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Abstract 

This thesis proposes a Mixed Integer Non-Linear Programming (MINLP) stochastic energy 

model for an energy aggregator operating in the US distribution systems energy markets. Day- 

ahead, real-time and spot markets are considered as trading market options for the aggregator. 

When trading in real-time and spot markets; the aggregator faces multiple risks coming from 

load variability and uncertain market price. Deciding the selling price to be offered to the 

aggregator’s customers is a challenge for the aggregator. Uncertainties are modeled via 

stochastic programming and quantified via Conditional Value at Risk (CVaR). The aggregator’s 

optimal day-ahead selling prices to be offered to customers under real-time and spot prices 

uncertainty are determined by solving the proposed stochastic model. Changing the hourly prices 

offered to customers will change their hourly consumption resulting in a load redistribution 

during the day. Savings for the aggregator and customers will be gained by shifting the 

customers load to a lower price periods during the day. A case study is implemented to show the 

validity of the proposed model and influence of the aggregator in the distribution systems energy 

market. 
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Chapter 1    

Introduction  

Grid modernization is the key change to the current electric grid, it will improve, reform the old 

energy business models, and it will create new ones [1]. According to Patricia Hoffman, the US 

Assistant Secretary for Electricity Delivery and Energy Reliability “in order to manage 

American’s energy consumption more efficiently and cost-effectively, recover from disruption 

more quickly and remain globally competitive, we must modernize our nation’s electric grid” 

[2]. As the current electric grid is aging and can’t support the nation’s growth it is a necessity to 

address the challenges of grid modernization [2]. So increasingly the nation’s need for a 

modernized grid is at the center of scientific research, political conversation and people’s 

concerns.    

1.1 Grid Modernization   

The US market grid modernization varies from state to state since each state has its own policies, 

regulations and energy market rules [1]. According to the grid modernization index published in 

December 2018 by Gridwise alliance, California and Illinois are the leaders in grid 

modernization and Texas is moving toward grid modernization [1] as shown in Figure 1.1.   

This thesis seeks to address the challenges envisioned by the aggregator trading with 

customers in the modernized electric grid.  The goal of this research is to create an optimal 

pricing mechanism for the aggregator trading for customers to participate in the US energy 

market.  This thesis investigates optimal trading strategies to account for real-time market price 

and customers’ energy fluctuations with underlying uncertainties.  
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Figure 1.1 Grid modernization index in the US states [1] 

 

Resiliency, reliability, security, affordability, flexibility and sustainability are the desired 

characteristics of the modernized electric grid [2]. Electric grid restructuring means that the 

current electric grid will be changed, from the vertically integrated structure to a more 

economical and efficient grid ,where all users such as in the distribution level can participate in 

the electric market [3].This thesis will focus on addressing concepts related to affordability of the 

restructured electric grid, at the distribution level. Affordability means that the grid should be 

able to sustain and improve the nation’s economy [2]. This thesis will discuss improving the 

nation’s economy by addressing the challenges of cost, profit and risk that may face the 

customers of electricity and the electricity firms, interested in participating in the new 

restructured distribution systems electric grid.   

Trading in the electric market with residential customers is still not a widely adopted 

concept and varies based on location. Aggregator companies have been proposed for the market 

to manage customers participation in the electric market. “Aggregator is an entity or a firm that 
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combines customers into buying groups” [3]. The aggregator can also be defined as the middle 

man between the customers and the Independent System Operator (ISO) to manage customers 

participation into the competitive electric market [4].  

1.2 Research Motivation  

The research has mainly been motivated from the idea of enabling end-users to participate in the 

current modernized, restructured electric grid aided by aggregators. The research will mainly 

focus on the aggregator’s operation and challenges in the current competitive market. How 

would the aggregator reduce customers’ payments while making profit from managing 

customers energy needs?  Additionally, the aggregator is a new entity, it becomes one of the key 

market entities in the new electric grid market. In this thesis a model for the aggregator 

participating in the energy market by aggregating customers into buying groups is proposed. The 

aggregator’s aim is to determine the hourly selling prices for customers that would insure the 

aggregator’s maximum profit and minimize energy cost for customers.  

1.3 Research Questions 

Question 1: How the aggregator’s operation in a competitive market can be modeled?    

Question 2: What day-ahead prices should be offered by the aggregator to their customers? 

Question 3: How to maximize the aggregator’s profit and minimize its risk under real-time and 

pool price uncertainty along with customers load variability?   

Question 4: How to minimize customers’ payments for their energy consumption within the 

restructured electric markets?    
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1.4 Literature Review  

This section addresses related work on the subjects of Demand Response (DR) and Load 

shifting, Electric Aggregator, Risk Management and Stochastic Programming.  

1.4.1 Related Work on Demand Response  

Grid modernization utilizes the demand resources in the restructured electric grid economy and 

efficiency by applying demand response program. According to the ISO-New England, 2015 

regional electricity outlook, “Efforts to modernize the grid opens up new approaches to demand 

resources (including energy efficiency, demand response, and distributed generation) and for 

coordination planning, operations, and pricing between the wholesale and retail sectors.” [2]  

This section will address previous work on demand response program applied to residential 

demand and managed by the aggregator.  

Demand Response (DR) is proposed to reform the consumption of energy during a 

specified period, when the supply is rare or expensive by reducing or shifting load to periods 

when the supply of energy is at low-cost [5]. A risk constrained optimization model with demand 

response has been proposed for profit maximization for microgrid aggregator in [6]. Authors 

assumed that the microgrid aggregator’s objective is to determine optimal hourly energy bid to 

be submitted to the day-ahead market while offering predefined retail prices for their customers.  

1.4.2 Related Work on the Aggregator Risk Management and Stochastic Programming 

In literature, there is a considerable amount of published work on electricity retailers that is 

similar in operation to the aggregator and their operation in the electricity market. Retailers and 

the aggregator is fairly new entities in the electricity market [3]. Typically, the aggregator is 
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interested in aggregating customers into buying groups [3]. A considerable amount of research 

on the aggregator operating in the context of electric vehicle (EV) is found as in reference [7].   

The aggregator considered for this thesis operates in residential distribution markets 

serving home energy needs. A brief description of available research considering the aggregator 

operating in residential markets interacting with customers under demand response programs. 

For example, in reference [8] the authors propose a stochastic linear programming model for 

price taking retailers constructing bidding curves in the Nord pool market to minimize the cost in 

day-ahead and regulating markets. In reference [9] the author presents a stochastic programming 

model for retailers trading with customers, encouraging them to shift their load to lowest price 

periods at the same time minimizing the aggregator risk trading in the pool electricity market. 

The author considered six aggregate time periods and considered planning on a monthly basis. 

The author also considered time of use tariff (TOU) which could be used to trade with customers 

in two periods during a month. The author used the CVaR risk model to quantify the risk 

originating from profit variation when trading in the pool market. In reference [10] the authors 

proposed optimal involvement for power producers in future markets by using the conditional 

value at risk (CVaR) as a coherence risk measure to hedge against profit variation. The authors 

proposed their model for retailers interested in trading in future markets. The authors in reference 

[4] proposed a stochastic energy model for electric vehicle aggregators participating in day-

ahead markets and used the CVaR index to hedge against the risk of uncertainties imposed from 

wind volatility and EV load fluctuations. In reference [11] authors proposed optimal selling price 

and energy procurement strategies for retailers in electricity markets. The authors in reference 

[12] surveyed the decision makers of electricity retailers and reported that the elasticity of the 

demand is best utilized under real-time pricing (RTP). 
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This thesis will discuss the aggregator decision on optimal day-ahead prices offered to 

customers who agreed to participate in a demand response program. Also, this work will use 

customer demand elasticity while ensuring maximized profit for the aggregator and minimized 

energy cost for customers.   
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1.5 Contributions of This Thesis  

The contribution for this thesis can be stated as the following:  

1. Finding an optimal solution for the hourly selling prices, offered by the aggregator to 

customers, applying demand response program, while hedging the risk using CVaR 

methodology, under real-time prices uncertainty and customers load fluctuations.  

2. A heuristic procedure to optimally generate enough scenarios for real-time market prices, 

based on probability distribution for each hour of the price, using long time historical 

data.  

3. Technical case study based on Pecan Street, a US residential area in Austin, Texas, under 

ERCOT day-ahead and real-time market prices.  
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Chapter 2 

The Aggregator Mathematical Model 

2.1 The Aggregator Market Model  

The aim of this thesis is to decide the expected real-time market price that will be offered to 

customers by the aggregator. In addition, it aims to address the problem of the aggregator 

participates in day-ahead, real-time and spot markets.

 

Figure 2.1 Aggregator model before change selling prices 

  Day ahead Market 

Wholesale Market 

𝐄𝐭𝛚
𝐂 

DSO 

Aggregator 

𝐋𝐌𝐏𝐭
𝐃 + ሺ𝑻&𝑫ሻ𝟏 𝐄𝐭𝛚

𝐂 − 𝐄𝐭
𝐃 

𝐋𝐌𝐏𝐭
𝐃 𝐋𝐌𝐏𝐭𝛚

𝐏 

𝐋𝐌𝐏𝐭𝛚
𝐏 + ሺ𝑻&𝑫ሻ𝟏 

𝐄𝐭
𝐃 

𝐄𝐭
𝐃 

𝐋𝐌𝐏𝐭
𝐂 + ሺ𝑻&𝑫ሻ𝟐 

 

Spot Market 

𝐄𝐭𝛚
𝐂 − 𝐄𝐭

𝐃 
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The aggregator’s energy trading is considered to be under uncertain real-time price and uncertain 

customers load. The aggregator market model is illustrated in Figure 2.1. 

Figure 2.1 is a schematic for the aggregator market model shows the flow of information 

in the proposed market model for the aggregator. It shows the market prices and energy bids 

between market entities before the actual real-time market occurs.  The model is the day-ahead 

market model for the aggregator, since all the quantities shown in the Figure 2.1 are known to 

the aggregator either as fixed known quantity such as the day-ahead prices LMPt
D or as a random 

variable such as the spot market prices LMPt
P . The aggregator determines forecasted load Etω

C 

for the next day and based on that determines the amount ሺEt
Dሻ for the day-ahead contract with 

the Distribution Systems Operator (DSO). The aggregator usually would like the contracted 

amount Et
D with DSO to be equal the expected customer load Etω

C, but under certain 

circumstances such as the customer’s load variability, the contracted amount with DSO, Et
D may 

not match the customers load, Etω
C. In this case the aggregator will buy the additional energy at 

unknown and ,usually, very high price from the spot market. 

Since this work considers that the aggregator is a price taker company, then it will not 

affect the wholesale market price; all the prices are based on the wholesale market prices with 

extra mark-up charges added to accommodate for transmission and distribution charges ሺT&Dሻ. 

To illustrate more, the aggregator will charge the customers for their energy consumption based 

on the day-ahead price. The selling price passed to customers by the aggregator is LMPt
C plus the 

transmission and distribution charges ሺT&Dሻ2. The price passed to the aggregator by DSO is the 

wholesale market price LMPt
D + ሺT&Dሻ1. It should be noted that the transmission and 

distribution charges ሺT&Dሻ assigned by DSO to the aggregator and by the aggregator to 
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customers are different since each part in the market will try to maximize its profit by adding 

some extra charges to the selling price.  

The excess energy that might result from the mismatch between actual customers’ load 

and the aggregator contract with DSO (Etω
C − Et

D) will be paid by the aggregator to the DSO at 

the spot market price LMPtω
P plus extra transmission and distribution charges ሺT&Dሻ1. This 

work assumes that the aggregator will take the risk of purchasing the excess energy in the spot 

market and the customers will not be affected by the spot market price uncertainty since the 

customers are being charged by the aggregator a fixed price which is the day-ahead market price 

plus ሺT&Dሻ2 charges. The aggregator will try to change the selling price offered to customers to 

encourage them to change their load to lower price periods during the day to achieve higher 

savings and reduce the risk of participating in the spot market. This work assumes that the 

customer’s energy cost will always be less at the end of the day by participating in the model 

proposed to give the customer an incentive to shift their load during the day. Mathematical detail 

in section 2.2 shows how the aggregator would be able to control the customer’s behavior (load 

shifting) by controlling the selling price either by increasing or decreasing it during specific 

hours in the day. To illustrate these concepts further, Figure 2.2 illustrates the market model and 

its entities when the aggregator changes the selling prices offered to customers. 

In Figure 2.2, in order to achieve higher profit for the aggregator while insuring less 

energy cost for customers, the aggregator will change the selling price to the customers by 

± ∆LMPt
C
; thus the prices offered to customer will be LMPt

C ±  ∆LMPt
C
. The aggregator still 

considers adding the same T&D charges as in the day-ahead model shown in Figure 2.1. The 

customers will respond to the new price by changing their load according to their price elasticity 

of demand and either increase or decrease the load by ±∆Etω
C. The model assumes that the total 
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energy consumed by the customers would be fixed during the day and the customers are only 

allowed to shift their load from one hour to another hour within the same day. The new load of 

the customers will become Etω
C ± ∆Etω

C.  By changing the load the extra energy that the 

aggregator will buy from the spot market price will be changed and it will be equal to (Etω
C ±

∆Etω
C  − Et

D). It becomes a very challenging problem for the aggregator to decide how the new 

selling price might be offered to customers in a way to avoid very high prices in the spot market 

 

Figure 2.2 Aggregator Model change selling price 

 

  Day-Ahead Market 

Wholesale Market 

𝐄𝐭𝛚
𝐂 ± ∆𝐄𝐭𝛚

𝐂 

DSO 

Aggregator 

𝐋𝐌𝐏𝐭
𝐃 + ሺ𝑻&𝑫ሻ𝟏 𝐄𝐭𝛚

𝐂 ± ∆𝐄𝐭𝛚
𝐂 − 𝐄𝐭

𝐃 

𝐋𝐌𝐏𝐭
𝐂 𝐋𝐌𝐏𝐭𝛚

𝐏 

𝐋𝐌𝐏𝐭𝛚
𝐏 + ሺ𝑻&𝑫ሻ𝟏 

𝐄𝐭
𝐃 

𝐄𝐭
𝐃 

𝐋𝐌𝐏𝐭
𝐂 ±  ∆𝐋𝐌𝐏𝐭

𝐂 + ሺ𝑻&𝑫ሻ𝟐 

 

Spot Market 

𝐄𝐭𝛚
𝐂 ± ∆𝐄𝐭𝛚

𝐂 − 𝐄𝐭
𝐃 
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and ensure lower costs for customers while maintaining its own profit. In summary, the 

aggregator has to determine new selling prices to be offered to customers under the following 

assumptions as shown in the Figure 2.2:  

1. Energy contracts between aggregator and customers for day-ahead market will be on an 

hourly basis. 

2. Customers are considered to have elastic demand and they participate in the Demand 

Response (DR) Program on an hourly basis in the one-day framework.   

3. Customers’ energy should be fixed during a day and customers may shift their loads 

within the same day. 

4. Customers’ energy cost after changing the selling prices should always be less than the 

cost based on day-ahead prices.  

5. The aggregator will see their profit increases.  

6. The aggregator objective is to maximize the profit difference between the base profit 

(before changing selling prices) and the new profit (after changing selling prices). 

7. The aggregator’s second objective is to maximize the Conditional Value at Risk (CVaR) 

to accommodate for market price uncertainty and customers’ load variability.   

2.2 The Aggregator Mathematical Model  

Since real-time price and loads have uncertainties, the aggregator must cover the risk by offering 

hourly price to customers to minimize risk while maximizing profit. To cover all possibilities, 

the aggregator selects Nω scenarios of different conditions of prices and loads.   

The aggregator’s objective and constraints are listed in equations (1)-(16). (1) shows the 

objective function to maximize the conditional value at risk (CVaR). This function represents the 

difference between the value at risk and the payoff for each price and load scenario. The CVaR 
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represents the mean value of the lowest profit scenarios. This index, determined by the 

aggregator, is based on the aggregator type and whether the aggregator is a risk taker or risk 

averse. Alpha confidence levels take values between zero and one; higher values of α means 

lower risk.  Constraint in equation (2) requires that the total change of energy during a day 

should be zero and customers can shift their load from one hour to another hour in response to 

the price change. 

Typically, the aggregator is interested in shifting customer energy consumption to lower 

price periods by controlling the hourly prices of electricity. Constraint in equation (3) shows that 

the cost of energy for customers after changing the selling prices should be less than those based 

on original selling prices. Equation (4) shows that the new price after change should be always 

positive. Equation (5) guarantees that the total hourly energy consumed cannot be negative. 

Constraint (6) implies load ramp up and down limits. Equations (7) and (8) includes the CVaR 

index into the optimization problem. Auxiliary parameter uω is a positive quantity representing 

the distance between the value at risk and the profit of a specific scenario. If the value is greater 

than the profit of a specific scenario, uω has a positive value indicating the scenario’s risk. The 

higher values of uω implies a higher risk of a specific scenario. Otherwise uω is equal to zero if a 

specific scenario’s profit has a value greater than the value at risk, which indicates a risk-free 

scenario.  

Equations (9)-(16) model the penalty value that the aggregator might pay when deviating 

from the contracted value with DSO.  

Solving the optimization problem using equations (1) – (16) will give the optimal hourly 

price variation ∆LMPt
C
 and the price that will be offered to customers by the aggregator under 
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load and price uncertainties. This model is a decision tool for electricity aggregator to find 

optimal hourly prices offered to customers within the day-ahead market.  

Maximize

∆LMPt
C, ∀t, ζ, uω∀ω

   ζ −
1

ሺ1 − αሻ
∑ πωuω

Nω

ω=1

  ⋯ ሺ1ሻ  

 

∑
εtω

C ∆LMPt
C Etω

C

 LMPt
C

Nt

t=1

= 0;   ∀ω ⋯ ሺ2ሻ 

 

∑ (Etω
C +

εtω
C ∆LMPt

C Etω
C

 LMPt
C ) (LMPt

C + ∆LMPt

C
)

Nt

t=1

−  ∑ Etω
C LMPt

C

Nt

t=1

≤ 0;  ∀ω ⋯ ሺ3ሻ 

 

LMPt
C + ∆LMPt

C
≥ 0; ∀t ⋯ ሺ4ሻ 

 

Etω
C +

εtω
C ∆LMPt

C Etω
C

 LMPt
C ≥ 0; ∀t, ∀ω ⋯ ሺ5ሻ 

 

−aEtω
C ≤

εtω
C ∆LMPt

C Etω
C

 LMPt
C ≤ aEtω

C;  ∀t, ∀ω ⋯ ሺ6ሻ 



 

15 

uω ≥ ζ − ∑ πω ∆LMPt
C Etω

Cሺ1 + εtω
Cሻ

Nt

t=1

− ∑ πω

εtω
C( ∆LMPt

C)
2

 Etω
C

 LMPt
C

Nt

t=1

− ∑ πωPtω
RH LMPtω

R (−Etω
C −

εtω
C ∆LMPt

C Etω
C

 LMPt
C + Et

D)

Nt

t=1

− ∑ πωPtω
RL LMPtω

R (−Etω
C −

εtω
C ∆LMPt

C Etω
C

 LMPt
C + Et

D)

Nt

t=1

− ∑ πωPtω
DH LMPtω

R(Etω
C − Et

D)

Nt

t=1

− ∑ πωPtω
DL LMPtω

R(Etω
C − Et

D)

Nt

t=1

;   ∀ω ⋯ ሺ7ሻ 

 

uω ≥ 0;  ∀ω ⋯ ሺ8ሻ 

 

(Etω
C − Et

D) − Mtω xtω
B ≤ 0 ;  ∀t, ∀ω ⋯ ሺ9ሻ  

 

(Etω
C − Et

D) + mtω xtω
B ≥ mtω ;  ∀t, ∀ω ⋯ ሺ10ሻ 

 

(Etω
C + ∆Etω

C) − Mtω ytω
B ≤ Et

D;  ∀t, ∀ω ⋯ ሺ11ሻ  

 

(Etω
C + ∆Etω

C
) + mtω ytω

B ≥ mtω + Et
D ;  ∀t, ∀ω ⋯ ሺ12ሻ  

 

Ptω
DH = At

DH xtω
B  ⋯ ሺ13ሻ 
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Ptω
DL = At

DLሺ1 −  xtω
Bሻ ⋯ ሺ14ሻ 

Ptω
RH = At

RH ytω
B  ⋯ ሺ15ሻ 

Ptω
RL = At

RLሺ1 −  ytω
Bሻ ⋯ ሺ16ሻ 

 

1. Ptω
DH : Penalty variable. Applied for Load deviation before changing selling price. 

At
DH is the penalty coefficients multiplier associated to Ptω

DH  Applied if the load is 

higher than the energy contract with DSO.  

2. Ptω
DL: Penalty variable. Applied to Load deviation before changing selling prices. 

At
DL is the penalty coefficients multiplier associated to Ptω

DL. Applied if the load is 

lower than the energy contract with DSO. 

3. Ptω
RH : Penalty variable. Applied for Load deviation after changing selling prices. 

At
RH is the penalty coefficient multiplier associated to Ptω

RH Applied if the load is 

higher than the energy contract with DSO.  

4. Ptω
RL : Penalty variable. Applied for Load deviation After changing selling 

prices. At
RL is the penalty coefficient multiplier associated to Ptω

RL Applied if the 

load is Lower than the energy contract with DSO. 

5.  xtω
B,  ytω

B: Binary variables take values either 0 or 1. Depends on the result of a set 

of if condition statements.  Xtω
B will be equal one if load deviation is positive before 

changing selling price.  Xtω
B will be equal zero if load deviation is negative before 

changing selling price. While  ytω
B will be equal one if load deviation is positive after 

changing selling price. And  ytω
B will be equal zero if load deviation is negative after 

changing selling price. The aggregator considers load deviation to be equal to the 
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difference between customers’ load ሺbefore/after changing selling pricesሻ and 

contracted energy with DSO.  

2.3 Nomenclature 

This section will address the nomenclature used in the aggregator mathematical models and 

through the rest of the thesis. Any extra symbols used and not mentioned here will be explained 

in the same section where it has been used.  

2.3.1 Indices 

             ω: Scenario Index  

t: Time index 

2.3.2 Notations  

C: Customer  

D: Day − ahead market  

R: Real − time market 

DH: Notation used for Penalty applied in Day-ahead when customers load is Higher than 

contracted energy with DSO. 

DL: Notation used for Penalty applied in Day-ahead when customers load is Lower than 

contracted energy with DSO. 

RH: Notation used for Penalty applied in Real-Time when customers load is Higher than 

contracted energy with DSO. 

RL: Notation used for Penalty applied in Real-Time when customers load is Lower than 

contracted energy with DSO. 

2.3.3 Constants 

a: Ramping limits [0: 1] 

α: Confidence  level [0: 1]  
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πω =
1

Nω
: Probability of scenario occurrence 

2.3.4 Sets 

Nω: Number of Scenarios  

Nt: Number of time periods 

2.3.5 Parameters  

LMPt
D: Day − ahead locational marginal price [$/MWh] 

LMPt
C: Day − ahead customers selling price [$/MWh]  

Et
D: Day − ahead energy hourly contracts [MWh] with DSO  

 LMPt
P: Penalty prices in [$/MWh]for excess energy in spot market 

εtω
C: Price elasticity of the demand  

2.3.6 Variables 

∆LMPt
C: Change in hourly selling price [$/MWh]  

∆Etω
C: Change in hourly energy consumption [MWh]  

ζ: Value at risk [$]  

uω: Positive variable. indicating active and inactive profit scenarios 

Ptω
DH: Penalty variable for day − ahead profit when load is higher than contract 

Ptω
DL: Penalty variable for day − ahead profit when load is lower than contract 

Ptω
RH: Penalty variable for Real − time profit when load is higher than contract 

Ptω
RL: Penalty variable for Real − time profit when load is lower than contract 

2.3.7 Random Variables  

LMPtω
R: LMPs in Real − Time Market [$/MWh]   

Etω
C: Energy consumption of customers [MWh] in Day − ahead market 

2.3.8 Binary Variables  

 xtω
B: Binary variable applied when Ptω

DH is active at initial profit  
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 ytω
B: Binary variable applied when  Ptω

RH is active at new profit  
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Chapter 3    

Modeling Market Price Behavior 

All the data used for electricity prices in this thesis are all based on The Electric Reliability 

Council of Texas (ERCOT) market. “ERCOT is the Independent Organization certified by the 

Public Utility Commission of Texas (PUCT) for the ERCOT Region” [13]. This work will study 

day-ahead and real-time market prices for decision making by the aggregator.  The following 

sections will analyze both markets and will propose a probabilistic model for real-time price that 

can be used by the aggregator to forecast the real-time price and accommodate the uncertainties 

coming from price fluctuations.  

3.1 Day-Ahead Prices  

Day-ahead market is defined as the forward market to schedule resources for the upcoming day 

on an hourly basis [3]. Market clearing prices in the day-ahead market are cleared based on the 

bids of the market participants. The market prices and energy quantities are usually cleared by an 

Independent System Operators (ISO’s). The process of bidding in the wholesale market and the 

process of clearing the market quantities is out of our scope and this work will only focus on the 

relationship between day-ahead and real-time market price and how to utilize this relationship to 

predict the prices offered to customers based on the proposed model in Chapter 2 for the 

uncertainties associated with the market prices.  

The day-ahead prices have been collected from ERCOT market for four years starting 

from 2014 to 2017. Price data has been processed during the summer period (May 15th to 

September 15th) of each year and for working days only. Weekends and federal holidays data 
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Figure 3.1 Day-ahead price for a typical week day in summer 

 

have been excluded as the prices are highly correlated with customers’ behavior, since weekday 

prices may differ from holidays prices in terms of peak and off-peak periods.  

Figure 3.1 illustrates the price behavior on a typical day in the day-ahead market. The 

prices can be categorized into three periods: first is the morning off-peak period from the hour 

ending at 1:00 AM to the hour ending at 1:00 PM. The second period is the on-peak period from 

the hour ending at 2:00 PM to the hour ending at 8:00 PM.  Third is the second off-peak period 

from the hour ending at 9:00 PM to the hour ending at 12:00 AM. Prices during the on-peak 

period are usually high compared to the off-peak periods. Thus, the aggregator will change the 

selling price offered to customers to avoid buying more energy during the on-peak period. It is 

worthwhile to mention in this section that it is possible for the price of electricity to be negative 

for short periods of time during a day. This might happen when the demand is less than 

generation due to renewable energy power plants such as wind farms, and the power generators 



 

22 

might decide to sell energy to the grid for free because of generators’ ramping constraints, but 

the T&D charges may still apply.  

3.2 Real-Time Prices 

The main purpose of real-time market is to make the generation equal the demand in real-time 

[3]. Therefore, real-time market prices cannot be known in advance until the real-time market 

occurs since the actual demand should be known to clear the market prices in real-time.  

Expected real-time market prices will affect the aggregator decision on selling price for 

customers, because the aggregator will need to purchase any excess energy (contract deviation) 

from the real-time market. Real-time prices are uncertain in nature as they are correlated with 

uncertain variable demand but, in general, prices follow three periods based on the level of loads.  

 

Figure 3.2 Day-ahead and real-time markets price for a typical day in summer 

3.3 Probability Density Estimate for Market Prices 

The procedure followed to obtain the probability distribution for each hour for the price 

difference between real-time and day-ahead prices will be described in detail. The difference in 
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price between real-time and day-ahead at each hour for each of the days in the study has been 

calculated. After that, histogram plotted for the price difference data for each hour. There was a 

total of 613 days in the study period. It is found that the price difference distribution can be 

estimated to be a Gaussian distribution for each hour with zero mean and different standard 

deviation for each hour. Plots in Figures 3.4 to 3.10 indicate hourly price differences for each 

hour based on the collected data. The price data can fluctuate between very high and very low, as 

much as1000 times the normal prices. To take into account the very high prices it has been 

decided to truncate the very high values that rarely happen. The standard deviation estimates 

before and after applying truncation for the data is shown in Figure 3.3.  

 

 

Figure 3.3 STD estimate for the difference between real-time and day-ahead markets price 

 

The procedure followed to truncate the data as follows. Divided the day into slots based 

on the characteristics of the electricity prices. First is the off-peak period from 12:00AM to 10:00 

AM, shoulder one period from 11:00 AM to 1:00 PM. peak from 2:00 PM to 8:00 PM, and 
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shoulder two period from 9:00 PM to 11:00 PM. The allowed fluctuation for the off-peak period 

is within ±50 $/MWh, for the shoulder periods ±100 $/MWh while for the peak period it is 

±200 $/MWh. After finishing all the steps mentioned above the distribution for the price 

difference at each hour has been obtained as shown in the following plots.  

 

Figure 3.4 Off-peak period price difference density estimate 

 

It can be seen that the standard deviation of the price is very high during the peak period 

from 2:00 PM to 8:00 PM due to the nature of the demand and price relationship. Peak period is 

characterized by very high demand, accordingly the electricity price will have very high 

variability during this period.   



 

25 

 

Figure 3.5 Off-peak period price difference density estimate 
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Figure 3.6 Off-peak period price difference density estimate 

 

Figure 3.7 Shoulder one period price difference density estimate 
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Figure 3.8 Peak period price difference density estimate 
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Figure 3.9 Peak period price difference density estimate 
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Figure 3.10 Shoulder two period price difference density estimate 
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Chapter 4 

Customers’ Load   

This thesis will consider only residential loads. The aggregator would like to aggregate homes 

into buying groups based on their consumption pattern. The real-time load will be often unequal 

to the day-ahead load and the risk of trading in the spot market for excess energy will be 

addressed through creating multiple scenarios for the load that would represent the most possible 

load scenarios that might be faced by the aggregator. The following sections and the next 

Chapter show the proposed procedure.   

4.1 Load Data Collection 

The load data in this thesis was collected from Pecan street, which is an actual residential area in 

Austin, Texas, Pecan Street. The data are available for interested readers at Pecan Street website 

[14]. The access to the data requires an educational or business license.  

Next, the data collected are for 100 homes. The challenging part is to find complete data 

without missing entries. Many homes were viewed and checked for the summer 2017 until a 

complete data set for 100 homes was obtained. The time frame considered is for the summer of 

2017. From the study and analysis for the data, it has been found that the load profiles can be 

categorized into five groups by comparing to the average value of the aggregate load of the 109 

load profiles, one for each day in the study duration. The first group is above the average value 

of the aggregate load, 35.78% of the days had this feature for all hours as shown in Figure 4.1. 

The second group is below the average value with 29.36% of days. The third group is 

approximately equal to the average value with a percentage of 5.5%. Next is a group of profiles 

having load values above the average value during the morning off-peak period from hour 12:00 
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AM to 10:00 AM, and then after the on-peak following 8:00 PM, load values fall below the 

average values. This group of profiles was found to be in 11.93% of the total profiles. The last 

group has values below the average value during the morning off-peak period and then after the 

on-peak period (after hour 8:00 PM) the load was found to be higher than the average values. 

This group of profiles represents 17.43% of the total load profiles.  

4.2 Load Profiles Above the Average Value  

 

Figure 4.1 Samples of load profiles above the average value 

Figure 4.1 shows four different load profiles selected randomly from the load profiles 
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 group above the average value.  

4.3 Load Profiles Below the Average Value 

Figure 4.2 shows four different load profiles selected randomly from the load profiles group 

below the average value. First plot on the top left corner is load profile number 13 next right is a 

plot for load profile number 11; the second row from left is load profile 4 and last plot is load  

 

Figure 4.2 Samples of load profiles below the average value 
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profile number 108. All the plot shows that the load is approximately lower bounded by 47KWh 

and upper bounded by approximately 247 KWh. The rest of load profiles in this group are 

approximately within this range.  

4.4 Load Profiles Approximately Equal the Average Value 

Figure 4.3 shows four different load profiles are selected randomly from the load profiles 

group equal to the average value.  

 

Figure 4.3 Samples of load profiles approximately equal the average value 
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4.5 Load Profiles Above and Below the Average Value 

Figure 4.4 shows four different load profiles that are selected randomly from the load 

profiles of the group above and below the average value.  

 

Figure 4.4 Samples of load profiles above and below the average value 
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4.6 Load Profiles Below and Above the Average Value 

 

 

Figure 4.5 Samples of load profiles below and above the average value 

 

Figure 4.5 shows four different load profiles are selected randomly from the load profiles 

group below and above the average value.  
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Chapter 5 

Scenario Generation for Real-Time Price and Residential Load 

5.1 Heuristic Algorithm to Generate Real-Time Prices 

This section will propose a heuristic procedure for real-time price generation based on ERCOT 

market behavior obtained in the previous section. This procedure generates samples from a 

Gaussian probability distribution for each hour in a day using the computed mean and standard 

deviation has been found in Chapter 3. The following is our algorithm:  

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm Real-Time Price (RTP) 

Step (0): Collect real-time and day-ahead prices then classify them based on seasonality 

and working or non-working days. 

Step (1): Obtain the difference between real-time and day-ahead prices. 

Step (2): For each hour fit a gaussian distribution N~ሺmt, σtሻ for the difference.  

Step (3): Receive Mean and STD for the error at each hour.  

Step (4): Initialize t ← 1 and ω ← 1. 

Step (5): if t ≤ 24 

Randomly generate  LMRtω
R: N~ሺmt, σtሻ, such that 

  LMPt
D − 3σt ≤  LMRtω

R
≤  LMPt

D + 3σt   

Step (6): if ω < Nω  

ω ←  ω + 1 

elseIf ω = Nω  

t ←  t + 1 

Go to Step (5)  

End 
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Figure 5.1 Real-time price scenarios using the proposed algorithm 

 

Since normal distribution have been used to describe the data, the randomly generated 

values must have both positive and negative values. Also, 99% of the generated values must be 

within +/- 3 sigma from the mean values of the prices. Figure 5.2 shows the validation of the 

method used.  

 

Figure 5.2 Price Variation density for a selected hour by method proposed 
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Figure 5.2 shows that the random generated data for hour 18:00 which is following the 

normal distribution given by the following equation:  

fሺxሻ =  
1

√2πσ
exp [−

1

2
(

x − m

σ
)

2

] 

Where m is the mean value and it’s equal to 0 and  σ is the standard deviation which is 

equal to 71.0863 $/MWh. The same procedure was followed to validate the rest of the hours of 

the day.  

5.2 Scenario Generation Procedure for the load  

The load variability is taken based on an hourly basis from data collected from Pecan Street 

server for a residential area in Texas Austin to represent behavior of the load during summer 

period on working days. Customers’ response to electricity is modeled via the price elasticity of 

the demand based on the US market. Markets considered are for short run trading and on an 

hourly basis. 

This section will be dedicated to generating scenarios for the load profiles from the 109 

days of the summer period. The load profiles are compared to the aggregator energy contract 

with DSO, which is considered to be the mean value of the 109 load profiles. Load profiles can 

be above the contract with DSO or below, or equal, or a mix as showed in the previous section. 

The aggregator load profile selection will be random to take into account the load variability. All 

possible load profiles scenarios are shown in Figure 5.3:  

The total number of profiles above the average value of the aggregate load is 39 out of 

109 profiles with 32 profiles below the average value, 13 above and below and 19 below and 

above the average value, while 6 profiles are approximately equal the average value.  
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Figure 5.3 Load Scenarios in MWh 

 

To generate scenarios for the load this work considers the percentage representation value of 

each profile group mentioned. For example, if the need to generate 10 scenarios for the load it 

should be decided how many profiles should be selected from each group out of 109 total 

profiles as the following:  

1. Number of Profiles Above the Average Value 

NA =  
39

109
× 10 ≅ 4 profiles  

Where NA is number of load profiles should be selected above the average value. 

 

2. Number of Profiles Below the Average Value 

 

NB =  
32

109
× 10 ≅ 3 profiles 

Where NB is number of load profiles should be selected below the average value. 

 

3. Number of Profiles Equal the Average Value 
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NE =  
6

109
× 10 ≅ 1 profile  

Where NE is number of load profiles should be selected equal the average value. 

 

4. Number of Profiles Above and Below the Average Value 

 

NAB =  
13

109
× 10 ≅ 1 profile 

Where NAB is number of load profiles should be selected above and below the average 

value. 

5. Number of Profiles Below and Above the Average Value 

 

NBA =  
19

109
× 10 ≅ 1 profile  

Where NBA is number of load profiles should be selected below and above the average 

value. 

 

Another way to generate scenarios for the load is to consider that all load profiles are 

uniformly distributed between 1-109 and start randomly generating numbers taking values 

between 1-109, generate numbers up to the total number of scenarios required, such as the 10 

scenarios. If the generated number from the uniform distribution turns out to be 98, then profile 

number 98 should be picked and fill scenario number 1 with the selected profile until 10 load 

scenarios have been generated. 

Also, this work considered equal selection of the load profiles from each group. For 

example, if 10 scenarios should be selected, then pick randomly two profiles from each of the 

five groups mentioned earlier until getting the required 10 scenarios.  

The next chapter will explore different case studies based on the data and procedures 

explained for the scenario generation for both price and load.  
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Chapter 6 

Results  

This chapter discusses different study cases based on the proposed model for the aggregator and 

the collected data shown previously. The aggregator stochastic model implemented and solved 

using SCIP solver [15] within the General Algebraic Modeling (GAMS) platform [16]. If the 

load is higher, the aggregator will have to purchase electricity in the spot market to make up for 

this difference, and spot market prices can be very high.  The spot price considered is five times 

the real-time price during the peak period unless otherwise mentioned. The following three 

scenarios can be considered, but for this work is dedicated to study the first scenario:  

1- There is a penalty if the load exceeds, but no penalty if load is lower than the contract 

value. 

2- There is a penalty if the load deviates (higher or lower) from the contracted values. 

3- There is a penalty if the load is higher than the contracted value, but there is a reward if it 

is lower than the contracted value.   

The specifications of the penalty values are purely dependent on the aggregator’s judgment 

and former experience in energy trading in the market. The aggregator has to guess penalty 

values when purchasing excess energy from the spot market, based on prior experience in the 

electric market. The expected volume deviation cost in [$/hr] can be described by the following 

equation:  

Expected Volume Deviation Cost = ∑ πω LMPt
P[(Et

C + ∆Etω
C) − Et

D]

Nω

ω=1

 

Where  LMPt
P is the spot market price, and [(Et

C + ∆Etω
C) − Et

D] is the load deviation 

from the contracted value in real-time at each hour. The next section discusses the simulation 
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conditions used to simulate case study number one, where 100 real-time price scenarios were 

generated, and load profile is above the average value.   

6.1 Simulation Conditions 

Study cases in this chapter consider the aggregator working in Austin, Texas, with a group of 

100 homes from Pecan Street. After solving the proposed model, the aggregator is interested in 

determining the price variation for each hour and the new selling price offered to customers after 

solving the proposed model. Our standard case study conditions, unless other information is 

stated, are 20% confidence level, 20% ramping limit and 40% demand elasticity. It was compiled 

and solved on a Windows-based server with Intel Xeon processor rated at 2.40 GHz with 256 

GB installed memory RAM. A default parameter setup was used to initialize the SCIP solver. 

Initial points for the solver allowed the GAMS initialization for all variables to start with zeros. 

Solutions of all cases returned optimal results with zero non-optimality, zero infeasibilities, zero 

unbounded, and zero errors. The simulation parameters are summarized in Table 6.1 and 6.2 

below. Table 6.1 indicates the number of scenarios being used for real-time price, confidence 

level, ramping limit and T&D charges. All these parameters are the choice of the aggregator and 

can be chosen based on the aggregator’s priorities and trade-off between profit and risk. Table 

6.2 shows the penalty multiplier. The penalty multiplier is a multiplier used to penalize the 

aggregator when the load deviates from the contracted value in day-ahead market. The spot 

market price that the aggregator will pay for the deviation is the real-time price times the 

multiplier factor shown in Table 6.2.  
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Table 6.1 Simulation Parameters 

 

Table 6.2 Penalty Multiplier Coefficient 

# Simulation Parameter Value 

1 Number of Scenarios 100 

2 Time Periods 24 

3 Confidence Level 20% 

4 Ramping Limit 20% 

5 T&D Charges Payed by Customers +$70 

6 T&D Charges Payed by the aggregator +$30 

7 Elasticity -40% 

8 Probability of a scenario 1/100 

Penalty Multiplier Coefficient 

# 𝐀𝐭
𝐃𝐇 𝐀𝐭

𝐃𝐋 𝐀𝐭
𝐑𝐇 

 

𝐀𝐭
𝐑𝐋 

1 1 0 1 0 

2 1 0 1 0 

3 1 0 1 0 

4 1 0 1 0 

5 1 0 1 0 

6 1 0 1 0 

7 1 0 1 0 

8 1 0 1 0 

9 1 0 1 0 

10 1 0 1 0 

11 1 0 1 0 

12 1 0 1 0 

13 1 0 1 0 

14 5 0 5 0 

15 5 0 5 0 

16 5 0 5 0 

17 5 0 5 0 

18 5 0 5 0 

19 5 0 5 0 

20 5 0 5 0 
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Where:  

At
DH: Penalty constant for day − ahead profit when load is higher than contract 

At
DL: Penalty constant for day − ahead profit when load is lower than contract 

At
RH: Penalty constant for Real − time profit when load is higher than contract 

At
RL: Penalty constant for Real − time profit when load is lower than contract 

6.2 Case Study I: Load Profiles are Above Contract with 100 Scenarios for 

Real-Time Price 

Table 6.3 shows the aggregator contract with DSO in the day-ahead in [MW]. The aggregator 

used the average value of the aggregate load of the 100 homes to contract with DSO. The 

aggregator proposed the average value since the load is random and cannot be known to the 

aggregator until real-time market.  To avoid contracting more or contracting less it is an 

appropriate assumption to contract the average value for the following day. If the aggregator 

contracted more and didn’t use the energy contracted, it might lose money in this case for not 

being refunded for the excess energy contracted. Or, if it contracted less, the aggregator would 

buy more energy in the spot market at a very high price which would affect its profit.  

 

 

 

 

  

21 1 0 1 0 

22 1 0 1 0 

23 1 0 1 0 

24 1 0 1 0 
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Table 6.3 Contract with DSO for 24 hours period 

Contract with DSO in [MW] 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 

0.11 0.10 0.09 0.09 0.08 0.08 0.08 0.08 0.08 0.09 0.11 0.13 

t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 

0.15 0.16 0.18 0.20 0.22 0.23 0.23 0.21 0.19 0.18 0.15 0.13 

 

Load values for the case under study are shown in Table 6.4 below. The load shown in 

Table 6.4 is for 100 homes for 109 days combined at each specified hour of the day. The one 

load profile is chosen randomly from 39 load profiles above the average value which is 

mentioned in Chapter 5 section 5.2.  

Table 6.4 Customers aggregate load values in [MWh] 

Customers Aggregate Load Values in [MWh] 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 

0.16 0.14 0.13 0.12 0.10 0.10 0.09 0.10 0.11 0.12 0.14 0.17 

t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 

0.19 0.23 0.24 0.25 0.27 0.28 0.28 0.27 0.25 0.23 0.20 0.20 

 

The day-ahead prices shown in Table 6.5 are selected from ERCOT market for Tuesday 

September 12th, 2017. The day selected is a working summer day. Assumption is that the 

aggregator is a price taker company, so it will not affect the wholesale price in the day-ahead 

market.  

Table 6.5 Day-ahead price for 24 hours period 

Day-ahead Price in [$/MWh] at the Time of the Day in Hours 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 

19.67 18.67 17.85 17.43 17.74 18.87 22.62 24.6 22.93 25.36 24.5 26.67 

t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 

27.82 31.73 36.6 44.05 49.64 39 30.74 30 27.41 26.55 24.08 21.3 
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Real-Time price scenarios are generated using MATLAB and randomly generated from 

normal random generator with mean and standard deviation stated in Chapter 3. Figure 6.1 

shows 100 price scenarios generated randomly from the Gaussian distribution. Price scenarios 

are plotted for 24 hours to show the possible variations in real-time price during a given day. 

Buying in real-time market contains a high level of risk to the aggregator since the price is 

fluctuating in uncertain manner based on the real-time demand and real-time generation.  

 

Figure 6.1 Real-Time Price Scenarios 

The next sections will show simulation results for this case study. The aggregator is 

interested in determining the price variation at each hour of the day and the new real-time selling 

price to be offered to customers. The price variation at each hour will produce an hourly load 

variation per real-time price scenario, based on the customer elasticity. The aggregator is 

interested in finding the mean values of energy variation resulting from changing selling price. 

For example, if the price increased by +20% the load should decrease by 80% when the price 

elasticity of the demand is -40%. This work will show the customers savings and prove the 
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validity of the proposed model where energy cost for customer is less with the new selling price. 

Also, the proposed model will achieve a higher profit for the aggregator when trading with  

customers under the new selling price.   

6.2.1 Case Study I: Hourly Price Variation 

The results show the aggregator would decrease the selling price for off-peak periods while 

increasing it in the peak period to motivate customers to shift their load to the low-price periods 

during a day.  

 

Figure 6.2 Hourly price variation for the selected case study 

Tables 6.6, 6.7, and 6.8 show the price variation at each hour of the day. Price variation 

for the first and second off-peak periods are shown in Tables 6.6 and 6.8 while the on-peak 

period price variation is shown in Table 6.7 below. The price variations depend on the period of 

the day; on-peak period has a positive increase while off-peak periods have a negative increase. 

This is because the price of electricity tends to be higher during on-peak period while it is lower 

during off-peak periods.  
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Table 6.6 Hourly price variation for the first off-peak period 

First Off-peak Period  

Hourly price variation in [$/MWh] at the Time of the Day in Hours 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 

-
38.78 

-
38.90 

-
40.38 

-
41.20 

-
40.27 

-
39.44 

-
34.69 

-
32.14 

-
33.55 

-
31.95 

-
27.32 

-
24.70 

-
20.24 

 

Table 6.7 Hourly price variation for the On-peak period 

On-peak Period 

Hourly price variation in [$/MWh] at the Time of the Day in Hours 

t14 t15 t16 t17 t18 t19 t20 

50.86 53.30 57.02 52.37 44.12 44.49 50.00 

 

Table 6.8 Hourly price variation for the second off-peak period 

Second Off-peak Period 

Hourly price variation in [$/MWh] at the Time of the Day in Hours 

t21 t22 t23 t24 

-23.75 -23.88 -26.30 -31.63 

 

The negative sign in the first and second off-peak periods indicates that the aggregator 

will decrease the selling price at those hours, while the positive sign for the price variation in the 

peak period indicates that the aggregator will increase the selling price with an amount shown in 

Table 6.7. The new selling price shown in Figure 6.3 is the new selling price that will be offered 

by the aggregator to the customers. The new selling price will change the load at each hour 
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Figure 6.3 New and old selling prices 

 by a percentage determined by the price elasticity of the demand which is in our case is – 

40%. The negative sign of the elasticity is to indicate the inverse relationship between the price 

and demand. As the price of electricity increases the demand will decrease and vice versa. That 

means if a 10% increase in the price happens the demand will decrease by 4%. This will be 

shown in section 6.2.2. 

6.2.2 Case Study I: Hourly Mean Energy Variation  

Since customers are interested in achieving higher savings, they would be interested in shifting 

their load from the peak periods to the off-peak periods. Changing the selling price will yield a 

change in customers’ energy values, since there are multiple scenarios for real-time price the 

solution of customers load will be scenario-based also.  

Table 6.9 Mean energy variation for the first off-peak period 

First Off-peak Period  

Mean energy variation in [MWh] at the Time of the Day in Hours 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 

0.03 0.03 0.02 0.02 0.02 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.02 
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Figure 6.4 Mean energy variation in MWh 

The aggregator is interested in knowing the mean energy variation of all the scenarios at each 

hour of the day as shown in Figure 6.4. 

 

Table 6.10 Mean energy variation for the On-peak period 

On-peak Period 

Mean energy variation in [MWh] at the Time of the Day in Hours 

t14 t15 t16 t17 t18 t19 t20 

-0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 

 

Table 6.11 Mean energy variation for the second off-peak period 

Second Off-peak Period 

Mean energy variation in [MWh] at the Time of the Day in Hours 

t21 t22 t23 t24 

0.02 0.02 0.02 0.03 

6.2.3 Case Study I: Customers Savings  

The total amount paid by customers to the aggregator in real-time decreased compared to day-

ahead payment. The expected payment for the selected day was $432.19 with day-ahead prices. 

Alternately, after changing the selling price by the aggregator, the amount is $411.64, as 
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customers responded by shifting their loads. The implied customer savings is around $20.55 per 

day which represents a 4.75% decrease in energy cost for customers. Figure 6.5 shows the cost 

change for customers on an hourly basis.  

 

 

Figure 6.5 Energy cost hourly for customers 

6.2.4 Case Study I: The Aggregator’s Profit  

The aggregator’s profit also increases. The old expected profit for the aggregator is $59.79 and 

after changing selling price it becomes $131.64. This represents 120.2% increase with respect to 

the base profit. The aggregator may increase the profit by allowing higher values for ramping 

limits and lower values of confidence levels.  
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Figure 6.6 Aggregator old profit density 

 

Figure 6.7 Aggregator new profit density 

Profit density at scenarios considered for real-time price and load resulted to be normally 

distributed as shown in Figures 6.6 and 6.7. Profit distribution before and after change selling 

price show an increase in the expected profit. 
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6.2.5 Case Study I: The Aggregator Risk Measure 

The risk measures, CVaR and the value at risk showing the trade-off between risk and profit of 

the aggregator, are explained in this section. The relationship between those values is given by 

an efficient frontier plot. Efficient frontier is a set of boundary optimal portfolios under a specific 

level of expected profit and for a specific risk level [17]. The portfolios below the efficient 

frontier plot are suboptimal and may not provide enough profit at the specified level of risk [17]. 

Efficient frontier plot represents the relationship between the aggregator expected profit and 

CVaR at different values of α confidence levels. As the confidence level increases, the expected 

profit decreases as the aggregator is not willing to take a higher risk.  At higher level of 

confidence levels (lower risks) the aggregator tends to increase the selling price, the load will 

decrease and, thus, the profit will decrease, the opposite behavior is expected at lower level of 

confidence levels.  

Efficient frontier plot can be used to find the most efficient portfolios, to be considered 

by the aggregator. Efficient frontier plot will give the aggregator a decision frame work, on how 

to decide between risk and profit, for a specific portfolio. If the aggregator is a profit seeker it 

may operate at lower level of 𝛼 confidence level, that means a higher level of risk. If the 

aggregator is a risk-averse, then it would select a higher level of confidence level as high as 𝛼 

95%. Sometimes and based on a pure decision by the aggregator it would be optimal to operate 

at the tangent point on the efficient frontier plot, the tangent point is a balance point between 

having a good level of profit and acceptable level of risk, a point could be at 50% confidence 

level.      
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• The expected profit at confidence level 20% is calculated using the following equation:  

Expected Profit ሺμሻ = E[Profit] = Probሺωሻ × ∑ Profitω

Nω

i=1

 

=  
1

100
× (Profω1

+ Profω2
+ Profω3

+ ⋯ + Profω100
) 

 

Expected Profit =  $ሺ131.64ሻ 

 

Expected profit at different confidence levels is found in the same manner above. The results are 

shown in the Table 6.12.  

Table 6.12  The aggregator risk measure values 

 

Relationship between expected profit and the conditional value at risk (CVaR) is shown in 

Figure 6.8. It can be used as a useful tool to hedge against the risk. The expected profit is less at 

high values of 𝛼 with a minimum risk since the CVaR values are less, while the expected profit 

is higher at lower values of 𝛼 with a higher risk as the CVaR values are higher. 

 

 

 

  

Confidence level VAR ($) CVAR ($) Expected Profit ($) 

0% 162.9413 71.8546 131.6398 

10% 113.9146 65.69365 131.6386 

20% 97.93031 60.61339 131.6385 

30% 82.67599 56.66242 131.531 

40% 76.68412 52.83375 131.5392 

50% 70.82631 48.70042 131.3321 

60% 61.39538 44.34934 131.2271 

70% 55.99212 39.48365 131.1049 

80% 35.1465 27.12581 128.6139 

90% 35.1465 27.12581 128.6139 
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Figure 6.8 Aggregator case study I: efficient frontier 

6.3 Case Study II: Random Load Profiles (From All Possible Groups with 

Equal Probable Selection) and Random Real-time Price 

A more general and practical case study in which the load and price are random is discussed in  

this section. The simulation parameters are summarized in Table 6.13. Table 6.13 which show 

the number of scenarios being used for real-time price and customers load, confidence level, 

ramping limit and T&D charges. The penalty multipliers are kept the same as case study I. 

Table  6.13 Simulation Parameters 

# Simulation Parameter Value 

1 Number of Scenarios 25 

2 Time Periods 24 

3 Confidence Level 20% 

4 Ramping Limit 20% 

5 T&D Charges Payed by Customers +$70 

6 T&D Charges Payed by the aggregator +$30 

7 Elasticity -0.4 

8 Probability of a scenario 1/25 
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Also, day-ahead price and energy contract with DSO are kept the same as the previous 

case. Therefore, five real-time price scenarios are generated using the reported mean and 

standard deviation in Chapter 3 and based on the proposed algorithm in Chapter 5 to generate 

scenarios. Real-time price scenarios are plotted as shown in Figure 6.9 below. Customers load 

scenarios are picked randomly from each load profile groups discussed in Chapter 4. Equal 

probable selection method of load profiles is used in this case study. The load scenarios are one 

load profile higher, one is lower, one is equal, one is higher and lower, and one is lower and 

higher than the contracted value with DSO. The average of 109 load profiles is selected to 

contract with DSO and used for this simulation. Figure 6.10 shows the load scenarios considered 

for this case study.   

 

Figure 6.9 Real-Time price scenarios 
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Figure 6.10 Customer load scenarios 

 

6.3.1 Case Study II: Hourly Price Variation  

The aggregator tends to decrease the selling price for off-peak periods while increasing it in 

during peak period to motivate customers to shift their load to the low-price periods during a 

day, as shown in Figure 6.11, which is similar to the previous case. However, there are some 

hours in the mornings where the price is increased slightly. Tables 6.14, 6.15, and 6.16 indicate 

the price variation at each hour of the day. 

 

 

 

 

 

 

  



 

58 

 

Figure 6.11 Hourly price variation for the selected case study 

 

Table  6.14 Hourly price variation for the first off-peak period 

First Off-peak Period  

Hourly price variation in [$/MWh] at the Time of the Day in Hours 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 

0.93 1.85 -1.76 -7.42 1.32 0.63 2.80 -21.13 -15.52 -37.71 -14.24 -26.66 -21.64 

 

Table  6.15 Hourly price variation for the On-peak period 

On-peak Period 

Hourly price variation in [$/MWh] at the Time of the Day in Hours 

t14 t15 t16 t17 t18 t19 t20 

9.78 9.30 15.05 33.62 23.55 16.51 14.84 
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Table  6.16 Hourly price variation for the second off-peak period 

Second Off-peak Period 

Hourly price variation in [$/MWh] at the Time of the Day in Hours 

t21 t22 t23 t24 

-23.65 -11.39 -6.07 -5.77 

 

Figure 6.12 New and old selling prices offered to customers 

6.3.2 Case Study II: Hourly Mean Energy Variation  

Figure 6.13 shows the mean energy variation at each hour of the day, which are similar to the 

previous case. However, this case is showing a higher price and load fluctuation due to the added 

randomness in the load.  
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Figure 6.13 Mean energy variation in MWh 

 

Table  6.17 Mean energy variation for the first off-peak period 

First Off-peak Period  

Mean energy variation in [MWh] at the Time of the Day in Hours 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 

-
0.000

42 

-
0.000

77 

0.000
667 

0.002
654 

-
0.000

46 

-
0.00
02 

-
0.000

93 

0.007
043 

0.005
599 

0.014
067 

0.00
657 

0.014
488 

0.013
178 

 

 

Table  6.18 Mean energy variation for the On-peak period 

 

Table  6.19 Mean energy variation for the second off-peak period 

Second Off-peak Period 

Mean energy variation in [MWh] at the Time of the Day in Hours 

t21 t22 t23 t24 

0.017706 0.007869 0.003772 0.002567 

  

On-peak Period 

Mean energy variation in [MWh] at the Time of the Day in Hours 

t14 t15 t16 t17 t18 t19 t20 

-0.0066 -0.00661 -0.01051 -0.02428 -0.01935 -0.0142 -0.01186 
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6.3.3 Case Study II: Customers Savings  

Total amount paid by customers to the aggregator decreased compared to those based on day-

ahead prices. The expected payment for the selected day was $321.98 with day-ahead prices. 

Alternately, after the aggregator changed the selling price, the amount became $319.79. The 

customer savings are around $2.19 per day, which represents a percentage decrease in customers 

energy cost by 0.68% from the original base case cost.  

6.3.4 Case Study II: The Aggregator Profit  

In this case study again the aggregator’s profit increased. The old expected profit for the 

aggregator is $26.74 and after changing selling price, it becomes $38.3, which represents 43.23% 

increase with respect to the base profit.  While the percent increase is substantial the base profit 

as well as new profit are much smaller compared to the previous case.  

6.3.5 Case Study II: The Aggregator Risk Measures  

The aggregator problem for this case is solved for multiple values of α confidence level and the 

results are shown in Table 6.20. The efficient frontier (Figure 6.14) obtained to study the 

relationship between the expected profit and the conditional value at risk at different values of α.   

Table 6.20 The aggregator risk measures 

Confidence level VAR ($) CVAR ($) Expected Profit ($) 

0% 33.51256 11.93498 38.67288 

10% 26.81792 10.01632 38.43439 

20% 26.11183 7.932567 38.30633 

30% 19.49018 5.71519 36.5856 

40% 11.31025 4.354889 33.87494 

50% 11.0699 2.981852 33.76379 

60% 3.521301 1.670664 29.69744 
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Figure 6.14 Aggregator case study II, efficient frontier 

For confidence level of α = 0% the aggregator is concerned about achieving maximum 

expected profit without concerning about risk. In this case, profit was found to be $38.67 with a 

higher CVaR value of $11.94 which implies a higher risk. Increasing the confidence level 

decreases the expected profit and reduces the CVaR value, which implies a lower risk. For 

example, with α = 60% the expected profit is $29.70 and the CVaR value is $1.67. Comparison 

of the expected profit at α = 0% with α = 60% shows that the expected profit has decreased by 

23.2% while the CVaR value decreased by 86.01%.   

6.3.6 Case Study II: Increased Number of Real-time Price Scenarios 

This case study focuses on adding more randomness to the real-time market price and study the 

effect of increasing number of real-time price scenarios on the selling price to customers, while 

keeping all simulation parameters the same as case study II. The simulation parameters are 

shown in Table 6.21 and Figure 6.15 shows the real-time market price scenarios.  
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Table  6.21 Simulation Parameters 

 

 

 

Figure 6.15 Real-time market price scenarios 

 

 

 

 

 

 

 

  

# Simulation Parameter Value 

1 Number of Scenarios 100 

2 Time Periods 24 

3 Confidence Level 20% 

4 Ramping Limit 20% 

5 T&D Charges Payed by Customers +$70 

6 T&D Charges Payed by the aggregator +$30 

7 Elasticity -0.4 

8 Probability of a scenario 1/100 
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Simulation results are shown in Figures 6.16,6.17,6.18,6.19. Figure 6.16 shows the hourly price 

variation while Figure 6.17 shows the mean energy variation. The price fluctuation increases as 

the real-time price randomness increases. Figure 6.18 shows the resulted new selling prices 

offered to customers.  

 

Figure 6.16 Hourly price variation 

 

 

Figure 6.17 Mean energy variation with 
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Figure 6.18 New and old selling prices offered to customers 

 

 

 

 

 

Figure 6.19 Expected energy cost for customers 
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Figure 6.20 Old profit density for 

 

 

 

 

 

Figure 6.21 New profit density for aggregator 
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Customers’ expected payments to the aggregator are shown in Figures 6.19. The expected 

new cost for customers is $319.66 while the old expected cost is $321.98 which represents a 

0.721% decrease in customers payments. The expected profit before and after changing selling 

price are shown in Figures 6.20 and 6.21, which are $39.15 and $46.20, respectively. This 

represents a percentage increase in the profit by 18.01%.  

Figure 6.22 shows the aggregator efficient frontier for this case with 100 scenarios for the 

problem. At higher confidence level the expected profit decreases and the risk also decreases. 

While at lower confidence levels the expected profit increases and the risk increases.   

 

Figure 6.22 The aggregator efficient frontier 

 

6.4 Case Study III: Load Profiles Selected in Proportion to Occurrences in 

the Data Set 

Case study III will consider 10 load profiles and 10 samples for real-time price. The load profiles 

are picked randomly in proportion to occurrences in the data set explained in Chapter 4. The 

simulation conditions are kept the same as previous cases. Figure 6.23 shows the real-time price 
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scenarios, while Figure 6.24 shows the load profiles selected for this case study and Table 6.22 

lists the number of samples selected from each load profile groups. Simulation results are shown 

in Figures 6.25 to 6.28.  

 

 

Figure 6.23 Real-time price scenarios 

 

 

Figure 6.24 Customers load scenarios 
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Table 6.22 Number of samples from each load profile groups 

Type of load profile Number of load profiles  

Above average  39

109
× 10 ≅ 4 

Below average  32

109
× 10 ≅ 3 

Equal average  6

109
× 10 ≅ 1 

Above and below  13

109
× 10 ≅ 1 

Below and above  19

109
× 10 ≅ 1 

 

 

 

 

Figure 6.25 Hourly price variation 
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Figure 6.26 Mean energy variation 

 

 

Figure 6.27 New and old selling prices offered to customers 
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Figure 6.28 Expected energy cost for customers 

 

Figure 6.28 shows the old and new expected cost for customers. The old expected cost is 

$335.91 and after change selling price it became $334.19 which represents a decrease in the 

expected cost for customers by 0.51%.  

 

Figure 6.29 Old profit density 
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Figure 6.30 New profit density 

 

  The old and new profit density in Figures 6.29 and 6.30 show an increase in the expected 

profit for the aggregator by 3.61%. The old expected profit is $42.12 while the new expected 

profit after changing selling price is $43.64.  

The aggregator risk measure is shown in Figure 6.31, the expected profit decreases as the 

confidence level increases, less risk for the aggregator is achieved when trading with a very high 

confidence level. Achieving a higher expected profit or a minimum risk is then a choice for the 

aggregator, as those values are controlled by the level of confidence and the confidence level is 

the aggregator choice of operation.  
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Figure 6.31 Aggregator case study III: Efficient Frontier 
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Chapter 7 

Conclusions and Future Work 

This thesis proposed a Mixed Integer Non-Linear Programming (MINLP) stochastic model for 

the aggregator to participate in real-time market through a demand response program. The case 

studies indicate that the model is able to achieve higher savings for customers and higher profit 

for the aggregator while getting a better tradeoff for the aggregator in terms of profit and 

penalties. 

The aggregator in our proposed model copes with two major challenges. First is the real-time 

price uncertainty and the customers’ load variability. This work characterized real-time price by 

Gaussian probability density function at each hour and generated enough scenarios for real-time 

price using the proposed model.  

Customers’ load uncertainty is modeled based on actual data from Pecan Street in Austin, 

Texas for summer 2017. The resultant 109 load profiles exhibit five different behaviors when 

comparing them to the average aggregate load value of the 109 profiles.  

The model is solved using SCIP solver within the General Algebraic Modeling (GAMS) 

platform for different study cases and based on the CVaR risk model. The study cases show the 

validity of our model to customers and the aggregator by procuring lower cost for customers and 

achieving higher profit for the aggregator. The number of scenarios considered in this simulation 

were limited by the ability of GAMS solver. Although the change in energy cost to customers 

and profit for the aggregator are small, they yield positive outcomes. With larger number of 

customers in the portfolio, the aggregator can expect to make higher profit.   

Future work would be integrating the physical grid and studying the effect of changing 

selling price on parameters like voltages and currents. Also, future work might consider 
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customers having on-grid photovoltaic units equipped with smart inverters and customers can 

trade in the market for ancillary services. The work can also be extended to a different type of 

load such as industrial, commercial and agriculture loads. Further the work can be extended to 

include the optimal bidding for the aggregator in the real-time market within the proposed 

uncertainties of price and load.  
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Appendix A - Mathematical Derivation of the Aggregator Model 
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ሺBefore changing the selling Priceሻ
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Which can be translated into the following MIP representation:  
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Change in 
Profit
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Appendix B - DATA 

Tables B.1 to B.4 summarize the estimated standard deviation of the price difference distribution 

at each hour. 

 

Table B.1 Price Difference Standard Deviation Estimate for Off-Peak Period 

 

  

Table B.2 Price Difference Standard Deviation Estimate for Shoulder One Period 

Shoulder one period 11:00 AM – 1:00 PM 

Price Difference Standard Deviation Estimate in [$/MWh] 

t11 t12 t13 

15.35 27.66 22.68 

 

 

Table B.3 Price Difference Standard Deviation Estimate for On-Peak Period 

Peak period 2:00 PM – 8:00 PM 

Price Difference Standard Deviation Estimate in [$/MWh] 

t14 t15 t16 t17 t18 t19 t20 

42.22 78.12 126.25 137.48 43.80 14.31 15.28 

 

 

 

Table B.4 Price Difference Standard Deviation Estimate for Shoulder Two Period 

Shoulder two period 9:00 PM – 12:00 AM 

Price Difference Standard Deviation Estimate in [$/MWh] 

t21 t22 t23 t24 

30.3B 15.30 12.26 14.66 

  

Off-peak period 12:00 AM – 10:00 AM 

Price Difference Standard Deviation Estimate in [$/MWh] 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

2.88 2.88 3.18 3.24 4.34 11.68 3.92 33.09 11.40 8.11 
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 Table B.5 Load Profiles examples for Off-peak period 

 

Table B.6 Load Profiles examples for Shoulder one 

Shoulder one period 11:00 AM – 1:00 PM 

Load Profiles Above the Average Value [KWh] 

Profile/Hr t11 t12 t13 

28 143.55 170.82 217.15 

45 148.61 186.09 203.29 

46 148.33 176.20 197.82 

47 129.95 167.95 194.27 

 

Table B.7 Load Profiles examples for Peak period 

Peak period 2:00 PM – 8:00 PM 

Load Profiles Above the Average Value [KWh] 

Profile/Hr t14 t15 t16 t17 t18 t19 t20 

28 239.31 269.94 283.71 313.62 312.88 521.26 263.19 

45 229.25 247.30 275.72 298.35 307.69 141.48 282.14 

46 223.42 242.36 270.44 302.46 295.96 260.78 272.71 

47 230.45 251.63 274.29 288.11 296.72 248.73 259.36 

 

Table B.8 Load Profiles examples for Shoulder two period 

Shoulder two period 9:00 PM – 12:00 AM 

Load Profiles Above the Average Value [KWh] 

Profile/Hr t21 t22 t23 t24 

28 250.36 231.06 197.60 175.83 

45 255.87 234.80 204.61 173.60 

46 257.79 243.58 207.29 177.46 

47 251.19 230.03 204.30 172.56 

 

  

Off-peak period 12:00 AM – 10:00 AM 

Load Profiles Above the Average Value [KWh]  

Profile/Hr t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

28 157.11 127.99 118.40 112.19 103.07 96.88 97.39 111.99 110.53 125.63 

45 143.91 120.82 115.48 100.32 98.92 86.66 93.61 89.98 111.12 121.96 

46 145.01 132.96 124.10 112.17 107.16 104.23 102.19 97.87 106.59 126.04 

47 141.91 126.04 119.52 107.37 104.94 93.04 94.34 90.99 93.52 104.11 
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Table B.9 Load Profiles examples for Off-peak period 

 

Table B.10 Load Profiles examples for Shoulder one 

Shoulder one period 11:00 AM – 1:00 PM 

Load Profiles Above the Below Value [KWh] 

Profile/Hr t11 t12 t13 

4 76.31 84.68 86.86 

11 74.95 73.96 67.12 

13 64.36 69.86 65.00 

108 49.83 61.37 65.89 

 

Table B.11 Load Profiles examples for Peak period 

Peak period 2:00 PM – 8:00 PM 

Load Profiles Above the Below Value [KWh] 

Profile/Hr t14 t15 t16 t17 t18 t19 t20 

4 103.10 126.95 154.65 188.32 184.52 230.92 178.45 

11 68.49 71.01 89.05 94.50 111.16 276.56 136.47 

13 72.49 86.94 108.30 132.02 165.73 246.71 158.38 

108 69.16 85.65 100.98 116.35 141.61 165.87 118.61 

 

Table B.12 Load Profiles examples for Shoulder two period 

Shoulder two period 9:00 PM – 12:00 AM 

Load Profiles Above the Below Value [KWh] 

Profile/Hr t21 t22 t23 t24 

4 161.11 137.75 111.89 88.22 

11 108.80 97.05 75.39 77.55 

13 136.54 131.37 116.53 71.21 

108 99.17 86.89 71.10 71.10 

 

  

Off-peak period 12:00 AM – 10:00 AM 

Load Profiles Above the Below Value [KWh]  

Profile/Hr t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

4 85.37 74.11 61.49 55.90 51.85 58.89 68.14 72.37 67.23 65.71 

11 65.51 56.79 51.97 49.54 51.42 57.17 66.05 68.35 63.68 71.81 

13 57.39 45.75 40.74 41.66 44.19 53.95 61.06 58.07 57.43 58.13 

108 47.10 46.07 35.11 37.02 38.41 39.47 43.44 40.52 35.79 38.27 
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Table B.13 Load Profiles examples for Off-peak period 

 

Table B.14 Load Profiles examples for Shoulder one 

Shoulder one period 11:00 AM – 1:00 PM 

Load Profiles Below and Above the Average Value [KWh] 

Profile/Hr t11 t12 t13 

5 95.45 124.88 135.69 

14 84.32 95.70 108.51 

17 100.68 123.93 132.52 

84 107.82 120.61 145.90 

 

Table B.15 Load Profiles examples for Peak period 

Peak period 2:00 PM – 8:00 PM 

Load Profiles Below and Above the Average Value [KWh] 

Profile/Hr t14 t15 t16 t17 t18 t19 t20 

5 161.73 187.33 202.74 244.00 251.80 228.04 240.18 

14 120.36 140.80 171.20 207.69 227.31 294.41 243.12 

17 153.07 176.73 209.08 240.53 259.48 211.70 201.10 

84 164.62 181.02 211.21 236.38 245.62 122.84 215.99 

 

Table B.16 Load Profiles examples for Shoulder two period 

Shoulder two period 9:00 PM – 12:00 AM 

Load Profiles Below and Above the Average Value [KWh] 

Profile/Hr t21 t22 t23 t24 

5 203.60 175.54 137.40 116.29 

14 209.21 182.55 147.65 91.05 

17 150.57 136.69 112.03 114.55 

84 195.53 177.99 159.70 188.39 

 

  

Off-peak period 12:00 AM – 10:00 AM 

Load Profiles Below and Above the Average Value [KWh]  

Profile/Hr t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

5 90.78 76.38 67.42 62.25 60.09 65.05 76.57 82.64 92.16 92.92 

14 64.68 56.46 53.38 54.83 50.98 58.74 71.39 66.44 72.41 74.00 

17 89.90 88.61 71.66 70.21 66.45 77.14 82.50 76.47 82.09 91.89 

84 94.42 79.99 76.75 70.25 70.76 72.63 71.70 67.59 74.52 84.08 
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Table B.17 Load Profiles examples for Off-peak period 

 

Table B.18 Load Profiles examples for Shoulder one 

Shoulder one period 11:00 AM – 1:00 PM 

Load Profiles Equal the Average Value [KWh] 

Profile/Hr t11 t12 t13 

8 110.72 123.68 130.88 

9 114.90 140.32 149.12 

36 105.46 138.25 152.02 

44 100.72 125.16 147.71 

 

Table B.19 Load Profiles examples for Peak period 

Peak period 2:00 PM – 8:00 PM 

Load Profiles Equal the Average Value [KWh] 

Profile/Hr t14 t15 t16 t17 t18 t19 t20 

8 154.97 189.24 194.97 221.78 254.08 317.56 212.48 

9 180.86 194.97 219.72 233.29 239.15 201.07 222.23 

36 174.23 197.10 213.23 220.03 220.45 202.57 208.70 

44 167.95 187.57 215.13 235.98 235.82 111.11 190.91 

 

Table B.20 Load Profiles examples for Shoulder two period 

Shoulder two period 9:00 PM – 12:00 AM 

Load Profiles Equal the Average Value [KWh] 

Profile/Hr t21 t22 t23 t24 

8 200.55 181.96 150.11 111.64 

9 198.22 182.34 153.10 138.38 

36 180.59 168.62 139.23 107.65 

44 169.94 169.30 157.30 168.09 

 

 

 

Off-peak period 12:00 AM – 10:00 AM 

Load Profiles Equal the Average Value [KWh]  

Profile/Hr t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

8 91.65 84.29 77.21 82.70 78.48 81.60 88.61 84.42 76.37 95.67 

9 115.31 102.17 96.03 84.86 75.06 79.14 99.29 82.26 86.05 88.42 

36 96.04 89.42 90.97 86.90 78.76 78.74 82.11 80.29 86.32 96.49 

44 124.56 95.21 88.33 81.87 73.12 72.65 79.93 82.50 77.04 98.00 
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Table B.21 Load Profiles examples for Off-peak period 

 

Table B.22 Load Profiles examples for Shoulder one 

Shoulder one period 11:00 AM – 1:00 PM 

Load Profiles Above and Below the Average Value [KWh] 

Profile/Hr t11 t12 t13 

29 108.11 102.96 107.18 

74 141.00 140.28 138.12 

79 95.18 132.37 142.40 

86 93.41 96.41 96.47 

 

Table B.23 Load Profiles examples for Peak period 

Peak period 2:00 PM – 8:00 PM 

Load Profiles Above and Below the Average Value [KWh] 

Profile/Hr t14 t15 t16 t17 t18 t19 t20 

29 121.74 136.56 182.56 222.25 250.43 335.84 236.45 

74 138.55 140.01 165.57 192.06 212.12 -27.27 196.94 

79 154.18 161.80 177.73 188.56 198.47 65.15 186.15 

86 105.33 109.67 118.85 161.09 191.42 329.41 182.48 

 

Table B.24 Load Profiles examples for Shoulder two period 

Shoulder two period 9:00 PM – 12:00 AM 

Load Profiles Above and Below the Average Value [KWh] 

Profile/Hr t21 t22 t23 t24 

29 216.80 193.96 154.49 122.68 

74 191.34 177.59 144.32 177.72 

79 170.77 167.27 158.55 108.86 

86 174.05 153.51 130.43 148.14 

 

  

Off-peak period 12:00 AM – 10:00 AM 

Load Profiles Above and Below the Average Value [KWh]  

Profile/Hr t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

29 157.34 131.12 119.96 107.74 101.91 89.47 95.40 103.83 103.00 105.04 

74 161.86 152.09 140.20 134.11 126.02 111.63 108.57 107.19 109.18 118.92 

79 124.25 113.79 100.79 101.89 95.50 91.28 93.44 89.81 82.83 88.69 

86 165.41 127.79 113.40 93.59 93.20 80.01 89.57 97.84 88.86 81.80 
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Appendix C - GAMS Code 

$Title: The Aggregator Model 
SETS 
w Scenarios        /w1*w25/ 
t Time Periods    / t1 * t24/ 
; 
SCALARS 
Alpha    Confidence Level/0.95/ 
Nw       Number of scenarios /25/ 
a        Ramping limits   /0.2/ 
b        T&D Charges for Customers  /70/ 
c        T&D Charges for The aggregator /30/ 
; 
PARAMETERS 
Piw(w)          Probability of occurrence of scenario w 
Ect(t,w)        Energy Consumption of Customers [MWh] 
ED(t)           Day-ahead Contract between DSO and The aggregator 
[MWh] 
LMPC(t)         LMP Price offered to customers in Day-ahead market [$ 
per MWh] 
LMPD(t)         LMP Price in Day ahead market [$ per MWh] 
LMPRP(t,w)      LMP for excess energy in spot market [$ per MWh] 
LMPR(t,w)       Locational Marginal Price in Real Time Market [$ per 
MWh] 
ec(t,w)         Elasticity of Customers at time t in scenario w 
NewProfit(w)    Profit in [$] Per Scenario After Change selling Price 
OldProfit(w)    Profit Before Change Selling Price 
NewPrices(t)    Selling Price After Change 
CostForCustAft(t,w) Cost of Energy for Customers After Change Selling 
Prices 
CostForCustBef(t,w) Cost of Energy for Customers Before Change Selling 
Prices 
NewLoad(t,w)        New Load After Change Prices 
DiffLoadCont(t,w)   Difference between new load and contract 
; 
ec(t,w) = -0.4; 
Piw(w) = 1/(Nw); 
$call GDXXRW ED.xlsx trace=3 par=ED rng=ED!a1 rdim=1 cdim=0 
$call GDXXRW LMPC.xlsx trace=3 par=LMPC rng=LMPC!a1 rdim=1 cdim=0 
$call GDXXRW LMPD.xlsx trace=3 par=LMPD rng=LMPD!a1 rdim=1 cdim=0 
$call GDXXRW LMPR.xlsx trace=3 par=LMPR rng=LMPR!a1 rdim=1 cdim=1 
$call GDXXRW Ect.xlsx trace=3 par=Ect rng=Ect!a1 rdim=1 cdim=1 
$GDXIN ED.gdx 
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$LOAD ED 
$GDXIN 
$GDXIN LMPC.gdx 
$LOAD LMPC 
$GDXIN 
$GDXIN LMPD.gdx 
$LOAD LMPD 
$GDXIN 
$GDXIN LMPR.gdx 
$LOAD LMPR 
$GDXIN 
$GDXIN Ect.gdx 
$LOAD Ect 
$GDXIN 
LMPC(t) = b+LMPC(t); 
LMPR(t,w) = abs(LMPR(t,w)); 
LMPRP(t,w) = LMPR(t,w); 
LMPR(t,w) = c+LMPR(t,w); 
Display Ect,ec,ED,LMPC,LMPR,Piw; 
 
********************************************************************** 
***********            DECLARATION OF VARIABLES             ********** 
********************************************************************** 
VARIABLES 
CVAR     CVaR: objective function 
DLMPC(t) Change in Hourly Price 
Zeta     Value at Risk: Auxiliary variable used to calculate CVaR 
Uw(w)    Auxiliary variable used to calculate CVaR 
u(t,w)   Selection of load higher than contract before change 
x(t,w)   Selection of load higher than contract after change 
P1(t,w)  Penalty if load higher than contract before change 
P2(t,w)  Penalty if load lower than contract before change 
P3(t,w)  Penalty if load higher than contract after change 
P4(t,w)  Penalty if load lower than contract after change 
; 
 
********************************************************************** 
***********   MATHEMATICAL CHARACTERIZATION OF VARIABLES    ********** 
********************************************************************** 
POSITIVE VARIABLES 
Uw(w)    Positive Variable = VAR - Profit_w 
; 
binary VARIABLE u(t,w); 
binary VARIABLE x(t,w); 
parameter ub1(t,w); 
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parameter lb1(t,w); 
parameter ub2(t,w); 
parameter lb2(t,w); 
ub1(t,w) =       abs(Ec(t,w)-ED(t)); 
lb1(t,w) =      -abs(Ec(t,w)-ED(t)); 
ub2(t,w) =       abs(Ec(t,w)+a*Ec(t,w)-ED(t)); 
lb2(t,w) =      -abs(Ec(t,w)-a*Ec(t,w)-ED(t)); 
parameter A1(t) 
/ 
t1       1 
t2       1 
t3       1 
t4       1 
t5       1 
t6       1 
t7       1 
t8       1 
t9       1 
t10      1 
t11      1 
t12      1 
t13      1 
t14      5 
t15      5 
t16      5 
t17      5 
t18      5 
t19      5 
t20      5 
t21      1 
t22      1 
t23      1 
t24      1 
/; 
parameter A2(t) 
/ 
t1       0 
t2       0 
t3       0 
t4       0 
t5       0 
t6       0 
t7       0 
t8       0 
t9       0 
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t10      0 
t11      0 
t12      0 
t13      0 
t14      0 
t15      0 
t16      0 
t17      0 
t18      0 
t19      0 
t20      0 
t21      0 
t22      0 
t23      0 
t24      0 
/; 
 
parameter A3(t) 
/ 
t1       1 
t2       1 
t3       1 
t4       1 
t5       1 
t6       1 
t7       1 
t8       1 
t9       1 
t10      1 
t11      1 
t12      1 
t13      1 
t14      5 
t15      5 
t16      5 
t17      5 
t18      5 
t19      5 
t20      5 
t21      1 
t22      1 
t23      1 
t24      1 
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/; 
 
 
parameter A4(t) 
/ 
t1       0 
t2       0 
t3       0 
t4       0 
t5       0 
t6       0 
t7       0 
t8       0 
t9       0 
t10      0 
t11      0 
t12      0 
t13      0 
t14      0 
t15      0 
t16      0 
t17      0 
t18      0 
t19      0 
t20      0 
t21      0 
t22      0 
t23      0 
t24      0 
/; 
EQUATIONS 
Obj                     Obj to Max CVAR 
TotalVariationInLoad    Change In load DeltaP 
ChangeInCost            Change In Cost 
TotalPrice              Total Retail Price 
EnergyConsumed          Total Energy Consumed After Change 
Rampinglimit1           Ramp Down limit 
Rampinglimit2           Ramp up limit 
RiskModelConstraint1    Risk Equation 1 
RiskModelConstraint2    Risk Equation 2 
PenaltyConstraint1 
PenaltyConstraint2 
PenaltyConstraint3 
PenaltyConstraint4 
PenaltyMultiplier1 
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PenaltyMultiplier2 
PenaltyMultiplier3 
PenaltyMultiplier4 
; 
Obj.. CVAR =e= (Zeta - ((1/(1-alpha))*sum(w,Piw(w)*Uw(w)))); 
TotalVariationInLoad(w).. 
sum(t,(ec(t,w)*DLMPC(t)*Ect(t,w)/LMPC(t)))=e=0; 
ChangeInCost(w).. 
sum(t,((Ect(t,w)+(ec(t,w)*DLMPC(t)*Ect(t,w)/LMPC(t)))*(LMPC(t)+DLMPC(t
)))-(Ect(t,w)*LMPC(t))) =l=0; 
TotalPrice(t).. (LMPC(t)+DLMPC(t))=g=0; 
EnergyConsumed(t,w).. 
(Ect(t,w)+(ec(t,w)*DLMPC(t)*Ect(t,w)/LMPC(t)))=g=0; 
Rampinglimit1(t,w)..  (ec(t,w)*DLMPC(t)*Ect(t,w)/LMPC(t)) =g= -
a*Ect(t,w); 
Rampinglimit2(t,w)..  (ec(t,w)*DLMPC(t)*Ect(t,w)/LMPC(t)) =l= 
a*Ect(t,w); 
RiskModelConstraint1(w)..  Uw(w) =g= (Zeta - 
(sum(t,(DLMPC(t)*Ect(t,w)*(1+ec(t,w))) 
+((ec(t,w)*power(DLMPC(t),2)*Ect(t,w)/LMPC(t))) 
+(P3(t,w)*LMPRP(t,w)*(-Ect(t,w)-
(ec(t,w)*DLMPC(t)*Ect(t,w)/LMPC(t))+ED(t))) 
+(P4(t,w)*LMPRP(t,w)*(-Ect(t,w)-
(ec(t,w)*DLMPC(t)*Ect(t,w)/LMPC(t))+ED(t))) 
+(P1(t,w)*LMPRP(t,w)*(Ect(t,w)-ED(t))) 
+(P2(t,w)*LMPRP(t,w)*(Ect(t,w)-ED(t))))) ); 
RiskModelConstraint2(w).. Uw(w)=g=0; 
PenaltyConstraint1(t,w)..   ((Ect(t,w)-ED(t))-ub1(t,w)*u(t,w))=l=0; 
PenaltyConstraint2(t,w)..   ((Ect(t,w)-
ED(t))+lb1(t,w)*u(t,w))=g=lb1(t,w); 
PenaltyConstraint3(t,w)..   
((Ect(t,w)+(ec(t,w)*DLMPC(t)*Ect(t,w)/LMPC(t))-ED(t))-
ub2(t,w)*x(t,w))=l=0; 
PenaltyConstraint4(t,w)..   
((Ect(t,w)+(ec(t,w)*DLMPC(t)*Ect(t,w)/LMPC(t))-
ED(t))+lb2(t,w)*x(t,w))=g=lb2(t,w); 
PenaltyMultiplier1(t,w).. P1(t,w)=e=(A1(t)*u(t,w)); 
PenaltyMultiplier2(t,w).. P2(t,w)=e=(A2(t)*(1-u(t,w))); 
PenaltyMultiplier3(t,w).. P3(t,w)=e=(A3(t)*x(t,w)); 
PenaltyMultiplier4(t,w).. P4(t,w)=e=(A4(t)*(1-x(t,w))); 
 
MODEL AggregatorDA /ALL/; 
option iterlim = 1e8; 
option reslim = 1e10;  
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Option MINLP = SCIP; 
SOLVE AggregatorDA USING MINLP MAXIMIZING CVAR; 
NewProfit(w) = 
sum(t,(LMPC(t)+DLMPC.l(t))*(Ect(t,w)+(ec(t,w)*DLMPC.l(t)*Ect(t,w)/LMPC
(t)))) 
            -sum(t,LMPR(t,w)*ED(t)) 
            -sum(t,(P3.l(t,w)+P4.l(t,w))*LMPRP(t,w)*(Ect(t,w)-
ED(t)+(ec(t,w)*DLMPC.l(t)*Ect(t,w)/LMPC(t)))); 
 
OldProfit(w) = sum(t,LMPC(t)*Ect(t,w)) 
            -sum(t,LMPR(t,w)*ED(t)) 
            -sum(t,(P1.l(t,w)+P2.l(t,w))*LMPRP(t,w)*(Ect(t,w)-ED(t))); 
 
NewPrices(t) = LMPC(t)+DLMPC.l(t); 
CostForCustAft(t,w)= 
(Ect(t,w)+(ec(t,w)*DLMPC.l(t)*Ect(t,w)/LMPC(t)))*(LMPC(t)+DLMPC.l(t)); 
CostForCustBef(t,w)= (Ect(t,w)*LMPC(t)); 
NewLoad(t,w) = (Ect(t,w)+(ec(t,w)*DLMPC.l(t)*Ect(t,w)/LMPC(t))); 
DiffLoadCont(t,w) =  NewLoad(t,w)-ED(t); 
Display 
P1.l,P2.l,P3.l,P4.l,u.l,x.l,DLMPC.l,CVAR.l,Zeta.l,Uw.l,EnergyConsumed.
l,TotalPrice.l,NewProfit,OldProfit,NewPrices,CostForCustAft,CostForCus
tBef,NewLoad,DiffLoadCont; 
Execute_Unload "Results(6-23-
2019).gdx",P1,P2,P3,P4,u,x,DLMPC,NewPrices,LMPC,Ect,EnergyConsumed.l,U
w,CVAR,Zeta,a,Alpha,ec,NewProfit,OldProfit,LMPR,ED,CostForCustAft,Cost
ForCustBef,NewLoad; 
Execute 'GDXXRW.EXE Results(6-23-2019).gdx var=u rng=BinaryVarD1!a1'; 
Execute 'GDXXRW.EXE Results(6-23-2019).gdx var=x rng=BinaryVarR1!a1'; 
Execute 'GDXXRW.EXE Results(6-23-2019).gdx var=P1 rng=P1!a1'; 
Execute 'GDXXRW.EXE Results(6-23-2019).gdx var=P2 rng=P2!a1'; 
Execute 'GDXXRW.EXE Results(6-23-2019).gdx var=P3 rng=P3!a1'; 
Execute 'GDXXRW.EXE Results(6-23-2019).gdx var=P4 rng=P4!a1'; 
Execute 'GDXXRW.EXE Results(6-23-2019).gdx var=DLMPC rng=DLMPC!a1'; 
Execute 'GDXXRW.EXE Results(6-23-2019).gdx par=LMPC  rng=LMPC!a1'; 
Execute 'GDXXRW.EXE Results(6-23-2019).gdx par=NewPrices  
rng=NewPrices!a1'; 
Execute 'GDXXRW.EXE Results(6-23-2019).gdx par=LMPR rng=LMPR!a1'; 
Execute 'GDXXRW.EXE Results(6-23-2019).gdx par=ED rng=ED!a1'; 
Execute 'GDXXRW.EXE Results(6-23-2019).gdx par=Ect  rng=Ect!a1'; 
Execute 'GDXXRW.EXE Results(6-23-2019).gdx par=NewLoad  
rng=NewLoad!a1'; 
Execute 'GDXXRW.EXE Results(6-23-2019).gdx equ=EnergyConsumed 
rng=EnergyVariation!a1'; 
Execute 'GDXXRW.EXE Results(6-23-2019).gdx var=CVAR rng=CVAR!a1'; 
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Execute 'GDXXRW.EXE Results(6-23-2019).gdx var=Zeta rng=Zeta!a1'; 
Execute 'GDXXRW.EXE Results(6-23-2019).gdx var=Uw rng=Uw!a1'; 
Execute 'GDXXRW.EXE Results(6-23-2019).gdx par=a rng=a!a1'; 
Execute 'GDXXRW.EXE Results(6-23-2019).gdx par=Alpha rng=Alpha!a1'; 
Execute 'GDXXRW.EXE Results(6-23-2019).gdx par=ec rng=Elasticity!a1'; 
Execute 'GDXXRW.EXE Results(6-23-2019).gdx par=NewProfit 
rng=NewProfit!a1'; 
Execute 'GDXXRW.EXE Results(6-23-2019).gdx par=OldProfit 
rng=OldProfit!a1'; 
Execute 'GDXXRW.EXE Results(6-23-2019).gdx par=CostForCustAft 
rng=NewCostCus!a1'; 
Execute 'GDXXRW.EXE Results(6-23-2019).gdx par=CostForCustBef 
rng=OldCostCus!a1'; 
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