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Recent evidence suggests that modifiable cardiovascular risk factors additionally play a 

causal role in the development of dementia and cognitive dysfunction.  Currently, no cure 

for dementia exists making identification of early relationships in dementia 

pathophysiology critical for the purpose of primary prevention or remediation. As 

approximately 70% of adults in the United States are clinically overweight, the aim of 

Study 1 was to determine the anthropometric measures most strongly associated with 

early white matter disease and cognitive function at midlife. In this cross-sectional 

investigation of 126 middle-aged adults, waist circumference, body fat percentage, and 

visceral adiposity all significantly predicted white matter hyperintensities, indicating that 

midlife abdominal obesity is associated with the early development of white mater 

disease. 

 Midlife visceral adiposity is also associated with increased arterial stiffening. The 

aim of Study 2 was to determine if subclinical carotid artery stiffening is associated with 

lower cerebral white matter integrity at midlife in a priori regions of interest susceptible 

to vascular and cognitive aging. This study employed diffusion tensor imaging to gauge 

cerebral white matter integrity. In a middle-aged cohort of 143 adults, we determined that 
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arterial stiffening was associated with reduced integrity of multiple white matter regions 

independent of age, sex, and waist circumference. Arterial stiffness indirectly affected 

processing speed. These data suggest that arterial stiffening may negatively affect CWMI 

prior to clinically overt cognitive decline. 

 Individuals with metabolic syndrome are at increased risk of arterial stiffening 

and dementia. The purpose of Study 3 was to determine the role of physical activity on 

mitigating the adverse influence of metabolic syndrome on arterial stiffness and cerebral 

white matter integrity. In this cross-sectional investigation of 66 middle-aged adults, 

individuals with MetS who were physically active demonstrated lower arterial stiffness 

and more favorable CWM integrity than their sedentary peers, indicating that PA may be 

effective in mitigating the adverse effects of MetS on the vasculature and brain at midlife. 

 Taken together, these findings indicate that cardiometabolic risk factors 

negatively affect the vasculature, cerebral white matter health, and cognitive function at 

middle-age.   
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CHAPTER 1: GENERAL INTRODUCTION 

 Dementia is defined as a major neurocognitive disorder due to its disruption of 

cognitive function and performance of activities of daily living (15).  Alzheimer’s disease 

and vascular dementia represent the two most common causes of dementia contributing 

to ~60-80% and ~10% of cases respectively.  The rise in incidence of AD in the United 

States is staggering as the 4.7 millions of people with AD is expected to nearly triple by 

the year 2050 (15). With no curative treatment known for dementia, identification of 

early modifiable biomarkers is critical, especially given that AD pathophysiology takes 

years, if not decades, to progress (175). Although the causal mechanisms of AD are 

complex and multiple, vascular dysregulation has recently been identified as a key 

initiating event (143). 

 Because the brain’s ability to store energy is limited, it is highly dependent on the 

cardiac output to receive energy substrate. Despite weighing just 2% of body weight, the 

brain receives 11% of the cardiac output and consumes 20% of the total oxygen of the 

body at rest (52). The tight delivery of cerebral blood flow is reliant on the perfusing 

vasculature that becomes vulnerable to malfunction with exposure to cardiovascular risk 

factors. In brief, cardiovascular risk factors that include obesity, hypertension, 

dyslipidemia, dysglycemia, and smoking contribute to arteriosclerosis and begin a 

cascade of events that results in breakdown of the blood brain barrier (BBB) and cerebral 

hypoperfusion (65, 153). The consequences of hypoperfusion are significant, leading to 

white matter injury, buildup of amyloid-β, and susceptibility to dementia (342). 

Mitigating the adverse effects that cardiovascular risk factors have on the vasculature 
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may prove valuable for maintaining cerebral autoregulation and healthy white matter 

while prolonging normal cognition.  

 Alterations of cerebral white matter are associated with vascular risk factors and 

ischemia and are considered an early pathological feature of dementia (40, 69, 175). 

Sensitive measures of white matter health can be assessed with magnetic resonance 

imaging (MRI). The two most common methods are capturing T2-weighted images to 

determine white matter hyperintensities (WMH), and performing diffusion tensor 

imaging (DTI), a sequence measuring in vivo water diffusion of white matter tracts 

reflective of structural integrity. Observing their associations in relation to cardiovascular 

risk factors, vascular function, and cognitive function at early stages of disease progress 

can be informative for identifying modifiable treatment targets for clinicians. 

 

Purpose and Hypothesis 

In recent years there has been considerable growth in the study of cardiovascular health 

in relation to brain structure and cognitive function. However, the relations of vascular 

dysfunction with early pathological alterations ultimately contributing to dementia, 

otherwise termed the vascular hypothesis, remain understudied at midlife (143). 

Therefore, the general and overall goal of this dissertation study is to further understand 

modifiable cardiovascular targets related to early neuroimaging biomarkers of dementia 

and cognitive dysfunction. This broad goal was addressed in three specific aims, each 

focused on different levels of the vascular hypothesis of dementia. Whole-body and 

abdominal adiposity, arterial stiffness, and physical activity was  carefully analyzed in 
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relation to cerebral white matter health and cognitive function. The role of physical 

activity as a basic lifestyle modification to improve vascular health and ostensibly brain 

structure and function will be determined. 

STUDY #1:  

 The purpose of Study #1 was to determine the strength of associations of body 

mass index (BMI), waist-to-hip ratio (WHR), waist circumference (WC), percent body 

fat (BF), and visceral adipose tissue (VAT) with white matter hyperintensity (WMH) and 

cognitive function at midlife. We hypothesized that dual-energy x-ray absorptiometry 

(DXA)-generated adiposity measures of BF and VAT would be more sensitive in 

predicting WMH and cognitive function at midlife than traditional anthropometric body 

composition measurements. 

STUDY #2:  

 The purpose of Study #2 was to determine whether carotid artery stiffening 

impacts cerebral white matter microstructure at midlife. Secondly, we aimed to determine 

what white matter regions vascular stiffening would most likely hinder.  We 

hypothesized that carotid artery stiffening would be negatively associated with a priori 

cerebral white matter regions that are closely related to executive function. 

STUDY #3:  

 The purpose of Study #3 was to determine whether individuals with metabolic 

syndrome (MetS) who habitually perform physical activity demonstrate lower arterial 

stiffness and more favorable cerebral white matter integrity than their sedentary peers.  

Our working hypothesis was that MetS patients who habitually exercise do not 

demonstrate arterial stiffening and reduced cerebral white matter integrity.  
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CHAPTER 2: VISCERAL ADIPOSITY PREDICTS SUBCLINICAL 

WHITE MATTER HYPERINTENSITIES IN MIDDLE-AGED 

ADULTS1 

Abstract 

Objective: Growing prevalence of neuropathology and cognitive impairment are 

emerging consequences of the obesity epidemic. Adiposity indices used in examining the 

relationships between obesity, neuropathology, and cognition vary substantially in the 

literature leading to incongruent findings. Our aim was to determine the anthropometric 

measures most strongly associated with early white matter disease and cognitive function 

at midlife. Method: Multiple adiposity indices were measured in 126 adults aged 40-62 

who also completed a magnetic resonance imaging (MRI) scan to quantify white matter 

disease and a cognitive test battery. Anthropometric indices of obesity were compared to 

image-based estimates of visceral adipose tissue with dual-energy x-ray absorptiometry 

(DEXA) as predictors of current white matter disease and cognitive function. We also 

explored sex as a potential moderator of these relationships. Results: Waist 

circumference (WC) was most strongly correlated with DEXA estimates of visceral 

adipose tissue (r=0.871, p<0.001). Increasing WC (β=0.231, p=0.034), percent body fat 

(β=0.230, p=0.045), and VAT (β=0.247, p=0.027) significantly predicted subclinical 

white matter hyperintensities in the absence of cognitive impairment after accounting for 

age, sex, years of education, and cardiovascular risk factors. Sex was not a significant 

1Pasha EP, Birdsill A, Parker P, Elmenshawy A, Tanaka H, Haley AP. Visceral 

adiposity predicts subclinical white matter hyperintensities in middle-aged adults. Obes  

Res Clin Pract. 2016. 

 

Pasha EP designed the investigation, acquired data, performed statistics and wrote the 

manuscript.  



 

 5 

moderator of any of the observed relationships. Conclusions: Of the anthropometric 

indices used in this study, WC, BF, and VAT successfully predicted subclinical white m 

atter disease in cognitively normal adults at midlife. Increasing VAT may independently 

insidiously affect cerebral white matter prior to detectable cognitive changes, 

necessitating early intervention.  
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Introduction 

Obesity in the United States has become a pressing public health issue with 68.5% 

of adults over the age of 20 fulfilling criteria for overweight or obesity, and 34.9% 

classified as having obesity in 2011-2012 (211). Despite recent public health measures to 

curb the increase in the number of individuals with obesity, a recent study suggested 

obesity rates could rise until a steady state proportion of 42% by 2050 (131). An 

emerging consequence of having obesity is neurologic disease and cognitive deficit, 

independent of other cardiovascular comorbidities (267). Because the relationships 

between obesity measures and cognitive function and brain structure appear non-linear 

due to age related changes in body composition, determining the most robust adiposity 

measurements during midlife for estimating neurological vulnerability and cognitive 

function is critical (112). 

Past work has suggested waist circumference (WC) as an ideal anthropometric 

measure of visceral adipose tissue (VAT) when investigating obesity in relation to 

cardiovascular comorbidities such as hypercholesterolemia and insulin resistance (230). 

VAT serves as an endocrine organ that secretes adipocytokines such as interleukins that 

can exacerbate inflammation and impair vascular function more than subcutaneous 

adipose tissue alone (17). VAT is a likely culprit behind observations linking higher body 

mass index (BMI) at midlife to increased risk of dementia in older age (114). 

Consequently, VAT could act to limit cerebral perfusion that can culminate in 

neuropathology and cognitive dysfunction (232) (62). In our own work with middle-aged 

adults, VAT has been linked to altered cortical thickness (157). Thus, anthropometric 
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measurements could be valuable indicators of early neurocognitive alterations if they 

accurately reflect visceral adipose tissue.  

Currently, adiposity measures remain substantially varied in the literature in 

prospective studies examining obesity in relation to neurologic disease and cognitive 

decline with great reliance on BMI.  However, BMI lacks specificity to appropriately 

quantify the deleterious VAT typically linked to adverse health outcomes (230). One 

study examined differences in the associations between obesity indices and cognitive 

function cross-sectionally and longitudinally at middle age (109). This group determined 

BMI and abdominal obesity measures including WC and waist-to-hip ratio (WHR) were 

all similarly associated with cognitive function tests in the global, executive and memory 

domains. (109). Nonetheless, these simple anthropometric indices have rarely been 

compared with an image-based estimate of VAT such as dual-energy x-ray 

absorptiometry (DEXA) in their associations to both neuropathology and cognitive 

function. Such a comparison can further elucidate the relative strength of relationships of 

obesity indices to neuropathology and cognitive function in younger adults.  

A well-founded neuropathological marker seen in dementia and Alzheimer’s 

disease is the volume of white matter hyperintensities (WMH) (40). WMH are usually 

denoted by areas of high intensity on T2 weighted magnetic-resonance imaging (MRI) 

scans that are believed to be the result of chronic hypoperfusion and correlated with 

myelin and axonal loss (41, 299). Prior studies have observed associations between body 

composition and WMH in the elderly (146), but reports of said relationship at midlife are 

scarce. One study reported no significant associations between anthropometric measures 

and computed tomography (CT)-based measurements of VAT with WMH volume three 
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years later in older middle age (mean age at CT = 64; mean age at MRI = 67 years) (68). 

This study also did not investigate the relationships between anthropometric measures 

and cognitive function. The purpose of our study was to determine the strength of 

associations of concurrently obtained BMI, WHR, WC, percent body fat (BF), and VAT 

with WMH and cognitive function in a younger middle-aged population (ages 40-60 

years). We hypothesized that DEXA generated adiposity measures of BF and VAT would 

be more sensitive in predicting WMH and cognitive function at midlife than traditional 

anthropometric body composition measurements.  

Methods 

Participants 

Recruitment through local newspaper and online advertisements generated a multi-racial 

sample of 126 community dwelling men and women aged 40-62 years representative of 

the Austin, Texas area. To be admitted to the study, participants had to have no pre-

existing cardiovascular disease (e.g., coronary artery disease, angina pectoris, myocardial 

infarction, heart failure, and cardiac surgery), overt neurological disease (e.g., stroke, 

Parkinson’s disease, and clinically significant traumatic brain injury), or 

contraindications to MRI assessed through self-report on a health history questionnaire. 

Additionally, participants were non-depressed and cognitively normal as determined by 

scoring <29 on the Beck Depression Inventory-II and >84 on the Wechsler Abbreviated 

scale of Intelligence-II (WASI-II) Full Scale Intelligence Quotient (FSIQ).  The local 

institutional review board approved the study and all participants gave informed consent. 

Health Assessment 
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Following an overnight fast of at least 8 hours, blood was collected from the antecubital 

vein via venipucture. Glucose and total cholesterol levels were determined using standard 

enzymatic technique. Brachial systolic and diastolic blood pressure was assessed in the 

supine position after a 15-min period of rest (VP-2000; Omron Healthcare, Bannockburn, 

IL). Participants completed a detailed health history questionnaire outlining medication 

use and current physical activity behavior.  

Obesity Indices 

Height and weight were measured with a stadiometer and digital scale respectively for 

the calculation of BMI as kg/m2. WC was measured with a measuring tape at the top of 

the iliac crest as measurement at the level of the navel may underestimate WC (60). The 

measuring tape was level to the floor and softly tightened without compressing tissues in 

accordance with National Heart, Lung and Blood Institute clinical guidelines (1). Hip 

circumference (HC) was measured in an identical method to WC but at the level of the 

greatest protrusion of the hips. Both WC and HC were recorded in centimeters to the 

nearest millimeter. WHR was then calculated as WC/HC. Estimates of BF and VAT were 

ascertained non-invasively with a lunar DXA DPX (General Electric Medical Systems, 

Fairfield, CT). Although DEXA is typically used to measure bone mineral density, it has 

been validated for body fat and visceral fat mass estimation with results similar to 

computed tomography (156, 326). BF was calculated as estimated total fat mass 

expressed as a percentage of whole body mass. To obtain an estimation of VAT, a region 

of interest with a caudal limit placed atop the iliac crest with its height set to 20% of the 

distance from the caudal limit to the base of the skull is automatically defined. Within 

this region, subcutaneous fat estimates are subtracted from total fat estimates to yield a 
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VAT estimate. During a separate visit, participants underwent a comprehensive cognitive 

function assessment and a MRI scan.  

Clinical Assessment 

The Beck Depression Inventory-II (BDI-II) was first used as a screening measure for 

depression, followed by a cognitive function battery that has been described in previous 

work (99). In short, administered tests included the Mini Mental State Examination 

(MMSE) to assess overall mental health status. Additionally, the Trail Making Test A 

and B, Wechsler Adult Intelligence Scale III (WAIS-III) Digit Span subtest, and Stroop 

interference subtest were used to characterize executive function. The California verbal 

learning test (CVLT)-II short delay free recall, long delay free recall, and recognition 

discriminability tasks characterized memory function. Domain specific Z-scores were 

created with timed tasks for directional congruity. Z-scores from tasks within each 

domain were averaged to create the executive function and memory domain score. 

Altogether, this procedure constituted a one hour testing battery.  Each of the chosen 

clinical instruments has established reliability and validity. Trained research assistants 

administered cognitive testing in the morning, irrespective of menstrual cycle for female 

participants. The same assistants performed all scoring, enabling standardization of 

administration.  

MRI Acquisition and Analysis 

MRI data was acquired on a 3T Siemens Skyra MRI scanner and included a T1 image of 

the entire brain acquired in the sagittal plane using a high-resolution ultrafast Gradient 

Echo 3D (MPRAGE) sequence (256×256 matrix, flip angle=7°, field of view 

(FOV)=24×24 cm2, 1 mm slice thickness, 0 gap). A T2 image was acquired using a fluid-
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attenuated inversion-recovery (FLAIR) sequence (axial plane, TE=75 ms, TR=9500 ms, 

FOV=24x24 cm2, 42 slices, 3 mm slice thickness, 0.3 gap).  

 WMH volume was quantified by Lesion Segmentation Tool version 1.2.3 

(http://www.applied-statistics.de/lst.html), an automated algorithm implemented in SPM8 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). A detailed description of The Lesion 

Segmentation Tool algorithm can be found elsewhere (249). Briefly, voxels were 

assigned to tissue probability maps and given a probability of being a white matter lesion 

based on spatial and intensity probabilities from T1 images and hyperintensity outliers on 

T2 FLAIR images. A conservative lesion belief map containing gray and white matter 

voxels was created and an initial threshold of 0.30 was applied to create lesion seeds. A 

growth algorithm then grew these seeds toward a liberal lesion belief map containing 

gray, white, and CSF lesion belief maps. A final threshold of 0.99 was applied to the 

resulting lesion belief map to remove any voxels with a lower probability of being a 

lesion. The resulting total volume of WMH was divided by intracranial volume, obtained 

through Freesurfer (https://surfer.nmr.mgh.harvard.edu/), and multiplied by 100 to give a 

white matter hyperintensity ratio (WMHr) in units of percentage of intracranial volume. 

Statistical analyses. Sample means and standard deviations for physiological and 

cognitive variables were assessed with descriptive statistics. All descriptive variables 

passed Shapiro-Wilk tests for normality except for VAT (Shapiro-Wilk Statistic=0.911, 

p<0.001) and WMHr (Shapiro-Wilk Statistic=0.520, p<0.001). Consequently, a square 

root transformation was performed on VAT and a natural log transformation was utilized 

on WMHr resulting in normality of both variables. To avoid multiple comparisons in the 

cognitive realm, domain scores for executive function and memory were created and used 

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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as primary outcome variables. An average of the Trails A, Trails B, WAIS-III Digit Span, 

and Stroop interference sample based z-scores constructed the executive function domain 

score. The z scores for timed tests were inverted, so that a higher score indicates better 

performance, consistent with the scoring of the tests where total correct responses was the 

outcome variable of interest.  An average of the sample-based z-scores for CVLT-II short 

delay free recall, long delay free recall and recognition discriminability tests formed the 

domain score for memory.  

To evaluate the relation between body composition measures, WMH, and 

cognitive function, two linear regression models were constructed for each outcome 

variable (WMH, executive domain score, and memory domain score). The first model 

statistically adjusted for age, sex, and education. The second model adjusted for age, sex, 

education, systolic blood pressure, total cholesterol and fasting glucose. Covariates were 

selected based on their existing relations to body composition and WMH within the 

literature (39, 147).  Because of known sex differences in the distribution of adiposity, 

sex differences in obesity indices, white matter disease, and domain cognitive function 

were compared with independent samples t-tests (155). Sex was also investigated as a 

moderating variable between body composition measures, white matter disease, and 

cognitive function using non-parametric bootstrapping (the MODPROBE macro for 

SPSS) (126). An alpha level of 0.05 was used as the criterion for statistical significance 

in parametric analyses; 95% confidence interval (CI) not containing zero was used as the 

criterion for statistical significance in the non-parametric analyses. Statistical analyses 

were performed with SPSS version 22.0 (IBM SPSS Inc, Chicago, IL).  
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Results 

Descriptive Statistics. Of the 126 participants recruited for this study, 57 (45.2%) 

were male and 69 (54.8%) were female. The sample was highly educated (16.3 ± 2.3 

years) and ethnically diverse with 74 (58.7%) participants identifying as Caucasian, 8 

(6.3%) as African American, 26 (20.6%) as Hispanic, 5 (4.0%) as Asian, and 10 (7.9%) 

as other or did not respond. Participants were middle aged (49.1 ± 6.6 years) and 

displayed overweight (28.5 ± 6.5 kg/m2) BMI, but presented with healthy blood pressure, 

fasting lipids, and glucose on average. Remaining participant descriptive characteristics 

are presented in Table 2.1. WMHr was 0.17% ± 0.26 reflecting a pathologically 

subclinical subject population (231).  

Obesity Indices. All anthropometric obesity indices as well as BF were 

significantly correlated with VAT. WC (r=0.871, p<0.001), had the strongest relation to 

VAT followed by BMI (r=0.693, p<0.001), WHR (r=0.574, p<0.001) and BF (r=0.473, 

p<0.001). Other significant relations existed between obesity indices and are enumerated 

in Table 2.2. T-tests revealed significant differences between sexes for all body 

composition measures (p<0.05) except BMI as shown in Table 2.3. 

Body Composition Indices and White Matter Hyperintensities. Correlation results 

of linear regression models of body composition indices and WMH are displayed in 

Table 2.4. In the first model, adjusting for age, sex and years of education, WC (β=0.184, 

p=0.049) and VAT (β=0.218, p=0.021) significantly predicted WMH whereas BMI 

(β=0.100, p=0.274), WHR (β=0.048, p=0.646), and BF (β=0.195, p=0.054) did not. The 

second model included clinically pertinent parameters of systolic blood pressure, total 

cholesterol and glucose that potentially influence white matter disease. After accounting 
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for these contributions, WC (β=0.231, p=0.034), BF (β=0.230, p=0.045), and VAT 

(β=0.247, p=0.027) remained as significant predictors of WMH. BMI (β=0.129, p=0.198) 

and WHR (β=0.034, p=0.767) remained statistically insignificant. All model residuals 

were normally distributed (Shapiro-Wilk, p>0.05). Significant relations from this final 

model are displayed in Figure 2.1a-c. Sex was not a significant moderator of the 

relationship between obesity indices and WMH with 95% CIs straddling zero for all 

predictors. 

Obesity Indices and Cognitive Function. Raw scores for individual cognitive 

function assessments are outlined in Table 2.5. Linear regression models relating obesity 

measures to executive function and memory domain scores are summarized in Table 2.6. 

Again, the first model accounted for age, sex, and years of education, with the second 

adding systolic blood pressure, total cholesterol and fasting glucose. Although most of 

these models were statistically significant, none of the obesity measures significantly 

contributed to any model (p>0.05). In these models, residuals were normally distributed 

when predicting executive function domain scores (Shapiro-Wilk, p>0.05). However, 

models predicting memory domain scores were not normally distributed (Shapiro-Wilk, 

p<0.05) despite transformations. Nonetheless, in memory domain models, the residual 

skewness range was -0.558 to -0.447 with a standard error of 0.225. Sex differences were 

observed in domain z-scores for memory (p=0.001) but not executive function (p>0.05). 

However, sex did not significantly moderate the relationships between obesity indices 

and cognitive function in either domain, as 95% CIs for the executive and memory 

domains straddled zero in both models.  
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Discussion 

The principal findings from the present study are as follows. Congruent with our 

hypothesis, estimated VAT consistently related to WMH. Of the anthropometric obesity 

measures typically employed to evaluate the associations of obesity, neuropathology and 

cognition, only WC was as robust as VAT in predicting subclinical white matter disease. 

WC also predicted early WMH independent of the influence of other cardiovascular risk 

factors. This finding indicates WC as a proxy measure of VAT is sensitive to early white 

matter vulnerability and possibly independently contributes to WMH. None of the 

observed adiposity measures significantly related to executive function or memory 

domain scores. WC appears to be the closest anthropometric reflection of abdominal fat, 

having the strongest correlation with VAT and corroborates visceral fat as a culprit 

behind obesity related WMH. WC was sensitive enough to predict early WMH prior to 

the precipitation of cognitive abnormalities middle-aged subjects with low WMH 

volume. This study supports the use of WC as a more robust measure of early white 

matter vulnerability at midlife than the oft-used BMI and WHR. WC is also a safe, 

inexpensive alternative to DEXA. Lastly, the observed relationships were similar in both 

men and women.  

Our findings are largely consistent with previous investigations relating obesity to 

neuropathology and cognitive function. Our group and others have demonstrated that 

many of these body composition indices are individually correlated with neuropathology, 

but investigations of obesity and WMH at middle age are few. In a sample of community 

dwelling Latinos with mean age of 70 years, 1-SD increase in WHR corresponded to a 

27% increase in WMH after accounting for sex, cholesterol, blood pressure, and other 
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covariates (146). Similarly, a prospective study of Swedish women determined a 1 kg/m2 

increase in BMI at age 70 doubled the risk of obtaining WMH later in life (116). In the 

present study, only WC, BF, and VAT predicted WMH while BMI and WHR did not. 

This finding leads to the possibility that proxy measures of VAT are more sensitive 

measures for detecting associations between obesity and WMH.  

In contrast to our results, a previous investigation observed no significant 

associations between BMI, WC, WHR, and computed tomography-based estimates of 

subcutaneous adipose tissue and VAT with WMH (68). In this study, statistical 

adjustments were made for age, sex, systolic blood pressure, smoking, diabetes mellitus, 

history of cardiovascular disease, physical activity, and BMI to their models and still no 

relation was found in their cohort with mean age 64 years for the CT evaluation and 67 

years for the MRI valuation. While both methodological (e.g., CT vs. DEXA estimates of 

VAT; 1.5T vs. 3T MRI, consecutive vs. concurrent measurements of VAT and WMH) 

and study population differences (older vs. younger adults; lower vs. higher average WC) 

could have contributed to these result discrepancies, one cannot discount the possibility 

of a complex, non-linear relationship between adiposity and neuropathology throughout 

the lifespan. 

Contrary to our hypothesis, we did not find any significant relationships between 

obesity measures and cognitive function domain z-scores. Our sample was young and 

highly educated, which may have provided these individuals greater cognitive reserve 

and rendered them more tolerant to the adverse effects of obesity related cognitive 

decline (279). The subject population also presented with minimal white matter disease 

volume. A study examining leuokaraiosis and phenotypic expression of dementia 
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suggested working memory performance was negatively affected when it involved at 

least 3% of the white matter (231). The amount of white matter present in the subject 

population of the current study was well under this threshold suggesting subjects have yet 

to accumulate sufficient disease to alter cognitive function. What is striking is that WC, 

BF, and VAT were related to seemingly trivial amounts of white matter disease that if left 

unidentified could silently accumulate and eventually precipitate in cognitive impairment.  

Prior evidence has established an association between obesity and impaired cognitive 

function. For example, our group showed that higher WC corresponded to a worse 

working memory related brain hemodynamic response in middle-aged adults.  This 

impairment corresponded with poorer working memory task performance (99). We also 

demonstrated that DEXA measured VAT can alter cortical thickness in midlife (157). 

Further evidence entails a study where men and women with elevated WC scored lower 

on the Grooved Pegboard Test and Stroop test (316). A separate study using BMI showed 

men and women with overweight or obesity performed worse on executive function tests 

(111). In a similar investigation of older women, individuals with obesity determined by 

BMI performed more poorly on executive function tasks compared to normal weight 

individuals and this decrement was associated with reduced gray matter volume in the 

orbitofrontal cortex (317).  

There are many mechanisms potentially responsible for visceral adipose tissue 

inducing white matter disease and subsequent cognitive dysfunction. One major 

pathophysiological antecedent to the occurrence of white matter hyperintensities is 

chronic ischemia (106). Cardiovascular risk factors such as hypertension and 

dyslipidemia are often comorbid with obesity and at subclinical levels can negatively 



 

 18 

affect cerebral perfusion (65). These risk factors may reduce cerebral perfusion through 

damaging the vascular endothelium resulting in impaired cerebral vasodilatory capacity 

(162). Adipose tissue is considered the largest endocrine organ in the body and secretes 

deleterious adipocytokines including interleukin-1, interleukin 6, tumor necrosis factor, 

leptin, and adiponectin, among others (232). It is well established that these 

adipocytokines exacerbate inflammation that disrupt the function of the vascular 

endothelium (11). Endothelial function aids in maintaining a sound blood-brain barrier 

and protecting small cerebral vessels from pulsatility and blocking toxic metabolites from 

entering the brain (30). Making matters worse, these adipocytokines can cross the blood-

brain barrier and affect the central nervous system (48, 322). Cross-sectional studies have 

shown proinflammatory cytokines are elevated in individuals with obesity, and play a 

role in dementia related neurodegeneration (105, 265). Further, in a cross-sectional study 

observing the role of inflammation and cognition in an elderly sample, increased IL-6 and 

C reactive protein correlated to increased cognitive decline (330). Although these 

outcomes may be distal to the population observed in the present study, the cumulative 

effects of adiposity at midlife, if untreated, may eventually surface as neuropathology and 

cognitive impairment through an inflammatory mechanism.  

Despite accomplishing the goal of our investigation, the present study is not 

without limitations. While there were many significant relations between body 

composition indices and WMH, the cross-sectional nature of this study means a causal 

link between obesity and WMH cannot be established. Other physiological markers and 

social factors may influence having obesity, neuropathology, and cognitive function 

independently or synergistically that we did not consider in this analysis. The role of pro-
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inflammatory cytokines that are typically elevated in individuals with overweight and 

obesity, and related to neuropathology, was not taken into account (322). Environmental 

factors such as socioeconomic status and social network strength, which may help stave 

off neuropathology and maintain cognitive function, were also not considered in this 

study (90, 96). While we did not consider these other factors in our analyses, their role in 

influencing the relations of obesity, neuropathology, and cognitive function should be 

considered in future work. Another potential limitation we encountered was a highly 

educated sample. Having a highly educated sample could ostensibly mask significant 

associations between neuropathology and current cognitive function through increased 

cognitive reserve. Finally, statistical adjustments for multiple comparisons were not 

employed. 

This study greatly benefited from the characteristics of the observed sample. The 

sample was racially diverse, and included an equal number of men and women, 

permitting for generalizability of our findings. Importantly, participants were relatively 

young, without major comorbidities, and had minimal white matter disease, emphasizing 

the utility of WC and DEXA body composition measures as early markers of white 

matter disease preceding deterioration of cognitive function.  This study also benefited by 

being one of the first to compare traditional and imaging body composition indices in 

their predictive value of early white matter disease and cognitive function. 

Conclusions 

In summary, after contrasting popular anthropometric obesity indices to image-

based estimates of visceral adiposity, only WC was as successful in predicting obesity 

related subclinical white matter disease at midlife as BF and VAT.  WC had the strongest 
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correlation with VAT. These results are congruent with and buttress literature that 

identifies WC as the ideal anthropometric measure when studying body composition in 

relation to neurocognitive vulnerability. This finding held true even after statistical 

adjustment for cardiovascular influences on WMH, suggesting increasing visceral 

adiposity independently negatively affects cerebral white matter at midlife prior to 

disruptions of cognitive function. While these findings need further replication and 

validation in large cross-sectional and prospective studies at midlife, we assert that future 

investigations relating obesity to brain structure and function should employ WC rather 

than BMI or WHR.  
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Table 2.1. Selected participant characteristics 
 

  Variable Mean ± SD 

Descriptive Male/Female 57/69 

 

Age, y 49.1 ± 6.7 

 

Caucasian, n (%) 74 (58.7) 

 

African American, n (%) 8 (6.3) 

 

Hispanic, n (%) 26 (20.6) 

 

Asian, n (%) 5 (4.0) 

 

Other, n (%) 8 (6.3) 

 

Did not respond, n (%) 2 (1.6) 

 

Education, y 16.3 ± 2.3 

 

Systolic Blood Pressure, mmHg 120 ± 12 

 

Diastolic Blood Pressure, mmHg 72 ± 9 

 

Total Cholesterol, mg/dL 199 ± 37 

 

High Density Lipoprotein, mg/dL 52 ± 16 

 

Low Density Lipoproteins, mg/dL 125 ± 33 

 

Triglycerides, mg/dL 112 ± 58 

 

Glucose, mg/dL 99 ± 29 

 

Body Mass Index, kg/m2 28 ± 7 

 

Waist Circumference, cm 94.8 ± 15.4 

 

Waist to Hip Ratio 0.89 ± 0.10 

 

Body Fat, % 34.1 ± 10.9 

 

Visceral Adipose, g 1121 ± 883 

 

White Matter Hyperintensity, % 0.17 ± 0.26 

Physical Activity  Moderate to Vigorous Exercise, hours/week 2.1 ± 6.5 

 

Moderate to Vigorous Exercise, bouts/week 3.7 ± 3.0 

 

Sitting, hours/day 8.3 ± 4.0 

Medications Anti-Hypertensive Medication, n (%) 21 (16.7) 

 

Lipid Lowering, n (%) 14 (11.1) 

 

Anti-Diabetic Medication, n (%) 5 (4) 

 

Hormone Replacement Therapy, n (%) 8 (6.3) 

 

Birth Control, n (%) 3 (2.4) 
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Table 2.2. Pearson's correlation coefficients between adiposity indices 

Index BMI WHR WC BF VAT 

BMI 1 .324** .850** .630** .693** 

WHR - 1 .643** .061 .574** 

WC - - 1 .560** .871** 

BF - - - 1 .473** 

VAT - - - - 1 

VAT, square root visceral adipose tissue; WC, waist circumference; BMI, body 

mass index; WHR, waist to hip ratio; BF, body fat percent 

**p< 0.01 

      

 

Table 2.3. Cognitive function assessment raw scores 

Measure Mean ± SD 

Global Cognition 

Mini Mental State Exam 28.7 ± 1.4 

 WASI-II 
 

FSIQ-2 Subtests 114.1 ± 12.5 

BDI-II 6.6 ± 5.3 

  Memory 

  CVLT-II 

Short delay free recall 11.0 ± 3.1 

Long delay free recall 11.6 ± 2.7 

Recognition discriminability 3.0 ± 0.7 

  Executive Function 

Trail making test A, s 29.1 ± 9.8 

Trail making test B, s 65.0 ± 29.1 

WAIS-III digit span subtest, total 20.3 ± 4.2 

Stroop interference 41.7 ± 10.6 

WASI-II, Wechsler Abbreviated scale of Intelligence II; 

CVLT-II, California Verbal Learning Test II; WAIS-III, 

Wechsler Adult Intelligence Scale III 
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Table 2.4. Linear regression models depicting the association between body composition 

indices and white matter hyperintensities 

  Predictor Model p β S.E. Predictor p 

Model 1 BMI 0.045* 0.100 0.014 0.274 

 

WHR 0.072 0.048 1.058 0.646 

 

WC 0.015* 0.184 0.006 0.049* 

 

BF 0.015* 0.195 0.009 0.054 

 

VAT 0.008* 0.218 0.007 0.021* 

      Model 2 BMI 0.109 0.129 0.016 0.198 

 

WHR 0.214 0.034 1.130 0.767 

 

WC 0.050* 0.231 0.007 0.034* 

 

BF 0.048* 0.230 0.010 0.045* 

  VAT 0.035* 0.247 0.008 0.027* 

BMI, body mass index; WHR, waist to hip ratio; WC, waist circumference; BF, 

body fat percent; VAT, square root visceral adipose tissue; SE, standard error 

*p<0.05 

Model 1: Age, sex, years of education controlled 

Model 2: Age, sex, years of education, blood pressure, total cholesterol, glucose 

controlled 
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Table 2.5. Linear regression models depicting the association between body composition 

indices and cognitive domain scores 

 

Domain Predictor Model p β S.E. Sig. 

Model 1 Executive  BMI 0.119 -0.062 0.009 0.500 

 

Function WHR 0.109 -0.087 0.673 0.406 

  

WC 0.110 -0.078 0.004 0.412 

  

BF 0.099 -0.099 0.006 0.338 

  

VAT 0.137 -0.030 0.004 0.754 

       

 

Memory BMI 0.001** 0.013 0.011 0.878 

  

WHR 0.001** -0.103 0.850 0.292 

  

WC 0.001** -0.054 0.005 0.545 

  

BF 0.001** 0.025 0.007 0.800 

    VAT 0.001** -0.022 0.006 0.807 

Model 2 Executive  BMI 0.016* 0.017 0.010 0.863 

 

Function WHR 0.015* 0.024 0.710 0.824 

  

WC 0.014* 0.050 0.004 0.643 

  

BF 0.016* 0.000 0.006 0.997 

  

VAT 0.001** 0.138 0.005 0.211 

       

 

Memory BMI 0.001** 0.013 0.013 0.891 

  

WHR 0.001** -0.118 0.926 0.271 

  

WC 0.001** -0.056 0.006 0.588 

  

BF 0.480 0.078 0.008 0.480 

    VAT 0.001** 0.013 0.007 0.903 

BMI, body mass index; WHR, waist to hip ratio; WC, waist circumference; BF, 

body fat percent; VAT, square root visceral adipose tissue; SE, standard error 

*p<0.05 

**p<0.01 

Model 1: Age, sex, years of education controlled 

Model 2: Age, sex, years of education, blood pressure, total cholesterol, glucose 

controlled 
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Figure 2.1a-c. Linear regression plots depicting the relationship of (a) waist 

circumference (b) body fat percentage (c) visceral adipose tissue and white matter 

hyperintensities.  
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CHAPTER 3: INDIRECT IMPACT OF MIDLIFE ARTERY 

STIFFENING ON COGNITION THROUGH CERBRAL WHITE 

MATTER MICROSTRUCTURE INTEGRITY 

Abstract 

Objective: In addition to being an independent predictor of cardiovascular events, aortic 

stiffness is related to cognitive dysfunction, white matter disease, and dementia in elderly 

individuals. Whether stiffening of the central artery is related to white matter integrity 

and cognitive function at midlife remains unknown. Our aim was to determine if 

subclinical carotid artery stiffening is associated with lower cerebral white matter 

integrity (CWMI) at midlife in a priori regions of interest (ROIs) susceptible to vascular 

and cognitive aging. Methods: A multi-racial, community dwelling, non-depressed, 

cohort of middle-aged (40-61 years) adults without clinically evident cognitive 

impairment was recruited (n=143). Simultaneous ultrasound imaging and arterial 

tonometry were used to assess carotid arterial compliance, distensibility, and the β-

stiffness index. Diffusion tensor imaging (DTI) measured fractional anisotropy (FA), and 

mean diffusivity (MD) in a priori ROIs as indices of CWMI. Executive function, 

processing speed, and memory domain scores were determined from a cognitive battery. 

Results: Anterior limb of the internal capsule (ALIC) and cingulum CWMI were 

associated with arterial stiffness metrics (p<0.05) independent of age, sex, and waist 

circumference. Cingulum FA was associated with executive function and processing 

speed (both p<0.05), and carotid artery compliance negatively affected processing speed 

indirectly through superior corona radiata MD (β=5.6, 95% CI= 0.58 to 19.14). 

Conclusions:  We identified multiple white matter regions vulnerable to the effects of 

carotid artery stiffening in midlife, including independent associations. Susceptible 
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regions were associated with executive function and processing speed with arterial 

stiffness indirectly affecting processing speed. These data suggest that arterial stiffening 

may negatively affect CWMI prior to clinically overt cognitive decline. 
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Introduction 

Stiffening of the vasculature, known as arteriosclerosis, occurs with aging and 

chronic exposure to cardiovascular risk factors (174). Arterial stiffness is characterized 

by remodeling of scaffolding proteins such that stiff collagen fibers are increased, while 

the number of flexible elastin fibers is diminished (340).  Maintenance of vascular 

elasticity is critical for maintaining Windkessel function, the ability to buffer and cushion 

pulsatile forces that accompany each heartbeat and convert them into smooth continuous 

blood flow (31). Loss of this function leaves the microvasculature vulnerable to 

damaging pulsatile stress, making end organs susceptible to hypoperfusion and hypoxic 

injury (197, 290).  

In addition to being an independent predictor of cardiovascular events, arterial 

stiffening is associated with increased risk of white matter lesions, cerebral stroke, and 

dementia in older elderly populations (193, 241, 253). Vascular dysfunction is an early 

and persistent pathological hallmark in the decline from healthy cognitive functioning to 

dementia (143). In older adults, central artery stiffening is associated with decreased 

global cognitive functioning, processing speed, and perceptual speed but not verbal 

memory (318). Consistent with this notion, individuals with vascular cognitive 

impairment appear to have weakened cognitive function with the greatest deficits to 

executive function and processing speed while memory is least affected (309). 

  Descriptive assessment of cerebral white matter integrity (CWMI) has been 

popularized since the advent of diffusion tensor imaging (DTI) because of its ability to 

characterize subtle changes of water diffusion in white matter tracts in vivo (12). 

Fractional anisotropy (FA) determined from DTI represents directional parallelism of 
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water diffusion in white matter tracts and is reflective of healthy white matter. 

Conversely, mean diffusivity (MD) represents the magnitude of water diffusion with 

greater magnitude reflective of poorer CWMI. CWMI tends to peak as early as the third 

decade of life before beginning a subtle decline in midlife from the fourth to sixth decade 

of life after which a steep decline ensues (320).  

Arterial stiffening of the cardiothoracic arteries is associated with both decreased 

CWMI and cognitive performance in healthy and cognitively impaired older adults (288).  

Additionally, arterial stiffening is related to reduced perfusion of frontal white matter 

responsible for facilitating the performance of executive function tasks (290). Taken 

together, these findings suggest that arterial stiffening, representing global vascular 

dysfunction, attenuates cerebral perfusion and compromises CWMI. Whether this 

potential mechanism operates during midlife prior to stark decline of CWMI or evidence 

of overt cognitive impairment remains unknown. Most investigations associating arterial 

stiffness to CWMI have relied upon the abdominal aorta rather than assessing the carotid 

artery and examined older populations (158, 212, 241). Ostensibly, alterations to carotid 

elasticity could more directly impact cerebral parenchyma because of its proximity to the 

cerebral circulation. 

With this information as background, the primary aim of this investigation was to 

determine if midlife stiffening of the carotid artery is associated with lower CWMI in a 

priori regions of interest (ROIs) susceptible to vascular aging. Secondly, we aimed to 

determine if carotid artery stiffening could directly or indirectly affect cognitive function. 

To accomplish these aims, robust assessment tools of ultrasound imaging and DTI 

magnetic resonance imaging sensitive to subtle alterations to white matter were 
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employed. We hypothesized that increased arterial stiffness would be negatively 

associated with DTI metrics of healthy CWMI and cognitive performance. We further 

hypothesized that arterial stiffness would negatively affect executive function and 

processing speed indirectly through CWMI. 

Methods 

Participants. A multi-ethnic sample of 143 community-dwelling men and women 

in midlife (aged 40-61 years) representative of the Austin, Texas area was recruited 

through local newspaper and online advertisements. To be eligible, participants had to 

have no pre-existing cardiovascular disease (e.g., coronary artery disease, angina 

pectoris, myocardial infarction, heart failure, and cardiac surgery), overt neurological 

disease (e.g., stroke, Parkinson’s disease, and clinically significant traumatic brain 

injury), or contraindications to MRI assessed through self-report on a health history 

questionnaire. Participants scoring >19 on the Beck Depression Inventory-II, indicating 

moderate to severe depression were excluded. All subjects provided informed consent, 

and the local institutional review board approved this study. 

Health Assessment. Participants completed a detailed health history questionnaire 

outlining medication use and current physical activity behavior. Blood samples were 

collected from the antecubital vein through venous puncture after subjects reported to the 

laboratory following an overnight fast of at least 8 hours. Plasma glucose and lipid 

concentrations were determined using standard enzymatic technique. Brachial systolic 

and diastolic blood pressures were assessed in the supine position after a 15-min period 

of rest using a blood pressure device (VP-2000; Omron Healthcare, Bannockburn, IL).  
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Carotid Artery Stiffness Measurement.  A B-mode image of the left common 

carotid artery was captured longitudinally using an iE 33 Ultrasound System (Philips, 

Bothell, WA) outfitted with a high-resolution linear-array transducer. Images of the near 

and far wall interfaces were captured perpendicular to the carotid artery 1-2 cm proximal 

to the carotid bulb. Ultrasound images were digitized and saved in DICOM format for 

later analysis with computerized image-analysis software (Vascular Research Tool 

Carotid Analyzer, Medical Imaging Applications, Coralville, IA) by an investigator who 

was blinded to subject’s cardiovascular health. Simultaneously, pulse pressure 

waveforms from the contralateral common carotid artery were gathered with arterial 

applanation tonometry (VP-2000; Omron Healthcare, Kyoto, Japan). Because various 

arterial stiffness indices appear to reflect different aspects of the arterial wall property, a 

variety of arterial stiffness indices were calculated (180).  Arterial elasticity 

characteristics were described through arterial compliance and distensibility. These 

measures respectively assess the absolute and relative change in diameter of the carotid 

artery for a given pressure step at fixed vessel length (209). The β-stiffness index was 

used to determine carotid artery stiffness calculated as a stiffness measure that was 

relatively independent of distending pressure. 

DTI Acquisition. A 3T Siemens Skyra system (Siemens Medical Solutions, 

Malvern, PA) with a 32-channel head coil was used to execute MRI. To acquire images 

in 64 directions at b=700 s/mm, a diffusion-weighted, spin-echo, echo planar imaging 

pulse sequence was used. A non-diffusion weighted reference image was gathered with 

b=0. Neighboring 2 mm slices were collected anterior to posterior to cover the cerebrum 

with the following parameters: FOV = 256 mm, TR = 8,300 ms, TE = 84 ms. To 
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minimize EPI distortions and optimize the homogeneity of the magnetic field across the 

brain, advanced shimming was implemented prior to diffusion-weighted imaging.  

 Using the methods of Hui Zhang et al. (338), diffusion-weighted images were 

processed with high-dimensional normalization that employed the full tensor, instead of 

tensor-derived indices in the following processing pipeline. First, using FSL 

(http://www.fmrib.ox.ac.uk/fsl/), motion and eddy current distortions were corrected with 

affine transformations. FSL’s brain extraction tool was used to remove non-brain signal. 

FSL’s dtifit function (http://cmic.cs.ucl.ac.uk/camino/) performed tensor fitting.  

A study-specific template based on 122 participants was created using iterative 

rigid, affine, and diffeomorphic alignments of the full tensor in DTI-TK 

(http://www.nitrc.org/projects/dtitk/). Each individual’s tensor map was normalized to the 

study-specific template map using rigid, affine, and diffeomorphic alignments in DTI-

TK.  The study-specific template was then registered to standard space using the IIT 

Human Brain Atlas (www.nitrc.org/projects/iit2). Using DTI-TK, standard space FA 

maps were calculated from each subject’s tensor map. ROIs were defined in standard 

space using the Johns Hopkins International Consortium. ROIs were determined a priori 

based on existing literature as described below. Each participant’s FA map was masked 

by each ROI and the resulting FA ROIs were thresholded at 0.2 to exclude non-white 

matter signal. The average FA value from each ROI was then extracted. MD maps were 

calculated in subject space. To define ROIs in subject space, inverse deformation fields 

were calculated from standard space to subject space and applied to the ROIs.  

Region-of-Interest Determination. ROIs were established a priori for their pre-

existing reported relationships with cognitive aging, arterial stiffness, and aerobic fitness. 

http://www.fmrib.ox.ac.uk/fsl/
http://cmic.cs.ucl.ac.uk/camino/
http://www.nitrc.org/projects/dtitk/
http://www.nitrc.org/projects/iit2
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ROIs related to aerobic fitness were included because of chronic aerobic fitness has been 

shown to benefit arterial stiffening (286). The corpus callosum (CC) comprised of the 

genu, body, and splenium have been investigated as white matter regions vulnerable to 

aging (158), dementia (127), and arterial stiffening (186, 288). Arterial stiffness has also 

been related to the corona radiata and internal capsule (186, 288). Lastly, aerobic fitness 

has been associated with the cingulum, cingulum (hippocampal), and uncinate fasciculus 

(190, 191). 

Cognitive Assessment. A cognitive performance battery was administered 

containing assessments of global cognitive function, including the Mini Mental State 

Examination (MMSE), Wechsler Abbreviated Scale of Intelligence-II Full Scale 

Intelligence Quotient subtest, Beck Depression Inventory-II (BDI-II).  The executive 

function domain was characterized by study specific z-scores on the Trail Making Test A 

and B, Wechsler Adult Intelligence Scale III (WAIS-III) Digit Span subtest, and Stroop 

interference subtest.  Z-scores were inverted on timed tasks for directional congruity and 

averaged to construct an executive function domain score. Processing speed was 

measured by constructing a domain score using the same technique with the Trail Making 

Test A, Stroop word, and Stroop color tasks included. The memory domain was 

comprised of the California Verbal Learning Test (CVLT)-II short delay free recall, long 

delay free recall, and recognition discriminability tasks. Cognitive function testing lasted 

approximately one hour and was performed with research assistants trained in 

administration of these tests. The same assistants completed scoring all tests in an effort 

to maintain the highest standardization. 
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Statistical analyses. Physiological and cognitive variables were presented as 

sample means and standard deviations. The statistical analysis pipeline proceeded in three 

steps as follows. First, the relations of arterial stiffness to CWMI were determined with 

bivariate correlations. To determine the independent effect of arterial stiffness on CWMI 

in ROIs with significant bivariate correlations, general linear models adjusted for age, 

sex, and waist circumference were performed. Second, white matter regions associated 

with arterial stiffness, determined from significant bivariate correlations, were examined 

in relation to cognitive function domain z-scores by performing general linear models 

with age, sex, waist circumference and years of education entered as covariates.  Age and 

sex were included because of their known effects on CWMI (142). In addition, waist 

circumference was related to CWMI in this sample using whole brain analysis (Birdsill et 

al., unpublished data). Additional potential cardiovascular covariates (e.g., blood 

pressure, fasting glucose, triglycerides, and cholesterol) were not included as none was 

related to CWMI. Third, direct and indirect effects of arterial stiffness on cognitive 

function through CWMI were determined using non-parametric bootstrapping procedure 

in Preacher and Hayes’ SPSS Process macro (125).  Unlike mediation, a significant direct 

association between the independent and dependent variables is not required for indirect 

effects to be present. This procedure was performed only if associations existed between 

arterial stiffness and CWMI, CWMI and cognitive function, and an absence of direct 

association between arterial stiffness and cognitive function. In short, this procedure 

takes 1,000 random samples with replacement from the obtained data and calculates the 

indirect effect for each sample. 95% confidence intervals (CIs) were calculated from the 

distributions of obtained scores over the samples correcting for bias due to the underlying 
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distribution. Here, cognitive domain scores were used as dependent variables, arterial 

stiffness measures as the independent variables, and white matter metrics as the mediator. 

Age, sex, waist circumference, and years of education were included in all paths of the 

model as covariates. A 95% bias-corrected CI that excluded 0 was considered significant.  

A Bonferroni correction for multiple intercorrelated outcomes was used to 

determine the level of statistical significance (alpha p<0.02). Because the aim of this 

investigation was to determine the early or subclinical role of arterial stiffness on CWMI 

and cognitive function small effects were of interest, the uncorrected alpha p<0.05 was 

also noted in tables. SPSS version 24 (SPSS Inc; IBM, Armonk, NY) was used to 

perform all statistical analyses. 

Results 

Subject Characteristics.  Table 3.1 displays the basic physiological characteristics 

of the subject population. Participants were middle-aged, physically active, and well 

educated. Additionally, subjects were ethnically diverse (37% minority). Metabolic 

syndrome was prevalent in the sample (25.2%) with the average individual meeting 

National Heart Lung and Blood Institute and World Health Organization criteria for at 

least one component (10). Subject’s arterial stiffness and CWMI characteristics are 

delineated in Table 3.2 and Table 3.3.  

Arterial Stiffness and Fractional Anisotropy. Bivariate correlations between 

arterial stiffness indices and DTI metrics of white matters ROIs are outlined in Table 3.4. 

Anterior limb of the internal capsule (ALIC) FA was significantly associated with arterial 

compliance (r=0.23, p=0.006) and β-stiffness (r=-0.20, p=0.016). Corpus callosum (CC) 

splenium FA was trending to be associated with β-stiffness (r=-0.17, p=0.039) as was the 
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association of Cingulum FA with distensibility (r=0.17, p=0.047), while Cingulum FA 

was significantly associated with arterial compliance (r=0.25, p=0.002). All other 

relations did not achieve significance (p>0.05). 

Age, sex, and waist circumference were added as covariates to general linear 

models to ascertain the independent associations between stiffness measures and CWMI 

in regions indicated significant on bivariate analysis. These models are depicted in 

Figure 3.1a-b. In these models, ALIC FA remained significantly associated with arterial 

compliance (pr=0.22, p=0.008) and trended with β-stiffness index (r=-0.19, p=0.026). FA 

of the CC splenium lost significance with arterial distensibility (r=0.15, p=0.088). Lastly, 

cingulum FA remained significantly related to arterial compliance (r=0.22, p=0.008) and 

was trending with distensibility (r=0.17, p=0.048). 

Mean Diffusivity. From bivariate correlations, arterial compliance (r=-0.28, 

p=0.001), arterial distensibility (r=-0.28, p=0.001), and β-stiffness index (r=0.23, 

p=0.005) were all significantly associated with MD of the ALIC. Cingulum 

(hippocampal) MD was trending significance with β-stiffness (r=-0.19, p=0.026).  

Associations of superior corona radiata (SCR) MD were trending with arterial 

compliance (r=-0.16, p=0.05) and distensibility (r=-0.18, p=0.028). All other correlations 

were not significant.  

 After applying age, sex, and waist circumference as covariates to general linear 

models in instances of significant bivariate correlations, ALIC MD was significantly and 

independently associated with arterial compliance (r=-0.26, p=0.002), distensibility (r=-

0.24, p=0.005), and trending with β-stiffness index (r=-0.20, p=0.021). Associations of 
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cingulum (hippocampal) with β-stiffness index and SCR with arterial compliance and 

distensibility were abolished (p>0.05) with the introduction of covariates.   

Cognitive Function.  Executive function, processing speed, and memory were 

investigated for relations to arterial stiffness, and white matter regions demonstrating 

significant bivariate associations with arterial stiffness. Bivariate correlations of 

executive function and memory with arterial stiffness indices were not significant 

(p>0.05).  Processing speed was significantly related to arterial distensibility (r=0.20, 

p=0.017) and trending with β-stiffness index (r=0.19, p=0.023). Cingulum FA was 

significantly related to executive function (r=0.196, p=0.020) while all other regions were 

not related (p>0.05). Cingulum FA trended with (r=0.20, p=0.022), while cingulum 

(hippocampal) MD (r=-0.24, p=0.004), and SCR MD (r=-0.20, p=0.015) were each 

related to processing speed. ALIC FA, splenium FA, and ALIC MD were not associated 

with processing speed (p>0.05). 

 Age, sex, waist circumference, and years of education were added as covariates in 

general linear models to further scrutinize these relationships. Including these covariates, 

cingulum (hippocampal) MD (r=-0.22, p=0.010) remained significant and SCR MD was 

trending (r=-0.17, p=0.046) significance with processing speed while all other previously 

significant bivariate correlations were lost (p>0.05). 

Indirect Effects.  To assess the indirect effects of arterial stiffness on cognitive 

function through CWMI, non-parametric bootstrapped mediation models were employed. 

Because significant associations between β-stiffness index, cingulum (hippocampal) MD, 

and processing speed were present with covariates, the effect of arterial stiffness on 

processing speed through cingulum (hippocampal) MD was assessed. Including age, sex, 
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waist circumference, and years of education in the indirect effects model, no significant 

relation was detected (β=-0.01, 95% CI= -0.04 to 0.00). This analysis was repeated for 

arterial compliance, SCR MD, and processing speed as well as arterial distensibility, SCR 

MD, and processing speed. As displayed in Figure 3.2, the indirect path of arterial 

compliance to processing speed through SCR MD was statistically significant (β=5.6, 

95% CI= 0.58 to 19.14), although the same path with arterial distensibility was not 

(β=31.89, 95% CI= -3.65 to 98.26). 

Discussion 

The present cross-sectional investigation of community-dwelling middle-aged 

adults aimed to determine the associations of carotid artery stiffening to cerebral CWMI 

in a priori ROIs, as well as their relations with cognitive function. We found stiffening of 

the carotid artery to be significantly associated with integrity of multiple cerebral white 

matter regions vulnerable vascular dysfunction independent of age, sex, and waist 

circumference. These regions were also related to processing speed but to neither 

executive function nor memory performance after the addition of covariates. Arterial 

compliance had a significant indirect effect on processing speed through cingulum 

CWMI. This evidence, to our knowledge, is the first demonstrating midlife carotid artery 

stiffening to be negatively associated with cerebral CWMI and indirectly related to worse 

cognitive function.  

 With accumulating evidence pointing to a common vascular etiology of 

Alzheimer’s disease and vascular dementia, determining early influences of arterial 

health on the brain prior to overt cognitive symptoms may be informative particularly for 

intervention purposes (64, 137, 153). To date, most studies examining the relationship of 
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arterial stiffness, white matter health, and cognitive function have relied on aortic pulse 

wave velocity (PWV) and white matter hyperintensities showing consistent associations 

(158, 212, 241). However, the carotid artery may be more anatomically relevant to the 

cerebral circulation than the aorta, and damage to the white matter may occur prior to 

manifestation of white matter hyperintensities (47, 210).  

By measuring carotid artery stiffness, we were able to identify multiple 

associations of arterial stiffness with integrity of white matter regions in cognitively 

healthy community dwelling middle-aged adults. Meanwhile, the aforementioned studies 

were either reliant on older or clinical populations to demonstrate relations of aortic 

stiffness to CWMI or cognitive function (158, 212, 241). In older and clinical 

populations, irreversible vascular-related white matter damage may have already been 

accumulated. Investigating cognitively intact middle-aged adults allows for the detection 

of early white mater damage that may be ameliorated with clinical interventions.   

More recent investigations are reflective of a shift to using DTI as a marker of 

early white matter vulnerability in middle-aged populations before incipient cognitive 

impairment (137, 153, 234). Pulse pressure, a surrogate of arterial stiffness, is 

significantly associated with reduced CWMI in prefrontal white matter and the ALIC of 

older adults (age >64 years), as well as the CC Genu (158). An investigation of middle-

aged type 1 diabetic men yielded independent associations between aortic PWV and 

whole brain CWMI (295).  A large cross-sectional study of community dwelling middle-

aged adults detected a significant association between aortic PWV and reduced FA of the 

corpus callosum and corona radiata (186). In cognitively normal older adults and those 

with mild cognitive impairment, carotid-femoral PWV was negatively associated with 
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DTI indices of CWMI globally and within the corona radiata, internal capsule and 

superior longitudinal fasciculus (288). In the latter study, global measures of CWMI were 

significantly associated with the Trail Making Test B-A executive function task.  

The most robust relationships identified in the present study were stiffness metrics 

with the ALIC and cingulum. Damage to the ALIC is consistent with reports of an 

anterior to posterior vulnerability gradient previously observed in aging individuals and 

those with metabolic syndrome (261, 334). The ALIC bundle extends to the frontal lobe 

and white matter lesions in this region have been related to diminished executive function 

in older adults (268). Individuals with subcortical ischemic vascular disease without 

dementia exhibited diminished CWMI in the ALIC and cingulum, along with many other 

tracts (181). The absence of other regions being affected by arterial stiffness indicate that 

changes to the ALIC and cingulum may be primary to more diffuse white matter damage 

that occur further along the pathology spectrum (262, 339).   

Among the regions we identified as vulnerable to arterial stiffening, integrity of 

the cingulum and SCR was also related to processing speed, although the relation with 

SCR MD was lost with the addition of covariates. Still, arterial stiffness had a significant 

indirect effect on processing speed through SCR CWMI following non-parametric 

bootstrapping with covariates. Cingulum FA was positively associated with executive 

function and processing speed in older adults without dementia and elsewhere linked to 

information processing speed in normal aging (154, 246). Taken together, these findings 

are suggestive of a temporal relationship behind observations of arterial stiffening and 

dementia in older adults and those with cognitive complaints (120, 219, 220). It is 

possible that arterial stiffness preferentially affects regions of cerebral white matter 
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without disruption of cognitive function until the accumulation of subtle but consistent 

damages results in reduced processing speed and eventually clinically apparent 

symptoms. However, this mechanistic relationship needs further investigation and cannot 

be established from the present study.  

How arterial stiffening damages the cerebral white matter remains to be fully 

elucidated but may likely be multifactorial. As large arteries lose elasticity, their ability to 

buffer pulsations from the heart is diminished (31). The resulting mechanical stress is 

transferred to inelastic microvasculature at end organs such as the brain (135, 319). An 

environment of chronic low-grade hypoperfusion and breakdown of the blood brain 

barrier initiates inflammation resulting in stifled energy delivery and waste clearance 

(138, 256, 290). Together, these perturbations could harm oligodendrocytes and induce 

demyelination (88, 194). With myelin degeneration, oligodendrocyte’s production of 

trophic factors, including insulin-like growth factor-1 and glial-derived neurotrophic 

factor may be reduced. Loss of these neurotrophic factors causes axonal damage and 

further demyelination (324). Additionally, oligodendrocyte progenitor cells charged with 

repairing damaged WM and remyelinating axons are unable to properly mature. Fixed in 

an immature state, they are powerless to reconstruct myelin due in part to hypoxia (20, 

21, 80). Because of myelin’s critical role in facilitating action potential potentiation, its 

degradation impedes cortical communication and disrupts cognitive function. With 

enough severity, this damage becomes radiologically evident via white matter lesions or 

altered indices of CWMI as we observed with reduced FA or increased MD, perhaps 

indicating reduced myelination or membrane density as we observed (28).  
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 The current investigation benefited from a large heterogeneous sample of 

community dwelling middle-aged individuals who have yet to develop overt cognitive 

impairments. Using robust imaging techniques to determine carotid artery stiffness and 

highly sensitive DTI-MRI enabled the identification of multiple cerebral white matter 

regions demonstrating early susceptibility to arterial stiffening.  These relations are made 

possible by DTI, an imaging modality more sensitive to and descriptive of white matter 

changes than more traditionally used T2 weighted MRI (283). The assessment of the 

carotid artery in relation to CWMI and cognitive function is also advantageous compared 

with the abdominal aorta because it is more anatomically relevant to the cerebral 

circulation.  

The greatest limitation of the current study is its cross-sectional nature. As such, 

any claims of arterial stiffness directly affecting CWMI or cognitive function are 

precluded. Nonetheless, associations of arterial stiffness measures to multiple CWMI 

 regions were identified.  These relationships were not subjected to strict multiple 

comparison control.  Thus, type 1 error inflation may exist although error control was 

considered in our results and interpretation. Additionally, the strengths of the 

relationships detected may be considered small in magnitude. This is likely because we 

examined a middle-aged cohort without overt cardiovascular diseases that only exhibited 

mild arterial stiffening.  Therefore, we would expect the relationships between arterial 

stiffness and CWMI to be subtle at this early stage in the pathological process.  

 In summary, we were able to identify multiple white matter regions vulnerable to 

stiffening of the carotid artery during midlife. The most robust relation observed was 

anatomically anterior, suggesting anterior regions may be primarily degraded from 
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arterial stiffening. Arterial stiffening had an inverse indirect effect on processing speed 

through CWMI. Since the sample population was without clinically significant cognitive 

symptoms, these data suggest that arterial stiffening may contribute to early vulnerability 

of white matter until sufficient damage accumulates to result in disrupted cognitive 

function.  From an intervention perspective, lifestyle behaviors such as chronic aerobic 

exercise could potentially preserve CWMI and executive function via increased arterial 

elasticity and reduced cardiovascular risk factors (24). Longitudinal exercise intervention 

studies observing changes in arterial stiffness, CWMI, and cognition with advancing age 

may further uncover their mechanistic relationships. 
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Table 3.1 Selected subject characteristics   

    Mean ± SD 

Descriptive Age, y 48.9 ± 6.2  

 
Sex, M/F 64/79 

 
Education, years 16.3 ± 2.3 

 
BDI-II score 6.0 ± 4.5 

 
Height, cm 168 ± 9 

 
Weight, kg 80.1 ± 16.4 

 
BMI, kg/m2 28.1 ± 5.6 

 
Waist Circumference, cm 94 ± 13 

 
Systolic BP, mmHg 121 ± 13 

 
Diastolic BP, mmHg 73 ± 10 

 
Total-C, mg/dL 203 ± 43 

 
HDL-C, mg/dL 54 ± 17 

 
LDL-C, mg/dL 130 ± 38 

 
Triglycerides, mg/dL 121 ± 77 

 
Glucose, mg/dL 97 ± 26 

 
Hypertension, n (%) 16 (11.2) 

 
Hypertriglyceridemia, n (%) 46 (32.2) 

 
Low HDL, n (%) 43 (30.1) 

 
Impaired Fasting Glucose, n (%) 40 (28.0) 

 
MetS Components, n 1.6 ± 1.4 

 
MetS, n (%) 36 (25.2) 

Health Behavior MV PA, bouts/week 3.9 ± 3.2 

 

MV Time, hours/week 1.5 ± 1.7 

Sit Time, hours/week 8.0 ± 4.1 

 
Smoking, n (%) 23 (16.1) 

Ethnicity Caucasian, n (%) 90 (62.9) 

 
African American, n (%) 11 (7.7) 

 
Latino, n (%) 29 (20.3) 

 
Asian, n (%) 5 (3.5) 

 
Other, n (%) 8 (5.6) 

Medication Anti-hypertensive, n (%) 28 (19.6) 

 
Anti-cholesterol, n (%) 15 (10.5) 

 
Anti-diabetic, n (%) 4 (2.8) 

  Hormone replacement, n (%) 8 (5.6) 

BDI=Beck depression inventory, BMI=body mass index, BP=blood 

pressure, C=cholesterol, MVPA=moderate to vigorous physical activity, 

MetS=metabolic syndrome 
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Table 3.2. Arterial stiffness 

  Mean ± SD 

Arterial compliance, 100 x cm2/mm Hg  1.2 ± 0.3 

Arterial distensibility, 1000 x mm Hg-1  1.8 ± 0.5 

β-stiffness index, AU 6.5 ± 1.9 

AU=arbitrary unit 

 

Table 3.3. DTI metrics in a priori ROIs 

Measure ROI Mean ± SD 

FA ALIC 0.53 ± 0.03 

 

CC Genu 0.59 ± 0.03 

 

CC Body 0.60 ± 0.04 

 

CC Splenium 0.65 ± 0.03 

 

Cingulum 0.49 ± 0.03 

 

Cingulum (hippocampal) 0.45 ± 0.03 

 

SCR 0.45 ± 0.03 

 

Uncinate 0.46 ± 0.03 

MD ALIC 0.76 ± 0.05 

 

CC Genu 0.90 ± 0.06 

 

CC Body 1.00 ± 0.09 

 

CC Splenium 0.99 ± 0.08 

 

Cingulum 0.79 ± 0.05 

 

Cingulum (hippocampal) 0.86 ± 0.07 

 

SCR 0.77 ± 0.04 

  Uncinate 0.78 ± 0.04 

ALIC, anterior limb of internal capsule; CC, corpus 

callosum; SCR, superior corona radiata 
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 Table 3.4. Bivariate correlations between white matter ROIs and carotid artery stiffness metrics  

     ALIC 

CC 

Genu 

CC 

Body 

CC 

Splenium Cingulum 

Cingulum 

(hippocampal) SCR Uncinate 

FA AC r .025** 0.15 0.18* 0.18* 0.30** 0.12 0.08 0.12 

 Dist r 0.18* 0.14 0.16* 0.18* 0.23** 0.05 0.00 0.09 

 β-Stiff r -0.20** -0.11 -0.16* -0.16* -0.18* -0.11 -0.09 -0.03 

MD AC r -0.31** -0.05 -0.08 -0.09 -0.15 -0.14 -0.19** -0.15 

 Dist r -0.31** -0.08 -0.14 -0.14 -0.13 -0.17* -0.22** 0.14 

 β-Stiff r 0.22** -0.03 0.06 0.05 0.08 0.18* 0.13 -0.13 

AC=arterial compliance; Dist=arterial distensibility, β-Stiff=β-Stiffness index; ALIC, anterior limb of internal 

capsule; CC, corpus callosum; SCR, superior corona radiata 

*Trending at p<0.05 

**Significant with adjusted Bonferroni correction at p<0.02 



 

 47 

   

  

Figure 3.1a-b. Partial correlation plots depicting significant independent associations of 

arterial stiffness with fractional anisotropy (a) and mean diffusivity (b) in a priori ROIs 

controlling for age, sex, and waist circumference. 

a) 
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b) 
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Figure 3.2.  Path model depicting the indirect effect of arterial stiffness on processing speed through white matter integrity assessed 

through non-parametric bootstrapping. SCR=superior corona radiata; *p<0.05 
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CHAPTER 4: PHYSICAL ACTIVITY MITIGATES ADVERSE 

EFFECT OF METABOLIC SYNDROME ON VASCULATURE 

AND BRAIN 

Abstract 

Background: Metabolic syndrome (MetS) adversely affects the vasculature and 

cerebral white matter (CWM) integrity. Arterial stiffening has been associated with 

diminished CWM integrity. Physical activity (PA) can ameliorate components of MetS 

and subsequently affect arterial stiffening and CWM integrity. Our aim was to 

determine the role of PA on mitigating the adverse influence of MetS on arterial 

stiffness and CWM integrity. Design: In a cross-sectional study design, sixty-six 

middle-aged adults (40-62 years) composed of 18 sedentary MetS (Sed MetS), 21 

physically active MetS (Active MetS), and 27 healthy individuals absent of MetS risk 

factors were studied. Methods: Carotid artery stiffness was assessed via simultaneous 

ultrasound and tonometry. CWM integrity was measured using diffusion tensor 

imaging (DTI) through metrics of fractional anisotropy (FA) and mean diffusivity 

(MD). Results: Carotid β-stiffness index in Active MetS was lower than Sed MetS but 

was not different from Healthy controls (6.6±1.5, 7.7±2.1, and 5.6±1.6 au, p=0.001). 

DTI indicated CWM integrity was significantly greater in Active MetS subjects 

compared to Sed MetS subjects but statistically equal to Healthy controls in the 

anterior limb of the internal capsule, body and splenium of the corpus callosum, 

uncinate fasciculus, cingulum, and superior corona radiata (all p<0.05). Conclusions: 

Middle-aged individuals with MetS who habitually perform PA demonstrated lower 

arterial stiffness and more favorable CWM integrity than their sedentary peers, 
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indicating that PA may be effective in mitigating the adverse effects of MetS on the 

vasculature and brain at midlife. 

Introduction  

Cardiovascular risk factors are frequently accumulated throughout the lifespan 

and can synergistically lead to a deleterious condition known as metabolic syndrome 

(MetS) (10). The World Health Organization has declared MetS to be a global 

epidemic (229) and over a third of U.S. adults are afflicted by MetS (6). This 

prevalence is troubling, as individuals with MetS not only demonstrate increased risk 

for cardiovascular disease, but also elevate their probability of acquiring vascular 

dementia by several fold (187, 235). 

Individuals with MetS exhibit markedly elevated arterial stiffening, as virtually 

all components of MetS have been associated with the pathogenesis of arterial 

stiffening (178, 248). Arterial stiffness is elevated in elderly individuals with cognitive 

disease and is predictive of cognitive decline (120, 219). Arterial stiffening has been 

shown to be associated with regional damage to cerebral white matter (CWM) integrity 

and reduced executive function (288). CWM plays an integral role in conducting 

neural information between cortical structures allowing the brain to work in synchrony. 

Alteration to the CWM is implicated as an early event in the development of dementia 

(242). Midlife visceral adiposity is associated with arterial stiffening and white matter 

hyperintensities representative of white matter damage foci (221, 280). Taken together, 

these findings indicate that arterial stiffening and abdominal obesity, two 

characteristics of MetS, may leave this population particularly vulnerable to early 

CWM alterations and subsequent cognitive dysfunction (329). 



 

 52 

Regular physical activity (PA) can reduce arterial stiffness and attenuate or 

even abolish arterial stiffening that occurs with advancing age (37). Aerobic training 

can also reduce visceral adiposity and various risk factors for coronary heart disease 

(294, 311). These modifiable cardiovascular risk factors may contribute to carotid 

artery stiffening and CWM deterioration, making PA an attractive method to mitigate 

the adverse effects of MetS on arterial stiffening and CWM integrity. However, 

investigations of PA behavior in relation to CWM integrity are extremely limited. 

Further, the clinically important question of whether PA can simultaneously mitigate 

damage to the vasculature and CWM due to MetS has never been addressed.  

Accordingly, the primary aim of the present investigation was to determine 

whether individuals with MetS who are physically active demonstrate lower arterial 

stiffness and more favorable CWM integrity than their sedentary peers.  We measured 

arterial stiffness using a robust imaging-based technique of the carotid artery because 

of its anatomical relevance to cerebral circulation.  CWM integrity was determined 

using diffusion tensor imaging (DTI). DTI is a magnetic resonance imaging (MRI) 

sequence that characterizes the diffusion of water in tissue by producing scalar metrics 

capable of describing CWM integrity in vivo when applied to CWM tracts (12). 

Increased fractional anisotropy (FA) or reduced mean diffusivity (MD) are reflective 

of greater CWM integrity (12). In short, arterial stiffness, CWM, and cognitive 

function were compared in healthy controls and groups of MetS subjects who were 

either physically active or not. Our working hypothesis was that MetS subjects who are 

physically active do not demonstrate arterial stiffening and reduced CWM integrity. 
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Methods 

Participants. Community dwelling adults (n=171) aged 40-62 years were recruited 

for this investigation. For inclusion, individuals were without pre-existing overt 

cardiovascular, neurological disease, or contraindications to MRI. Of these 

participants, only individuals who were not significantly depressed as determined by 

scoring <27 on the Beck Depression Inventory-II (BDI-II) or suffering from cognitive 

impairment as determined by scoring <23 on the Mini-Mental State Exam were 

included. The current analysis comprised only of subjects with metabolic syndrome 

and Healthy controls. These criteria resulted in the admission of 66 participants, who 

gave their informed consent. The local institutional review board approved this study.  

Metabolic Syndrome Characterization. To be categorized as having MetS, 

participants were required to have 3 or more of the following components:  abdominal 

obesity denoted by waist circumference ≥94 cm for men and ≥80 cm for women; 

elevated triglycerides (≥150 mg/dL); reduced HDL cholesterol (<40 mg/dL for men 

and <50 mg/dL for women); increased blood pressure defined as systolic blood 

pressure ≥130mm Hg and/or diastolic blood pressure ≥85mm Hg; hyperglycemia of 

elevated fasting glucose (≥100 mg/dL); pharmacological intervention for any condition 

above (10, 325). 

All subjects reported for vascular assessments in the morning after having 

fasted overnight for at least 8 hours and abstained from physical exercise, alcohol 

consumption, and caffeine for at least 24 hours. An elastic measuring tape was placed 

around the trunk at the top of the iliac crest to measure waist circumference. Standard 

enzymatic techniques were used to quantify blood concentrations of triglycerides, 

HDL-cholesterol, and glucose. Blood pressure was assessed using the automatic 
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oscillometric methods (VP-2000; Omron Healthcare, Kyoto, Japan) in the supine 

position after comfortably resting for 15 minutes in a temperature controlled laboratory 

setting.  

  Arterial Stiffness Measurement. A longitudinal B-mode image of the common carotid 

artery was acquired using an iE 33 Ultrasound System (Philips, Bothell, WA) equipped 

with a high-resolution linear-array transducer. Images were captured 1-2 cm proximal 

to the carotid bulb perpendicularly to the blood vessel. Digitized images acquired via 

ultrasound were analyzed with computerized image-analysis software (Carotid 

Analyzer, Medical Imaging Applications, Coralville, IA) by a single investigator. 

Concurrent recordings of pulse pressure waveforms from the contralateral common 

carotid artery were obtained with arterial applanation tonometry (VP-2000; Omron 

Healthcare, Kyoto, Japan). Carotid artery compliance and arterial distensibility 

describe the absolute and relative change in diameter of the vessel for a given pressure 

step at fixed vessel length(209). β-stiffness was calculated as a measure of carotid 

stiffness independent of distending pressure.  

DTI Acquisition. MRI was performed using a 3T Siemens Skyra system 

(Siemens Medical Solutions, Malvern, PA) with a 32-channel head coil. A diffusion-

weighted, spin-echo, echo planar imaging pulse sequence was used to acquire images 

in 64 directions at b=700 s/mm. One image with b=0 was collected for a non-diffusion 

weighted reference image. Diffusion-weighted images underwent high-dimensional 

normalization (338). Motion and eddy current distortions were corrected with affine 

transformations in FSL (http://www.fmrib.ox.ac.uk/fsl/). Non-brain signal was 

removed using FSL’s brain extraction tool. Tensor fitting was performed using FSL’s 

dtifit function (http://cmic.cs.ucl.ac.uk/camino/). Participant tensor maps were 

http://www.fmrib.ox.ac.uk/fsl/
http://cmic.cs.ucl.ac.uk/camino/
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normalized to the study-specific template map using rigid, affine, and diffeomorphic 

alignments in DTI-TK (http://www.nitrc.org/projects/dtitk/).  The study-specific 

template was then registered to standard space using the IIT Human Brain Atlas 

(www.nitrc.org/projects/iit2) where FA maps were calculated with DTI-TK. Regions-

of-interest (ROIs) were determined a priori based on existing literature and included 

corpus callosum (CC) segments, superior corona radiata (SCR), anterior limb of the 

internal capsule (ALIC), cingulum, cingulum (hippocampal), and uncinate fasciculus 

for their relations to abnormal cognitive aging (158), dementia (127), arterial stiffening 

(288), and aerobic fitness (191). 

Cognitive Assessment. Encompassed in the battery was the Mini Mental State 

Examination (MMSE), Wechsler Abbreviated Scale of Intelligence-II Full Scale 

Intelligence Quotient-2 subtest and Beck Depression Inventory-II (BDI-II). Domain z 

scores were constructed for executive function, processing speed and memory.  The 

executive function domain was constructed from the Trail Making Test A and B, 

Wechsler Adult Intelligence Scale III (WAIS-III) Digit Span subtest, and Stroop 

interference subtest. Included in the processing speed domain were the Trail Making 

Test A, Stroop word, and Stroop color tasks. The memory domain was comprised of 

the California Verbal Learning Test (CVLT)-II short delay free recall, long delay free 

recall, and recognition discriminability tasks. Z scores of each task were inverted 

where appropriate (e.g., time-based tasks) for directional congruity and averaged to 

create domain scores. To foster testing standardization, the same assistants performed 

all scoring. 

Physical Activity Behavior.  Participants reported days of engaging in low, 

moderate, and vigorous intensity PA for intervals of at least 15-minute during free time 

http://www.nitrc.org/projects/dtitk/
http://www.nitrc.org/projects/iit2


 

 56 

in a 7-day period using the same classifications as the Godin leisure-time physical 

activity questionnaire (97). Low PA was defined as “minimal effort” (e.g. yoga, 

archery, bowling etc.), moderate PA was defined as “not exhausting” (e.g. fast 

walking, baseball, tennis etc.), and vigorous PA was described as “heart beats rapidly” 

(e.g. running, hockey, football, soccer etc.). This questionnaire has a high two week 

retest reliability coefficient of 0.94 (97). 

 Group stratification.  The subject population was first stratified by MetS 

components. Individuals with ≥3 MetS components created a MetS cohort that was 

further separated into sedentary (Sed MetS, n=18) and active (Active MetS, n=21) 

groups based on a median split of self-reported frequency of moderate to vigorous PA.  

The Sed MetS cohort was described as sedentary because of the paucity of PA this low 

group displayed following the median split. Individuals without MetS components 

populated the Healthy control group (n=27). 

  Statistical Analyses. Differences for categorical variables between groups 

were determined using Chi Square test while group differences in scalar variables were 

measured using analysis of variance. Covariates (e.g. age and sex) were considered but 

did not significantly affect results and were thus not included. Variable 

homoscedasticity across groups for arterial stiffness and DTI outcomes was assessed 

with Levene’s test with all passing as p>0.05 except arterial distensibility (p=0.039). 

Significant F-values were further analyzed with least significant difference post-hoc 

examination to determine group differences. Because small effects were of interest for 

clinical implications, a Bonferroni correction for multiple intercorrelated outcomes was 

used to determine the level of significance in DTI metrics, leading to an α<0.02 
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selected for statistical significance. SPSS version 24 (SPSS Inc; IBM, Armonk, NY) 

was used to perform all statistical analyses.  

Results 

Group Characteristics. As presented in Table 4.1, both MetS groups had 

greater waist circumference, systolic BP, triglyceride, blood glucose and lower HDL-

cholesterol than healthy controls and did not differ from each other except for 

triglycerides (all p<0.05). Frequency of PA was lower in the Sed MetS group 

compared with Healthy controls and the Active MetS group (all p<0.05). Physical 

activity did not differ between the Healthy control and Active MetS groups and 

reached the ACSM frequency guidelines for PA.(224) Ethnicity was evenly distributed 

amongst groups (p>0.05). 

Arterial Stiffness.  As shown in Figure 4.1, carotid artery compliance was 

highest in Healthy controls and lowest in the Sed MetS group (all p<0.05). However, 

no differences in arterial compliance existed between MetS groups. Arterial 

distensibility was greatest in the Healthy control group compared to either Active MetS 

or Sed MetS group (all p<0.05). The Active and Sed MetS groups did not demonstrate 

statistically different arterial distensibility. β-stiffness index was significantly lower in 

the Active MetS group compared with the Sed MetS group and was not different from 

Healthy controls. 

White-Matter Integrity. As shown in Table 4.2, CC genu FA was significantly 

greater in Active MetS compared to Sed MetS but not different than Healthy controls. 

In the CC body, CC splenium, cingulum, and uncinate, both Active MetS and Healthy 

controls demonstrated greater FA than Sed MetS and were statistically different from 
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each other (all p>0.05). This trend is demonstrated in Figure 4.2 using CWM integrity  

means. 

 No group differences were detected in the CC genu, body, or splenium MD (all 

p>0.05). Alternatively, cingulum (hippocampal) MD was statistically lower in Active 

MetS compared with Sed MetS group and not different from Healthy. Remaining ROIs 

including the ALIC, cingulum, SCR, and uncinate all showed the same pattern of 

significantly lower MD in both Active MetS and Healthy controls compared with Sed 

MetS (all p<0.05). Active MetS and Healthy controls were not significantly different in 

these ROIs.  

Cognitive Function.  As shown in Table 4.1, cognitive performance was 

similar across groups on the MMSE and WASI FSIQ - 2 subtests. No differences were 

observed between groups on executive function or memory performance across groups 

(all p>0.05). Processing speed was greater in Active MetS compared with Sed MetS 

group (0.1 au ± 0.6 vs. -0.3 au ± 0.5 p=0.037) and not different from Healthy controls 

(0.2 au ± 0.5, p>0.604). 

Discussion 

The principle findings from the present study are as follows. First, sedentary 

individuals with MetS exhibited increased arterial stiffening and diminished CWM 

integrity, indicating MetS-associated increases in arterial stiffness and CWM integrity 

vulnerability. Second, individuals with MetS who performed greater PA had arterial 

stiffness and CWM integrity comparable with healthy controls. These findings indicate 

that PA may assuage arterial stiffening while protecting CWM integrity in individuals 

with MetS.  
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Investigations relating PA to CWM integrity are few with a greater proportion 

of existing literature focusing on exercise and cardiorespiratory fitness. A prior 

investigation reported PA was not related to a reduced rate of white matter lesion 

progression in a sample of elderly individual with a spectrum of cognitive impairment 

(227). However, a comparison of physically active individuals demonstrated protection 

to CWM integrity from carrying the APOE4 gene, a genetic marker of heightened 

Alzheimer’s disease risk (269). In a similar construct, our results are the first to 

directly relate PA frequency with CWM integrity in individuals with MetS. In the 

current study, it appears engaging in moderate to vigorous PA was capable of 

protecting or ameliorating the adverse effects of MetS on arterial stiffening and CWM 

integrity.  Thus, PA represents an attractive method to improve aerobic fitness, arterial 

health, and brain structure. 

A unique aspect of the current investigation is the use of a middle-aged MetS 

population that is particularly vulnerable to arterial stiffening, diminished CWM 

health, and cognition. We demonstrated that individuals with MetS even at midlife 

could perform relatively short bouts of moderate to vigorous PA to protect against 

arterial stiffening and negative CWM changes. The modesty of the mean frequency 

and duration of PA performed by the Active MetS group is encouraging in that 

clinically relevant benefits to the vasculature and CWM can be achieved without 

overly exhaustive efforts.  

The exact mechanisms by which PA enriches CWM integrity remain elusive 

and are likely complex. PA can improve aerobic fitness, which positively correlates 

with increased CWM integrity (150, 313). Another probable factor is improving 

arterial stiffness. Dysregulation of the Windkessel effect results in exposure of small 
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vessels to pulsatility that enhances arterial stiffening through the loss of elastin and 

inflict damage to end organs such as the brain (196). If this pulsatility is transferred to 

cerebral microvessels incapable of accommodating mechanical stress, atherogenic and 

inflammatory responses that impair microvascular reactivity may result (135). Such 

changes can reduce cerebral blood flow to white and gray matter in the brain thereby 

limiting essential nutrients and prompt intermittent ischemic-like conditions (290). 

This phenomenon of reduced cerebral perfusion has been observed in individuals with 

MetS (34).   

The present study benefited from the distinctive and well-characterized subject 

population of healthy individuals and those with MetS. Middle-aged adults without 

cardiovascular risk factors are increasingly sparse. Additionally, the MetS groups were 

statistically similar in physiological characteristics outside of the independent variable 

of PA. Methodologically, the assessment of arterial stiffness via ultrasound and CWM 

integrity via DTI are reliable and robust with DTI particularly suitable for its increased 

sensitivity to CWM changes compared with other conventional structural MRI 

techniques (210). This characteristic is critical as changes to the CWM at midlife are 

likely small but could be indicative of early neuropathology. 

There are several study limitations that must be addressed. Inherent to any 

cross-sectional investigation is the inability to make causal inferences. We cannot 

specifically assert that PA was solely responsible for these findings, as external factors 

(e.g. social networks, genetics, etc.) may have influenced the differences of arterial 

stiffness and CWM integrity (199, 223, 291). Nonetheless, the groups were well 

characterized and similar across key confounders. Second, characterization of PA from 

a self-reported questionnaire is vulnerable to reporting bias and retest variability. 
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Ideally, activity monitors would be given to participants to more accurately distinguish 

PA behavior. However, dichotomizing moderate to vigorous PA frequency within our 

sample resulted in largely disparate PA between MetS groups. The Active MetS group 

seemingly met the ACSM guideline of frequency of PA, while the Sed MetS was 

nearly entirely inactive. Including a measure of aerobic fitness would have 

strengthened this investigation. However, we aimed to examine the role of physical 

activity in the vasculature and brain.  Lastly, type-1 error inflation is possible in this 

study. To combat this, we noted a reduced alpha of α<0.02 from the conventional 

α<0.05, and it was deemed clinically valuable to identify potentially vulnerable CWM 

regions.  

Our findings provide novel evidence that PA is associated with more favorable 

vascular and CWM integrity outcomes in middle-aged adults with MetS. These results 

reinforce the implication that arterial stiffening could be a mechanistic contributor to 

reduced cerebral CWM integrity in middle-aged individuals with cardiovascular risk 

factors and MetS vulnerable for future cognitive decline. 
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Table 4.1. Selected group characteristics   

    
Healthy 

Controls 

Sedentary Active 
P-value 

MetS MetS 

Descriptive Age, y 50.3 ± 6.5 49.3 ± 6.3 49.5 ± 7.1 0.882 

 

Sex, M/F 14/13 9-Sep 9-Dec 0.894 

 

Education, year 17 ± 2 16 ± 3 15 ± 2 0.137 

 

Height, cm 170 ± 8 170 ± 10 172 ± 8 0.846 

 

Body Weight, kg 68.0 ± 7.7† 90.7 ± 18.9* 94.9 ± 13.7* <0.001 

 

BMI, kg/m2 23.5 ± 2.3† 31.3 ± 6.0* 32.4 ± 5.4* <0.001 

 

Systolic BP, mmHg 114 ± 7† 124 ± 11* 127 ± 15* 0.001 

 

Diastolic BP, mmHg 70 ± 6 71 ± 8 73 ± 12 0.919 

 

Total-C, mg/dL 200 ± 34 193 ± 50 217 ± 44 0.206 

 

HDL-C, mg/dL 62 ± 14† 40 ± 13* 45 ± 19* <0.001 

 

LDL-C, mg/dL 128 ± 36 121 ± 43 130 ± 40 0.800 

 

Triglyceride, mg/dL 71 ± 27† 150 ± 62* 212 ± 109*† <0.001 

 

Glucose, mg/dL 86 ± 7† 115 ± 44* 114 ± 32* 0.001 

 

HbA1c, % 5.3 ± 0.3 6.3 ± 1.7* 6.2 ± 1.9* 0.034 

 

Waist Circumference, cm 83 ± 7† 106 ± 8* 108 ± 10* <0.001 

 
Post-menopause, n (%) 4 (15) 5 (28) 6 (29) 0.563 

Health MVPA, bouts/week 4.6 ± 3.1† 0.1 ± 0.2* 4.6 ± 2.4† <0.001 

Behavior MVPA, hours/week 1.7 ± 1.7† 0.1 ± 0.3* 1.3 ± 1.1† <0.001 

 

Sit Time, hours/day 7.5 ± 4.2 9.5 ± 4.7 7.2 ± 4.3 0.222 

 

Smoking, n (%) 6 (9.1) 2 (3.0) 3 (4.5) 0.568 

Ethnicity Caucasian, n (%) 18 (27.3) 11 (16.7) 13 (19.7) 0.825 

 

African American, n (%) 1 (1.5) 1 (1.5) 1 (1.5) 0.825 

 

Latino, n (%) 7 (10.6) 4 (6.1) 7 (10.6) 0.825 

 

Asian, n (%) 0 (0.0) 1 (1.5) 0 (0.0) 0.825 

 

Other, n (%) 1 (1.5) 1 (1.5) 0 (0.0) 0.825 

Medication Anti-Hypertensive, n (%) 0 (0.0)† 6 (9.1)* 8 (12.1)* 0.002 

 
Anti-Cholesterol, n (%) 0 (0.0) 6 (9.1)* 7 (10.6)* 0.004 

 
Insulin, n (%) 0 (0.0) 2 (3.0) 2 (3.0) 0.224 

Cognitive  MMSE 29 ± 2 29 ± 1 28 ± 2 0.514 

Function BDI-II total 5.7 ± 4.8 8.9 ± 5.5 7.0 ± 5.2 0.118 

 

WASI FSIQ - 2 subtest 114 ± 13 116 ± 16 111 ± 14 0.518 

 

Executive function, z score -0.6 ± 3.3 -0.3 ± 1.1 0.2 ± 5.3 0.744 

 

Processing speed, z score 0.2 ± 0.5 -0.3 ± 0.5‡ 0.1 ± 0.6 0.027* 

  Memory, z score 0.3 ± 0.8 -0.0 ± 0.9 -0.3 ± 0.7 0.063 

Data are means ± SD. MetS=metabolic syndrome, BMI=body mass index, BP=blood pressure, 

C=cholesterol, MVPA=moderate to vigorous physical activity, MMSE=mini mental state exam, 

BDI=Beck Depression inventory, WASI FSIQ=Wescheler adult scale of intelligence full scale 

intelligence quotient 

*Significantly different from Healthy controls.   

  †Significantly different from Sedentary MetS. 
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Table 4.2. Mean DTI white matter integrity coefficients in regions-of-interest 

Measure Region 
Healthy 

Controls 

Sedentary 

MetS 

Active 

MetS 
  P-value 

FA ALIC 0.53 ± 0.03 0.52 ± 0.03 0.54 ± 0.03 0.123 

 

CC Genu 0.60 ± 0.02 0.58 ± 0.03 0.60 ± 0.03† 0.039 

 

CC Body 0.60 ± 0.03 0.58 ± 0.04‡ 0.61 ± 0.04 0.041 

 

CC Splenium 0.66 ± 0.03 0.64 ± 0.02‡ 0.67 ± 0.03 0.010 

 

Cingulum 0.50 ± 0.03 0.47 ± 0.03‡ 0.50 ± 0.04 0.022 

 

Cingulum (hippocampal) 0.46 ± 0.03 0.44 ± 0.03 0.46 ± 0.04 0.068 

 

SCR 0.45 ± 0.02 0.45 ± 0.05 0.44 ± 0.03 0.840 

 

Uncinate 0.46 ± 0.04 0.44 ± 0.03‡ 0.47 ± 0.03 0.012 

MD ALIC 0.76 ± 0.05 0.80 ± 0.04‡ 0.76 ± 0.05 0.005 

 

CC Genu 0.90 ± 0.06 0.92 ± 0.07 0.88 ± 0.06 0.141 

 

CC Body 1.00 ± 0.08 1.05 ± 0.12 0.99 ± 0.08 0.168 

 

CC Splenium 1.01 ± 0.09 1.04 ± 0.09 0.98 ± 0.09 0.192 

 

Cingulum 0.79 ± 0.04 0.82 ± 0.03‡ 0.78 ± 0.04 0.025 

 

Cingulum(hippocampal) 0.86 ± 0.06 0.90 ± 0.05 0.85 ± 0.06† 0.039 

 

SCR 0.77 ± 0.03 0.80 ± 0.05‡ 0.76 ± 0.04 0.014 

  Uncinate 0.77 ± 0.04 0.81 ± 0.03‡ 0.77 ± 0.04 0.001 

Data are means ± SD. MetS=metabolic syndrome, FA=Fractional anisotropy, MD=Mean 

diffusivity, ALIC=Anterior Limb of Internal Capsule, CC=Corpus callosum, SCR=Superior 

corona radiata 
†Significantly different from Sedentary MetS.  
‡Significanlty different from Healthy Controls and Active MetS. 
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Figure Legends 

Figure 4.1. Carotid artery stiffness shown in Healthy Controls and Sedentary and 

Active  individuals with MetS. Data are shown as means ± SEM. *Indicates 

significantly different from Healthy Controls. ‡Indicates significantly different from 

Healthy Controls and Active MetS. 
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Figure 4.2. Representation of differences in white matter regions-of –interest 

fractional anisotropy and mean diffusivity displaying preserved microstructural 

integrity in active individuals with MetS. Data are shown as means ± SEM. ‡Indicates 

significantly different from Healthy Controls and Active MetS.  
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CHAPTER 5: REVIEW OF LITERATURE 

Dementia: Subtypes and Prevalence 

Dementia is an extremely debilitating disease that hinders the ability to perform 

activities of daily living while robbing their memory of a lifetime of experiences.  Of 

individuals with dementia, 60-80% present with abnormalities characteristic of 

Alzheimer’s disease (AD), such as amyloid-β plaque and neurofibrillary tangles of tau 

protein. Approximately 50% display some sign of vascular dementia (VaD), as 

evidenced by cerebral infarcts (18). Representing the most common form of dementia, 

AD prevalence is projected to increase in the United States nearly three fold from 4.7 

million individuals diagnosed in 2010 to 13.8 million in 2050, amounting to one new 

diagnosis every 33 seconds (128).  Against significant efforts to prevent and reduce 

common causes of deaths, deaths attributed to AD increased 71% from 2000 to 2013, 

elevating the disease to be the 6th leading cause of death in the U.S. (18) and making 

dementia a pressing public health problem.  

  Presently, there is no restorative treatment for dementia. Thus, the 

development of preventive strategies is imperative to stem the rise of dementia 

prevalence and attenuate symptom severity (64). To adapt the best preventive 

strategies, understanding temporal relationships of dementia biomarkers to disease 

pathogenesis is crucial.  The complexity of dementia etiology is daunting in that 

tracing its source is difficult, yet presents multiple opportunities for targeted treatment. 

Currently there are two major competing hypotheses surrounding the development of 

dementia: vascular and amyloid. While they possess seemingly separate 



 

 67 

pathophysiology, they may work synergistically to lead to the common end result of 

dementia.  

Mechanisms of Dementia 

Although there are multiple factors associated with causing dementia, the leading 

candidates are amyloid-β, tau protein misfolding, and vascular dysregulation (145, 

153).  While these mechanisms have been viewed as distinct causes of dementia 

subtypes (63), it is evident that they are interrelated as hallmark features of AD and 

VaD are evident 50% of all dementia cases, representing mixed dementia (18).  More 

recently, a multifactorial data-driven analysis spatiotemporally assessed alterations of 

amyloid-β levels, metabolism, vascular regulation, functional activity at rest, structural 

tissue properties, and protein levels in relation to late onset Alzheimer’s disease 

progression. Findings revealed vascular dysregulation to be a key early and persistent 

event in disease progression (143). Because of its early and continued dysregulation, 

vascular function represents a crucial target for the primary prevention of cognitive 

dysfunction at midlife.  

VASCULAR MECHANISMS 

  The role of the vascular system in dementia progression has long been 

hypothesized, dating back to the early 1900s (138). Considering cerebral perfusion 

must match oxygen and energy demands of the brain, a vascular etiology of dementia 

seems logical. Because of the brain’s reliance on cerebral perfusion, blood delivery is 

normally a highly regulated system where the neurovascular unit, comprised of 

vascular cells such as endothelium and pericytes, glial cells, and neurons that maintain 

the blood brain barrier (BBB), is tightly synchronized (341). Cardiovascular risk 
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factors, including obesity, hypertension, diabetes, dyslipidemia, and smoking, insult 

this unit over time, beginning a negative series of events, including vascular 

dysfunction, atherosclerosis, and arteriosclerosis (342). When these cardioavascular 

risk factors cluster in a single individual at defined subclinical cuttoffs, it is termed 

metabolic syndrome (MetS) (10), which is associated with damage to the brain (332).   

  Cardiovascular risk factors impair endothelial function, cerebral 

autoregulation, and neurovascular function. Endothelial cells are vital in maintaining 

vascular tone and reacting to changes in arterial pressure to ensure continuous cerebral 

blood flow (51). Cerebral endothelial cells are joined by tight junctions that help 

ensure BBB integrity (76). As insults to the vasculature stemming from cardiovascular 

risk factors accumulate, oligemia and breakdown of the BBB begins (65, 300).  

Leakiness of the BBB allows for extroversion of plasma proteins such as fibrinogen, 

albumin, and immunoglobulins (8, 9). Glial cells detect these proteins and become 

activated leading to the production of reactive oxygen species that further degrade 

endothelial cells (263).  Vascular damage from reactive oxygen species is additive to 

the oxidative stress already produced by cardiovascular risk factors and cerebral 

hypoperfusion (53, 139, 141). Tissue hypoxia and oxidative stress induced by cerebral 

hypoperfusion signal the production of inflammatory cytokines, including tumor 

necrosis factor and interleukins among others (35).  

  Arteriosclerosis of larger, central vessels may also produce effects similar to 

cerebral hypoperfusion (290). Larger central vessels, such as the carotid artery, 

eventually feed cerebral microvessels, which perfuse the deep white matter of the 

brain. A fundamental function of large vessels is to buffer hemodynamic pulsatility 

and transfer smooth continuous blood flow from the heart to the systemic vasculature 
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(205). This cushioning effect of the large vessels is known as the Windkessel model. 

Dysregulation of Windkessel function results in exposure of small vessels to pulsatility 

and inflicts damage to distal-end organs, such as the brain (196). Chronic exposure to 

this pulsatility may invite atherogenic and inflammatory responses that impair 

microvascular reactivity.  Such changes can reduce cerebral blood flow to white and 

grey matter in the brain thereby limiting essential nutrients and prompting intermittent 

ischemic-like conditions (247, 290). 

  These mechanisms converge to reduce cerebral blood flow, beginning 

insidiously as oligemia and eventually progressing to ischemia causing slow 

neurodegeneration of cerebral white and grey matter (43, 69, 342).  In addition to 

providing the brain with nutrients, the cerebrovascular system is also responsible for 

cleansing superfluous amyloid-β (137). Over accumulation of amyloid-β is 

neurodegenerative, impairs cerebrovascular function, and limits cerebral blood flow (4, 

207, 293). Cardiovascular risk factors, cerebral hypoperfusion, and amyloid-β, and 

other mechanistic contributors are all associated with disruptions of cognitive function 

(29, 101, 134, 276).  

  Typically, AD presents with accumulation of amyloid-β, degeneration in the 

medial temporal lope, and memory loss while VaD is characterized by ischemia, 

frontal grey matter atrophy, and reduced executive function (165). Although memory 

is the most clinically noticeable change with medial temporal lobe atrophy, language 

comprehension, behavior, and attention are also affected. Detriments to frontal grey 

matter can affect decision-making, judgment, attention, and problem solving, all of 

which fall under the umbrella of executive function. In spite of distinct differences in 

their clinical presentations, the causal mechanisms of AD and VaD appear intertwined. 
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With either disease, identification of biomarkers, early in dementia progression when 

damage is still reversible, can lead to prevention/treatment targets. An important 

correlate of cognitive function and emerging early biomarker of AD and VaD is the 

health of the cerebral white matter (19, 33, 175, 242).  

CEREBRAL CIRCULATION 

The brain is a notoriously metabolically demanding organ, weighing only 2% 

of the body weight, yet receiving 15% of the cardiac output and 20% of the oxygen 

used by the body at rest. A complex circulatory network exists to accommodate this 

demand. The cerebral circulation originates from the left and right internal carotid 

arteries as well as the vertebral arteries. Building from the internal carotid arteries is 

the Circle of Willis, an anastomosis consisting of the bilateral anterior and posterior 

communicating and cerebral arteries as well as the basilar artery. Branching from the 

Circle of Willis are multiple vessels that lead to both hemispheres bilaterally including 

the left and right middle cerebral arteries that flow into smaller arteries, extrinsically 

innervated pial arteries that run across the surface of the brain before penetrating to 

deliver blood to the cortex and subcortical structures. For example, the middle cerebral 

artery is a principal contributor to cortex and white matter blood supply, including the 

frontal, parietal, and occipital lobes along with the insula. To supply interred white 

matter and diencephalic structures, extraparenchymal pial arteries further branch 

perpendicularly to the cerebral surface into intrinsically innervated pial arterioles that 

are separated from the brain tissue by the Virchow-Robin space that diminishes with 

depth (225).  As pial arterioles dive deeper, they contact neural tissue and astrocytes. 

The triad of vascular cells, neurons, and astrocytes interacting together comprise a 
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functional neurovascular unit capable of directing blood flow in response to neural 

activation and to meet metabolic demands (137). At each step of reduced vessel lumen 

diameter, vascular resistance and susceptibility to pulsatile flow increases. Although 

the cortex has almost four fold greater demand for cerebral blood flow, the white 

matter is also metabolically demanding. 

Cerebral White Matter  

ANATOMY 

  Cerebral white matter (WM) is interred beneath the cortical exterior forming 

~50% of the total volume of a healthy human brain (117). The principle duty of the 

cerebral WM is to conduct neural information between grey matter regions allowing 

the cortices to work synchronously. To accomplish this function, the WM is organized 

into axon bundles wrapped with myelin that accelerates action potential propagation by 

100 fold (202, 203). Although there are many classifications for WM bundles, they are 

predominantly organized into three major fiber groups. Commissural fibers bridge the 

cerebral hemispheres and include the corpus callosum. Projection fibers link the spinal 

cord, diencephalic, and mesencephalic structures with the cortex in long ascending and 

descending pathways and include such fibers as the corona radiate and anterior internal 

capsule (188). Association fibers are divided into short fibers that connect neighboring 

cortices and long fibers that unite remote grey matter. Other anatomical terms are often 

encountered when describing WM. Periventricular WM refers to WM near the lateral 

ventricles while deep WM refers to the other fibers.  Subcortical WM refers to both. 

WM is particularly vulnerable to vascular damage that leads to cognitive dysfunction 
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and dementia. Lesions to the WM are associated with hypoperfusion and ischemia 

(33).  

PATHOLOGY 

  Damage to the white matter is conferred in a multitude of ways including 

through cardiovascular risk factors and vascular dysfunction. Vascular perturbations 

disrupt cerebral perfusion, prompt BBB breakdown, initiate inflammation, and 

promote reactive oxygen species formation. Together, they harm oligodendrocytes and 

induce demyelination (88, 194). With myelin degeneration, oligodendrocyte’s 

production of trophic factors, including insulin-like growth factor-1 and glial-derived 

neurotrophic factor is attenuated. Loss of these neurotrophic factors causes axonal 

damage and further demyelination (324). Additionally, oligodendrocyte progenitor 

cells charged with repairing damaged WM and remyelinating axons are unable to 

properly mature. Stuck in an immature state, they are powerless to reconstruct myelin 

due to hypoxia (20, 21, 80). Because of myelin’s critical role in facilitating action 

potential potentiation, its degradation impedes cortical communication and disrupts 

cognitive function. Estimates of WM damage can be obtained through structural 

magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). 

WHITE MATTER HYPERINTENSITIES 

  White matter hyperintensities (WMH) are the most common radiological 

evidence of white matter lesions. These lesions appear on T2-weighted MR images as 

bright spots that begin as punctate and become more confluent with advancing 

pathology (188).  These lesions can be the result of multiple diseases but are the most 

common feature of vascular cognitive impairment in relation to alterations of 
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microvasculature (148, 299). These lesions are reflective of rarefication of white 

matter and are associated with axonal loss, demyelination, microvascular 

arteriosclerosis, and endothelial dysfunction (42, 82, 250). The best predictor of WMH 

is age (66) and other predictors include hypertension, obesity, dyslipidemia, and 

dysglycemia (3, 39, 314). These cardiovascular risk factors can be targeted and altered 

through behavior modification and pharmacological interventions throughout the 

lifespan making them attractive treatment targets. WMH are thought to be foci of 

underlying small vessel disease, leaving the possibility that WM impairments may 

manifest even prior to the emergence of WMH. Therefore, assessment of both WMH 

and WM integrity is integral to understanding the early changes of vascular-related 

WM dysfunction.  

QUANTIFICATION OF WHITE MATTER HYPERINTENSITIES 

  The most prominent imaging modality to monitor white matter status is 

structural MRI. T1-weighted MRI, in combination with fluid attenuated inverse 

recovery (FLAIR) sequences, produce excellent anatomic resolution allowing for 

identification of WMH. Quantifying WMH volume can be accomplished in a number 

of ways. Simple visual ratings of WMH severity can be performed but is limited by 

converting a scalar variable into one that is categorical, thereby reducing data variance 

and sensitivity (188). Various visual rating scales have been constructed to increase 

sensitivity, yet the aforementioned limitations remain along with the problem of 

interrater reliability. Alternatively, computerized, automated methods to estimate 

WMH volume have been developed. Thresholding evaluates pixel intensity values and 

can sum the number of pixels that achieve a predetermined threshold (244). A seed-
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growing technique, in which investigators interactively select regions of interest, run 

an algorithm growing the seed, and identify the total number pixels of similar intensity 

can be used (266). Lastly, lesions can be manually traced. Regardless of the method 

used, expression of WMH volume should be reported in relation to total intracranial 

volume to account for differences between individuals. 

WHITE MATTER VULNERABILITY 

  White matter hyperintensities can be visually obvious radiologically, yet 

white matter integrity may be compromised prior to their manifestation (47, 210). To 

capture an earlier glimpse into WM vulnerability, diffusion tensor imaging (DTI) is 

used. DTI describes the underlying microstructure of WM by measuring the magnitude 

and direction of water molecules (26). In healthy intact WM, water encounters cellular 

barriers, including myelin, that restrict its movement (12). Conversely, in the event of 

tissue breakdown, water does not encounter such barriers and diffuses unimpeded. 

Scalar metrics are intensively computed to characterize this water diffusion. Mean 

diffusivity (MD) represents the apparent diffusion coefficient irrespective of direction 

such that high values exemplify freely diffusing water and reduced microstructural 

integrity. For example, MD is elevated in WMH (189). Counter to MD, fractional 

anisotropy (FA) is indicative of the degree of anisotropic water diffusion ranging on a 

scale of 0-1 with 0 representing random diffusion and 1 representing completely 

directional diffusion (173, 188). Healthy WM FA values typically fall above 0.35, 

while in damaged WM values dip below 0.3. More descriptive still, are the radial 

diffusivity (Dr), and axial diffusivity (Da) measures that can ascribe specificity to WM 
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damage. Animal models have revealed demyelination is related to increased Dr 

whereas axonal damage or loss may occur with increased Da (121, 274, 275, 282, 298). 

CLINICAL IMPORTANCE 

  As foci of damage to WM, the clinical implications of WMH will be 

discussed rather than DTI metrics. The clinical importance of WMH has long been 

debated, but there is mounting evidence that WMH is related to cognitive dysfunction 

and rate of cognitive decline (19, 40, 307). It is possible that WMH mediates the 

relation of cardiovascular risk factors and vascular dysfunction to cognitive 

dysfunction. The role of modifiable cardiovascular risk factors in relation to WMH and 

cognitive function will be discussed in greater detail in subsequent sections.  

Regardless of the cause, many studies have outlined associations between WMH and 

cognitive function.  In particular, WMH appears to retard executive functioning tasks 

as well as memory in older adults (213). Some memory tasks appear more related to 

WMH than others. For example, the Digit Span is consistently unrelated to either deep 

or periventricular WMH, yet other working memory tasks are significantly related to 

WMH (214). The relation of cognitive function to WMH may have best been 

summarized in a quantitative review that found global functioning, speed tasks, 

immediate memory, delayed memory, and executive function were all significantly 

associated with WMH scores (108). 

  Given the relationship between WMH and cognitive dysfunction, it is not 

surprising that WMH is related to cognitive disease. A large longitudinal study with an 

average follow-up of 7.3 years showed an accelerated decline of global cognition on 

the Mini-Mental State Exam with increasing severity of WMH after controlling for 
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numerous covariates (61).  This increased rate of cognitive decline appears to carry 

into the development of dementia.  One study demonstrated a 1.6 fold increased risk of 

developing dementia for every standard deviation increase of WMH severity 

independent of other possible disease contributors including age, sex, education, 

hypertension, diabetes, smoking, and apolipoprotein E (APOE) 4 genotype (233). Both 

of these findings are supported by a systemic review and meta-analysis suggesting that 

WMH are associated with a 1.9 fold increased risk of dementia and hastened decreases 

in global cognition, executive function, and processing speed (69). The inclusion of 

confounding influences in the statistical analyses of these studies suggests the 

independence of WMH in its relation to negative outcomes and may indicate the WM 

damage may be irreversible.  

Dementia Risk Factors  

NON-MODIFIABLE RISK FACTORS 

  Some risk factors for cognitive decline and dementia are non-modifiable 

while others can be manipulated through behavioral or pharmacological interventions. 

Age is an unwavering, non-modifiable risk factor for cognitive decline, WMH, and 

dementia (67, 333). While family history does not definitively predetermine the 

development of dementia, it is another formidable, non-modifiable risk factor that 

varies across race (104). Having a first-degree relative with dementia increases AD 

risk by about 39% and having more than one first-degree relative increases risk even 

further (171). Heritability of dementia risk factors is another non-modifiable 

phenomenon. Inheritance of one APOE4 allele increases the risk of AD by about three 

times, while inheriting two copies increases the risk 8-12 fold (133, 182).  APOE4 
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carriers tend to exhibit increased WM vulnerability compared with non-carriers (129). 

In young adults (20-35 years), older adults (50-78 years), or when pooled, APOE4 

carriers showed decreased FA compared with non-carriers. In older adults, MD was 

significantly elevated in APOE4 carriers compared with non-carriers. This finding 

suggests that APOE4 exerts a negative effect on cerebral WM irrespective of age. 

Other genetic risk factors include the passing of duplications or mutations of amyloid 

precursor protein, presenelin 1, and presenelin 2 genes (182).  Nonetheless, APOE4 is 

the most commonly recognized genetic risk factor for AD. Little can be done to 

assuage the neurocognitive damages conferred from these non-modifiable risk factors. 

However, modifiable cardiovascular risk factors are significant contributors to vascular 

dysfunction, deterioration of WM, and ultimately dementia can be positively 

influenced.  

MODIFIABLE RISK FACTORS 

Adiposity 

  Adipocytokines.  Excess adipose tissue is not a benign, inert, harmless 

byproduct of weight gain and obesity. On the contrary, excess adipose tissue is 

hormonally active and constitutes the largest endocrine organ in the body (322).  

Adipocytes are larger in size in obese individuals and produce proinflammatory 

proteins known as adipocytokines (232).  Visceral adiposity, adipose tissue 

surrounding internal organs, may secrete more adipocytokines than subcutaneous fat 

(13). These cytokines include, but are not limited to, interleukin-1 (IL-1), interleukin-6 

(IL-6), tumor necrosis factor-α (TNF-α), leptin, and adiponectin (44).  Pro-

inflammatory cytokines including C-reactive protein (CRP) and TNF- α are elevated in 
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the obese phenotype (105, 152). Such inflammatory factors are associated with 

vascular dysfunction and promote blood brain barrier disturbances, thus contributing to 

dementia.  These associations were demonstrated in a 25-year follow-up study of 

middle-aged adults, participants above the first quartile of CRP exhibited a 3-fold 

increased risk of acquiring vascular dementia or AD (251).   

  Hormones such as leptin and adiponectin can also advance dementia 

pathology. Leptin usually combats adiposity by increasing metabolism and appetite. 

However, individuals with obesity may lose sensitivity to leptin thereby stimulating 

overproduction and elevated levels of the metabolic hormone (123). Leptin has been 

associated with accumulation of amyloid-β related to AD, and elevated levels of leptin 

are correlated to poor cognitive function in elderly women (85, 336).  Adiponectin is 

the most secreted adipocytokine and serves multiple roles including fatty acid 

metabolism, anti-inflammation, and, importantly, aiding in the maintenance of glucose 

homeostasis through enhancing insulin sensitivity and reducing liver gluconeogenesis 

(183, 273).  Withdrawn control of these functions from reduced adiponectin production 

or sensitivity has detrimental effects on the brain. Impaired cognitive functioning has 

been associated with lower adiponectin, but not with further cognitive decline or 

advancement to Alzheimer’s disease (292).  Despite this evidence, investigations of 

leptin and adiponectin in relation to dementia are sparse. Since these damaging 

proteins largely originate from visceral adipose tissue accurate anthropometric 

measurement of visceral adiposity for large studies is of critical importance. Honing 

the most reliable anthropometric assessments reflective of visceral adipose tissue will 

strengthen our ability to accurately evaluate the relations of adiposity and the brain. 
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  Adiposity Measurement. As of 2015, 69% of adults in the U.S. were 

classified as overweight and 34% classified as obese (200). This alarming prevalence 

is a significant public health concern as adiposity is negatively related to WM health 

and cognitive function and positively to dementia at midlife (74, 115, 278). Adding to 

the difficulties in this area of research are the many ways in which adiposity is 

assessed.  While anthropometric measures were developed for their ability to represent 

underlying adiposity, each vary in their specificity. Body mass index (BMI) is 

calculated by mass in kilograms divided by height in meters squared (kg/m2). BMI is 

epidemiologically valuable because of its ease of use.  However, this blunt metric is 

not necessarily indicative of adiposity (57). Waist-to-hip ratio (WHR) divides waist 

girth by hip girth and has solid predictive power for cardiovascular disease events 

(238).  Using this ratio may be less viable for cross-sectional studies due to sex 

differences in adipose deposition despite sex specific cutoffs implemented to reduce 

such concern. Waist circumference (WC) is strongly related to visceral adiposity. 

Neither WHR nor WC effectively characterizes subcutaneous fat (230). Other methods 

to estimate body fat include simple anthropometry of hip circumference and waist to 

thigh ratio, as well as more complex procedures of skinfolds, air plethysmography, and 

underwater weighing.  Dual energy x-ray absorptiometry (DXA) can sensitively 

quantify whole body, subcutaneous, and visceral adipose tissue mass and volume. 

While DXA is a valuable tool in clinical settings, anthropometric measures of 

adiposity are more useful for large-scale population based studies.   

  Ascertaining adiposity indices most indicative of WM health and cognition in 

a controlled setting is a necessity.  Despite the multitude of methods for assessment, 

those most indicative of underlying adiposity and sensitive to composition are best 
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suited as indicators of cerebral health. While studies investigating the relation of 

anthropometric measurements of adiposity and brain healthy are common, their 

comparative value as indicators of white matter health at midlife is missing. This 

omission in the literature is undoubtedly in need of addressing. Nonetheless, previous 

studies have used a variety of methods to determine the relationship between adiposity, 

brain structure, and cognitive function.  

  White Matter Integrity. In relation to WM integrity, BMI is negatively 

associated with FA of multiple WM tracts, including the corpus callosum, fornix, 

cingulum, and corona radiata (166). These tracts aide in the integration of temporal and 

frontal regions typically associated with facilitating executive functioning and 

memory. WMH are also associated with increased BMI in older adults and elderly 

cohorts in some, but not all, studies (116, 119, 146).  The relationship of BMI and 

WMH has also been observed at midlife (216).  With prevalent reports of relations of 

WM with cognitive function, and obesity, increased risk of dementia with greater BMI 

is logical. Indeed, individuals with obesity at midlife were found to be twice as likely 

to acquire dementia 18 years later (160). Therefore, it stands to reason that obesity can 

negatively affect executive function and memory with advancing age.  

  Cognitive Function. The relationship of adiposity and cognition across the 

lifespan remains a controversial topic. Obesity appears to impair cognitive function 

from an early age through adolescence (4-19 years), with evidence indicating poorer 

cognitive function in obese individuals compared to those of normal weight (110, 179, 

277). At midlife, the same relationship exists, with most cross-sectional studies finding 

a negative association between BMI and cognitive function (109, 110, 206).  This 

linear relationship may veer off course in the elderly as obesity has shown to be 
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positively associated with cognitive function in septuagenarians (167). It has been 

hypothesized that individuals who are obese throughout the lifespan experience a 

steeper decline in weight during old age (113). This trajectory is contrasted with 

individuals of normal weight whose weight decline is more gradual. Taken together, 

this theory explains the divergent, non-linear relationship between adiposity and 

cognitive function.   Individuals with a higher BMI at midlife, but underweight in old 

age exhibited poorer survival from dementia after seven years of follow-up (86). 

Regardless of age demographic, in instances of lower cognitive functioning, executive 

function is the domain most frequently affected (267). Despite the non-linear 

relationship of adiposity and cognition across the lifespan that may be moderated by 

obesity, midlife obesity is associated with increased risk of dementia, as evidenced 

with prospective studies (86, 236, 323). Compounding this increased risk are other 

cardiovascular comorbidities at midlife including metabolic syndrome (MetS) 

components that are independently associated with heightened risk of dementia (160). 

Metabolic Syndrome 

  Components and Prevalence. Modifiable cardiovascular risk factors are 

often accumulated comorbidly throughout the lifespan.  When a cluster of three risk 

factors of abdominal obesity, dyslipidemia, elevated blood pressure, and 

hyperglycemia occurs in a single individual, it is ascribed as metabolic syndrome 

(MetS) (10).  These risk factors are highly prevalent in the U.S. Currently, 69% of 

adults in the U.S. are overweight, while 43% have hypercholesterolemia, 33% have 

hypertension, and 9% have diabetes (200).  The prevalence of MetS in the U.S. was 

estimated to be 34.7% in 2011-2012 (6).  
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  Specific cutoffs for MetS components are largely agreed upon, though there 

is some variability for impaired fasting glucose and abdominal obesity due to 

population differences between ethnicities. Nonetheless, in the U.S., the abdominal 

obesity criteria for MetS is denoted by waist circumference (≥94 cm for men and ≥80 

cm for women); elevated triglycerides (≥150 mg/dL); reduced HDL cholesterol (<40 

mg/dL for men and <50 mg/dL for women); increased blood pressure (systolic blood 

pressure ≥130mmHg and/or diastolic blood pressure ≥85mmHg); elevated fasting 

glucose (≥100 mg/dL); pharmacological intervention for any condition above.  The 

National Heart, Lung, and Blood Institute and World Health Organization established 

these criteria (2, 10).  Whether they exist in isolation or together in an individual, MetS 

components can contribute to maligned WM and cognition. 

  White Matter Integrity. Investigations of MetS and WM are limited with few 

assessing cerebral microstructure. Nonetheless, individuals with increasing vascular 

risk factors showed incrementally reduced FA (185). Separately, a sample of older 

adults with MetS displayed significantly reduced WM integrity in the frontal lobe 

bilaterally compared with healthy controls (261). These MetS subjects who had lower 

FA in anterior regions further displayed poorer performance on executive function 

speed tasks (260). The anterior to posterior gradient of damaged WM is a recognized 

pattern in normal aging (158). Because WM damage acquired by individuals with 

MetS presents in a similar pattern, it may reflect an accelerated aging phenotype.  

  Cognitive Function. Anterior brain regions are tasked with the performance 

of executive function. Within the executive function domain are duties essential to the 

performance of everyday tasks including decision-making, judgment, attention, and 

problem solving. This functional relationship may explain previous observations of 
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reduced executive function in older individuals with MetS, as frontal regions may be 

more vulnerable to vascular insults (36, 46, 252).  WM integrity in individuals with 

MetS has also been associated with hindered performance on recall and memory tests 

(124, 163, 201).  However, these findings are not all in agreement.  MetS has been 

shown to affect different domains of cognitive function. Although results are 

sometimes inconsistent across gender, some cross-sectional studies showed MetS 

having no associations with any domain of cognitive function (118, 332).  These 

differential findings may be explained through sampling differences between studies in 

relation to age, neurocognitive assessment differences, or risk factor exposure duration. 

Despite these differences, MetS has been associated with impaired verbal memory, 

fluid intelligence, and psychomotor speed as well as executive function in large and 

case control cross-sectional studies (46, 59, 259, 303). Longitudinal investigations 

support these results showing that MetS is related to impaired global cognition, verbal 

fluency, and psychomotor speed independent of age, sex, and education (161, 328).  

  Dementia. Decrements of cognition in relation to MetS seem to result in 

increased risk of dementia.  Cross-sectional and prospective studies have found 

deleterious effects of MetS on cognitive function and increased risk of dementia (59). 

Investigators have reported increased risk of cognitive impairment, vascular dementia, 

and Alzheimer’s disease in both cross-sectional and longitudinal studies (235, 237, 

271, 306). However, one prospective study was unable to find a link between MetS 

and risk of dementia in the elderly 65 years and older, while another showed a 

decelerated cognitive decline in elderly adults 85 years and older in relation to MetS 

(201, 302).  
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  Damage mechanisms. The mechanisms by which MetS components cause 

damage to the brain have yet to be fully described, but undoubtedly, MetS increases 

risk for cardiovascular disease and dementia several fold (187, 235).  Whether MetS 

components confer WM damage individually or synergistically remains to be 

elucidated. Furthermore, individuals with MetS have impaired endothelial function that 

could limit cerebrovascular reactivity and cerebral activation in relation to memory 

tasks (87, 100, 172). The pro-inflammatory state that exists with MetS may also 

exacerbate vascular dysfunction while damaging the BBB (77, 308). What has been 

shown is MetS contributes to arterial stiffening that leads to cerebral WM damage 

(248, 255). 

Arterial Stiffness  

  Characteristics and Mechanisms. Arterial stiffness is a hallmark of vascular 

aging that develops from structural and function changes. Vascular stiffening is non-

uniform in the arterial tree affecting central and conduit arteries more than peripheral 

and muscular arteries (32). Continuously heightened intravascular pressure as seen in 

hypertension can result in structural remodeling of the blood vessel. This remodeling is 

characterized by loss of flexible elastin protein and over-production of collagen (327).  

The mechanical stress of elevated pressure combined with increased inflammatory 

substances promotes excessive collagen production (149, 327). In addition to these 

histological changes, the surrounding smooth muscle layer hypertrophies, further 

contributing to arterial stiffening (310).  

  Separate from structural alterations, functional changes influence arterial 

stiffness. Hormones, salt, and glucose regulation among other vasoactive factors can 
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influence the degree of arterial stiffness (340).  Vascular smooth muscle tone can be 

modified by mechanical influences and endothelial cell signaling via vasoactive 

substances.  In the stiffened artery, endothelial dysfunction is characterized by 

mismatched reactivity to acetylcholine conferred through disparate nitric oxide (NO), 

endothelial-derived hyperpolarizing factor, and constrictor hormones (195).  The 

presence of vasoconstrictors angiotensin and endothelin as well as oxidant stress 

increases fibrosis and vascular smooth muscle cell hypertrophy (340).  In contrast, 

production of NO can reduce macrophage infiltration and help preserve vascular 

function and arterial elasticity. However, endogenous nitric oxide synthase inhibitor 

asymmetrical dimethylarginine, reactive oxygen species such as peroxynitrite, and 

advanced glycosylated end products collectively diminish vascular NO bioavailability 

(198, 284).  Excessive dietary salt intake is also harmful to the vasculature. Vascular 

smooth muscle tone is heightened in response to salt. Furthermore, salt prompts 

vascular smooth muscle cell hypertrophy and proliferation of collagen and elastin (107, 

218, 243). Lastly, sodium increases asymmetrical dimethylarginine thereby impeding 

NO production and impairing endothelial function (22).  

  The causal directionality between arterial stiffening and endothelial 

dysfunction has not been established, as both often coexist. Rather, the two may 

negatively influence each other cyclically. Major conduit arteries such as the aorta and 

carotid arteries are most subjected to stiffening, resulting in impaired ability to buffer 

pulsatile flow from the heart (95, 340). Loss of this function results in the transfer of 

pulsatility to resistance vessels less capable of accommodating pulsatile stress. Arterial 

stiffening is observed in many disease states, including aging, hypertension, diabetes, 

and MetS (89, 107, 248, 337). 
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  Influence of Sympathetic Nerve Activity. Sympathetic nerve activity (SNA) 

is associated with total peripheral resistance and is an indicator of vasoconstrictor tone 

(50). SNA serves an integrative role in the regulation of blood pressure, heart function, 

and arterial stiffness through direct and indirect mechanisms. Arterial baroreceptors are 

charged with detecting acute changes in blood pressure. In the event of hypotension or 

unloading of these receptors, the arterial baroreceptors signal the nucleus tractus 

solitarius that communicates with the rostral ventrolateral medulla (RVLM) to increase 

SNA and restore adequate pressure. This is accomplished through the release of 

acetylcholine that prompts secretion of neurotransmitters norepinephrine, epinephrine 

and isoprenaline from neurons and the adrenal medulla, that have a number of actions 

dependent on receptor type and location. At the heart, β1 receptors increase heart rate 

and left ventricular contractility that results in increased stroke volume and together 

increase cardiac output (343). At the vasculature, binding of norepinephrine and 

epinephrine at α1 receptors leads to increased intracellular calcium that promotes 

vasoconstriction from contraction of smooth muscle cells and increased vascular tone 

(226). Altogether, activation of this sympathetic network can cause acute increases in 

arterial stiffness (217). If chronically activated, the arterial baroreflex can become reset 

to a greater set point that is linked to greater SNA leading to hypertension and arterial 

stiffening (49). Although, the causal direction of these events has not been fully 

elucidated. 

  SNA and arterial stiffness can be further induced via the renin angiotensin 

aldosterone system (RAAS). Principally, the RAAS is designed to ensure appropriate 

perfusion pressure to the kidneys so that blood can be adequately filtered of toxins. 

When flow decreases to the glomerulus, juxtaglomerular cells release renin that 
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converts angiotensinogen to angiotensin 1 which is then converted to angiotensin 2 by 

angiotensin converting enzyme.  Angiotensin 2 has numerous effects on the 

vasculature. Specifically, angiotensin 2 increases SNA, absorption of sodium that 

allows for water retention, and signals aldosterone secretion from the adrenal glands 

that furthers sodium reabsorption (222).  Additionally, angiotensin 2 prompts secretion 

of antidiuretic hormone form the pituitary gland to aid in water retention. Each of these 

angiotensin 2 actions aid in the restoration of necessary perfusion pressure to the 

kidneys. However, dysregulation of this system could result in chronically elevated 

SNA, hypertension, and corresponding vascular stiffening. 

  Cardiovascular risk factors have also been associated with overactive SNA.  

In individuals with essential hypertension, muscle SNA is elevated to a degree 

corresponding with severity (331). While this elevation may come about through 

chronic excess sodium intake or resetting of the arterial baroreflex, individuals with 

hypertension tend to exhibit a heightened sensitivity to hypoxia and carbon dioxide 

resulting in an overactive chemoreflex (272). Overactive SNA can be further 

exacerbated by excessive adipose tissue that can secondarily perpetuate hypertension.  

Obese individuals with excess adipose tissue exhibit SNA over activation that is 

directly associated with visceral adipose tissue (14). Mechanistically, this may exist 

because neurotransmitters associated with SNA such as isoprenaline, norepinephrine 

and epinephrine can act on β3 receptors located on brown adipose tissue that increase 

lipolysis and thermogenesis via increases in cyclic adenosine monophosphate (215). 

Although this mechanism aims to reduce excess fat, the corresponding increase in 

SNA likely also increases the tone of the vascular smooth muscle making obese 

individuals more susceptible to the development of hypertension. Chronically elevated 
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blood pressure in turn can prompt remodeling of the vascular scaffolding proteins 

characterized by greater collagen and reduced elastin expression that is commonly 

observed in the pathogenesis of arterial stiffening. On top of obesity and hypertension, 

hyperinsulinemia potentially leads to elevated SNA. Indeed, individuals who are 

insulin resistant demonstrate elevated resting heart rate and SNA when compared with 

healthy controls (16, 84).  

  Sex Differences. Sympathetic control of blood pressure appears to diverge 

between men and women. In healthy young men and women, SNA was unrelated to 

mean arterial pressure (122). The absence of this relationship highlights the high level 

of interindividual variability of SNA as well as the fact that there are myriad inputs 

governing blood pressure control. Young men and women display differences in the 

relationship of SNA and cardiac output in that the relationship was absent in young 

women, while SNA was significantly inversely associated with stroke volume in young 

men (122). Women also have shown greater increases in heart rate with a lesser change 

in total peripheral resistance compared with men when taxed with an orthostatic 

challenge (71, 91).  This finding suggests sex differences in baroreflex sensitivity. This 

divergence in physiological response to blood pressure challenges may be explained by 

differences in catecholamine production between sexes. In rats, estrogen may have an 

attenuating effect on catecholamine production, however, sex differences in 

catecholamine production and responses in humans remain equivocal (83, 343).  

  Estrogen in premenopausal women has significant effects on the vasculature 

and consequently SNA control of blood pressure. Estrogen stimulates the release of 

vasoactive molecules such as nitric oxide that potentiate vasorelaxation as evidenced 

by increased endothelium-dependent vasodilation (204). Estrogen likely also 
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influences vascular tone through effecting calcium channels either through attenuated 

release, influx or increased efflux of calcium (321). Interactions with high-density 

lipoprotein that lead to reduced oxidation of low-density lipoprotein demonstrate 

estrogen’s potential anti-oxidant and anti-inflammatory properties (321). This 

combination of effects on the vasculature can mitigate atherosclerosis and 

consequently arteriosclerosis with aging. 

  With age, both men and women experience increased SNA. When compared 

with young men, premenopausal women tend to have reduced SNA until after 

menopause, when estrogen is significantly attenuated, SNA sharply increases (192). 

Differences in SNA are important to investigations of arterial stiffening as it has 

recently been associated with carotid arterial compliance in young and old men (287).  

It is possible that this relationship is absent in young women due to the presence of 

estrogen and may begin post menopause, however, this has never been investigated. 

  Assessment. Assessing the stiffness of arteries can be accomplished in many 

ways depending on the blood vessel being measured. In relation to cardiovascular 

disease, arterial stiffness of major central blood vessels is indicative of coronary heart 

disease and stroke (193). This relationship is demonstrated in the assessment of aortic 

stiffness with carotid to femoral pulse wave velocity (cfPWV). With this method, 

applanation tonometery of the carotid and femoral arteries can track the transit time of 

the forward traveling pulse wave between the two sites. The straight distance between 

the two sites when divided by the transit time from foot to foot of the wave form 

calculates the rate of the pulse wave, which is indicative of the stiffness of the blood 

vessel (239).  
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  Because of the high cost of arterial tonometers necessary to measure cfPWV, 

a more simple measure involving only the inflation and deflation of blood pressure 

cuffs at the four extremities was developed. With this method, brachial-ankle pulse 

wave velocity (baPWV) can be determined; yielding qualitatively similar information 

as cfPWV that also includes the periphery in its determination of arterial stiffness 

(281). Although neither cfPWV nor baPWV has been identified as a significant 

predictor of dementia, they are both significantly associated with cognitive 

impairment, WMH, cerebral microbleeds, and cerebral infarcts in middle-aged and 

older cohorts (305).  Additionally, pulse wave velocity is related to increased amyloid-

beta deposition in the brain in the very elderly, suggesting that the two may be related 

in the development of dementia (136).  

  Compared with the central aorta, the carotid artery is closer to the cerebral 

circulation, providing blood flow to the middle cerebral arteries. Measurement of the 

stiffening of the carotid artery is accomplished with the coupling of B-mode ultrasound 

and arterial tonometry. When paired together, indices of arterial elasticity and stiffness 

can be calculated. Carotid artery compliance (CAC) is calculated as the absolute 

change in vessel diameter for a given pressure step. Distensibility is the relative change 

in vessel diameter for a given pressure step. Because these indices are heavily related 

to blood pressure, beta-stiffness index is often calculated to correct for distending 

pressure (209). Together, these previously discussed methods serve as comprehensive 

markers of arterial stiffness for major blood vessels. 

  Metabolic Syndrome. MetS components each insidiously affect arterial 

stiffness. As mentioned above, excessive adiposity is highly associated with increased 

inflammation that is damaging to the endothelium and NO production.  Individuals 
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with heightened adiposity could also have elevated circulating triglycerides or reduced 

presence of anti-atherogenic molecule high-density lipoprotein (HDL). Reduced HDL 

is independently associated with increased aortic PWV (240). MetS is correlated with 

stiffening of the vasculature, and it is likely that central adiposity and elevated blood 

pressure are key contributors to this relation (70). Specifically, abdominal obesity 

measured through waist circumference or visceral adiposity as measured through 

DEXA is significantly related to cfPWV and baPWV (280). General adiposity, often 

characterized by BMI, is not related to aortic stiffness at midlife (248). It appears that 

MetS accelerates the age-associated increase in arterial stiffening throughout the 

lifespan (254). This finding is concerning considering dementia is an age-related 

disease exacerbated by arterial stiffening. Taken together, these notions suggest that 

MetS could raise the risk of dementia through an arterial stiffening mechanism. 

Neural Consequences. Arterial stiffening regardless of etiology has marked effects on 

brain structure and cognitive function. Further, transmission of pulsatile forces from 

stiffened proximal central blood vessels elicits damage to cerebral microvessels ill 

equipped to handle pulsatile stress (197).  Additionally, loss of Windkessel function, 

the ability of vessels to cushion pulsatility from the heart, as a result of arterial 

stiffening can disrupt consistent perfusion to end organs, including the heart and brain 

(31).  The chronic mechanical stress of elevated pulsatile flow prompts structural 

changes in cerebral arterioles in an attempt to protect vulnerable cerebral capillaries.   

  From a structural perspective, smooth muscle hypertrophy often observed 

with arterial stiffening occurs at the expense of the vessel lumen diameter (144).  

Consequently, greater vascular resistance and reduced cerebral blood flow can occur 

(38).  Compounding the detrimental effects of increased resistance, these structural 
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adaptations impair cerebral arteriole endothelial function, thus partially impairing 

functional hyperemia (27).  The protrusion of pulse pressure into cerebral arterioles 

can damage the blood brain barrier, leading to a cyclic inflammatory cascade (196, 

208). The cumulative effects of arterial stiffening damage the grey and white matter 

parenchyma through attenuated perfusion. Demonstrating this oligemic effect are 

associations of arterial stiffness with reduced deep subcortical grey and WM perfusion 

(289, 290).   

  White Matter. Reduced cerebral perfusion suggests a possible mechanistic 

explanation for the 13 cross-sectional investigations highlighted in a review observing 

the associations between arterial stiffness measures and WMH or lacunar infarctions 

(264). All but four of these investigations were in older populations.  Only two 

longitudinal studies assessed the relationship between arterial stiffness and WMH 

tracking individuals at midlife for 7 years and older adults for 10 years (159, 241). 

Both studies identified arterial stiffness as an independent predictor of WMH volume. 

Pulsatility corresponding with arterial stiffness is further associated with lower whole 

brain, grey matter, and WM volumes (197).   

  Despite these results, probes of the relationship between arterial stiffening 

and WM integrity, particularly at midlife, are remarkably few. In healthy older adults 

and those with mild cognitive impairment, arterial stiffness is associated with reduced 

global FA (288). An epidemiological study supporting this finding observed reduced 

FA in the corpus callosum and increased arterial stiffness in a middle-aged community 

sample (186). The paucity of research in middle-aged cohorts needs correction as DTI 

indices of WM integrity can reveal early damage to the cerebral WM in relation to 

cardiovascular targets. 
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  In relation to cognition, arterial stiffening exerts a consistently negative effect 

on executive function.  In a prospective study of older adults, arterial stiffness was 

significantly associated with poorer performance on an executive function task (228).  

Cross-sectional investigations of middle-aged and older adults support this finding (78, 

289). Memory, global cognition, and other cognitive tasks are also negatively affected 

by arterial stiffening in older adult and elderly cohorts (257, 258, 297, 318).  Despite 

these associations, the link of arterial stiffness to cognitive decline and dementia has 

yet to be examined prospectively (228). Nonetheless, cross-sectional and longitudinal 

evidence asserts a robust relationship between arterial stiffening with brain structure 

and cognitive function. Less precisely defined, is this relationship at midlife. 

Observing more sensitive measures of early changes to the WM and an intensive 

cognitive battery in relation to stiffening of the carotid artery may bring to light the 

early deleterious nature of arterial stiffness. The carotid artery is of particular interest 

because it is closer to the cerebral circulation than the aorta and is often the subject of 

arterial stiffening.  

Physical Activity  

VASCULAR RISK FACTORS 

  The effects of physical activity, in particular aerobic exercise, on 

cardiovascular risk factors and arterial stiffness are well documented. Chronic aerobic 

exercise is a valuable strategy to attenuate vascular risk factors. Aside from reducing 

caloric intake to achieve caloric deficit, physical activity is an efficacious intervention 

to lose adipose weight (73). In a large cross-sectional study of middle-aged men, 

physical activity performed commuting to employment and practicing high-intensity 
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recreational activities was negatively associated with BMI, waist circumference, and 

body weight (315).  Reduced adiposity through physical activity may reduce 

corresponding low chronic inflammation in parallel.  Indeed, men and women aged 40 

and older who frequently perform physical activity have significantly lower markers of 

c-reactive protein, white blood cell count, and fibrinogen (5). In older Chinese adults, 

total physical activity was associated with reduced C-reactive protein levels and odds 

of acquiring MetS (335). In this same study, quartiles of inflammatory profile and 

adipocytokine z-scores are also related to increased odds of MetS regardless of 

physical activity tertile. Taken together, these data suggest that physical activity can 

improve adiposity, inflammation. 

  Aerobic exercise, defined as physical activity intentionally performed for 

health benefits through elevated heart rate and oxygen consumption, positively affects 

components of MetS beyond adiposity. In a cohort of 30-40 year old men and women 

with reduced HDL and high triglycerides, an aerobic exercise intervention for 20-

weeks with increasing duration and/or intensity caused a significant increase in HDL, 

reduction in triglycerides, and an overall decrease in total cholesterol (58). Systolic and 

diastolic blood pressure also reduced following dynamic exercise training of at least 4-

weeks. A meta-analysis of 14 studies showed a 3 and 2 mmHg reduction of systolic 

and diastolic pressure, respectively, in normotensive adults; whereas individuals with 

hypertension exhibited greater reductions of 7 and 6 mmHg (79). Lastly, physical 

activity is related to insulin sensitivity. This relation was demonstrated in a cross-

sectional study of men and women aged 30-60 years that found total physical activity 

time was significantly associated with insulin sensitivity (23). Simply performing 2.5 

hours of walking per week was related to a 60-70% reduced risk of acquiring diabetes 
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after an average four years of follow-up in middle-aged adults (168). The cumulative 

effects of physical activity on MetS components appear largely positive. Chronic 

physical activity and aerobic exercise can also ameliorate arterial stiffening associated 

with metabolic components.  

ARTERIAL STIFFNESS 

  In general, performance of physical activity for health purposes is affordable, 

easily accessible, and safe for middle-aged and older adults who need to ameliorate 

arterial stiffening. Physical activity and chronic aerobic exercise are well-documented 

robust lifestyle interventions capable of improving arterial stiffness irrespective of age 

or sex (151, 285, 286). This relationship has been demonstrated across a number of 

indices of arterial stiffening. These same interventions can ameliorate components of 

MetS related to the stiffening of arteries (58, 79, 176, 177, 280). Beneficial vascular 

adaptations to chronic aerobic exercise, and ostensibly moderate to vigorous physical 

activity, are accomplished through a combination of structural and functional changes.  

In stiffened vessels, where collagen is overexpressed and elastin is diminished, the 

cross-linking of stiff collagen fibers may be stretched leading to greater overall vessel 

flexibility. Functionally, chronic shear stress caused by physical activity and exercise 

can stimulate the production of vasoactive factors such as nitric oxide. Using different 

macro- and microvascular function assessments, including flow-mediated dilation, 

acetylcholine infusion, and others, endothelial dependent vasodilation tends to be 

improved following exercise interventions (103). Increased NO bioavailability in the 

central blood vessels could lead to reduced arterial stiffening. Reductions in 

inflammation and reactive oxygen species from up-regulated superoxide dismutase 
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occur with chronic physical activity (92). These changes lead to decreased scavenging 

of NO. These vascular adaptions to physical activity are valuable from a clinical 

perspective as physical activity and aerobic exercise may be used to combat 

neurocognitive disease of vascular etiology. To date, an insufficient number of studies 

have examined the role of physical activity behavior in improving both arterial 

stiffness and brain structure, specifically the WM.   

WHITE MATTER INTEGRITY  

  Current research supports the view that physical activity positively affects the 

cerebral white matter. The observed white matter benefits of physical activity could be 

crucial in the avoidance of unhealthy cognitive aging.  While physical activity may not 

impact global WMI, positive associations between regional white matter regions have 

been observed cross-sectionally. In young and old adults, estimations of aerobic fitness 

showed significant associations with the cingulum and uncinate fasciculus independent 

of age or sex (191). The same investigators observed peak oxygen consumption to be 

moderately related to increasing FA in the left middle cingulum (190).  Additionally, 

two separate large cross-sectional cohorts of older adults demonstrated self-reported 

physical activity to be related to WMI in a multitude of white matter regions (98, 102).  

Intervention studies support these findings. A progressive 6-month aerobic exercise 

intervention was compared with a stretching control group investigating white and 

grey matter volumes in cognitively normal older men and women. After the 

intervention, white and grey matter volumes increased in frontal and temporal cortices 

(55).  Separately, a one-year walking intervention was capable of improving both 

aerobic fitness and WMI.  Here, changes in aerobic fitness were significantly 
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associated with changes in frontal, parietal, temporal, and occipital white matter FA 

(313). Changes in aerobic fitness were also related to improved short-term memory in 

the walking group. Using fitness to support WMI is a valuable strategy to preserve 

cognitive function, as age-related decrements in decision related task performance are 

mediated by changes in WMI (184). Considering deterioration of cerebral white matter 

exists with aging and is accelerated in dementias, its preservation through physical 

activity could be an integral strategy to prolonging healthy cognitive function.   

COGNITIVE FUNCTION 

  Consistent with structural improvements in the brain stemming from physical 

activity, similar benefits are observed in cognitive function. Impairments in executive 

function are most often related to aging and vascular dementia.  Aerobic exercise 

interventions and the chronic performance of moderate-vigorous physical activity can 

impact multiple domains of cognition, but executive function appears most affected. 

Cross-sectional evidence from 24-76 year olds, showed that aerobic fitness was 

significantly associated with executive function tasks after accounting for age, sex, and 

intelligence (301). Prospectively, baseline cardiorespiratory fitness is significantly 

associated with protection of global cognitive function, attention, and executive 

function, as well as memory and verbal fluency (25).   Exercise intervention studies 

support this observation. In older adults aged 55-70 years, four-months of aerobic 

exercise training resulted in improved performance on a number of neuropsychological 

tests, including significantly improved executive function and reaction time among 

others (75). Additionally, sedentary older adults exposed to a one-year aerobic 

exercise-training program were more resistant to decreases in cognitive performance 
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on a logical memory subtest than those who remained sedentary (132). This evidence 

demonstrates the importance of maintaining or developing aerobic fitness for cognitive 

benefits. 

  In relation to risk of dementia, physical activity seems to offer a strong 

protective effect. Time and again, prospective evidence of elderly individuals (>65 

years) yields significant associations between physical activity and reduced risk of 

cognitive decline. These findings are consistent with performance of either moderate or 

vigorous physical activity (270).  With respect to frequency, three exercise sessions or 

more every week resulted in a significantly lower hazard ratio of developing incident 

dementia compared with inactive participants during follow-up after controlling for 

age and sex (169). Finally, a 5-year longitudinal study showed a dose-response 

relationship with levels of physical activity and protection from developing 

Alzheimer’s disease among women (170). These intervention and observational 

evidences demonstrate that performing physical activity and improving aerobic fitness 

are viable strategies to prevent cognitive decline and prevent dementia. 

  While these studies encourage the use of physical activity and aerobic 

exercise to prevent further cognitive decline and development of dementia, the efficacy 

of PA to improve cognition in individuals already exhibiting signs of cognitive 

impairment must be considered. An excellent synthesis of this work was performed 

and analyzed the effects of different exercise modes on physical and cognitive function 

in subjects 65 years or older with baseline Mini-Mental Status Examination scores of 

less than 26 (130). This meta-analysis revealed that exercise interventions of aerobic 

training, resistance training, or stretching had significant medium-large effect sizes on 

physical fitness outcomes, as well as cognitive outcomes. This study asserts that 
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despite already being cognitively impaired, older adults can participate in regular 

physical activity and improve diminished cognitive function.  

MECHANISMS 

  How physical activity benefits successful cognitive aging remains to be fully 

understood. However, there are a number of potential mechanisms explaining the 

therapeutic and disease preventing properties of physical activity. With exercise, a 

number of neurobiological adaptations in the brain occur.  Animal studies suggest that 

aerobic exercise in aged rats leads to proliferation of neurons in the dentate gyrus, 

increased mRNA expression for excitatory neurotransmitter receptor N-methyl-D-

aspartate in the dentate, and up-regulated brain derived neurotropic factor mRNA 

levels in the hippocampus (81, 93, 304).  Insulin-like growth factor-1 (IGF-1), a 

molecule critical for neurogenesis and mediating neuronal activity, levels is amplified 

with chronic exercise (45, 296).  The neural effects of IGF-1 may also explain why 

greater effect sizes were observed in studies examining combined strength and aerobic 

exercise interventions in relation cognitive function (54). Increased vascular 

endothelial growth factor (VEGF) has also been seen with exercise in old rats (72). 

VEGF is a critical molecule involved in angiogenesis. In this context, aerobic exercise 

may up-regulate VEGF concentration to form new vessels and increase blood flow to 

meet the added metabolic demands associated with the formation of new parenchyma. 

However, in humans, the response of VEGF to exercise following acute and chronic 

training in older adults (>60 years) is still controversial (312).  

  The aforementioned physiological changes in response to exercise of elevated 

neurotrophins, synaptogenesis, and angiogenesis to support neural proliferation result 
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in functional improvements related to cognitive function.  Evidence from cross-

sectional and randomized controlled studies shows support for the argument that 

chronic exercise leads to greater functional cerebral activation during cognitive tasks 

with fMRI (54, 164). Specifically, older adults with greater aerobic fitness showed 

significantly greater activation in the right middle frontal gyrus, superior frontal gyrus, 

superior parietal lobule and less activation in the anterior cingulate cortex while 

performing an executive function task (56). These results were essentially replicated 

with a 6-month aerobic intervention study in older adults where participants 

significantly increased activation in the right middle frontal gyrus, superior frontal 

gyrus, superior parietal lobule and less activation in the anterior cingulate cortex while 

performing a flanker task (56). The mechanisms assisting functional hyperemia are 

many and compensatory (140). However, greater activation could be the result of 

increased blood flow or flow velocity as a byproduct of exercise. Cross-sectional 

evidence has shown that individuals with greater aerobic fitness have greater cerebral 

blood flow velocity at any age (7). Alternatively, improved vascular function and 

reduced arterial stiffening could improve delivery of blood to the brain to better meet 

the metabolic demands of the cognitive task. With either explanation, a larger 

hemodynamic response could result.  

SUMMARY 

  Dementia is a significant and costly public health problem that is projected to 

worsen over the coming decades.Cognitive function is a critical factor for quality of 

life and functional ability with aging, but it begins to decline as early as the second 

decade of life (245). Therefore, exhaustive research must be performed to curb its rise 
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(94, 245). Without effective pharmaceutical interventions to halt dementia progression, 

restore lost parenchyma function, or rebuild atrophied cortex, developing evidence 

based primary prevention strategies is a critical task for the scientific community. 

 The two most common forms of dementia, Alzheimer’s disease and vascular 

dementia, appear to have a common vascular mechanism characterized by chronically 

reduced cerebral perfusion. Vessels that are normally distensible become increasingly 

stiff with aging and exposure to metabolic syndrome components and cardiovascular 

disease risk factors lead to the loss of Windkessel function and transference of 

dangerous pulsatile forces to vulnerable cerebral microvasculature. Interruptions of 

critical nutrients to metabolically demanding parenchyma may lead to oligemia and 

eventual loss of function in cortices and the white matter circuitry that connects them. 

Alterations of the cerebral white matter are considered to be early events in AD 

pathogenesis and a discrete characteristic of AD (175, 242). Although considerable 

work regarding exercise, cerebral white matter, and cognitive function has been 

performed, their integration with arterial stiffness in midlife as an incipient event 

remains unclear.  

  Physical activity, in many ways, is the closest intervention to a panacea that 

exists in the prevention and treatment of cardiovascular diseases and dementia.  

Known agitators to vascular health, adiposity, hypertension, dyslipidemia, and 

dysglycemia can all be assuaged by moving from a sedentary to a more active lifestyle.  

Arterial stiffening can also be improved with physical activity. Perhaps most 

importantly, individuals with greater aerobic fitness have greater cerebral blood flow 

velocity at any age (7). Together, these attributes identify physical activity and 

improvements to arterial stiffness as critical intervention tools for individuals in 
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midlife afflicted with cerebrovascular risk factors who are more likely to acquire 

dementia.  
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APPENDIX A: DEFINITION OF TERMS 

Adipose tissue: fat cells that primarily store energy and have endocrine like properties 

Alzheimer’s disease: a dementia subtype characterized functionally by impaired 

communication, poor judgment, memory loss, and pathophysiologically by medial 

temoral lobe degeneration, accumulated beta-amyloid plaques, and tau tangles in 

neurons. 

Arterial compliance: the absolute change in arterial volume for a given increment in 

pressure. 

Arterial distensibility: the relative change in arterial volume for a given increment in 

pressure. 

Arterial stiffness: hardening of artery walls that reduces the capability of vessels to 

buffer pulsatile blood flow ejected from the heart to deliver smooth continuous blood 

flow to end organs as the result of structural and functional changes. 

-stiffness: an arterial stiffness measure independent of the effect of distending blood 

pressure. 

Blood brain barrier: a physiological mechanism that functionally preserves a selective 

permeable neurovascular unit, comprised of vascular cells such as endothelium and 

pericytes, glial cells, and neurons. 

Cognitive function: mental processes that construct our thinking often deconstructed 

into domains consisting of attention, memory, language, problem solving, decision 

making and others that are evaluated with paper-based tests or tasks designed to 

challenge specific domains.  
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Dementia: a major neurocognitive disorder that interferes with cognitive function and 

activities of daily living.  

Fractional anisotropy: in vivo measurement of water diffusion through diffusion tensor 

imaging representing directional parallelism of water diffusion in parenchyma with 

greater values representing greater tissue integrity. 

Mean diffusivity: in vivo measurement of water diffusion through diffusion tensor 

imaging representing the magnitude of water diffusion in parenchyma reflective tissue 

with greater values representing poorer tissue integrity. 

Metabolic syndrome: a cluster of three risk factors that include abdominal obesity, 

dyslipidemia, elevated blood pressure, and hyperglycemia occurring in a single 

individual. 

Middle-age: chronological age of 40-60 years. 

Physical activity: a behavior defined by skeletal muscle movement resulting in energy 

expenditure. 

Sedentary: activities that result in a metabolic expenditure below 1.5 metabolic 

equivalent or negligible energy expenditure often involving non-upright activities. 

Vascular dementia: a dementia subtype characterized by impaired judgment or 

executive function often with co-occurrence of gait instability. Vascular dementia is 

characterized by cerebral infarcts of ischemic or vascular etiology.   

White matter hyperintensities: lesions appearing on T2-weighted MR images as bright 

spots often the result of multiple diseases but are a common feature of vascular 

cognitive impairment. These lesions are reflective of rarefication of white matter and 

are associated with axonal loss, demyelination, microvascular arteriosclerosis, and 

endothelial dysfunction. 
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White matter integrity: the structural status of white matter tracts described by 

diffusion tensor imaging metrics characterizing the diffusion of water molecules in 

vivo. 

Windkessel: the ability of the vasculature to buffer and cushion pulsatile forces that 

accompany each heartbeat and convert them into smooth continuous blood flow. 
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APPENDIX B: QUESTIONNAIRES, NEUROPSYCHOLOGICAL 

ASSESSMENTS, AND SUPPLEMENTARY INFORMATION 

 

(See supplemental documentation)
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