. Dashed horizontal line represents the limit of detection by QPCR. 
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Figure S9. Induction of IFN and proinflammatory cytokines is not suppressed in the 
liver of HBV-infected patients upon ex vivo stimulation with Sendai virus. Fresh biopsies 

of HBV infected (HBV, magenta) and uninfected control (CTRL, black) patients were ex vivo 

cultured in the presence of SeV (MOI=10) for the indicated time periods and processed exactly 

as described in Figure S8. Expression levels are shown as copy numbers per 40 ng of total 

RNA (A), or as relative levels normalized to GAPDH (B). 
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Figure S10. IFN-signaling is not blocked in HBV positive hepatocytes. Fresh liver biopsy 

pieces from highly HBV-viremic patients (Table S2, C765, C787 and C799) and an uninfected 

control patient (C823) were stimulated ex vivo with 100 µg/mL poly(I:C) or left untreated for 6 

hours before embedding in OCT for cryosectioning. Cryosections were subjected to 

simultaneous immunofluorescence detection of HBsAg (magenta) and phospho(p)STAT1 

(green). The fraction of HBsAg positive and pSTAT1 positive cells is shown at the top and 

bottom of the images, respectively. For sample C765, the percentage of pSTAT1 positive cells 

in HBsAg positive and HBsAg negative cells was counted separately for the entire section and 

shown in the diagram. Scale bar, 50 µm.  
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Figure S11. ISG induction is not suppressed in the liver of HBV-infected patients upon 
ex vivo stimulation with different TLR ligands. Fresh biopsies obtained from HBV infected 

(HBV, magenta) and uninfected control (CTRL, black) patients were cut into several pieces 

and stimulated with the TLR ligands poly(I:C) (TLR3), LPS (TLR4), PGN-SA (TLR2) and R837 

(TLR7). Total RNA was isolated from the ex vivo cultured biopsy pieces at the indicated time 

points after TLR ligand addition and as a baseline control (0h) right before TLR ligand addition. 

Cytokine expression was analyzed by RT-QPCR and is shown as copy numbers per 40 ng of 

total RNA (A), or as relative levels normalized to GAPDH (B). Results are shown as dot-plots 

with a line showing the mean. N=11-19 (0, 3, 6h) for IFNs, N=3-8 (0, 3, 6h) for TNFa and IL-

6; N=2-6 (9, 12h) for all. 
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Figure S12. ISG induction is not suppressed in the liver of HBV-infected patients upon 
ex vivo stimulation with SeV. Fresh biopsies obtained from HBV infected (HBV, magenta) 

and uninfected control (CTRL, black) patients were cut into several pieces and stimulated with 

SeV (MOI=10). Total RNA was isolated from the ex vivo cultured biopsy pieces at the indicated 

time points after SeV addition and as a baseline control (0h) right before SeV addition. 

Cytokine expression was analyzed by RT-QPCR and is shown as copy numbers per 40 ng of 

total RNA (A), or as relative levels normalized to GAPDH (B). Results are shown as dot-plots 

with a line showing the mean. N=11-19 (0, 3, 6h) for IFNs, N=3-8 (0, 3, 6h) for TNFa and IL-

6; N=2-6 (9, 12h) for all. 
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9.2 Appendix B. Supplementary information from section 
5.3 

 

Supporting Information 

 

Hepatitis B Virus Replication Is Inhibited Downstream of Pre-
genomic RNA in HBeAg-Negative Chronic Infection 
 
Aleksei Suslov, Marie-Anne Meier, Sylvia Ketterer, Xueya Wang, Stefan Wieland and 

Markus H. Heim 
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Biopsy ID Comorbidities Viral Load 
(IU/ml) 

cccDNA 
(copies/cell) 

pgRNA 
(copies/cell) 

Replicative 
intermediates 
(copies/cell) 

HBsAg+ 
staining 
(% cells) 

HBcAg+ 
staining 
(% cells) 

ISHAK 
grading 

ALT 
(U/L) 

HBeAg-positive (HBe+)         
B169   1.09E+07 0.287 114 1711 70 0 7 181 
B345   6.21E+03 0.005 3.37 1.45 90 -a 5 46 
B393   2.13E+10 - 3540 - 90 40 3 111 
B880   >1.70E+08b 9.5 259 3739 5 0 6 256 
C023   6.44E+06 - 72 876 90 1 7 38 
C131   1.13E+08 - 612 5153 80 10 13 204 
C143   >1.70E+08b 14.4 - 16088 100 40 6 66 
C224   >1.70E+08b 8.8 199 4929 100 2 8 529 
C357   4.38E+09 1.82 1840 7276 50 40 12 567 
C537   4.09E+08 2.53 669 1745 100 80 2 28 
C770   >1.70E+08b 4.16 810 2775 99 90 2 23 
C787   >1.70E+08b 4.96 275 4711 99 70 5 46 
C799   >1.70E+08b - 466 - 99 80 2 25 
C862   4.08E+07 0.223 9.6 16.8 90 5 6 1572 
C921   6.74E+03 - 1.68 - 95 0 2 61 
D190   2.20E+06 - 3.11 - 100 5 1 52 

HBeAg-negative chronic hepatitis B (ENCHB)       
A661   8.64E+04 - 5.75 - 5 0 9 111 
A990   3.22E+07 - 70.9 - 5 0 7 406 
B109   2.79E+03 - 0.363 - 30 0 1 20 
B115   5.17E+04 1.20 2.62 180 40 0 6 96 
B139   1.68E+05 - - 27.8 70 0 13 560 
B163 NASH 7.00E+01 - 0.002 - 0 0 - 42 
B200   4.96E+03 0.022 - - 10 0 3 22 
B324   1.62E+07 4.78 18.1 1669 85 - 4 97 
B335b   6.56E+04 undetc 6.46 3.65 80 0 3 76 
B347   1.14E+04 0.298 - - 10 10 1 33 
B365   2.80E+05 1.43 - 16.7 50 0 4 58 
B645   3.96E+03 0.003 - - 10 0 3 23 
B651   2.28E+05 - - 22.1 70 0 4 105 

Supplementary Table 1. Patient characteristics 
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Biopsy ID Comorbidities Viral Load 
(IU/ml) 

cccDNA 
(copies/cell) 

pgRNA 
(copies/cell) 

Replicative 
intermediates 
(copies/cell) 

HBsAg+ 
staining 
(% cells) 

HBcAg+ 
staining 
(% cells) 

ISHAK 
grading 

ALT 
(U/L) 

B682   2.46E+04 0.105 - 4.43 60 0 4 40 
B711   3.78E+04 undet 0.292 - 70 0 2 98 
B775   5.21E+03 0.081 - - 30 0 2 52 
B906   5.48E+03 0.076 - - 80 0 10 29 
B908   2.94E+03 0.120 - - 30 0 3 17 
B914   4.88E+02 0.232 - - 50 0 3 69 
B922   2.63E+05 undet 23.4 7.22 90 0 2 36 
B974   4.09E+03 0.046 - - 80 0 3 46 
C119   2.63E+03 4.37 0.079 8.57 1 0 4 64 
C135 NAFLD 2.00E+01d undet 0.056 - 15 0 2 127 
C144   2.60E+06 1.84 78.8 4940 40 5 5 116 
C148   1.06E+02 0.002 - - 40 0 3 50 
C162   2.09E+05 2.51 2.75 30.9 - - 5 26 
C241   6.40E+01 - 0.749 - 5 0 2 110 
C254   4.24E+05 0.212 6.96 41.5 5 0 6 106 
C268   1.17E+06 0.140 - 14.9 3 1 5 151 
C286   1.72E+04 0.016 0.752 - 1 0 3 54 
C296   6.81E+04 4.58 8.32 23.8 100 0 8 20 
C309   2.15E+05 undet 4.82 63.2 100 0 4 68 
C313   8.13E+05 0.092 0.147 0.126 20 1 4 70 
C317   1.80E+06 undet 1.20 428 70 3 2 86 
C325   2.40E+03 undet 0.090 - 100 0 1 52 
C331   3.55E+03 2.95 0.541 - 70 0 2 52 
C333   4.80E+03 0.114 0.173 - 10 0 1 33 
C472   4.10E+03 8.81 - - 10 0 3 16 
C560   4.98E+05 0.129 19.8 10.8 40 1 14 312 
C629   3.17E+04 0.014 - 34.2 20 10 5 37 
C666   7.53E+05 0.072 4.31 82.9 90 5 6 36 
C687   1.56E+05 0.086 1.56 1.57 100 1 3 38 
C765   6.02E+05 0.539 0.259 0.234 70 1 3 344 

Supplementary Table 1 (continued) 
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Biopsy ID Comorbidities Viral Load 
(IU/ml) 

cccDNA 
(copies/cell) 

pgRNA 
(copies/cell) 

Replicative 
intermediates 
(copies/cell) 

HBsAg+ 
staining 
(% cells) 

HBcAg+ 
staining 
(% cells) 

ISHAK 
grading 

ALT 
(U/L) 

C786   5.70E+01 undet 0.263 - 99 1 3 72 
C870   2.05E+03 - 0.009 - 5 0 2 23 
C887   3.85E+03 - 0.021 - 5 0 3 40 
C889   1.00E+03 - 5.31 - 90 0 3 43 
C911   1.71E+04 - 0.202 - 30 0 3 31 
C920   4.00E+03 0.230 3.80 - 90 0 3 45 
C926   2.57E+03 - 0.083 - 10 0 3 57 
C982   1.50E+04 - 0.240 - 90 - 2 45 
D010   5.84E+05 - 78.4 - 0 40 6 124 
D021   2.92E+03 - 4.12 - 90 0 4 30 
D139   1.21E+06 0.003 5.32 1.56 95 5 3 32 
D167   2.13E+04 - 0.552 - 80 0 2 19 
D183   4.60E+06 - 0.261 - 100 0 4 40 

HBeAg-negative chronic infection (ENCI)       
A922   7.00E+02 0.011 0.027 - 20 0 - 13 
B067   3.40E+01 0.010 - - 10 0 2 26 
B071 HIV (ART) 1.20E+01d 0.010 0.329 0.040 5 0 4 24 
B105   1.20E+01d undet 2.55 - 50 0 0 19 
B323   1.20E+01d 0.003 0.013 - 10 0 3 29 
B987   9.54E+02 0.023 1.07 - 90 0 4 31 
C030   2.70E+01 0.000 - - 0 0 - 24 
C064 ASH 2.00E+01d 0.001 - - 0 0 - 31 
C123   1.36E+03 0.000 0.007 - 1 0 3 34 
C141   2.37E+03 0.009 - - 70 0 2 25 
C299   7.62E+02 0.025 0.903 - 100 0 3 36 
C499 ALD 9.00E+01 0.001 0.016 0.011 1 0 8 25 
C660   2.07E+02 0.002 0.018 0.015 0 0 4 28 
C692   9.68E+02 0.002 0.093 0.0085 5 0 2 26 
C812   5.80E+01 0.012 1.71 - 99 0 3 17 
C853   1.32E+02 - 0.005 - 20 1 2 40 

Supplementary Table 1 (continued) 
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Biopsy ID Comorbidities Viral Load 
(IU/ml) 

cccDNA 
(copies/cell) 

pgRNA 
(copies/cell) 

Replicative 
intermediates 
(copies/cell) 

HBsAg+ 
staining 
(% cells) 

HBcAg+ 
staining 
(% cells) 

ISHAK 
grading 

ALT 
(U/L) 

C912   5.03E+02 0.145 - - 99 0 2 21 
C968   8.00E+01 0.024 0.140 - 90 0 3 8 
C979   2.00E+01d undet undet undet 0 - - 19 
D012   1.39E+03 - 0.078 - 0 0 3 25 
D054   4.64E+02 0.003 0.017 0.043 10 0 2 22 
D055   1.92E+02 0.001 0.010 0.005 0 0 - 22 
D061 NAFLD 2.41E+03 0.001 0.029 0.009 30 0 4 44 

Antiviral therapye-k (AVT)         
B850ce   2.00E+01d 0.055 - - 20 0 2 29 
C161f   2.00E+01d 1.19 - 0.015 20 0 2 28 
C244g   2.00E+01d 0.010 1.47 - 50 0 2 44 
C252h   2.00E+01d - 0.086 - 5 0 2 19 
C706i   2.00E+01d 0.010 0.335 0.023 20 0 4 32 
C809j   2.00E+01d 0.021 0.508 0.016 10 1 1 26 
D187k   2.00E+01d - 0.084 - 10 0 5 24 

 

  

Supplementary Table 1 (continued) 
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Supplementary Table 2. Primer sequences used in RT-QPCR experiments 

  

Target Gene Primer direction Sequence 5' --> 3' 

HBV DNA / cccDNA 
Forward TGGCCAAAATTCGCAGTCCC 
Reverse GATGAGGCATAGCAGCAGGATG 

pgRNA 
Forward GAGTGTGGATTCGCACTCCTC 
Reverse AGAAGAACTCCCTCGCCTCG 

IMAP 
Forward TTTTCAGCTCCCAAGTGTCC 
Reverse GCCGAGAGCAGGTAGCAGT 
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Figure S1

A B

Figure S1. Integrated HBV DNA interferes with the measurement of replicative intermediates in the total DNA extract. 
HBV DNA was extracted from total lysates (TOT) or from the cytoplasmic fractions (CYT) of human liver biopsies
as described in Materials and Methods and subjected to qPCR with either IMAP-specific primers to determine
total human genomic DNA content (A) or with HBV specific primers to determine HBV DNA content (B). Individual
colors designate individual patients/biopsies. Biopsies with total intrahepatic HBV DNA above 1 copy per cell are
shown as triangles.
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