
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE

Corso di laurea in Informatica

PRINTING BOOKS FROM HTML AND CSS:

METRICS, FORMATTERS AND RESULTS

Relatore:

Dott. ANGELO DI IORIO

Presentata da:

ANTONIO DI MARCO

I Sessione

2018/2019

Table of content

1 Introduction 4

2 Background and related work 9

2.1 XSL-FO 9

2.1.1 Status of the standard 12

2.1.2 XSL-FO processors 12

2.2 CSS 13

2.2.1 CSS formatters 19

Browsers and open source formatters 19

2.3 Some academic studies on typesetting 20

2.4 Other benchmarks 21

3 Evaluating CSS and CSS formatters 23

3.1 Style properties 24

3.2 Content properties 27

3.3 Keep properties 27

4 Experiment description and results 32

4.1 Dataset 32

4.1.1 Full books 33

4.1.2 Test files from Il Mulino. 33

4.1.3 Crafted files 33

4.2 Tests and results 34

4.2.1 Automated tests on full books. 35

Automated tests results 38

4.2.2 Tests from Il Mulino 40

1

Blank page as last page (T1) 40

Chapter levels (T2) 40

Images and captions (T3) 41

Chapter title in a separate page (T4) 41

Results 41

4.2.3 Manual tests 42

Title and body are kept on the same page (K1) 43

Long title is kept on the same page (K2) 43

Title, subtitle and paragraph are kept on the same page (K3) 43

Images and their captions are kept on the same page (K4) 43

Text is kept in the same page (K5) 43

Results 43

5 Implementation details 45

5.1 Automatic PDF checker implementation 45

5.2 Code limitations 48

5.2.1 Software implementation 48

5.2.2 PDF parser library 49

5.2.3 Requirements 49

6 Conclusions 50

2

3

1 Introduction

Publishing a book is notoriously not an easy fit, involving of course writing the content

but also a complex set of surrounding activities like proofreading and printing. In this

text we will focus on the latter, which is propaedeutic to most of the other activities in

particular on the quality of the produced books, which also affects their fruition once out

of the shelves.

Publishers often have a set of non-negotiable requirements for their books, involving not

only restraints derived from how the text in the book is visually presented to the end

user (example of which could be font types, font styles, text alignment) but more

complex ones dictated by how the printers bind the pages together and the fabric of

cover and pages. Moreover, with the relatively recent explosion of handheld devices like

mobiles and tablets as reading media, typographers have started looking with more and

more interest for ways to generate ebooks that resemble the printed version of their

books. In doing so, quite understandably, arises the need to minimise the differences in

producing one or the other format and whenever possible, between the printed version

and its digital counterpart.

One possible option to represent a book is to represent its content in an XML language

like XHTML, and then to apply an XSLT transformation to it so to produce an XSL-FO

(eXtensible Stylesheet Language - Formatting Objects) document. XSL-FO is “an XML

vocabulary for specifying formatting semantics” or, in other words, a markup language 1

for formatting XML documents that is readable by a so called FO processor, that will in

turn output the document in its final printable or readable form, for example a Portable

Document Format (PDF).

1 ​The Extensible Stylesheet Language Family​. Available at https://www.w3.org/Style/XSL/ [last accessed
08 June 2019]

4

There are several XSL-FO processor available in the market, both open source like

Apache FOP, and commercial like AntennaHouse XSL Formatter. 2

In its latest version, XSL-FO 1.1 was published in 2006 by the XSL (Adler, 2000)

Working Group and the group has since been closed and no further development can 3

thus be expected.

In parallel, CSS (Cascading StyleSheet) (Bos, 2011), one of the three technologies at

the base of the World Wide Web development, has gained traction and in its new

release it now features a module that “​specifies how pages are generated and laid out

to hold fragmented content in a paged presentation” which is targeted at printing media.

As with XSL-FO, exist software, called ​formatters​, that translates a combination of

HTML and CSS to PDF and other output formats.

In this work, we aim at understanding whether constructing books with HTML and CSS3

constitutes a valid alternative to XSL-FO and in general as a viable option for publishers

striving to produce a ​camera-ready artifact. There exists precedent work to analyze and

benchmark CSS3 Paged Media, namely from W3C and ​Print CSS Rocks a website 4 5

created to teach it by example and collect information about the formatters but,

differently from these, that look at the single properties of CSS3 Paged Media, the

present document focuses on the different perspective of analyzing the final result on

real cases and on books in their entirety.

To achieve a valid result, we collected the requirements from an italian publisher (Casa

Editrice ​Il Mulino​) and tested whether CSS3 provided ways to comply with them.

Additionally, we compared the results of several products, both from the open source

2 See http://www.sagehill.net/docbookxsl/FOprocessors.html for a more extensive list of processors.

3 ​The Extensible Stylesheet Language Family​. Available at https://www.w3.org/Style/XSL/ [last accessed
08 June 2019]

4 CSS Paged Media Module Level 3 CR Test Suite Results.
http://test.csswg.org/harness/results/css-page-3_dev/grouped/

5 ​Print-CSS Rocks​. https://www.print-css.rocks/

5

offering (Weasyprint) and the closed one (PrinceXML , AntennaHouse Formatter , 6 7 8

PDFReactor), evaluating the level of support of CSS3 for print. 9

The initial part of the work was dedicated at selecting what types of metrics and

identifiers could portray objectively the status of CSS3 support for the case in use,

starting with the already mentioned requirements from ​Il Mulino​: as every publisher they

convey a good part of their output review focus on the way the text is displayed and on

the user experience. As an example of it, a renowned guide style as the ​Chicago

Manual of Style ​(University of Chicago, 2010) states that “a page should not begin with

the last line of a paragraph unless it is full measure and should not end with the first line

of a new paragraph", respectively called widows and orphans. It’s common that different

publishers will want to extend this definition to a custom number of lines. Widows and

orphans, and the number of instances in a given document are examples of indicators

and metrics that we considered in the test. More details and additional requirements will

be presented later on.

It’s possible to categorize the properties of the PDFs in two main groups: the first

containing properties that are common to all documents (e.g. widows and orphans), and

the ones that denote a specific editorial collection (e.g. font family, font size, line

spacing, etc.).

In the initial part of the work we used the latter, a selection of the ​Il Mulino'​s

requirements, each of them represented in a separate PDF that shows the intended

behavior (see chapter 4.1.1) to compare the different CSS “formatters”, the software

that combines HTML and CSS, and produces a PDF.

6 ​Weasyprint ​- https://weasyprint.org/

7 ​PrinceXML​ - https://www.princexml.com/

8 ​AntennaHouse Formatter v6​. https://www.antennahouse.com/formatter/

9 ​PDFReactor​ - https://www.pdfreactor.com/

6

For the second set of tests we used PDFs representing entire books, such as “I

promessi sposi” by Alessandro Manzoni (see chapter 4.1.2 for a description of this test

group and the full list of books under inspection), and produced a software that

automatically scans the PDFs and checks against a list of previously identified

indicators of quality (e.g. presence of widows or orphans above a predefined threshold).

To do so we used ​pdfminer , a python library that is able to parse a PDF into a 10

browseable data structure. As per the formatters, a number of library to scan PDFs exist

and have different levels of quality. A comparison of PDF parser libraries constitutes

enough work for a separate research.

Lastly, using the experience from previous research and other academic studies, we

came up with additional test indicators and generated a combination of HTML and CSS

to test both the CSS support and the formatters behavior (see chapter 4.1.3).

Conclusions summary

Each formatter has different level of support of the various CSS directives and even

when supported, the visual disposition of elements differ noticeably.

CSS supports the implementation of the requirements we investigated (widows,

orphans, keep properties) exhaustively. The production of PDFs is yet not entirely

automatable and manual intervention is necessary specifically when e.g. space

between two blocks or items depends on the context (space conditionality) or when we

want to insert a blank page. Even though there are known gaps on edge cases, it was

possible to cover all ​Il Mulino visual requirements and of text disposition, simulating

correctly the books we were given as test base. The tested formatters produced

different levels of quality, analyzed further down in the document. Among them,

PDFReactor is the one that creates the least amount of rules violations, while producing

an output that is the easiest to parse correctly with PDFMiner. As the result of this

research, we can state that it is definitely possible to produce a PDF with enough

10 ​PDFMiner​. https://github.com/euske/pdfminer

7

professional quality to be considered as the final work for printing books. In comparison

to FO processors, the CSS formatters are less sophisticated so that small manual

adjustments to the HTML/CSS were needed. Most of the commercial formatters created

a proprietary set of CSS properties to simplify or enhance the job. 11

Document overview

Chapter 2 explores the background and related works in the space of text

representation.

Chapter 3 lays down the indicators and properties with which we’ll evaluate formatters.

Chapter 4 describes the experiment.

Chapter 5 draws the conclusions of the work.

11 Example of this being ​Page groups​ by PDFReactor.
https://www.pdfreactor.com/product/doc_html/index.html#PageGroups

8

2 Background and related work

In this chapter we discuss XSL-FO and CSS, two of the most common languages used

to represent documents and their formatting, and then explore the background

information, protocols, languages and research that precede the current work.

2.1 XSL-FO

Copious work has been directed at formalize a way to generate accurate content with

formal and precise instructions, with great results like in the case of ​LaTeX (Knuth,

1983) which is out of scope for this work.

The most important effort in the world of XML, is XSL-FO (Berglund, A. ​2006​)

(eXtensible Stylesheet Language), “a technology for creating paginated print versions

of information contained in XML documents” . 12

An XSL-FO document is an XML document that follows the schema under the ​fo

namespace . Starting from the XML document, designers transform it into XSL-FO 13

using a transformation written in XSLT and then use an XSL-FO formatter to generate

the final document in PDF, postscript, or one of the other supported formats. The XSL

document’s content constitutes a tree of elements, or formatting objects, each one of

which, represents an output area, whose content is specified in the XSL document itself.

Areas have predefined positions in the page (see Figure 2.1a) and a set of properties . 14

12 ​XSL-FO​, Dave Pawson, O’Reilly (2002​)

13 ​Fo namespace​, http://www.w3 .org/1999/XSL/Format

14 ​XSL-FO​, Dave Pawson, Chapter 4. O’Reilly (2002​)

9

 Figure 2.1a - An area as represented by XSL-FO

One of the most important novelties introduced by XSL-FO is the concept of ​flows​, a

way to represent a sequence of pages in the XSL tree. ​Flows are of two types: <fo:flow>

flows, for content that spans across multiple pages, and <fo:static-content>, for content

that is repeated in multiple pages (e.g. footers). As we’ll see later in this document, CSS

doesn’t have the support for flows or a similar concept to address multiple pages at the

same time.

Among the many options for fine tuning, XSL-FO allows for the management of the

minimum number of lines to appear alone at the bottom of the page (so called ​orphans​)

and at the beginning of a page (​widows​) as the result of a page break.

10

As an example, the code to set the orphans inside an ​fo:block​ is as follows:

<fo:block widows=​"3"​ orphans=​"3"​>Paragraph content</fo:block>

Which the formatter will apply to the document as shown in Figure 2.1c.

 ​Figure 2.1c - Applied setting of maximum widows/orphans lines after the processing

11

Similarly, page breaks within an fo:block can be forced (see Figure 2.1d) through

<fo:block page-​break​-before=​"always"​>

 ​Figure 2.1d - A page break is artificially inserted before the start of the second chapter.

2.1.1 Status of the standard

This standard is designed for completeness but not for ease of use, making it

impractical to manually edit. Its limited capabilities especially in respect to conditional

and relative formatting is one of the reasons for the lack of adoption by commercial

XSL-FO implementers. Concurrently, the rise of a simpler language like CSS, the

pressure on CSS and on browser vendors from publishers and the reduced participation

to the w2c working group meant in practice the demise of the working draft.

2.1.2 XSL-FO processors

After transforming the XML file containing the text of the book to adhere to the XSL-FO

schema, the last step is to produce the final file (PDF, postscript, etc.). This is the role of

the so called ​XSL-FO processors​.

12

During the years, several processors appeared on the market, as often happens in both

commercial and open source licensed. The most famous were Apache FOP , RenderX 15

Xep , AntennaHouse Formatter and PrinceXML , the last two of this list now 16 17 18

expanded their supported inputs also to CSS3.

2.2 CSS

CSS is a language for describing the rendering of structured documents (such as HTML

and XML) on screen, on paper, etc. When the first CSS specification was published, all

of CSS was contained in one document that defined CSS Level 1. CSS Level 2 was

defined also by a single, multi-chapter document. However for CSS beyond Level 2, the

CSS Working Group chose to adopt a modular approach, where each module defines a

part of CSS, rather than to define a single monolithic specification. This breaks the

specification into more manageable chunks and allows more immediate, incremental

improvement to CSS4 (Etemad, 2018).

Among the modules defined in the working draft for CSS3, the most relevant for this

work is the one called CSS Paged Media which specifies how pages are generated and

laid out to hold fragmented content in a paged presentation. It adds functionality for

controlling page margins, page size and orientation, and headers and footers, and

extends generated content to enable page numbering and running headers / footers.

While CSS Paged media deals with the layout of elements in a document, a separate

module called CSS Fragmentation covers how to instruct CSS to split content flow into

pages, columns or regions.

15 Apache FOP​. https://xmlgraphics.apache.org/fop/

16 ​RenderX tools index​. http://www.renderx.com/tools/index.html

17 AntennaHouse Formatter​. https://www.antennahouse.com/formatter/

18 ​PrinceXML​. https://www.princexml.com/

13

In CSS, each page is composed by sixteen page margin boxes that can display

generated content like a pseudoelement (Figure 2.2a)

 Figure 2.2a - Page margin boxes (pdfreactor.com)

The at-page (@page) rule is used to control the page characteristics when printing. With

this rule, CSS makes it possible to change the margins, orphans, widows, and page

breaks of the document.

The target on printing is obvious when thinking that, for example, size supports not only

the classic measurement units like inches but also absolute sizes like A4.

14

Additional flexibility is given by the pseudo-page selector, that allows to target different

behavior for the pages on the right or left, as well as the first page and blank pages.

@​page​ :first {
 ​ size: A4;
 ​margin​: ​1cm​;
}

Inside the at-page block, it’s possible to target the various areas displayed in Figure

2.2a, namely @top-left-corner, @top-left, @top-center, @top-right, @top-right-corner,

@bottom-left-corner, @bottom-left, @bottom-center, @bottom-right,

@bottom-right-corner, @left-top, @left-middle, @left-bottom, @right-top, @right-middle

and @right-bottom.

Additionally to the above described areas, it’s possible to describe the behavior of

footnotes inside an at-page selector. When applying “float: footnote” to an element, it

becomes a footnote, which means it’s removed from the flow and placed at the bottom

of the page. Some more actions are auxiliary to this event happening: the footnote

counter is incremented and the footnote marker is placed at the beginning of the

footnote.

In code, a footnote can be created as follows:

HTML

<p>​Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec
venenatis, dui id molestie varius, sem velit dignissim ligula, eu

varius leo sem non ipsum. Nunc pretium eu neque non elementum.​<span
class=​"footnote"​>Integer porttitor fringilla leo ac
elementum.</p>

15

CSS

@​page​ {
 @footnote {

 ​float​: bottom;
 }

}

span​.footnote​ { ​float​: footnote; }

The code results in the PDF in Figure 2.2b.

Figure 2.2b - PDF containing text and footnote

Widows and ​orphans are controllable similarly to XSL-FO, with instructions embedded

directly into the language itself:

/* <integer> values */
widows|orphans​: 2;

/* Global values */
widows|orphans​: ​inherit​;
widows|orphans​: ​initial​;
widows|orphans​: ​unset​;

16

Also common with XSL-FO is the management of page-breaks and keep properties.

To keep two boxes together in the same page, CSS provides the instructions to avoid or

force the page break:

break-after 19

break-before 20

as well as other instructions intended for break management at the level of the page 21

page-break-before 22

page-break-after 23

the box

box-decoration-break

and inside the element itself

19 Break-after. ​https://developer.mozilla.org/en-US/docs/Web/CSS/break-after

20 ​Break-before​. https://developer.mozilla.org/en-US/docs/Web/CSS/break-before

21 replaced in the newest versions of CSS by break-before and break-after that we report here for
completeness

22 Page-break-after. ​https://developer.mozilla.org/en-US/docs/Web/CSS/page-break-after

23 ​Page-break-before​. https://developer.mozilla.org/en-US/docs/Web/CSS/page-break-before

17

break​-​inside

The break-after and break-before rules work on different levels (generic, page, column

and region), depending on where they are applied:

/* Generic break values */

auto, avoid, always, all

/* Page break values - inside @page */

avoid-page, page, left, right, recto, verso

/* Column break values */

avoid-column, column

/* Region break values */

avoid-region, region

/* Global values */

inherit, initial, unset

For example an instruction of “break-before: left;” will force “​one or two page breaks

right after the principal box, whichever will make the next page into a left page​”. On

another level, “break-before: avoid;” will keep two boxes together in the same page,

whenever possible.

18

Unlike XSL-FO, there is no concept of flow or page sequences, so that the behavior of

multiple pages must be instructed individually.

2.2.1 CSS formatters

A good number of closed source, commercially licensed software is present on the

market to aid the typographers achieve a perfect printed or digital result, but the price of

said tools is quite high (see table 2.2.1a for a price comparison among the most famous

ones) given the limited size of this niche market and the elevated number of different

requirements that the software needs to comply with, to satisfy the users.

Formatter License Price

Weasyprint OpenSource Free

AntennaHouse 24 Proprietary 5000$

PrinceXML 25 Proprietary 3800$

PDFReactor 26 Proprietary 2680$

WKHTMLtoPDF OpenSource Free
Table 2.2.1a - List of formatters under analysis. WKHTMLtoPDF was discarded from the test for the lack
of support of CSS Paged media 27

Browsers and open source formatters

Open source alternatives to the commercial software are available and plenty, but the

quality of the end product is not satisfying enough. Many of the tools that we tried, use

an open source browser engine behind the scene (Chrome, Firefox, etc.) and those do

24 ​AntennaHouse​. https://www.antennahouse.com/prices/

25 ​PrinceXML​. https://www.princexml.com/purchase/

26 ​PDFReactor​. https://www.pdfreactor.com/buy/

27 ​WKHtmlToPDF​. https://github.com/wkhtmltopdf/wkhtmltopdf/issues/2066

19

not support the CSS3 paged media module in its entirety . The quality of these 28

software can’t be considered good enough to be used in a professional environment,

exactly for the lack of complete support that reduces the maneuver space that publisher

have to fine tune the input page and reach their desired results.

2.3 Some academic studies on typesetting

The work done in this document is preceded, inspired and extension to a bulk of

scientific work that explores several aspects of typesetting.

The most simple approach in typesetting is to fit as many words as possible in a line,

with a greedy approach. According to Sneep (Sneep, 2005), this is the default for most

browsers and word processors at the time of the analysis. An improvement over this

basic algorithm can be found in the foundational article about breaking paragraphs into

lines (Knut, 1981) used in LaTex. As per Knut optimal solution, penalties are assigned

to words and lines to calculate the fitness of a line break at any given point and the one

with less penalties is then used.

Starting from Knut’s seeding work, further optimizations moved the focus from the line

breaking to a more holistic approach, with algorithms that concentrate on the idea of

multiparagraph (Ciancarini, 2012) and a global optimization of the page rather than the

greedy approach for each paragraph.

Another take on global pagination can be find in Mittelbach (2019), which at the ​16th

ACM Symposium on Document Engineering presented ​a framework for an algorithm for

page breaking that leverages the ideas of Knuth/Plass but focuses instead on the global

layout rather than at paragraph level. The algorithm presented can be directly utilized in

any TeX installation.

28 CSS Paged Media benchmark​. https://caniuse.com/#feat=css-paged-media

20

This last example shows how extensive research has been performed to expand the

work of Knuth/Plass and how necessary is to keep investigating the scope of automatic

typesetting.

2.4 Other benchmarks

Corollarily to the specifications of CSS3, the W3C Working Group maintains a test suite

that, for each CSS property, checks if it’s supported by the most common browser

engines (AHFormatter, Blink, Edge, Gecko, Presto, Prince, Trident, WebKit and

WebToPDF). The results are available on the ​CSS Paged Media Module Level 3 CR

Test Suite Results . 29

An extensive source of information lies in Print CSS Rocks (Jung A., 2019), a website

that aspires at being a one-stop shop for learning CSS Paged Media. Each lesson on

the site focuses on a different CSS property and, along with it, offers a snapshot of the

support level of three PDF formatters (PDFreactor, PrinceXML and Antennahouse) . 30

The first group of twenty basic lessons/benchmarks in the ​Intro category, targeting

isolated CSS properties like footnotes, hyphenation, tables, etc. shows how the three

formatters supports fully the standard. This group of tests, as well as the rest, are

executed manually, i.e. generating the PDF and then comparing them visually.

The following thirteen ​Advanced tests, focus on rarer properties like footnotes on

multiple columns, text with ligatures and pseudo-selectors like ::first-line. AntennaHouse

and PrinceXML both respond well to the tests while PDFReactors fails three of them by

not supporting the properties and showing an unmodified text.

The last general category contains twelve tests, more exotic in nature and with the

intention of stressing the formatters. The support of a complex CSS example with CSS

29 CSS Paged Media Module Level 3 CR Test Suite Results.
http://test.csswg.org/harness/results/css-page-3_dev/grouped/​. Retrieved on June 2019.
30 ​Print-CSS Rocks, Lessons​. ​https://print-css.rocks/lessons​. Retrieved on June 2019.

21

http://test.csswg.org/harness/results/css-page-3_dev/grouped/
https://print-css.rocks/lessons

positioning, fonts and some typography reports green on the three formatters while the

coverage of third parties charting JS libraries is disappointing.

It is the opinion of the author that PDFReactor is what fits best their use case for

professional usage.

While the tests of the W3C benchmark and the print-css rocks website are targeted at

each individual CSS property, in this work we take a more holistic approach on the final

PDF document in its entirety.

22

3 Evaluating CSS and CSS formatters

XSL-FO has been used to produce printable books successfully but the complexity in

manual editing and the demise of its working group at W3C might signal its soon

decline.

The publication of CSS3 and of its Paged Media module might constitute a good

replacement for XSL-FO and it’s the scope of this work to give an overview of the

compatibility of CSS3 to do just that.

In this chapter we introduce three groups of indicators, capabilities present in XSL-FO

and in all requirements from publishers: ​style properties that look at how text is laid out

in the pages; ​content properties​, that takes a closer look at text quality; ​keep properties

used to check whether CSS is able to keep different logical groups of text together. This

initial set of indicators is based on the analysis of existing books and on previous work

on the subject (see Chapter 3.1). Our list (see table 3a) is not definitive and set the

course for additional research that will be performed in the future to extend the test base

and the set of indicators.

Stype properties Content
properties

Keep properties

Chapter titles at top of page (S1) Page never ends
with a colon (C1)

Title and body are kept on the
same page (K1)

Chapter titles at odd pages (S2) Long title is kept on the same
page (K2)

Orphans not present (S3) Title, subtitle and paragraph are
kept on the same page (K3)

Widows not present (S4) Images and their captions are
kept on the same page (K4)

Too much space at the end of the page (S5) Text in the same page (K5)

Too much space between text and notes (S6)

Table 3.1 - List of indicators by property type

23

3.1 Style properties

Style properties are characteristics of the way the text is laid out on the page to improve

the user experience while reading books. Some of those properties are obvious also

because they are widely adopted, like the case of chapters starting on a new page that

is on the right side of the book and its title is displayed at the top of the page. Some

others like widows and orphans are more subtle and both their definition and strictness

in application depends on the style choices of the publisher.

Chapter titles at top of page (S1)

It is normal for publishers to require chapters to start after a page break, so chapters

titles are always found at the top of the page. The opposite is less frequent (see Figure

3.1a).

It’s not a case that among the set of instructions included in both XSL-FO and CSS

there is the capability to control the text at page level.

In CSS we find two specific directives related to the dispositions of chapters in pages:

1. The ability to create a page-break after a paragraph ends, or before a chapter

starts. (See details of break-after and break-before later in Chapter 4.2.2)

2. The ability to make a page behave as a left or right page, which would

occasionally create a blank page before, should it be on the wrong side of the

book (See details of break-before later in Chapter 4.2.2).

24

 Figure 3.1a - Chapter title not at the top of the page

Chapter titles at odd pages (S2)

For ease of reading and better displaying, typographers use to print beginning of

chapters on an odd page number. To force this, it’s common practice to introduce a

blank page at the left of a chapter, so to make it start at an odd page.

Orphans not present (S3)

In typesetting, orphans are lines at the end of a paragraph, which are left dangling at the

top of a column, separated from the rest of the paragraph. There are different opinions

on how many lines alone constitutes an orphan (​Carter, R.,1993) (Day, B., 1993)​. Our

requirements from ​Il Mulino​ stated that 3 is the minimum number. See Figure 4.1.a

Widows not present (S4)

In typesetting, widows are lines at the beginning of a paragraph, which are left dangling

at the bottom of a column, separated from the rest of the paragraph. There are different

opinions on how many lines alone constitutes a widow. Our requirements from ​Il Mulino

stated that 4 is the minimum number. See Figure 3.1.b

25

 Figure3.1b - In evidence, an ​orphan ​and a ​widow. The page ends with a colon.

Too much space at the end of the page (S5)

For a better visual experience, page must be filled to the fullest. For the scope of this

document and our tests, we considered 350pt as the maximum space allowed (Figure

3.1.c). This value is specific to the editorial collection in exam; different publishers might

have their own preference.

 ​Figure 3.1.c - In evidence, large empty space at the end of a page

Too much space between text and notes (S6)

For a better visual experience, page must be filled to the fullest. When too much

whitespace is present between text and the notes in a page, the page is not considered

print worthy (Figure 3.1d)

26

 Figure 3.1d - Large empty space between the body of the text and the notes

3.2 Content properties

The properties in this category reflect the editorial choices regarding the style of the

content. It stands out from the others because it doesn’t observe the text layout but

instead it refers to the meaning of the text. So far we identified one property, due to be

revisited and expanded with additional items in future works.

Page never ends with a colon (C1)

Since a colon "precedes an explanation or an enumeration, or list”, having a phrase

ending at the bottom of the page to continue with e.g. a list on the next, interrupts the

reading flow. See Figure 3.1.b

3.3 Keep properties

Properties in this category refers to the way the text is split among the pages of the

book. The limited amount of space in each page forces the formatters to insert page

breaks in the middle of chapters and sub-section, while the keep tags, both present in

XSL-FO and CSS give enough flexibility to instruct otherwise and specify logical

connections inside a block of text or even between different groups. An example could

be the will of maintaining the title of the chapter and the initial part of its content in the

same page (K1).

27

Title and body are kept on the same page (K1)

An HTML file that produces a PDF where, without any additional CSS instructions, a

chapter subtitle appears at the bottom of the page, detached from the content of the

chapter itself (Figure 3.3a)

Inserting break-after: avoid; in the "titoletto" class, the title and the body of the chapter

are kept together. (Figure 3.3b)

Figure 3.3a - Title detached from body Figure 3.3b - Keep property in action

Long title is kept on the same page (K2)

It is interesting to check what’s the default behavior of the formatters in treating a single

line title who appears at the bottom of the page (Figure 3.3c), when it’s extended to take

more than one line. In this case, the formatter takes the most logical decision to keep

the title together and move it to next page (Figure 3.3d). The behavior of breaking the

title in two pages has never come up, in fact, there is no CSS instruction to produce it . 31

31 ​Break-inside​, https://developer.mozilla.org/en-US/docs/Web/CSS/break-inside

28

Figure 3.3c - a short title detached from body Figure 3.3d - A long title kept in the same page

Title, subtitle and paragraph are kept on the same page (K3)

All the headings preceding a text are best if present on the same page and followed by

the content of that chapter. By default, formatters do not enforce this property that

needs to be set manually. In the pictures it’s possible to see the correct work of a

formatter when the break avoidance setting with the following element is given (Figure

3.3e, f, g, h)

Figure 3.3e - Titles separated from body Figure 3.3f - First keep property, body

29

Figure 3.3g - Title and subtitle together Figure 3.3h - All titles kept in the same page with

the body

Images and their captions are kept on the same page (K4)

What is true for titles and the content of the page, is true for images and their captions.

As visible in figure 3.1i, the default behavior of formatters is to separate the two

elements that must be kept together with the right CSS setting (Figure 3.1j).

Figure 3.1i - Image and its caption are erroneously

separated by a page break

Figure 3.1j - Image and its caption are kept

together by CSS

30

Text is kept in the same page (K5)

To avoid widows as the one visible in Figure 3.1k , one option is to instruct CSS to

subjugate the text within the same page. The formatters have various options, e.g.

reducing the line space, reducing the font, decrement the hyphenation at the expenses

of line width or to ignore the setting for the space at the bottom of the page (Figure 3.1l)

Figure 3.1k - Text without a keep property Figure 3.1l - With a keep property, the CSS

formatter maintains the text in the same page

31

4 Experiment description and results

In the previous chapter we’ve laid out what needs to be considered important indicators

for evaluating the capabilities of CSS and the CSS formatters. This chapter explores the

way we used these indicators to evaluate the quality of the PDF files. Starting with

PDFs of full books, book excerpts and crafted files all of them generated with multiple

PDF formatters, we then apply different methodologies for evaluating the quality of the

product, either manual or fully automatic checks.

4.1 Dataset

From our on the ground discussion with the publisher ​Il Mulino we gathered a group of

PDF files, generated using XSL-FO. A formatter applies the editorial collection style,

expressed in the form of typesetting instructions provided in a separate file, to the

books. “An editorial collection in publishing, is a set of books published by the same

publisher, with a set of similar characteristics” . 32

These PDFs can be grouped into two categories:

● public domain books, with a stylesheet from ​Il Mulino​ editorial collection.

● Book excerpts, previously used by the publisher to test the quality of the output

from their tools and here used to compare them to the PDFs generated with

CSS/HTML and the formatters in analysis.

Moreover we generated another group of test files to test additional behaviors not

covered from the requirements and files of the publisher.

32 ​“Una collana o collezione editoriale, in editoria, è una serie di testi pubblicati da una
casa editrice con determinate caratteristiche comuni” - Ferretti, Gian Carlo, Iannuzzi
Giulia. "Storie di uomini e libri : l'editoria letteraria italiana attraverso le sue collane"
Minimum fax (2014).

32

4.1.1 Full books

The books used are:

● Cantico di Natale - Charles Dickens - 74 pages

● I Malavoglia - Giovanni Verga - 236 pages

● Il Manifesto - Karl Marx - 54 pages

● I promessi sposi - Alessandro Manzoni - 94 pages

The number of pages varies slightly depending on the style choices taken by the PDF

formatter.

4.1.2 Test files from Il Mulino.

The publisher provided a group of tests, from which we selected four, organized in

folders containing:

● An HTML file
● A CSS file
● An FO file
● The original output in PDF that we want to replicate

These tests are part of a larger test bed, which we used partially to cover the areas of

interest for this document. The test bed will be used more extensively in the future as

part of further research.

4.1.3 Crafted files

The last group of tests files, directly mapped to the indicators described in chapter 3.1,

consists of manually generated HTML files, each one of them triggers a specific

visualization problem in the generated PDF, allowing us to a) test whether in CSS exists

a directive to address and correct the problem b) compare the result of multiple CSS

formatters.

33

4.2 Tests and results

Starting with the input files described in Chapter 4.1, we executed two types of tests on

them:

- Manual checks on short files

- Automated tests on full books, through a software written specifically for this task.

Table 4.2a summarizes the test title, whether it’s an automatic test or a manual one,

and the category of the input file distinguishing between the full books, book excerpts

and manually crafted files.

Automated on full books Manual on book excerpts/crafted files

Chapter titles at top of page (S1) Title and body are kept on the same page (M1)

Chapter titles at odd pages (S2) Long title is kept on the same page (M2)

Orphans not present (S3) Title, subtitle and paragraph kept on the same
page (M3)

Widows not present (S4) Images and their captions are kept on the same
page (M4)

Too much space at the end of the page (S5) Text is kept in the same page (M5)

Too much space between text and notes (S6)

Page never ends with a colon (C1)

Title and body are kept on the same page (K1)

Long title is kept on the same page (K2)

Title, subtitle and paragraph are kept on the same
page (K3)

Images and their captions are kept on the same
page (K4)

Text is kept in the same page (K5)

Table 4.2a - Tests description

34

4.2.1 Automated tests on full books.

As part of the search for an answer to whether CSS Paged Media is suited to print

books, we produced a software to analyze a set of PDFs generated using various

formatters, starting from four books available under public domain. We coded the

automation to detect violations of some of the identifiers listed in Chapter 3 (see Table

4.2a, Automated) and parse all the given PDFs in search for errors that the formatter

may have produced, either because of its own mistakes or because the CSS3

specification doesn’t allow to produce that desired effect. We reverse engineered the

provided PDF with the help of an FO file that was used to generate it. The CSS derived

by this activity, could be then generally applied to all the books belonging to that specific

editorial collection. Due to the peculiarity of each editorial collection and the less than

perfect marshalling of the PDFs by the pdf parsing libraries, the code makes

assumptions on how the document should look like. These assumptions are not

relevant for the general case but the code can be improved and/or expanded to allow

for the analysis of different real use cases. For details on the implementation

methodology, refer to chapter 5.

Chapter titles at top of page (S1)

A chapter is a logical main division of a book, identified by a title that is distinguishable

from the rest of the text by its position in the page and usually a different style. Given

the different styles in use in different books and editorial collections, it’s difficult to define

a general programmatic rule to identify them. PDFMiner would parse the PDF in input

and create a complex data structure, part of which is an array where every element is a

paragraph. In this structure, a chapter title would appear isolated, i.e. not containing

newlines, all uppercase and of size 10.7pt. This definition comes from the editorial

collection style applied to all the full books under exam and the book excerpts (see

Figure 4.2.1a).

35

Figure 4.2.1a - Example of a chapter title from one of the full books (​I Malavoglia​)

Chapter titles at odd pages (S2)

For ease of reading and better displaying, publishers use to print beginning of chapters

in a page on the right. A chapter starting in a page on the left is considered an error.

The CSS3 specification allows to define this, and formatters try to respect the setting

with various techniques including leaving a blank page before the chapter starts. In the

data structure created by PDFMiner when parsing the PDF, each page has a ​pageid

which corresponds to the actual page number. Once a chapter title has been identified,

is then trivial to check if it’s found on an odd (right) or even (left) page.

Orphans not present (S3)

In typesetting, orphans are lines at the end of a paragraph, which are left dangling at the

top of a column, separated from the rest of the paragraph. When an orphan is detected

at the beginning of the page, this error is printed. PDFMiner parses the PDF creating,

among other data structures, an array where each element is a string representing

36

paragraph. By counting the number of newlines, it’s easy to understand the number of

lines of the first/last paragraph and identify orphans and widows violations.

Widows not present (S4)

In typesetting, widows are lines at the beginning of a paragraph, which are left dangling

at the bottom of a column, separated from the rest of the paragraph. When a widow is

detected at the end of the page, this error is printed. Widows are identified by our

software in the same way orphans are, by checking the number of lines of the first

paragraph.

Too much space at the end of the page (S5)

For a better visual experience, page must be filled to the fullest. When too much

whitespace is present at the bottom of a page, this error is displayed. PDFMiner

provides the in-page coordinates of each element. By going through the array

representing each page, our software identifies the coordinates of the lower corner of

the last element in the page and calculates the empty space by difference with the page

height.

Too much space between text and notes (S6)

For a better visual experience, page must be filled to the fullest. When too much

whitespace is present between text and the notes on a page, this error is displayed.

Similar to what was said for the previous test, the difference is calculated between the

last element in the page and the coordinates of the top corner of the notes box.

Page never ends with a colon (C1)

A page must not end with a colon ‘:’. Since a colon "precedes an explanation or an

enumeration, or list”12, it’s visually unpleasant to see a page ending with it. This error

message appears when a page ending with colon is identified.

37

Automated tests results

The software scanned the four full books given as input and produced the results in a

CSV summary that we visualized in the following figures (4.2.1b-e). As it’s visible, FOP,

PrinceXML and PDFReactor all produce very limited number of errors that can then be

addressed manually by the editor. As an example, think of the C1 test where the

paragraph can be moved to the next page with a manually inserted page-break-before

in the CSS, targeting an ad-hoc class naming in the HTML. Since a manual check from

the editor is then needed, the process cannot be fully automated and is not to be

considered optimal. It is worth noticing that while it’s possible to configure parameters

for the style and keep properties, the same is not true for the content properties (i.e. a

page should not end with a column), so whether this appears in the text is just left to the

case but correctly identified by the software when this happens.

We reviewed the software report and realized that the tool reported some false positives

because of the way the PDF is parsed by PDF miner. In specific, no orphans or widows

were present in the input files.

38

Figure 4.2.1b - Errors found in the book ​Cantico di Natale ​by formatter

Figure 4.2.1c - Errors found in the book ​I Malavoglia​ by formatter

Figure 4.2.1d - Errors found in the book ​Il Manifesto ​by formatter

39

Figure 4.2.1d - Errors found in the book ​I promessi sposi​ by formatter

4.2.2 Tests from Il Mulino

Starting with the XSL-FO file and extracting from it the precise measures of distances,

size, fonts etc., we were able to reconstruct a PDF that closely resembles the original to

the point where the differences are minimal and negligible.

Blank page as last page (T1)

We aim at reproducing an XSL-FO generated PDF that contains numbered pages and

ends with a blank page. The complexity lies in the lack of support in CSS for a blank

page alone at the end which can be replicated by mangling with the HTML file, inserting

an empty item and instructing a page-break-before: right; in the CSS.

Chapter levels (T2)

The source PDF file, generated with XSL-FO, contains several levels of

chapter/paragraph titles. The relative spacing among the titles was produced in XSL-FO

using conditional spacing, feature not supported by CSS. It is again possible to

40

reproduce the result in CSS but only by manually changing the class nomenclatures

where the different spacing is needed. This implies additional work on the side of the

publisher and the obvious lack of adaptability should the text structure change.

Images and captions (T3)

This book excerpt contains two types of images, differentiate by the spacing relative to

the border. CSS fully supports this behavior.

Chapter title in a separate page (T4)

In this document we find a chapter title (bibliography) alone at the top of the page,

followed by a blank page. Additional complexity is provided by a specific style for the list

of books.

Results

In these tests we successfully replicated four book excerpt by “Il Mulino” to show how

it’s possible to fine tune the HTML/CSS to remove even the minimal differences

between the original file and the PDF generated with HTML. Being able to do so with

the first two formatters (PrinceXML and PDFReactor) is proof enough of the capabilities

of CSS3 and the work was not extended to additional formatters.

41

 PrinceXML PDFReactor

Blank page as last page (T1)

Chapter levels (T2)

Images and captions (T3)

Chapter title on a separate
page

Table 4.2.3 - Test titles and results

Note that PrinceXML ignores the directive on indentation for the footnote number and

displays it in a different style at the very left of the page (See Figure 4.2.3a and 4.2.3b)

Figure 4.2.3a - Desired style and
position

Figure 4.2.3b - PrinceXML output

4.2.3 Manual tests

Book excerpts, part of the dataset detailed in Chapter 4.1, differ from full books by their

size and the purpose of checking specific FOP/CSS capabilities. An automated test of

these files would have required a separate implementation for each of the indicators

while a manual check, given the small number of pages and test bed, is fast and easy

enough to not grant the effort for the automation. Refer to table 4.2.2a for a summary of

the results of the tests for each formatter in analysis.

42

Title and body are kept on the same page (K1)

In this test, we check if and how a large text, by default being split in two different page,

is treated by the formatters in the presence of a CSS directive that instructs them to

avoid a page break.

Long title is kept on the same page (K2)

We forced the case of a multiline title at the end of the page, trying to trigger an edge

case where a page break could have been inserted at the line break.

Title, subtitle and paragraph are kept on the same page (K3)

In the previous test, we validated that the keep property works on a single item like a

title. In this one we check that it’s possible to keep two items together (e.g. a title and

the body of text) and that it’s possible to expand the property to additional items in

chain so that a defined group stays together in one page within certain limits.

Images and their captions are kept on the same page (K4)

Also in the case of an image and its caption, the default break can be overcome by

applying the CSS rule for “break-after: avoid;”

Text is kept in the same page (K5)

When a text exceeds the size constraint of a page, the publisher might want to keep it

together. CSS allows for this behavior with the “break-inside: avoid;” instruction. The

tested formatters chose to sacrifice the constraint on the empty space at the bottom of

the page to respect the keep rules.

Results

All formatters in analysis respond as expected in the presence of the keep directives

even when stressed out with edge cases. It’s worth noting that the test K2, which

checks whether is possible to keep a long title in the same page, resulted in the

43

discovery that not only it’s the default behavior of all formatters but also that is not

possible to obtain the opposite result and force a page break inside a block.

 Title and body

are kept on

the same page

(K1)

Long title is

kept on the

same page

(K2)

Title, subtitle and

paragraph are kept

on the same page

(K3)

Images and their
captions are kept on
the same page (K4)

Text is kept in the

same page (K5)

AntennaHouse

PrinceXML
 33

PDFReactor

Weasyprint

Table 4.2.2a - Key behavior support breakdown by PDF formatter

33 While Prince honors the directive of break avoidance within the property and the text is kept together,
to do so it breaks the “keep” rule between the title and the body, inserting a page break that leaves the
title alone on a separate page.

44

5 Implementation details

In this chapter we explore the implementation of a software to check whether a given

PDF is compliant with a set of aesthetic and formal requirements that we collected from

precedent works on the subject and from the renowned publisher ​Il Mulino​. This covers

the automated tests performed on full books in the public domain, a subset of all tests

performed. For the full list of tests, refer to Chapter 4.2.

5.1 Automatic PDF checker implementation

The code is written in Python3, language chosen for the wide availability of libraries to

parse PDFs and for the familiarity of the author of this document. We’ll explore more in

detail the choice of the PDF parser library in the following chapters.

Since all our metrics and indicators apply to single pages and never to the PDF

structure in its entirety, the code loops over each page, where they are passed to

separate functions, one per indicator and the relative metric is incremented if the criteria

is met.

At the end we print a report, on screen with visual structure and on file in CSV format for

further data analysis.

The initial function in the code works just as a wrapper and container for the boilerplate

that loads the PDF in memory and parses it with pdfminer. In its central function

(process_pdf), the code goes through page by page and for each one of them executes

the following checks:

Chapter titles at top of page (S1)

A chapter is a logical main division of a book, identified by a title that is distinguishable

from the rest of the text by its position in the page and usually a different style. Given

the different styles in use in different books and editorial collections, it’s difficult to define

45

a general programmatic rule to identify them. In the case in study a chapter is defined

as a standalone alphanumeric string, whose characters are all uppercase and font size

10.7pt.

if​ ​chapter_not_at_page_start​(layout):
 ​logging​.warning(​"Page {}: Contains chapter not at
start"​.format(layout.pageid))
 chapters_not_at_page_start += ​1

def​ ​chapter_not_at_page_start​(layout)​:
 first = ​True
 ​for​ element ​in​ layout:
 ​if​ isinstance(element, LTTextBoxHorizontal):
 ​for​ obj ​in​ element:
 ​# skip the first element.
 # If it's a chapter, then it's correctly placed.

 ​if​ first ​and​ is_chapter(obj.get_text()):
 ​continue
 ​if​ ​not​ first ​and​ is_chapter(obj.get_text()):
 ​return​ ​True

 first = ​False
 ​return​ ​False

Chapter titles at odd pages (S2)

For ease of reading and better displaying, publishers use to print beginning of chapters

in a page on the right. A chapter starting in a page on the left is considered an error.

The CSS3 specification allows to define this, and formatters try to respect the setting

with various techniques including leaving a blank page before the chapter starts.

if​ layout.pageid % ​2​ == ​0​ ​and​ contains_chapter(layout):
 ​logging​.warning(​"Page {}: Contains chapter not on the
right"​.format(layout.pageid))
 chapters_not_on_right += ​1

46

Orphans not present (S3)

In typesetting, orphans are lines at the end of a paragraph, which are left dangling at the

top of a column, separated from the rest of the paragraph. When an orphan is detected

at the beginning of the page, an error is printed.

if​ is_orphan(layout, orphans):
 ​logging​.warning(​"Page {}: Orphan
identified"​.format(layout.pageid))
 orphans_num += ​1

Widows (S4)

In typesetting, widows are lines at the beginning of a paragraph, which are left dangling

at the bottom of a column, separated from the rest of the paragraph. When a widow is

detected at the end of the page, this error is printed.

if​ is_widow(layout, last_page_ends_with_dot, widows):
 ​logging​.warning(​"Page {}: Widow
identified"​.format(layout.pageid))
 ​widows_num += ​1

Too much space at the end of the page (S5)

For a better visual experience, page must be filled to the fullest. When too much

whitespace is present at the bottom of a page, this error is displayed.

if​ too_much_space(layout, limit=MAX_SPACE):
 ​logging​.warning(​"Page {}: Too much space at the end of the
page"​.format(layout.pageid))
 pages_too_short += ​1

47

Too much space between text and notes (S6)

For a better visual experience, page must be filled to the fullest. When too much

whitespace is present between text and the notes on a page, this error is displayed.

if​ too_much_space_between_text_and_note(layout):
 ​logging​.warning(​"Page {}: Too much space between text and
note"​.format(layout.pageid))
 space_notes_text +=​1

Page never ends with a colon (C1)

A page must not end with a colon ‘:’. Since a colon "precedes an explanation or an

enumeration, or list”12, it’s visually unpleasant to see a page ending with it. This error

message appears when a page ending with colon is identified.

if​ is_last_char_colon(text):
 ​logging​.warning(​"Page {}: Ends with colon"​.format(layout.pageid))
 last_char_colons += ​1

5.2 Code limitations

The code used for the automatic PDF parser is not flawless, as software usually is. The

limitations are present not only in the software itself but also on its dependencies, like

the pdf parser library, the formatters and the requirements, vague by definition.

5.2.1 Software implementation

The code produced is well organized in short functions that are easily testable. Unit and

integration tests are though missing and would greatly improve the speed at which it’s

possible today to integrate additional tests and PDF formatters. Moreover some of the

specification, deeply tight with the requirements from ​Il Mulino​, like the limit number of

48

widows and orphans or the space limit at the bottom of the page, are hardcoded and

should be moved to a configuration management system.

5.2.2 PDF parser library

An additional research is needed on the PDF parser libraries. PDFMiner was selected

among the python libraries for the better than average results but still the resulting data

structure is overly complicated to navigate and requires extensive usage of debuggers

to overcome the lack of documentation.

5.2.3 Requirements

Requirements coming from publishers are very different in nature and in most of the

cases specific to each publisher if not often to each separate editorial collection. This

makes it difficult to cover all use cases and calls for a separate research on the most

common cases to expand the test suite covered in this work.

49

6 Conclusions

In this document we analyzed the possibility to use CSS and HTML as a solid

successor of XSL-FO with three test suites:

- A combination of HTML/CSS to generate and check individual behaviors in PDFs

- book excerpts from the publisher “Il Mulino”, generated originally with XSL-FO

and that we managed to replicate accurately with HTML and CSS.

- complete books to which we applied an editorial collection stylesheet derived

from an XSL-FO source.

For each HTML/CSS source, we used all the formatters in analysis to generate PDFs,

which gave us an overview of the market status in terms of support of CSS Paged

Media.

While book excerpts and crafted short PDFs were easily checkable manually, for the

larger books we recurred to a software we developed to automatically scan the pages

and check for errors.

Most of the commercial PDF formatters’ output is up to expectations, respecting the

CSS Paged Media specifications and adding proprietary options to ease the work of

printing. Among them, PDFReactor is the one that made our work the easiest,

producing a PDF that is best parsable by PDFMiner and thus perfectly analyzable

programmatically. Opposite to that, AntennaHouse’s watermark, while perfectly legit,

made it impossible to work in conjunction with our software.

The open source space is full of options for PDF mangling, mostly aimed at PDF editing

and text extraction. It is our opinion that lots of work is still needed to reach the level of

the commercial offering, to the point that most of the software we tried was not worth

including in the present work of research.

50

This document is not definitive and more can be done to expand it. Given enough time

we hope that the gap between the open source offering and the commercial one will be

reduced enough to consider them comparable.

Overall, we were able to demonstrate how CSS Paged Media supports all of the

requirements and output capabilities of XSL-FO either directly or, in a few cases, with

manual intervention on the HTML/CSS code. Specifically, XSL-FO is designed with the

concept of page sequences, lacking in CSS which instead works on individual pages.

This different paradigm resulted in the inability to insert blank pages at predefined

positions, if not in relation to a preceding page.

51

Bibliography

1. Adler, S. (2000). ​Extensible Stylesheet Language​ (XSL)-Version 1.0.

2. Berglund, A. (2006). ​Extensible Stylesheet Language (XSL) Version 1.1.

Retrieved from https://www.w3.org/TR/xsl11/ on June 2019.

3. Bos, B. (2011). ​All CSS specifications. ​Retrieved from

http://www.w3.org/Style/CSS/specs on June 2019.

4. Carter, R. (1993) ​A widowed line, highlighted in yellow​.

5. Ciancarini, P., Di Iorio, A., Furini, L., & Vitali, F. (2012). High-quality pagination

for publishing. ​Software: Practice and Experience​, ​42​(6), 733-751.

6. Day, B., Meggs, P. (1993) ​Typographic Design: Form and Communication​. John

Wiley & Sons, 263

7. Etemad E. (2018). ​Selectors Level 4​, Retrieved from

https://www.w3.org/TR/selectors-4/​ on June 2019.

8. Ferretti, G., Iannuzzi G. (2014). ​Storie di uomini e libri : l'editoria letteraria italiana

attraverso le sue collane.​ Minimum fax

9. Grant, M., Etemad, E. J., & Sapin, S. (2013).​ CSS Paged Media Module Level 3.

10.Jung, A. (2019). ​Print-CSS rocks​. https://print-css.rocks Retrieved on June 2019

11.Justus, P. E. (1972). There is more to typesetting than setting type. ​IEEE

Transactions on Professional Communication​, (1), 13-16.

12.Knuth, D. E., & Plass, M. F. (1981). Breaking paragraphs into lines. ​Software:

Practice and Experience​, ​11​(11), 1119-1184.

13.Knuth, D. E. (1986). ​Computers & typesetting​. Reading, MA: Addison-Wesley.

14.Mittelbach, F. (2019). A general framework for globally optimized pagination.

Computational Intelligence, 35(2), 242-284.

15.Pawson, D. (2002). ​XSL-FO: making XML look good in print. "O'Reilly Media,

Inc.".

52

https://www.w3.org/TR/selectors-4/

16.Shinyama, Y. (2004). ​PDFMiner​. Retrieved from

https://euske.github.io/pdfminer/ on June 2019

17.Sneep, M. (2005). A short comparison of various typesetting engines. Retrieved

from

http://web.archive.org/web/20070203144903/http://www.nat.vu.nl/~sneep/ars/typ

e/comparison.pdf on June 2019.

18.University of Chicago Press. (2010). ​The Chicago manual of style​. University of

Chicago Press.

Formatters

● AntennaHouse Formatter v6​. https://www.antennahouse.com/formatter/

● PrinceXML​ - https://www.princexml.com/

● Apache FOP​. https://xmlgraphics.apache.org/fop/

● PDFReactor​ - https://www.pdfreactor.com/

● RenderX tools index​. http://www.renderx.com/tools/index.html

● Weasyprint​. https://weasyprint.org/

● WKHtmlToPDF​. https://github.com/wkhtmltopdf/wkhtmltopdf/issues/2066

CSS Specifications

● Break-after. ​https://developer.mozilla.org/en-US/docs/Web/CSS/break-after

● Break-before​. https://developer.mozilla.org/en-US/docs/Web/CSS/break-before

● Page-break-after.
https://developer.mozilla.org/en-US/docs/Web/CSS/page-break-after

● Page-break-before​.
https://developer.mozilla.org/en-US/docs/Web/CSS/page-break-before

53

