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A B S T R A C T

Micronutrient malnutrition is an important issue in the developing countries especially in Asia and Africa where
millions of school-going children and pregnant women are affected. Poor people are more exposed to risks of
malnutrition and hidden hunger due to intake of carbohydrate rich but micronutrient deficient plant based food.
The expansion of high yielding but micronutrient poor cultivars further intensified the malnutrition. The existing
approaches viz., supplementation and food fortification of staple food with minerals and vitamins can address the
issue of adequate nutrition security. But supplementation and fortification is neither feasible for each nutrient
specially iron nor viable due to recurrent cost. Recently, genetic bio-fortification of crops is emerged as self-
targeted and non-recurrent approach to address the micronutrient malnutrition. Most of the traditional
breeding approaches were limited due to non-availability of enough genetic variation in the crossable genepools.
Additionally, it also lacks the modulation of target gene expression underlying the micronutrient accumulation. At
this juncture, genetic engineering based food biofortification is promising way to address the hidden hunger
especially, where breeding is not rewarding due to lack of genetic variability. Genetic modification through gene
technology is swift and accurate method to develop nutrient denser crops without any recurrent investment as
compared to different strategies.
1. Introduction

The spread of micronutrient malnutrition will be more pronounce in
the growing population and presently widespread and known to affect
almost three billion people worldwide [1, 2]. Malnutrition deficiency,
which is also called as “hidden hunger”, increases the general risk of
infectious illness and of dying from diarrhoea, measles, malaria and
pneumonia in the people living in low income countries [3]. The con-
sequences of malnutrition are severe and long lasting; sometimes moving
from generation to generation [4]. Malnutrition during pregnancy in-
creases the risk of mortality, as well as affecting fatal growth, resulting in
low birth weight (LBW), risking the survival of the child. The prevalence
of malnutrition remains a major public health problem in developing and
underdeveloped countries [5, 6].

Presently, people consume diets that are less diverse than 30 years
ago, leading to deficiencies in micronutrients, especially iron (Fe), Zinc
(Zn), iodine (I), selenium (Se), and vitamin A [7, 8]. Among trace ele-
ments, Fe and Zn are essential for a variety of metabolic processes [9, 10].
Zn and Fe deficiencies ranked fifth and sixth respectively, among the top
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ten risk factors contributing to disease burden globally (Kumar, 2011).
Micronutrient deficiencies are common in children and even more
common in women because of blood losses occurred during menstruation
and child birth [11]. Further, lack of awareness and affordability to
diverse and balanced foods, dietary practices, and high incidence of in-
fectious diseases are exaggerating micronutrient deficiency in the
developing countries [12, 13, 14, 15]). To combat nutrient deficiency
especially minerals, various interventions such as food diversification,
pharmaceutical supplementation, and fortification has been emphasized.

2. Main text

2.1. Current strategies to combat malnutrition

The best way of preventing and even eliminating micronutrient
malnutrition is to ensure consumption of a micronutrient rich balanced
diet. The common yet effective approaches to addressing malnutrition
and micronutrient deficiencies are through supplementation, fortifica-
tion of foods, homestead food production, and biofortification of crops.
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ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://core.ac.uk/display/226949647?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:sushil254386@yahoo.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2019.e01914&domain=pdf
www.sciencedirect.com/science/journal/24058440
www.heliyon.com
https://doi.org/10.1016/j.heliyon.2019.e01914
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.heliyon.2019.e01914


S. Kumar et al. Heliyon 5 (2019) e01914
Micro-nutrient fortification of food is the most practical way of pre-
venting nutrient deficiency in the people. Food fortification- a strategy to
fill nutrients gap- has the dual advantage of being able to deliver nutri-
ents to large segments of the population without requiring radical
changes in food consumption patterns.

With a long history, fortification of butter, margarine and sugar with
vitamin A, salt fortification with iodine, vitamin fortified milk, vitamin B
fortified cereals is already being implemented in some countries.
Mandatory food fortification compared to voluntary fortification is more
effective and has been successfully practiced for decades across the globe.
Milk and oil fortification is mandate in 14 and 27 countries, respectively.
Similarly, salt fortification with iodine and Fluoride is mandatory in 134
countries. Currently, around 83 countries are exploiting fortification
legislations for micronutrient enrichment of the staple food. But still
there are drawbacks in current food fortification practices. In most in-
stances, food fortification is only feasible in countries that possess well-
developed, efficiently monitored and properly regulated pharmaceu-
tical and food processing sectors. Another important drawback to sup-
plementation and fortification approaches, however, is that they incur
the same recurrent costs year after year and its success depends on
funding. This approach is especially effective in countries where the
poorest people mostly purchase small amounts of processed foods to
supplement their diets. Unfortunately, though, in the poorest developing
countries, where the majority of the poor especially farming community
are dependent on their own produce for food, consumption of industri-
ally processed foods is minimal. Therefore, the reach of these food
fortification interventions can be quite limited, especially in rural areas
of developing countries where most of the poor live. The mandatory
fortification in India inaugurated in 1953 through fortification of hy-
drogenated vegetable oil with vitamin A and D was mandated [16]. Later
on, in 1998, salt fortification through iodization came in existence to
control Goiter. In 2000, wheat flour fortification started in West Bengal
followed by Andman and Nicobar Islands.

In industrialized societies, micronutrient deficiencies are addressed
through supplementation and fortification [17]. However, in developing
countries widespread implementation of dietary diversification and food
fortification/supplementation programs are constrained by low income
coupled with the poor access of the target population to market [18, 19].
Unfortunately, none of these socioeconomic development derived stra-
tegies is an effective remedy against micronutrient malnutrition. More-
over, success of above strategies also involves behavioural changes of
societies which depend on literacy, communication, social-marketing,
and repeated investments [15].

The global experience of several investigators has verified that
instead of single costlier approach a combination of several cost effective
approaches is requisite to cap the nutrient deficiency [19]. Therefore, to
address the occurrence of micronutrient deficiencies in human pop-
ulations, plant scientists are concentrating to formulate methods to apply
fertilizers and/or use plant breeding strategies to increase the concen-
trations and/or bioavailability of mineral elements in edible portion of
crop plants [13, 20, 21, 22, 23, 24]. These approaches are termed
‘agronomic’ (fertilizer based) and ‘genetic’ (breeding based) bio-
fortification, respectively.

Biofortification, an approach to enrich micronutrient content of
agriculture produce, involves strategies which spin around targeting and
modulation of movement pathways (root uptake, transport, remobiliza-
tion, storage and enhanced bioavailability) of mineral nutrients, ‘pulling’
nutrients from soil and ‘pushing’ them to economic parts of plants in their
bioavailable forms. The three major strategies followed till date for
biofortifying food crops include: agronomic biofortification, conven-
tional plant breeding and genetic engineering. The key focus of agro-
nomical method is on optimization of the application of mineral
fertilizers and/or the improvement of the solubilisation and mobilization
of mineral elements in the soil [13]. The latter two approaches target on
development and/or improvement of plant cultivars with better micro-
nutrients accumulation capacity and increased levels of their
2

bioavailability by depressing ‘anti-nutrients’ concentrations.
To combat the drawbacks of supplementation/fortification, “Bio-

fortification” (breeding for increased mineral and vitamin content) of
staple food is a promising, viable and effective route for delivering
nutrient rich food to compete hidden hunger particularly in rural popu-
lation. This strategy can complement the other approaches through
providing a sustainable and cheaper means of reducing under-nourished
mass which depends on supplementation and commercial fortification
for nutrition. The biofortification approach involves fixed one-time costs
in developing breeding methodologies, breeding nutritional quality traits
into current crop varieties, and adapting these varieties to diverse envi-
ronments. This approach will require minimum recurrent investments
after nutritious varieties have been initially disseminated. Moreover, the
costs do not increase with the number of people, and the benefits can be
made available globally especially to all developing countries. Finally,
breeding for higher trace mineral density in the consumed plant parts
will not incur a yield penalty [12, 15].

Conventional and molecular breeding; and genetic engineering
techniques are the two approaches to biofortify the crops with minerals
such as iron and zinc [24, 25, 26, 27, 28]. Since the uptake and accu-
mulation of micronutrients in edible parts of crops are controlled by
polygenes having minor effects, the conventional breeding based bio-
fortification approaches have met with only marginal success [17].
Moreover, the success achieved by using this approach depends chiefly
on natural variation that exists in the gene pool. In the absence of
adequate genetic variability and fixable major gene effects, genetic en-
gineering will be a viable alternative for enhancement of micronutrients
at desired levels [29, 30].

Despite the huge efforts made through conventional plant breeding
programmes, exploiting the field of genetics which includes quantitative
genetics, heterosis, transgressive segregants, mutational breeding,
marker assisted breeding, QTL mapping etc. to entrap the natural genetic
variations for micronutrients and vitamins accumulation, there still re-
mains a long way to top: dream of nourishing the future. This is mainly
because of several weakness and threats to conventional breeding which
are: requirement of sufficient genetic variations for a trait in the species
whichmay not be available for many economically important crops, need
of genes targeting the trait in sexually compatible plants, long time
period required for breeding to introduce a single as well as multiple
traits (pyramiding traits) into locally adapted elite varieties without the
risk of linkage drag, lack of appropriate knowledge of QTL � environ-
mental interactions and effects of epigenetic and genetic background,
inability to target nutritional traits to specific organs (e.g. cereal seeds,
tubers etc.) and the dependence on the phytoavailability of the mineral
nutrients in the soil. Moreover, the presence of inverse relationship be-
tween grain yield and grain mineral concentration has posed a major
challenge for conventional breeding methods to break such trade-offs
[31, 32, 33, 34].

As a modern weapon to fight against mineral deficiency, genetic en-
gineering to generate transgenics has also been deployed to transfer
genes directly into elite genotypes. Transgenic technologies are the tools
to improve the genotypes by making changes in focussed metabolic
pathways. These technologies pave the way to modify proteins [35],
vitamins, carbohydrate, fats, minerals, and other metabolites and will be
considered in coming sections. However, to develop transgenics for
nutrient biofortification, two criteria should be ideally considered: (1)
selection of widely adapted genotype of economically important crop; (2)
accumulation of nutrient in the edible portion of the crop plant without
adverse effect on plant physiology or development and economic yield
[36].

Conventional breeding based biofortification is well accepted method
to improve the micronutrients in crops. A good number of crops have
been targeted for fortification using conventional breeding [37, 38]. The
genetic engineering techniques, offers a valid alternative to conventional
breeding approaches when there is absence of sufficient genotypic vari-
ation for the desired trait within the species (e.g. provitamin A in rice), or
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when the crop itself is not amenable to conventional breeding (due to a
lack of sexuality; e.g. banana). With the advent of powerful ‘omics’
technologies, new gene editing tools like transcription activator-like
effector nucleases (TALENs) and CRISPR/Cas9 and increased availability
of fully sequenced genomes in staple crops have created new rooms for
this biofortification strategy [39]. Transgenes can be specifically targeted
for redistribution of micronutrients between tissues, increasing the effi-
ciency of biochemical pathways in edible tissues, reconstruction of
selected pathways (e.g. field of system biology), increasing bioavail-
ability of micronutrients by removal of antinutrients and multigene
transfer (e.g. ‘multivitamin corn’ having high levels of β-carotene,
ascorbate (vitamin C) and folate (vitamin B9) in a single plant [1, 17].
Therefore, bridging the gap between plant breeders and molecular bi-
ologists in order to harness the power of genetic modification for bio-
fortification of crop plants proves pivotal.
2.2. Transgenic approaches for increasing to Fe, Zn and vitamin-A content

Plants acquire Fe and Zn from surrounding rhizosphere and imme-
diate environment as minerals are not synthesized in the plant [40].
Genetic engineering has been deployed in various crops to increase
mineral content especially Fe and Zn. The transgenic strategies to in-
crease the Fe and Zn content in the crops have been mainly focused on to
increase the uptake and utilization efficiency of plants through modu-
lation of transporters expression [41], and reducing the anti-nutritional
factors concentration like phytic acid. Unlike Fe and Zn, transgenic ap-
proaches are quite simple for vitamins. The introduction of limiting step
in the metabolic pathway of seed to facilitate the production of precursor
of vitamin-A i.e β-carotene or modifying the pathway for its increased
production are the most adopted transgenic approaches. In the following
sections, we briefly reviewed various genes and transgenic approaches
employed for Fe, Zn and vitamin-A in major cereals (Table 1).

2.2.1. Iron (Fe)
Globally, rice, wheat and maize provide more than 50% of caloric

requirement and are targeted in major biofortification programmes to
alleviate micronutrient deficiencies [59]. Studies were carried out to
increase the Fe content of the endosperm by expressing lactoferrin
(Fe-chelating glycoprotein) and ferritin [60]. Human milk is a rich source
(1–2 g/l) of lactoferrin (LF). For future application in infant formula,
Nandi et al [61] developed transgenic rice grains with human LF gene
under the control of the rice glutelin-1 promoter to increase the Fe
content. The expression of heterologous protein was at significantly
higher levels than control, reaching 0.5% of the grain weight and the
Table 1
A list of transgenic crops developed for iron, zinc and vitamin A and targeted genes.

Crop Nutrient Gene used To

Rice Vitamin A Phytoene synthase (PSY) from daffodil, phytoene
desaturase (CrtI) gene from Erwinia uredovora

1.6

Phytoene synthase (PSY) from maize,
CrtI from the Erwinia uredovora

37

psy and lycopene β-cyclase (β-lcy) both from daffodil 1.6
Fe Over expression of soybean ferritin gene Soyfer H-1 38

Phaseolus ferritin 22
Ferritin 7
OsNAS2 19

Zn HvNAS1 gene from Barley 35
Soybean ferritin, Aspergillus flavus phytase, OsNAS1 35
Overexpression of OsNAS2 76

Wheat Vitamin A maize psy1 gene encoding phytoene synthase, bacterial crtI 4.9
CrtB or CrtI 3.2

Fe Soybean ferritin 40
Overexpression of TaFer1-A 44

Maize Vitamin A bacterial crtB and crtI 9.8
psy1 (maize) 59

Cassava Vitamin A Bacterial crtB 6.6
Canola Vitamin A crtB and crtI 85

3

bioavailability was confirmed through human Caco-2 bioassay. Lee et al
[62] also confirmed the expression of the hLF gene in transgenic japonica
rice and accounted for approximately 1.5% of total soluble protein.

Ferritin, a localized protein in plant plastid, is a major non-toxic
storage form for Fe which can releases Fe for metabolic functions as
and when needed. Being ubiquitous protein, ferritin stores about 4,500
Fe atoms in bioavailable form [63]. Therefore, enhancement of Fe
accumulation in by ferritin gene expression under the control of
endosperm-specific promoters is an important strategy to Fe bio-
fortification. Studies found that overexpression of ferritin in several crops
increased Fe content as well as bioavailability [45, 46, 54, 55, 64, 65, 66,
67, 68]. To increase the Fe accumulation in endosperm of brown rice
seeds, Goto et al. [45] generated rice transformants of SoyferH1, under
endosperm-specific GluB1 rice promoter and reported a threefold in-
crease in grain Fe content as compared to non-transformed lines. Simi-
larly, soybean ferritin cDNA was also transferred in wheat and rice under
the control of maize ubiquitin promoter [54]. However, resulted trans-
formants showed high Fe content in leaves than seeds owing to strong
role of leaves as sink. Which also hints that excess ferritin sequesters the
Fe in the leaves reducing the Fe mobilisation to the seeds. Qu et al. [67]
introduced soybean ferritin into rice with strong endosperm specific
globulin promoter, and this led to an increase of up to 13 times in ferritin
protein expression than in Goto et al. [45]. However, there was only a
moderate enchantment (30%) in Fe content. These results indicated need
to improve Fe in seeds, in addition to increased Fe storage, it is necessary
to increase the Fe transport from the soil and enhanced translocation
within the plant system [47].

Above experiments in rice provided genetic engineering as a viable
option for Fe biofortification in cereals. However, as compare to rice, a
very little work has been carried out to improve the Fe content of wheat
and maize grains especially in endosperm. Borg et al [55] cloned and
analysed wheat ferritin genes (TaFer1-A) and showed the capability of
ferritin overexpression in the wheat endosperm to increase the Fe con-
tent. Endosperm targeted overexpression of the TaFer1-A gene under the
control of HMW glutein 1DX5 promoter resulted in 50–85% higher
content in wheat grain.

2.2.2. Zinc (Zn)
Zn is an essential element; and is also a co-factor for ~300 enzymes

and more than 1000 transcription factors [69]. There is limited natural
diversity in grain Zn content of cereals [70]. Thus, increasing the Zn
content of cereal grains will be important for improving human nutrition
and metabolism. However, manipulation of the Zn content of the cereal
grain may be less straightforward than Fe [59]. Interestingly, study of
tal increase in level Transformation method Ref

μg/g DW Agrobacterium tumefaciens Ye et al [42]

μg/g DW Paine et al [43]

μg/g DW Beyer et al [44]
.1 μg Fe/g DW Goto et al. [45]
.07 μg Fe/g DW Lucca et al. [46]
μg/g DW Masuda et al. [47, 48]
μg/g DW Johnson et al. [49]
μg/g Masuda et al [50]
mg/g DW Wirth et al. [51]
μg/g Johnson et al [49]
6 μg/g DW Bombardment method Cong et al [52]
1 μg g/1 of seed dry weight Wang et al [53]
μg/g (in leaves tissues) Drakakaki et al. [54]
.5 μg/g (in endosperm) Borg et al [55]
μg/g DW Aluru et al. [56]

.32 μg/g DW Naqvi et al. [17]
7 μg/g DW A. tumefaciens Welsch et al. [57]
7 μg/g fresh weight β-carotene Ravanello et al. [58]
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Ozturk et al. [71] showed strong correlations between protein content, Fe
and Zn content. Gpc-B1 (GRAIN PROTEIN CONTENT B1) is a wheat
quantitative trait locus associated with increased grain protein also
increased the Zn and Fe content [72]. An increment of 10–34% in con-
centrations of grain Zn, Fe, Mn and protein was observed in cultivated
wheat after introgression of Gpc-B1 locus from the wild tetraploid wheat
Triticum turgidum ssp. dicoccoides into different recombinant chromo-
some substitution lines, indicating the role of Gpc-B1 in remobilization of
protein, Zn, Fe and Mn from the leaves to the grains [73].

Over-expression of genes involved in Zn translocation and mobiliza-
tion with increased bioavailability of Zn without yield penalty in an
important way to enhance the grain Zn [14. Many transporters associated
with cations have been identified in rice, but few have been characterized
with respect to substrate specificity, expression pattern and cellular
localization. Among many identified cation transporter families, mem-
bers of the ZIP (ZRT, IRT-related protein) and CDF (Cation diffusion
facilitator) families are predominant as playing major role in Zn uptake
and translocation. IRT1 protein of ZIP family contributes significantly to
the uptake of Zn in A. thaliana root cells [74]. Over-expression of NA
synthase (NAS) by introducing 35S enhancer elements led to 2–3 fold
increases in Zn content in paddy [75]. Similarly, transgenic rice
expressing barley nicotianamine synthase gene HvNAS1 under the con-
trol of the rice actin1 promoter accumulated 2–3-fold higher Zn in pol-
ished rice grains [50]. At IRRI, several thousand transformants of IR64
and IR69428 are produced with soybean or rice ferritin and rice nic-
otianamine synthase (NAS2) over expression genetic constructs and the
content Zn and Fe in those lines have surpassed the target level from the
field trials. Thus, overexpression of NAS genes makes nicotianamine an
interesting target for Zn biofortification. Moreover, biofortifying cereals
with NAS alone or in combination with ferritin have great potential in
combating global human mineral deficiency [75, 76].

To understand the pathway of Fe and Zn in grain, sufficient work is
reported chiefly in many crop species such as wheat, rice, maize, and
barley. Despite many challenges such as the root–shoot barrier and grain
filling [69] wheat researchers exploit tools and resources developed in
rice to make significant improvements in Zn content in wheat grain to
bring improved wheat lines [14].

2.2.3. Provitamin-A
There is an absolute requirement of vitamin A in human diet to pre-

vent numerous chronic diseases including cancer. The various plant-
derived food accumulate β-carotene, precursor of provitamin-A, in very
different. Vitamins content in cereals are low and consequently vitamin
deficiency affects up to 50% of the global population [77]. In human,
vitamins are the second major group of micronutrients required for the
growth and health. Transgenic offers an sustainable approach to intensify
the vitamin content of edible part, but thus far it has only been possible to
enhance individual vitamins such as vitamin A. Transgenic based bio-
fortification technology can play superior role in cereal crops where
metabolic pathways for vitamins are absent, truncated, or inhibited in the
endosperm [17]. Biofortification of crops with provitamin A, giving rise
to ‘golden’ crops [78]. The generation of “Golden Rice” [79] and sor-
ghum [80] with higher levels of provitamin A, are classic examples of
transgenic based biofortification technology.

In plants understanding of carotenoid biosynthesis and metabolism
has been dissected and understood at substantial level. Overexpression
and upregulation of the bacterial phytoene synthase gene, CrtB, is a
fruitful strategy to increase high provitamin A content into staple crops
[81]. An enhanced accumulation of b-carotene, lutein and violaxanthin
was demonstrated through overexpression of CrtB in potato [82]. In rice
endosperm, overexpression of the daffodil phytoene PSY gene coupled
with bacterial crtI gene and/or the daffodil LCYB gene yielded a total
carotenoid content of 1.6 μg/g dry weight [42]. Paine et al [43] reported
37 μg/g total carotenoid in Golden rice-2 where daffodil gene was
replaced by maize PSY1. Similarly, overexpression of the bacterial crtB
and crtI genes under the control of a “super γ-zein promoter” for
4

endosperm-specific, β-carotene in the maize endosperm increased up to
34-fold [56]. Wheat endosperms transformed with maize y1 gene
encoding phytoene synthase driven by a endosperm-specific 1Dx5 pro-
moter together with the bacterial phytoene desaturase crtI gene under
the constitutive CaMV 35S promoter control, resulted 10.8-fold increase
in the total carotenoids [52]. Further enhancement the provitamin A
level in wheat grains, was recorded through co-transformed of the bac-
terial CrtB and CrtI genes [53]. In addition to rice, other crops engineered
for higher β-carotene content are potato, canola, tomato, carrot, and
cauliflower [83]. However, carotenoid get degraded during storage of
cereal grains. This degradation is mediated by oxygen and lipoxygenase
enzyme [84, 85]. Down regulation of lipoxygenase and/or enhance
accumulation of vitamin E through genetic engineering have been
revealed to upsurge carotenoid stability during storage [86].

However, genetic engineering to increase the richness of vitamins
through single-point interventions generally does not improve the yields
of the target vitamin [87]. Therefore, to improve complex traits in crops,
multiple transgene expression and combinatorial engineering are the
approaches to overcome the challenge where genes encoding pathway
enzymes are modified and over expressed [88, 89]. Early examples of
multiple transgene through mini-pathway engineering in rice, tomato
and potato employed 2–3 transgenes cloned in a single Agrobacterium
construct. Recently, Naqvi et al [17] created elite inbred transgenic corn
plants in which the levels of ascorbate, β-carotene, and folate were
increased specifically in the endosperm through the simultaneous
modification of three separate metabolic pathways. The transgenic ker-
nels contained 169-fold the normal amount of β-carotene, 6-fold the
normal amount of ascorbate, and double the normal amount of folate.
More recently, up to seven different bacterial carotenoid genes (from
isopentenyl pyrophosphate isomerase (IPI) to CrtW) have been assembled in
a single Agrobacterium construct and used to transform canola and Lilium
[90]. The large accumulation of carotenoid in rice endosperm with
combined expression of ZmPSY1, PaCRTI with AtDXS or AtOR, hints that
the supply of isoprenoid precursors and metabolic sink are imperative
rate-limiting steps in carotenoid biosynthesis [91].

An alternative to mini-pathway engineering is combinatorial nuclear
transformation which is a novel method for the rapid production of
multiplex-transgenic plants, which we have used to dissect and modify a
complex metabolic pathway [88] (Zhu et al, 2008). This strategy allows
generating a metabolic library for the investigation of metabolite of in-
terest. Using this technology in maize Zhu et al [88] (2008) overex-
pressed Zmpsy1 and observed that the total endosperm carotenoid levels
were elevated 53-fold, and the expression of 2 sequential enzymes
(ZmPSY1 and PaCRTI in Ph-3) resulted in a further tripling of the
carotenoid levels.

Provitamin content can also be increased in food crops through
redirecting metabolic flux towards carotenoids by genes silencing. The
alteration of genome through gene silencing (block strategy) can also be
combined with overexpression (push strategy) to address vitamin A
deficiency (Zeng et al, 2015). Simultaneous application of push (CrtB)
and block strategy (carotenoid hydroxylase) to enhance and arrest the
metabolic flux, respectively, Zeng et al. (2015b) developed transgenic
wheat that accumulated β-carotene up to 5.06 μg/g. Though, the
β-carotene was not adequate amount to address vitamin A deficiency.

3. Conclusion

Micronutrients are very essential for human nutrition especially for
alleviating malnutrition in children and women. Micronutrients such as
Fe, Zn and provitamin A are the important component of biofortification
program. Tansgenic breeding is a strategic tool that can be used to
improve the level of these micronutrients by several folds in the staple
cereals. Since, genes are available for those target traits it is possible to
improve the micronutrients in many staple crops. Proof of concept of
improvement of micronutrients through trangenics are available through
trait-specific strategies. Opportunity to use combination of genes for
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simultaneous enhancement of micronutrients can be possible. Transgenic
crops shall widely be cultivated for alleviating the malnutrition after
addressing the regulatory issues. Moreover, recently, genome editing
tools such as CRISPR-Cas, ZFN, TALEN, etc. to edit plant genes has shown
a great potential in crop improvement. The genome editing tools should
also be exploited for biofortification of crops. Though, genome editing
based biofortification is going on at experimental level but this should be
exploited at intensively to swift the biofortification in cereals and hor-
ticultural crops especially vegetables. Same time, biofortified crop vari-
eties with enhanced nutritional qualities must be evaluated by clinical
trials for bioavailability and its effect on end user's health.
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