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Hessian preconditioners are the key to efficient numerical solution of large-scale

distributed parameter PDE-constrained inverse problems with highly informative

data. Such inverse problems arise in many applications, yet solving them remains

computationally costly. With existing methods, the computational cost depends on

spectral properties of the Hessian which worsen as more informative data are used

to reconstruct the unknown parameter field. The best case scenario from a scien-

tific standpoint (lots of high-quality data) is therefore the worst case scenario from a

computational standpoint (large computational cost).

In this dissertation, we argue that the best way to overcome this predicament is

to build data-scalable Hessian/KKT preconditioners—preconditioners that perform

well even if the data are highly informative about the parameter. We present a

novel data-scalable KKT preconditioner for a diffusion inverse problem, a novel data-

scalable Hessian preconditioner for an advection inverse problem, and a novel data-

scalable domain decomposition preconditioner for an auxiliary operator that arises

in connection with KKT preconditioning for a wave inverse problem. Our novel

preconditioners outperform existing preconditioners in all three cases: they are robust

to large numbers of observations in the diffusion inverse problem, large Peclet numbers

in the advection inverse problem, and high wave frequencies in the wave inverse

problem.
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Chapter 1

Introduction

In distributed parameter inverse problems governed by partial differential equa-

tions (PDEs), one seeks to reconstruct an unknown spatially varying parameter field

from measurements (“data”) of a state variable that depend on the parameter implic-

itly through the solution of a PDE.1 Although such inverse problems arise in a wide

variety of applications, solving them remains computationally costly since a large

number of PDEs must be solved in the process.

• The number of PDE solves that must be performed depends on spectral prop-

erties of the Hessian in the inverse problem.

• These spectral properties of the Hessian worsen as more informative data are

used to reconstruct the parameter.

By saying the spectral properties of the Hessian “worsen,” we mean that the eigen-

values of the data misfit term in the Hessian become larger and less clustered. This

forces existing methods for solving the inverse problem to perform more PDE solves.

By saying one set of data is “more informative” than another set of data, we mean

the more informative data could, in principle (ignoring computational cost), be used

to reconstruct the parameter field with more certainty than the less informative data.

The informativeness of the data would increase, for example, if we performed more

measurements, or if we performed measurements with greater accuracy.

This leads to a predicament: the best case scenario from a scientific standpoint

(lots of high-quality data) is the worst case scenario from a computational stand-

1This chapter contains content from [8] (Nick Alger, Umberto Villa, Tan Bui-Thanh, and Omar
Ghattas. A data scalable augmented Lagrangian KKT preconditioner for large-scale inverse prob-
lems. SIAM Journal on Scientific Computing, 39(5):A2365–A2393, 2017.) and [7] (Nick Alger,
Vishwas Rao, Aaron Myers, Tan Bui-Thanh, and Omar Ghattas. Scalable matrix-free adap-
tive product-convolution approximation for locally translation-invariant operators. arXiv preprint
arXiv:1805.06018, 2018. Submitted.).
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point (many PDE solves required). We overcome this predicament by building data-

scalable Hessian preconditioners—preconditioners that perform well regardless

of how informative the data are about the parameter. When data-scalable Hessian

preconditioners are used within appropriate numerical methods, the cost to solve the

inverse problem does not grow with the informativeness of the data.2 This allows

computationally tractable inverse problems with highly informative data to be solved

faster, and offers a way to solve inverse problems with highly informative data that

are currently intractable.

1.1 Model problems

We focus on inverse problems in which we have noisy observations,

y = Bu+ ζ,

of a state variable, u, which depends on an unknown spatially varying parameter, q,

implicitly through the solution of a state equation,

A(q)u = f(q). (1.1)

Here, B is a linear observation operator, ζ is unknown noise,3 and (1.1) is a PDE or

system of PDEs that is uniquely solvable for u given q. Although we work with state

equations that are linear in u, the methods developed in this dissertation are equally

applicable to smooth nonlinear state equations, because such state equations look

linear locally. Given a candidate parameter, q, the forward problem is to generate

predicted noise-free observations by solving (1.1) for u, then computing Bu. The goal

of the inverse problem is to invert this process:

Inverse problem
Given y, infer q.

More detailed coverage of inverse problems can be found in [183]. The following model

problems illustrate this inverse problem framework.

2We will discuss how Hessian preconditioners can speed up numerical methods for solving the
inverse problem in Chapter 3 and Appendix A.

3In practice ζ will also contain model error, though we do not consider model error here.
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1.1.1 Diffusion model problem

An object is heated non-uniformly until it reaches thermal equilibrium, then mea-

surements of the temperature are performed at many points distributed throughout

the object. The inverse problem is to use the temperature data to infer the ob-

ject’s unknown spatially varying log-conductivity field (see Figure 1.1). In this model

problem, the parameter, q, is the log-conductivity field, the state variable, u, is the

temperature, and the state equation is the inhomogeneous Poisson equation,

−∇ · eq∇u = f︸ ︷︷ ︸
“A(q)u=f”

. (1.2)

We write A(q)u = f to denote the result of converting (1.2) to weak form, incorporat-

ing appropriate boundary conditions, and discretizing with the finite element method.

The observation operator, B, extracts point measurements of the temperature,

(Bu)i := u(xi),

for a collection of points xi.
4

heat
source

.
.
.

.

. .. . .
.

temperature 
observation 
locations

?
unknown 
conductivity
field

Figure 1.1: (Diffusion model problem) We are given point measurements of temperature
at a collection of locations in a material (indicated by the black dots), and seek to infer the
material’s spatially varying log-conductivity field.

We also consider the source inversion simplification of this inverse problem, in

which the conductivity is known and uniform, and the parameter being inverted for

4Defining the observation operator this way assumes that the xi do not lie on points of discontinu-
ity of u. In realistic scenarios, u will each be continuous almost everywhere. Alternatively, one may
address regularity concerns by defining the measurements as averages over small balls surrounding
the xi, rather than point measurements at the xi.
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is the spatially varying heat source, f(q) = q. In this case the PDE becomes

−∆u = q︸ ︷︷ ︸
“Au=f(q)”

.

The source inversion problem shares the same diffusive character as the parameter

inversion problem, and the Hessian for the source inversion problem has similar spec-

tral properties as the Hessian for the parameter inverse problem, but in the source

inversion problem the map from parameter to observations is linear.

1.1.2 Advection model problem

   
 w

in
d

ve
lo

ci
ty

sensors

        advected
contaminant plume

?

    unknown
initial condition

Figure 1.2: (Advection model problem) We seek to infer the initial concentration of a
contaminant plume based on time series measurements of contaminant concentration as the
plume passes through an array of sensors.

A contaminant is released into the atmosphere, where it is transported by the

wind. Measurements of the contaminant concentration are performed as the contam-

inant passes through a sensor-containing geographic boundary. The inverse problem

is to use the sensor data to infer the initial spatially varying concentration of the

contaminant (see Figure 1.2). In this case, q is the initial concentration of the con-

taminant, u is the concentration of the contaminant at all times, the state equation

is the advection-diffusion equation,

{
∂u
∂t

= 1
Pe

∆u− b · ∇u, t > 0,

u = q, t = 0,
(1.3)
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with wind velocity field b, and B performs time series measurements of the concen-

tration of the contaminant along a surface Γobs for times t ∈ (0, 1]:

(Bu) (s, t) = u(s, t), s ∈ Γobs, t ∈ (0, 1].

Advection inverse problems are discussed at greater length in [4].

1.1.3 Wave model problem

An oil company excites the earth by dropping a heavy weight on the ground,

generating seismic waves that travel through the subsurface, reflecting off interfaces

between different types of rock. These reflected waves are measured with an array of

sensors on the surface. The inverse problem is to use these measurements to create a

picture of the squared slowness field in the subsurface (See Figure 1.3).

To model this, we use the frequency domain seismic full-waveform inversion frame-

work [165] with the acoustic approximation.5 Seismic inversion uses data from many

sources (the ground is excited many times at different locations). For each source,

data are obtained for many frequencies. Let k be a linear index that runs over all

source-frequency pairs, let ωk be the associated frequency, and let fk be the time-

harmonic component of the associated source for that frequency. The time harmonic

component of the pressure wave associated with this source-frequency pair, uk, satis-

fies the Helmholtz equation,

∆uk + ω2
k q uk = fk︸ ︷︷ ︸

“Ak(q)uk=fk”

. (1.4)

Here, the parameter is the squared slowness, q = 1/c2, where c is the sound speed. We

writeAk(q)uk = fk to denote the result of converting (1.4) to weak form, incorporating

Dirichlet boundary conditions on the top boundary (earth’s surface), PML absorbing

boundary conditions [37] on the other boundaries, and discretizing with the finite

element method.

The observation operator measures the following frequency-weighted normal deriva-

tive of the time harmonic pressure along a subset Γobs of the top surface:

(Bkuk) (s) = ν · ω−2
k ∇uk(s) for s ∈ Γobs.

5That is, we consider only pressure waves and ignore shear waves.
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wave path

source receivers

?

  unknown
 subsurface 
sound speed

Figure 1.3: (Wave model problem) We seek to infer the subsurface sound speed field
from measurements of reflected waves.

These measurements correspond, after some processing, to vertical accelerometer

readings along Γobs.

When using multiple frequencies and sources, the overall state u is a concatenation

of the state variables for each frequency-source pair, and satisfies the block-diagonal

state equation: 


A1(q)
A2(q)

A3(q)
. . .







u1

u2

u3
...


 =




f1

f2

f3
...


 .

︸ ︷︷ ︸
A(q)u = f

(1.5)

Each block row of (1.5) is a state equation of the form (1.4). Similarly, the observa-

tions for all frequencies and sources takes the form



y1

y2

y3
...


 =




B1

B2

B3

. . .







u1

u2

u3
...


+




ζ1

ζ2

ζ3
...




︸ ︷︷ ︸
y = Bu+ ζ

,

where ζk is unknown noise corrupting the measurements associated with the kth

source-frequency pair.

1.1.4 Operators preconditioned

We contribute novel data-scalable preconditioners for the KKT operator—a sparse

operator that is algebraically equivalent to the Hessian—in the source inversion vari-
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ant of the diffusion inverse problem, for the Hessian in the advection inverse problem

with uniform flow, and for the operator B∗B + ρA∗A in the single-frequency single

source variant of the wave inverse problem (ρ is a penalty parameter). Our novel

preconditioners outperform existing preconditioners6 for these operators: they are

robust to large numbers of observations in the diffusion inverse problem, large Peclet

numbers in the advection inverse problem, and high wave frequencies in the wave

inverse problem.

The complete diffusion inverse problem (not the source inversion variant), the

advection-diffusion inverse problem with non-uniform flow, and the multiple frequency

multiple source wave inverse problem are targets of future research. We expect that

methods presented in this dissertation will be useful for preconditioning these more

difficult problems.

1.2 Setting and notation

We use an abstract version of the “discretize-then-optimize” approach [107]. Vec-

tors (e.g. q) are abstract elements of finite dimensional function spaces (e.g. finite

element spaces) without reference to a basis. Operators (e.g., B) are abstract map-

pings between these spaces. Although we operate in a finite-dimensional setting, we

always pay attention to the behavior of numerical methods and preconditioners as

the mesh size goes to zero and the dimension of the finite dimensional function spaces

goes to infinity (the continuum limit). We consider methods for solving the inverse

problem to be unacceptable if their performance significantly degrades as the mesh

used to discretize the problem is refined.

We use bold lettering (e.g., q, B) to denote arrays of numbers that represent vec-

tors and operators with respect to concrete bases. These arrays of numbers are what

are stored and operated on when numerically solving the inverse problem with a com-

puter. In a concrete basis, all formulas remain essentially the same, with the exception

that Gram matrices (e.g., mass matrices) and their inverses appear within formulas to

account for the Riesz representation theorem for adjoints in a non-orthogonal basis.

6We will discuss existing preconditioners in Chapter 6.
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Unless otherwise stated, we use L2 norms, inner products, and adjoints. If M is

positive and self-adjoint, we write ‖x‖M := (x∗Mx)1/2 to denote the norm induced

by M . When we need to convert between between bilinear forms and their associated

linear operators, we use the symbol '. For example, if c(·, ·) is a bilinear form, we

write C ' c to say that C : x 7→ c(·, x) is the linear operator associated with c.

1.3 The inverse problem

The inverse problem of inferring q from y is ill-posed. If many different q’s are

consistent with y, which q should we choose? Should we choose a single q at all?

The two primary frameworks for addressing ill-posedness are the deterministic frame-

work and the Bayesian framework. In Chapter 2, we will discuss ill-posedness in

greater detail and derive these frameworks. We use the deterministic framework in

computations, but we also present the Baysian framework since it is required for our

information-theoretic analysis of the spectrum of the Hessian in Chapter 4.

Briefly, the simplest7 q consistent with y is the solution to the optimization prob-

lem

arg min
q

J(q), (1.6)

where J takes the form

J(q) :=
1

2
‖Bu(q)− y‖2

Y +
1

2
‖q − q0‖2

R . (1.7)

Here, u(q) denotes the solution of (1.1) as a function of q, and q0 is a parameter

that we expect q to be similar to before the observations are taken into account. The

operator Y weights the data to account for uncertainty in the measurements, and R

is a symmetric positive definite operator that encodes our notion of simplicity. The

smaller the second term is, the simpler q is. We call R (or a scaled version of R, in

some contexts) the regularization operator. We will discuss regularization in greater

detail in Chapter 2. In the deterministic framework, one computes a single estimate

of q by solving optimization problem (1.6).

7under assumptions we will discuss in Section 2.2
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Within J, the data misfit term,

Jd(q) :=
1

2
‖Bu(q)− y‖2

Y ,

measures the discrepancy between the observed data (based on the unknown true

parameter) and the predicted data (based on the candidate parameter q). The regu-

larization term,

JR(q) :=
1

2
‖q − q0‖2

R ,

measures how different q is from q0. To make Jd small, the predicted observations

should match the true observations. To make JR small, the parameter should look

like what we expect it to look like. Minimizing J, which is the sum of Jd and JR,

requires balancing these competing interests.

Alternatively, under Gaussian assumptions8 for the noise and prior, the Bayesian

posterior probability distribution for q given y is

π(q|y) ∝ exp (−J(q)) , (1.8)

where ∝ denotes proportionality up to a normalizing constant. In this case J also

takes the form (1.7), but here R is the inverse of the prior covariance, Y is the inverse

of the noise covariance, and q0 is the prior mean.

1.4 Information, the Hessian, and the KKT operator

The directional scalings of the contours of Jd characterize how informative the

data are about different components of q. Intuitively,

• directions in which the contours of Jd are closely spaced correspond to compo-

nents of q which are well-informed, since perturbing q in such a direction would

yield large changes to the data misfit, and

• directions in which the contours of Jd are widely spaced correspond to compo-

nents of q that are poorly-informed, since perturbing q in such a direction would

yield small changes to the data misfit.

8These Gaussian asumptions are not as restrictive as they may seem; see Section 2.5.
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This is illustrated in Figure 1.4. The directional scalings of the contours of Jd are

locally quantified by the eigenstructure of the data misfit Hessian,

Hd '
d2Jd

dq2
.

The larger an eigenvalue of Hd, the more closely spaced the contours of Jd are in the

associated eigenvector’s direction, and the more informative the data are about that

component of the parameter in the associated eigenvector’s direction. In Chapter 4,

we will use information theory to make precise the connection between the eigenvalues

of Hd and the information contained in the data.

The Hessian,

H = Hd +R ' d2J

dq2
,

is the data misfit Hessian plus the Hessian of the regularization or prior term, R '
d2JR
dq2

. In Chapter 3 we will see that H is central to computational methods for

solving the inverse problem. In particular, Newton-Krylov methods for solving the

deterministic optimization problem, (1.6), require solving a linear system with H as

the coefficient operator at every outer (Newton) iteration. These methods use an

inner Krylov iteration to perform these linear solves. Hessian preconditioners allow
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Figure 1.5: Eigenvalues for the generalized eigenvalue problem of Hd and R. Eigenvalues of
R should be small where eigenvalues of Hd are large, and vice-versa. As more informative
data are included in the inversion, the eigenvalues of Hd increase. As less regularization is
used, the eigenvalues of R decrease.

us to solve the inverse problem faster by solving these Newton-Krylov linear systems

faster.

Where it is convenient, we will precondition the KKT operator, K, instead of the

Hessian, H. The KKT operator is the second derivative of the Lagrangian function

for a formulation of optimization problem (1.6) in which the state equation constraint,

(1.1), is enforced with Lagrange multipliers. We will define the Lagrangian function

and the KKT operator in Section 3.2.2. The operators H and K are algebraically

equivalent—if one can solve linear systems with K as the coefficient operator, then

one can solve linear systems with H as the coefficient operator, and vice versa. We

will summarize the connections between H and K in Chapter 5.

1.5 Regularization preconditioning is not good enough

Despite the importance of the Hessian, current techniques for Hessian precondi-

tioning in PDE-constrained inverse problems scale poorly with increasingly informa-

tive data. Unlike operators in forward problems, access to the Hessian is matrix-free.

We can apply the Hessian to vectors but cannot easily access individual entries of the

Hessian’s matrix representation. Additionally, the spectral behavior of the Hessian

differs from that of forward operators because the Hessian consists of two terms (Hd

and R) which ideally act in opposition to each other. In directions that Hd acts
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strongly, R should act weakly, and vice versa (more on this in Section 2.7.1). Most

preconditioning techniques that are highly effective for forward problems are therefore

inapplicable to Hessians.

Regularization preconditioning (preconditioning H by R) and techniques based on

low-rank approximation of the regularization preconditioned data misfit Hessian are

currently the most effective techniques for many circumstances. These techniques are

mesh-scalable in that the required number of PDE solves remains roughly constant

as the mesh used to discretize the parameter is refined. But these techniques are not

data-scalable. As the data become more informative or as the regularization lessens,

the data misfit term increases in importance while the regularization term decreases in

importance within the Hessian (see Figure 1.5). This results in worse performance of

regularization or low-rank approximation based preconditioners as more informative

data are included in the inverse problem. For this dissertation we will not be satisfied

with reducing the number of PDE solves to a mesh-independent constant. The goal is

to also make this constant data-independent and as small as possible.

1.6 Summary of the dissertation

This dissertation will:

1. provide background on distributed parameter PDE-constrained inverse prob-

lems, with emphasis on ill-posedness, the informativeness of the data, the spec-

trum of the Hessian, and how these factors affect the performance of solution

methods, and

2. present our new preconditioners and demonstrate that they are data-scalable.

1.6.1 Background summary

Chapter 2 (Inverse Problem Frameworks) The fundamental characteristic

that differentiates inverse problems from forward problems is ill-posedness, which is

physically meaningful, not just a computational nuisance. In this chapter, we review

ill-posedness, derive deterministic and Bayesian frameworks for the inverse problem

from first principles, and show how these two frameworks are connected. We then
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discuss over- and under-regularization, and provide practical and heuristic guidance

on the choice of regularization or prior.

Chapter 3 (Deterministic Solution Methods) Solving the inverse problem

within the deterministic framework requires solution of a large-scale nonlinear opti-

mization problem. The primary source of difficulty in solving this optimization prob-

lem is ill-conditioning. To address ill-conditioning, we advocate using second-order

Newton-Krylov-type methods, and building preconditioners for the linear systems—

linear systems with the Hessian or other Hessian-like operators as the coefficient

operator—that arise in these methods.

Chapter 4 (Spectrum of the Hessian and information) In this chapter we

show that the spectrum of Hd characterizes how informative the data are about the

parameter. The larger an eigenvalue of Hd is, the more informative the data are about

the component of the parameter in the corresponding eigenvector’s direction.

Chapter 5 (Hessian and KKT facts) Applying the Hessian to a vector can be

done via a process that involves solving a sequence of two PDEs with the same form as

the state equation. There are formulas for the other Hessian-like operators that we will

use later when constructing preconditioners (i.e. the Gauss-Newton Hessian, the KKT

operator, and the Gauss-Newton KKT operator). We show that these other Hessian-

like operators are equivalent to the Hessian for the purposes of preconditioning: a

solver or good preconditioner for one of the Hessian or Hessian-like operators can be

used to build a good preconditioner for any of the others.

Chapter 6 (Existing Hessian Solvers, Preconditioners, and Approxima-

tions) Existing Hessian and KKT preconditioners, as well as other relevant solvers,

preconditioners, and approximation schemes, are not satisfactory. Existing methods

are either not data-scalable, or make unrealistic assumptions, or only apply to niche

problems. New preconditioners are needed.

13



1.6.2 Hessian preconditioners summary

Chapter 7 (Augmented Lagrangian KKT preconditioner) We present an

augmented Lagrangian-type preconditioner for the Gauss-Newton KKT operator based

on a block diagonal approximation of the upper left block of an augmented version

of the Gauss-Newton KKT operator.

The idea of the preconditioner is to form a Schur complement for the adjoint

variable (instead of the parameter) within the KKT operator. Unfortunately, be-

cause the objective block of the KKT operator is singular for inverse problems with

limited information, this adjoint Schur complement does not exist. So, we augment

the Lagrangian with a quadratic penalty on the constraint. The objective block of

the augmented KKT operator (the KKT operator associated with the augmented

Lagrangian) is invertible, and the adjoint Schur complement of the augmented KKT

operator exists.

The preconditioner requires solvers for two linear subproblems that arise in the

augmented KKT operator, which are easier to precondition than the Hessian. Anal-

ysis of the spectrum of the preconditioned KKT operator indicates that the precon-

ditioner is effective when the regularization neither over-penalizes highly informed

parameter modes, nor under-penalizes uninformed modes.

We present a numerical study for the source inversion variant of the diffusion model

problem, demonstrating the effectiveness and data-scalability of the preconditioner.

See Figure 1.6 for a preview of the convergence results using this preconditioner. In

this example, three MINRES iterations on the KKT system with our preconditioner

results in a reconstruction with better accuracy than 50 iterations of CG on the

Hessian system with regularization preconditioning.

Chapter 8 (Adaptive Product-Convolution Approximation) Hessians and

interface operators that arise in PDE-constrained inverse problems often exhibit local

translation invariance. That is, the impact of a point source centered at point p on a

target at point q is similar to the impact of a point source centered at point p+ h on

a target at point q + h, if h is not too large.
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Figure 1.6: Preview of results from Chapter 7. Relative error in the parameter recon-
struction for a big data Poisson source inversion problem, as a function of the number of
Krylov iterations. “CG-HESS” indicates regularization preconditioning, whereas “BDAL”
indicates variants of our new augmented Lagrangian preconditioner.

In this chapter, we develop an operator approximation scheme for operators that

are locally translation-invariant, even if these operators are high-rank or full-rank.

We present an adaptive grid matrix-free operator approximation scheme based on a

“product-convolution” interpolation of convolution operators. Constructing this ap-

proximation requires applying the operator to point sources centered on nodes in an

adaptively refined grid of sample points. A randomized, adjoint-based, a-posteriori

error estimator drives this adaptivity. Once constructed, the approximation can be

efficiently applied to vectors using the fast Fourier transform (FFT), and used as a

surrogate model. It can also be efficiently converted to hierarchical matrix (H-matrix)

format, then inverted or factorized using scalable H-matrix arithmetic. Using fewer

sample points yields a less accurate approximation, which can be used as a precon-

ditioner. We address issues related to boundaries, which plague existing product-

convolution schemes, and prove that our scheme eliminates boundary artifacts.

We apply the scheme to the data misfit Hessian for our advection inverse prob-

lem. Numerical results show that the scheme is data-scalable—the number of sample

points remains constant as the Peclet number, a proxy for the informativeness of the
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Figure 1.7: Preview of results from Chapter 8. Approximation of the data misfit Hessian
for the advection inverse problem. The plot shows the (convolution-)rank, r, required to
achieve a relative approximation error of 10% for a variety of Peclet numbers, Pe. “TSVD”
indicates low-rank approximation via the truncated singular value decomposition. “Conv”
indicates our new product-convolution approximation scheme.

data, increases. A preview of our numerical results is shown in Figure 1.7. The result-

ing preconditioner substantially outperforms regularization preconditioning. We also

apply the scheme to other, non-Hessian, operators in Appendix E, and to an interface

operator used within our preconditioner for the wave inverse problem in Chapter 9.

Chapter 9 (Domain Decomposition Wave preconditioner) The augmented

Lagrangian KKT preconditioner from Chapter 7 may be applied to the wave inverse

problem, but this requires preconditioners for two subproblems. Whereas these sub-

problems can each be effectively preconditioned by multigrid for the diffusion inverse

problem, one of these subproblems—the subproblem with B∗B + ρA∗A as the co-

efficient operator—is not amenable to multigrid preconditioning in the wave inverse

problem. We use Robin-Robin domain decomposition to develop a preconditioner for

this subproblem.

We partition the domain into two subdomains: one small subdomain near the

surface, which contains the observations, and one large subomain below the surface,

which does not. The diagonal block of the operator associated with the observations

subdomain is small and can be solved efficiently using hierarchical matrix methods. In
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Table 1.1: Preview of results from Chapter 9. Number of iterations required to
solve a linear system with B∗B + ρA∗A as the coefficient operator, for a variety
of angular frequencies ω = 10, 20, . . . , 100 (Column 1) and relative error tolerances
τ = 10−1, 10−2, . . . , 10−6. We indicate our wave domain decomposition method with
‘DDWAVE’, and indicate ρA∗A as a preconditioner by ‘AA’. Columns 3-8 show the
number of Krylov iterations required to solve the linear system using our method to
the desired tolerance. Columns 9-14 show the number of Krylov iterations for solving
the linear system using ρA∗A as the preconditioner. Dashed entries (‘—’), indicate
that the method did not converge to the desired tolerance.

ω
DDWAVE AA

r 10−1 10−2 10−3 10−4 10−5 10−6 10−1 10−2 10−3 10−4 10−5 10−6

10 5 3 6 7 9 10 12 118 119 119 119 119 120
20 8 3 5 7 9 11 13 360 429 435 438 439 439
30 12 3 5 8 10 13 15 284 581 759 956 1000 —
40 13 4 6 8 10 12 15 266 435 765 — — —
50 16 3 6 8 10 12 14 269 503 — — — —
60 18 3 6 8 11 14 15 235 454 882 — — —
70 20 3 6 8 11 14 16 211 414 987 — — —
80 21 4 6 9 12 14 16 232 453 768 — — —
90 23 4 6 9 13 15 17 209 377 705 — — —
100 25 3 6 9 12 15 17 200 384 702 — — —

the diagonal block of the operator associated with the large subdomain, the forward

and adjoint variables are partially decoupled, so linear systems with this block as

the coefficient operator can be solved by performing two wave solves in sequence.

Coupling these subdomains to solve the overall system requires approximating an

impedance-to-impedance map at the interface between the subdomains. We do this

with the product-convolution scheme from Chapter 8.

Numerical examples demonstrate that the preconditioner is frequency-scalable

and penalty parameter scalable. As the frequency of waves used in the inversion

increases, or as the penalty parameter ρ decreases, the number of Krylov iterations to

solve a linear system with B∗B + ρA∗A as the coefficient operator remains constant.

A preview of our numerical results is shown in Table 1.1.

Chapter 10 (Conclusion) We conclude the dissertation by reviewing the precon-

ditioners presented and suggesting directions for future research.
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1.6.3 Appendix summary

Appendix A (Bayesian Solution Methods) Although we solve inverse problems

in the deterministic framework here, Hessian preconditioners are also relevant to

the Bayesian framework. Solving the inverse problem in the Bayesian framework

requires drawing samples from an implicitly defined, high-dimensional, often non-

Gaussian, posterior probability distribution. The Hessian is a local approximation

to the inverse covariance of the posterior, and is therefore central to state-of-the-art

sampling methods. The Hessian operations that these sampling methods require can

be significantly sped up if a good Hessian preconditioner is available.

Appendix B (Dimension dependence of sparse-direct methods) Sparse-

direct factorization of the KKT matrix provides a reliable alternative method for

solving inverse problems. However, sparse-direct methods can only be used if the

resulting factor matrices can fit in memory, and if the time required to perform

the factorization is not too long. In this appendix, we discuss how the spacetime

dimension of the problem affects the performance of sparse-direct methods. Sparse-

direct methods perform well in 1 spacetime dimension, acceptably in 2 spacetime

dimensions, and poorly in 3 or more spacetime dimensions.

Appendix C (Additional Algorithms) This appendix provides a more detailed

description of some algorithms used in Chapter 9.

Appendix D (Additional Proofs) This appendix provides proofs of several re-

sults that were stated but not proven in the body of the dissertation.

Appendix E (Additional Numerical Results) Although the primary purpose of

the product-convolution scheme in Chapter 8 is Hessian preconditioning, the scheme

is also useful for approximating operators that arise in other situations, particularly

high-rank Schur complements. In this appendix we present numerical results show-

ing that the product-convolution scheme improves upon state-of-the-art methods for

approximating other, non-Hessian, operators.
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Chapter 2

Inverse Problem Frameworks

Because of ill-posedness, inverse problems cannot be “solved” in the classical sense

of uniquely determining the parameter from the observations (Section 2.1). But ill-

posed inverse problems occur widely and are important. To make progress we must

expand our conception of what it means to “solve” an inverse problem. Presently,

the two primary frameworks for addressing ill-posedness are the deterministic frame-

work (Section 2.2), and the Bayesian framework (Section 2.3). The deterministic

framework applies Occam’s razor to find the solution of the inverse problem as a

single estimate for q that solves a regularized optimization problem. The Bayesian

framework assumes the existence of a prior probability distribution for q, then ap-

plies Bayes’ theorem to find the solution as a probability distribution over all possible

parameters, q. The two frameworks are closely connected (Section 2.4). After iden-

tifying operators in the deterministic framework with corresponding operators in the

Bayesian framework, the objective function in the deterministic optimization prob-

lem translates to the negative log posterior in the Bayesian framework. The solution

to the deterministic optimization problem is the maximum a-posteriori probability

(MAP) point in the Bayesian framework. In the deterministic framework, the Hes-

sian characterizes the directional curvatures of a local quadratic approximation to

the objective function, and in the Bayesian framework the inverse of the Hessian is

the covariance operator for a local Gaussian approximation to the posterior (Section

2.6).

Because the parameter is an infinite-dimensional field, it is difficult to construct

a rigorously justified regularization function for the deterministic framework or prior

for the Bayesian framework. It is widespread practice, therefore, to use heuristics

to choose the regularization or prior (Section 2.7). The most important heuristic is

avoidance of over- and under-regularization (Section 2.7.1), which leads naturally to
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smoothing priors/regularization, where the regularization operator is a differential

operator (Section 2.7.2).

2.1 Ill-posedness

Given a candidate parameter q, one can generate predicted, noise-free observations

by solving (1.1) for u, then computing Bu. We call this process the parameter-to-

observable map, which we denote by G. That is,

G(q) := Bu(q),

where u(q) denotes the solution of (1.1) as a function of q. Notice that

y = G(q) + ζ. (2.1)

The classical approach to find q given y would be to set ζ = 0 (ignore noise) and

solve (2.1) for q. However, for this equation to be solvable, G must be injective

and surjective, and for the solution to be stable with respect to noise, G−1 must be

continuous. If one or more of these requirements fails, the inverse problem is ill-posed

in the classical (Hadamard) sense:

(Type 1 ill-posedness) G is not injective.

(Type 2 ill-posedness) G is not surjective.

(Type 3 ill-posedness) G−1, where it exists, is not continuous.

Distributed parameter PDE-constrained inverse problems usually exhibit Type 1 and

Type 3 ill-posedness, and sometimes exhibit Type 2 ill-posedness.

The meaning of Type 1 ill-posedness is that multiple parameters may generate

exactly the same predicted observations. Degree-of-freedom counting shows that this

is inevitable. Whereas parameter fields are functions on a continuum, and are there-

fore infinite-dimensional objects, the amount of data that can be gathered and stored

is finite. Type 2 ill-posedness arises in situations where there exists a point in the

observation space that does not correspond to any parameter. If the inverse problem
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exhibits Type 2 ill-posedness then noise or model inadequacy may cause y to be out-

side of Image(G). In Type 3 ill-posedness, substantially different parameters lead to

predicted observations that are arbitrarily close: for any ε > 0, there exist q1 and q2

such that ‖q1 − q2‖ ≥ 1 and ‖G(q1)− G(q2)‖ < ε. If ε is equal to or smaller than the

noise level, the data cannot be used to distinguish q1 from q2.

2.1.1 Ill-posedness examples

In the wave inverse problem, wave barriers (e.g., salt domes) block waves, creating

“shadowed regions” (See Figure 2.1). Waves either do not pass through shadowed

regions, or pass through these regions minimally. Thus, changing the parameter in

shadowed regions would not affect the observations. In other words, G has a null-

space (Type 1 ill-posedness) or near null-space (Type 3 ill-posedness) that consists of

functions supported in shadowed regions.

In the advection inverse problem, we can only infer the initial contaminant concen-

tration for portions of the contaminant plume that flow through the sensor locations

while the sensors are collecting data (see Figure 2.2). We cannot infer much about

the initial contaminant concentration in regions that are downwind of the sensors,

because only a small amount of the downwind contaminant will pass through the

sensors by diffusing upwind. Functions supported downwind of the sensors reside in

the null-space or near null-space of G, causing Type 1 or Type 3 ill-posedness.

Diffusion operators average out oscillatory components of functions that they act

on, blurring small features of those functions (imagine a drop of colored dye diffusing

into a cup of water). In the diffusion inverse problem, the PDE solve, A−1, within

G therefore diminishes the impact of highly oscillatory features of the parameter on

the observations. This creates a near null-space for G consisting of highly oscillatory

functions, causing Type 3 ill-posedness. We can only infer small features of the

parameter in a region if we have many observations in that region, and if the noise is

small. Having many observations causes an amplifying effect of B to counteract the

diminishing effect of A−1 within G. Having small noise decreases the threshold, ε, at

which different observations become functionally indistinguishable.

Diffusion also causes ill-posedness in the wave and advection inverse problems.
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Figure 2.1: Is there oil contained within the rock behind a wave barrier or not? If the
observed waves do not pass through a “shadowed” region of the domain, then we would
get nearly the same observations regardless of what is in that region, so we cannot use the
observations to determine whether or not oil is there.
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Figure 2.2: The initial condition of the contaminant plume cannot be inferred for regions
of the domain that are downwind of the sensors.

Diffusion enters into the wave inverse problem since the Helmholtz operator acts like

a diffusion operator on sub-wavelength-scales. The higher the wave frequency, the

more oscillatory the parameter can be before diffusion becomes a significant factor.

In the advection inverse problem, as the contaminant plume advects it also diffuses.

The farther away the contaminant plume is from the sensors when it is released, the

more it diffuses before observation, and the less we can infer about it. The Peclet

number determines the ratio of advection to diffusion. As the Peclet number increases,

the contaminant plume diffuses less before it is observed by the sensors, which allows

smaller scale features of the initial condition to be distinguished from one another.

2.2 Deterministic framework: Occam’s razor

If multiple q yield predicted observations that differ from y to within the noise,

which q should we choose? Occam’s razor suggests a resolution:

Choose the simplest q consistent with y.

To use Occam’s razor we need to define:

• What it means for q to be “simple”.

• What it means for q to be “consistent with y.”

23



Rather than maximize simplicity, it will be more convenient to instead minimize

complexity. We assume a complexity function,

complexity(q) :=
1

2
‖q − q0‖2

R0
, (2.2)

for some norm ‖·‖R0
induced by a positive self-adjoint operator R0, and some vector

q0. For example, if R0 is the identity operator and q0 = 0, then (2.2) says that q

is simpler than p if q has a smaller norm than p. If R0 is a power of the Laplacian

operator and q0 = 0, then (2.2) says that q is simpler than p if q is smoother than p.

To define consistency with the data, we assume that the noise is bounded:

‖ζ‖Y ≤ δ (2.3)

for some δ > 0 and norm ‖·‖Y . A candidate parameter q, and observations vector y,

are consistent if equality holds in (2.1) for some ζ satisfying (2.3). Hence the set of

q’s consistent with y are those such that

‖G(q)− y‖Y ≤ δ. (2.4)

After quantifying complexity with (2.2) and consistency with (2.4), Occam’s razor

becomes a constrained optimization problem. The simplest q consistent with the data

solves:

min
q

1

2
‖q − q0‖2

R0
,

such that ‖G(q)− y‖Y ≤ δ. (2.5)

If equality holds in the constraint at the solution to (2.5) (i.e., the constraint is active),

then standard optimization duality theory shows that local solutions of (2.5) are also

local solutions of this regularized optimization problem:

min
q

1

2
‖G(q)− y‖2

Y +
α

2
‖q − q0‖2

R0
, (2.6)

where 1/α is the Lagrange multiplier enforcing the consistency constraint in the form

1
2
‖G(q)− y‖2 = δ2/2. We call α the regularization parameter.1

1If the constraint is not active at the solution then proof by contradiction shows that the solution
to the optimization problem, qmin, satisfies qmin = q0, so the problem is trivial.
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If δ is known, one can solve a sequence of problems of the form (2.6) with different

values of α until the solution satisfies the Morozov discrepancy principle,

(1− τ)δ ≤ ‖G(q)− y‖Y ≤ (1 + τ)δ, (2.7)

for some small τ [17, 147]. But in practice, δ may be unknown, or known bounds

for δ may be overly pessimistic. Additionally, R0 is usually chosen based on heuris-

tics and computational considerations, rather than careful reasoning about simplic-

ity/complexity. It may thus be necessary or preferable to view α as a tunable param-

eter rather than a Lagrange multiplier, and to use other methods of choosing it (e.g.,

L-curves [119]). See [27, 28] for extensive analysis and comparison of the different

methods for choosing α.

The unconstrained optimization problem, (2.6), can also be reframed in the fol-

lowing constrained form:

Deterministic optimization problem

min
q,u

1

2
‖Bu− y‖2

Y +
α

2
‖q − q0‖2

R0

such that A(q)u = f(q).

(2.8)

This follows from (2.6) after explicitly enforcing the state equation as a constraint,

rather than eliminating it implicitly in the objective function. We call (2.6) the

reduced space problem and (2.8) the full space problem.

2.3 Bayesian framework

Due to noise and ill-posedness, many different q could explain y, each with varying

probabilities. Bayes’ rule,

π(q|y) =
π(y|q)π(q)

π(y)
, (2.9)

establishes a consistent framework for assigning these probabilities. In Bayes’ rule,

• π(q|y) is the posterior probability density of q, given y (from a probabilistic

point of view, this is the “solution” to the inverse problem).

• π(y|q) is the likelihood of observing y, given q.
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• π(q) is our prior probability density for q, before any observations have been

made.

• π(y) is the probability density of y (for our purposes it is a constant, since it

does not depend on q).

Let us assume that both the prior and noise have normal distributions with means

q0 and 0, respectively, and covariances Cprior and Cnoise, respectively. That is,

π(q) ∝ exp

(
−1

2
‖q − q0‖2

C−1
prior

)
(2.10)

and

π(ζ) ∝ exp

(
−1

2
‖ζ‖2

C−1
noise

)
. (2.11)

Because y = G(q) + ζ, (2.11) implies

π(y|q) ∝ exp

(
−1

2
‖y − G(q)‖2

C−1
noise

)
. (2.12)

Substituting (2.12) and (2.10) into (2.9) and simplifying yields the following posterior

distribution for q:

Posterior distribution

π(q|y) ∝ exp

(
−1

2
‖G(q)− y‖2

C−1
noise
− 1

2
‖q − q0‖2

C−1
prior

)
.

(2.13)

2.4 Connections between the frameworks

Let

J(q) :=
1

2
‖G(q)− y‖2

Y +
1

2
‖q − q0‖2

R .

If we set R := αR0, then the reduced space optimization problem in the deterministic

framework, (2.6), takes the form

min
q

J(q).

Similarly, if we set Y := C−1
noise and R := C−1

prior, then the posterior probability distri-

bution in the Bayesian framework, (2.13), is

π(q|y) ∝ exp (−J(q)) .
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If Y = C−1
noise and R = C−1

prior, then the objective function for the deterministic

problem is the negative log posterior in the Bayesian problem (up to a constant), and

the maximum a-posteriori probability point (MAP point) in the Bayesian problem is

the solution to the deterministic problem.

2.5 Discussion of the quadratic/Gaussian assumptions

In the deterministic framework we assumed that the simplicity function and

noise norm are quadratic. Correspondingly, in the Bayesian framework we assumed

that the prior and the noise distributions are Gaussian. These assumptions are

not as restrictive as they might seem. Even with these assumptions, the objec-

tive function/posterior can be non-quadratic/non-Gaussian due to nonlinearity of the

parameter-to-observable map, G. More importantly, even if these assumptions are vi-

olated, the Hessian preconditioning tools we develop will still be relevant, because

non-quadratic/non-Gaussian functions look quadratic/Gaussian locally, and the best

numerical methods for solving the inverse problem are based on making successive

local approximations.

2.6 Local quadratic/Gaussian models

Because of ill-posedness, perturbations to the parameter in some directions may

have little impact on J, while perturbations in other directions may have substantial

impact on J. As a result, J will typically have widely varying directional scalings—

in some directions J will be sharply curved, and in other directions J will be flat.

Quadratic models of J based on truncated Taylor series allow us to characterize these

directional scalings locally. These quadratic models also form the basis for the best

numerical methods for solving the inverse problem, as we will discuss in Chapter 3

and Appendix A.

Let qi be a fixed parameter and let p be a small perturbation to qi. Truncating a

Taylor series of J about qi after the quadratic term yields the approximation

J(qi + p) ≈ J(qi) + g∗p+
1

2
p∗Hp,
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where

g =

(
dJ

dq

)∗

is the gradient of J (Riesz representor of dJ
dq

) and

H ' d2J

dq2

is the Hessian of J (the linear operator associated with the bilinear form d2J
dq2

), and

these derivatives are evaluated at qi. Hence, the eigenvalues and eigenvectors of H

locally characterize the directional scalings of J. If an eigenvalue of H is large, then

locally J is sharply curved in the associated eigenvector direction. If an eigenvalue of

H is small, then locally J is flat in the associated eigenvector direction.

Alternatively, we may form a slightly different local quadratic model of J by

truncating the Taylor series for G after the linear term, and replacing G with this

approximation within J. We have

G(qi + p) ≈ G(qk) +Gp,

where

G :=
dG

dq

is the Jacobian of G, evaluated at qi. Replacing G with this approximation within J

yields an approximate objective function,

J(qi + p) ≈1

2
‖Gp− (y − G(qi))‖2

Y +
1

2
‖p− (q0 − qi)‖2

R

=J(qi) + g∗p+
1

2
p∗Hgnp, (2.14)

where we define the Gauss-Newton Hessian:

Hgn := G∗Y G+R, (2.15)

or Hgn = Hgn
d + R, where we define the data misfit Gauss-Newton Hessian Hgn

d :=

G∗Y G. Hence, the eigenstructure of Hgn also characterizes the local directional scal-

ings of J, in the same manner as the eigenstructure of H. Although the quadratic

approximation involving Hgn is asymptotically less accurate than that of H, Hgn is
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positive definite while H may be indefinite away from the optimal point. But gener-

ally H and Hgn will be similar; we will discuss connections between these operators

in Chapter 5.

Notice that (2.14) is the objective function that would arise if the determinis-

tic framework from Section 2.2 were applied to a hypothetical inverse problem in

which the parameter-to-observable map has been replaced by a local linearization.

Intuitively, in this local approximation one assumes that the true parameter is a

small perturbation from a known reference parameter, and seeks to determine the

perturbation. If the true parameter is sufficiently close to the true parameter, and

if high accuracies are not required, then this local approximation may replace the

original model (see, e.g., [144] for an example of this in ocean acoustic inversion). If

higher accuracies are needed, a sequence of successively better local models may be

generated iteratively. One solves for the optimal perturbation based on the current

reference model, then adds this perturbation to the reference model, creating a better

reference model. This process repeats until convergence. We discuss this process in

greater detail in Section 3.2.

Since J is the negative log posterior in the Bayesian framework, these local quadratic

approximations of J yield directional-scaling-aware local Gaussian approximations of

the posterior. We have

π(q|y) ∝ exp

(
−1

2
‖G(q)− y‖2

Y +
1

2
‖q − q0‖2

R

)

≈ exp(−g∗(q − qi)−
1

2
(q − qi)∗H̃(q − qi))

∝ exp

(
−1

2
(q − q)∗H̃(q − q)

)
,

where qi is the point at which we are making the approximation, H̃ is either H or

Hgn, and

q := qi − H̃−1g.

As a result, near qk the posterior is well-approximated by the Gaussian model

π̃(q|y) ∝ exp

(
−1

2
(q − q)∗H̃(q − q)

)
. (2.16)
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This approximation is only well-defined if H̃ is positive definite. Otherwise, the right

hand side of (2.16) is not normalizable. The Gauss-Newton Hessian, Hgn, is always

positive definite, while the true Hessian, H, is positive definite near the MAP point,

but may be indefinite far away from the MAP point. If H̃ = Hgn, then π̃(q|y) is

the exact posterior for the approximate inverse problem in which the parameter-to-

observable map is replaced by its linearization.

2.7 Choice of regularization/prior in practice

To use the deterministic framework, one must choose a regularization operator,

and to use the Bayesian framework, one must choose a prior. In the deterministic

framework, the regularization is supposed to represent one’s notion of simplicity, and

in the Bayesian framework, the prior is supposed to encode one’s prior knowledge.

Unfortunately, in practice people seldom take these perspectives seriously because

deriving rigorously justified simplicity/complexity functions or prior probability dis-

tributions on function spaces is too hard. Perhaps a more rigorous framework will

someday be developed for choosing the regularization/prior for distributed parameter

inverse problems—this is an area of open research. Currently the following practical

perspectives predominate:

• Practical deterministic perspective. The purpose of the regularization is

to create curvature in the objective function of the deterministic optimization

problem in directions that would otherwise be flat, thereby ensuring that the

optimization problem has a unique solution that is stable with respect to noise

or other small perturbations to the data. At the same time, the regularization

should affect the objective function as little as possible in directions that are

not flat, since regularization to ensure a stable solution is not needed in those

directions.

• Practical Bayesian perspective. The purpose of the prior is to make the

posterior a well-defined probability distribution by supplying information about

the parameter that is not present in the likelihood [181]. Without a sufficiently
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strong prior, the posterior would be an improper distribution in the uninformed

directions.

The regularization or prior is then judged based on how well it works in practice—does

it lead to a “good” reconstruction of the parameter? The quality of the reconstructed

parameter may be evaluated, for example, by the subjective judgement of an expert,

or by comparison with the true parameter for test problems in which the true param-

eter is known. Currently, smoothing regularization/priors (to be discussed in Section

2.7.2) have the most justification for distributed parameter inverse problems, and

yield good results in most circumstances.

2.7.1 Over- and under-regularization

Both over- and under-regularization (regularization in which eigenvalues of R are

too large or too small, respectively, for the problem at hand) lead to bad parameter

reconstructions.2 To avoid over- and under-regularization, the operators Hd and R in

the Hessian must compete with each other—Hd should act strongly on vectors that

R acts weakly on, and vice versa.

Consider the reduced space deterministic optimization problem, (2.6), in the

special case where Y = I, q0 = 0, and the parameter-to-observable map is linear

(G(q) := Gq):

min
q

1

2
‖Gq − y‖2 +

1

2
‖q‖2

R . (2.17)

Let qtrue denote the unknown true parameter that generated the observations:

y = Gqtrue + ζ. (2.18)

The solution, q, to (2.17) is the solution to the normal equations,

(Hd +R)q = G∗y, (2.19)

where Hd = G∗G. Substituting (2.18) into (2.19) and then subtracting the result

from qtrue, we see that the error in the reconstructed parameter, found by solving

2This section contains content from [8] (Nick Alger, Umberto Villa, Tan Bui-Thanh, and Omar
Ghattas. A data scalable augmented Lagrangian KKT preconditioner for large-scale inverse prob-
lems. SIAM Journal on Scientific Computing, 39(5):A2365–A2393, 2017.)
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(2.17), takes the form

qtrue − q = eζ + eq,

which consists of a term

eζ := − (G∗G+R)−1G∗ζ (2.20)

which depends on the noise, and a term

eq :=
(
I − (G∗G+R)−1G∗G

)
qtrue (2.21)

that does not. From the form of equations (2.20) and (2.21), a trade-off is evident:

strengthening the regularization tends to reduce eζ at the expense of increasing eq,

and weakening the regularization tends to reduce eq at the expense of increasing eζ .

To achieve a good reconstruction of the parameter, it is desirable for both of these

terms to be as small in magnitude as possible.

To investigate this trade-off in more detail, we express the errors in the bases of

generalized singular vectors associated with the generalized singular value decomposi-

tion [188] of G with respect to R. From the generalized singular value decomposition,

there exists a unitary operator U and a normalized but non-unitary basis Φ such that
{
U∗GΦ = diag(gk)

Φ∗RΦ = diag(rk),
(2.22)

where the vectors gk are the generalized singular vectors of G and the scalars rk are

the generalized singular values of R associated with this generalized singular value

problem.3 In the bases of Φ and U , we can formulate expressions for the errors

in the reconstruction in a per-component manner. Substituting the singular value

decomposition factors from (2.22) into the error expressions from (2.20) and (2.21),

and then performing some algebraic manipulations, yields

eζ = −Φ diag

(
gk

g2
k + rk

)
U∗ζ, (2.23)

eq = Φ diag

(
rk

g2
k + rk

)
Φ−1qtrue. (2.24)

3The idea here is to compute the singular value decomposition of G with respect to the R-inner
product, then rescale the right singular vectors so that they have unit length in the standard (non-R)
norm.
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From (2.23), we see that the regularization should not be weak (small rk) in direc-

tions, φk, to which the observations are insensitive (small gk). Otherwise, the noise

associated with components of the observations in those directions will be highly

amplified, leading to large errors. In such a scenario we say that the problem is

under-regularized.

But (2.24) also shows that strong regularization can lead to large errors. Some

degree of error in eq is to be expected—there is no hope to reconstruct the component

of the parameter in directions for which the corresponding data are lacking, or are

dominated by noise. However, if gk is large then the observations are highly sensitive

to changes in the parameter in direction φk, so it is likely that the observations

associated with direction φk contain more signal than noise. That is, when gk is

large, it is likely that the component of the parameter qtrue in direction φk can, in

principle, be inferred from the data. Hence, if the regularization is strong (rk is large)

in directions for which the parameter-to-observable map is also strong (gk is large), the

reconstruction will contain substantial unnecessary error due to the regularization.

In this scenario, we say that the problem is over-regularized. To avoid both under-

and over-regularization, the regularization should be strong in directions where the

parameter-to-observable map is weak, and weak in directions where the parameter-

to-observable map is strong.

2.7.2 Motivation for smoothing regularization/priors

Smoothing regularization is regularization in which the regularization operator,

R, is a differential operator, such as a power of the Laplacian (see, for example, [68]).

In the Bayesian framework, the analog of smoothing regularization is a smoothing

prior, in which the prior covariance operator, R−1, acts like the inverse of a differ-

ential operator. With smoothing regularization/prior, the eigenvalues of R increase

as the eigenvectors become more oscillatory, so smooth parameters are preferred over

rough parameters. We use smoothing regularization/priors, and design precondition-

ers with this type of regularization/prior in mind. The main downside of smoothing

regularization/priors is that they tend to smooth out sharp jumps in the parameter

field, such as interfaces between different types of rocks. However, the upsides are
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numerous:

Avoiding over- and under-regularization. In order to neither over- nor under-

regularize, Hd and R should oppose each other (see Section 2.7.1). In Chapter 5,

we will see that Hd contains A−1 and A−∗, and therefore acts like the inverse of a

differential operator. Thus R should act like a differential operator.

Existence of a continuum limit. Although the inverse problem becomes finite-

dimensional when discretized, we must ensure that the infinite-dimensional inverse

problem is well posed in order to guarantee that the finite-dimensional problem con-

verges to a well-defined limit as the mesh is refined.

Constructing prior distributions on infinite-dimensional spaces is challenging. In

infinite-dimensions, priors that appear intuitively reasonable may fail to be normaliz-

able, leading to a posterior that is not a probability distribution. Priors with covari-

ance operators given by sufficiently strong powers of the inverse Laplacian have been

proven to yield existence and uniqueness of posterior probability distributions in the

infinite-dimensional limit [181].

Correlation vs. distance between points. Smoothing priors follow from the

assumption that nearby points in the parameter field are more strongly correlated

than far away points. This is reasonable: rock in the subsurface is more likely to be

similar to nearby rock than far away rock.

Many popular covariance models in geostatistics fall in the Matérn class, a class

of covariance models that characterize the decay rate of the covariance between two

points as they grow farther apart. Gaussian random fields using covariance models

in the Matérn class are equivalent to inverse Laplacian-type priors [131]. The power

that the inverse Laplacian is raised to depends on the parameters in the Matérn class.
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Chapter 3

Deterministic Solution Methods

Solving the inverse problem in the deterministic framework amounts to solving a

large-scale nonlinear optimization problem of the form (2.6) or (2.8). Two difficulties

make these optimization problems hard to solve:

• Non-convexity.

• Ill-conditioning.

Non-convexity causes optimization algorithms to converge to local minima rather

than global minima, while ill-conditioning slows the local convergence. In theory,

non-convexity can also slow convergence, and it is possible to construct optimization

problems where non-convexity makes convergence slow (e.g., imagine an objective

function that looks like a maze). In practice, convergence speed is overwhelmingly

governed by ill-conditioning, as long as appropriate globalization safeguards are used.

In this dissertation our focus is ill-conditioning, which we address by building precon-

ditioners for the linear systems that must be solved at each iteration of second-order

optimization algorithms. Although we do not address difficulties stemming from

non-convexity in this dissertation, our preconditioners are also relevant to that task

because they can be used to speed up homotopy continuation methods, e.g., [196].

Optimization algorithms may be classified by how many derivatives of the objec-

tive function they use. Ill-conditioning prevents first-order algorithms (algorithms

that use only first derivative/gradient information) from being data-scalable. This is

because inverse problems with highly informative data tend to be ill-conditioned, and

first order algorithms converge slowly for ill-conditioned problems (Section 3.1).

Zeroth-order (derivative-free) algorithms usually converge extremely slowly for

high-dimensional problems. Methods involving third- or higher-order derivatives are
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rarely used, though optimization using higher-order derivatives is an under-developed

field worthy of further research.

Second-order (Newton-type) algorithms (Section 3.2) require low numbers of iter-

ations to converge regardless of the conditioning. Of course, as the problem becomes

more ill-conditioned, the linear systems that must be solved at each iteration become

more ill-conditioned, and therefore harder to solve. This shifts the computational bur-

den from the nonlinear optimizer, where little can be done to address ill-conditioning,1

to the linear algebra solver, where we can address ill-conditioning directly by building

a preconditioner.

For this reason, we believe that the best algorithms for solving (2.6) or (2.8)

are Newton-Krylov-type algorithms [75, 157], where the optimization algorithm is a

second-order Newton-type method, and the linear systems that must be solved at

each outer Newton iteration are solved with a preconditioned inner Krylov iteration.

Using Newton-Krylov methods requires first and second derivative information: one

must be able to compute the gradient, and apply the Hessian to vectors. We can

perform both of these tasks efficiently using adjoint-based techniques (see Section

5.2). Constructing and factorizing the (dense) Hessian is not required.

3.1 Ill-conditioning hobbles first-order methods

Gradient descent minimizes J by iteratively moving downward in the steepest

direction from the current point. The convergence rate of gradient descent is linear,

and depends on the condition number of the Hessian. Suppose we choose the gradient

descent step length by exact line-search. By “exact line-search,” we mean choosing

the step length that minimizes the objective function along the ray originating at the

current point and traveling in the negative gradient direction. Then near the solution

to the optimization problem, qmin, we have

J(qi)− J(qmin) ≤
(
κ− 1

κ+ 1

)2i

(J(q0)− J(qmin)) , (3.1)

where qi is the ith iterate, q0 is the initial guess, and κ := λmax(H)/λmin(H) is the

condition number of the Hessian at qmin. For details on gradient descent and line-

1In theory, one can do nonlinear preconditioning.
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search, we recommend [157]. For large-scale big-data inverse problems, convergence

rate (3.1) is unacceptable since κ will be large. In the problems we face κ = 106 is

not uncommon.

More advanced first-order algorithms use a linear combination of gradients from

multiple previous steps as the descent direction. Algorithms in this class include:

• Nesterov methods [152]: a class of algorithms that include “momentum” in the

descent algorithm (imagine a ball rolling down a valley).

• Nonlinear conjugate gradient [116]: a nonlinear version of the Krylov conjugate

gradient method which attempts to find the best solution to the problem in a

sequence of successively larger subspaces spanned by previous gradients.

• BFGS and L-BFGS [132]: quasi-Newton algorithms that build and continually

update Hessian approximations based on how the gradient changes from one

iteration to the next.2

By including information from previous gradients, these more advanced algorithms

partially account for how the gradient is changing, leading to faster convergence. How-

ever, these more advanced algorithms still perform poorly on ill-conditioned problems

(albeit, not as poorly as gradient descent).

3.1.1 Climbing an N-dimensional mountain: “hypercube paths”

Intuitively, since the gradient always points in the steepest direction, any method

based on linear combinations of previously computed gradients cannot effectively

explore a given direction in parameter space until the method has eliminated all other

directions in parameter space for which the objective function is steeper.3 Imagine

a mountaineer climbing up an oblong mountain using the method of steepest ascent.

2Although BFGS and L-BFGS mimic Newton’s method, they do not include true second deriva-
tive information and are therefore properly viewed as a first-order method. On quadratic problems
with optimal line search and infinite precision arithmetic, conjugate gradient and BFGS generate
the same sequence of iterates [151].

3This section contains content from [6] (Nick Alger. Relating condition num-
ber of Hessian to the rate of convergence. Mathematics Stack Exchange, 2018.
https://math.stackexchange.com/q/2847190.).
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(a) Climbing Mt. Si via gradient as-
cent.

J (q)1

2

(b) 2-D gradient ascent path. This is what the mountain climbing path in 3.1a looks like
when viewed from above the mountain.

st
e
e
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e
st
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intermediate

level set skeleton for J 

1

2
3

(c) 3-D gradient ascent path.

q0

qmin

(d) The ill-conditioned gradient path ap-
proximately follows edges on a box.

Figure 3.1: (Hypercube path) When climbing a mountain with the method of steepest
ascent, one first climbs to a ridge, then follows the ridge to the peak. On an N -dimensional
mountain, one first climbs to the (N −1)-dimensional “ridge” perpendicular to the steepest
direction, then to the (N − 2)-dimensional “ridge” perpendicular to both the first and
second steepest directions, and so forth. The path resembles a sequence of edges on an
N -dimensional box connecting one corner of the box to the diametrically opposite corner.
Mountain picture by Mountains to Sound Greenway Trust, c© 2004. See also: Figure 3.3.
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They will not walk straight towards the peak. Rather, they willl climb up the steepest

face of the mountain until they reach a ridge, then follow the ridge to the top, making a

path that resembles a connected set of two edges of a rectangle (see Figure 3.1). Were

it possible to climb an N -dimensional mountain, the path of steepest ascent would

be to first climb to the top of the (N − 1)-dimensional ridge perpendicular to the

steepest direction, then to the top of the (N − 2)-dimensional ridge perpendicular to

the first two steepest directions, and so on, making a path that resembles a connected

set of N edges on a hypercube. If N is large, this would require a lot of climbing!

For our inverse problem, the unknown is a discretization of a continuum field, so N

is effectively infinite. When climbing to a ridge, only minor progress will be made in

the direction of future, less steep, ridges. This minor progress is what convergence

bound (3.1) relies on. The more well-separated the eigenvalues of the Hessian are,

the smaller this minor progress will be (see Figure 3.3).

3.1.2 Zig-zag paths vs. hypercube paths

Ill-conditioning also causes overshooting, leading to “zig-zag paths” with sharp

turns (see Figure 3.2). But “zig-zagging” is a separate issue from hypercube paths. In

zig-zagging, subsequent steps backtrack in directions previously explored, correcting

for overshooting errors. In the mountain analogy, one step takes the mountaineer past

the ridge, the next step takes them past the same ridge the other way, and so on. In

contrast, in hypercube paths each step is roughly perpendicular to all previous steps.

The issue in the hypercube path case is that there are many different perpendicular

directions to explore, and one can only explore them roughly one at a time.

Many people in the optimization community erroneously conflate these issues. The

standard textbook explanation of gradient descent convergence (see, e.g., Section 3.3

in [157], or Section 4.3.2.2 in [104]) goes like this:

1. A mathematical proof of convergence bound (3.1) (or similar) is presented,

showing that convergence is slow for ill-conditioned problems.

2. A picture of zig-zagging resembling Figure 3.2 is presented.

The reader is left to conclude:

39



Figure 3.2: (Zig-zag path) Gradient descent on ill-conditioned problems continually over-
shoots, creating “zig-zag” paths. This is different from the hypercube path problem illus-
trated in Figure 3.1. Black ellipses indicate level sets of J, and the red zig-zag path indicates
the gradient descent path, where the step length at each iteration is chosen to minimize J

for that step. The red dot is the initial guess.

3. Zig-zagging is the fundamental cause of slow convergence. If we eliminated

zig-zagging, then convergence would be fast. (this is wrong)

But 3 does not follow from 1 and 2. Even if we eliminated zig-zagging, convergence

would still be slow because of the hypercube path issue. In Theorem 1 we will prove

that if one hypothetically chose “ridgeline” step lengths so that there would be no

zig-zagging, the convergence rate of gradient descent would actually be slightly worse

than (3.1) in the realistic regime where the number of gradient descent iterations is

less than N . By “ridgeline” step length, we mean the step length that eliminates

the error in the largest active eigenvector’s direction (resulting in a point exactly on

the ridgeline of the mountain). This step length is different from the step length

generated by exact line search, which will overshoot the ridge slightly. Of course,

choosing ridgeline step lengths is computationally infeasible in practice. We consider

it only as a thought experiment to see what would happen if there were no zig-zagging.

Consider a quadratic minimization problem of the form

min
q

1

2
q∗Hq + b∗q, (3.2)

where H is self-adjoint and positive-definite. Since non-quadratic problems look

quadratic near their minima, analysis for the quadratic case also applies asymptoti-

cally in the non-quadratic case.
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(a) H = diag(1, 1, 1) (b) H = diag(1, 3, 9) (c) H = diag(1, 10, 100)

Figure 3.3: (Hypercube path) Gradient descent path with ridgeline steplengths for
minimizing 1

2q
THq, starting at q0 = (1, 1, 1) and ending at q3 = (0, 0, 0), where H =

diag(λ3, λ2, λ1). The more well-separated the eigenvalues of H are, the more the path
resembles edges on a hypercube. See also: Figure 3.1.

Let the eigenvalues, λk, of H be written in descending order,

λ1 ≥ λ2 ≥ · · · ≥ λN > 0,

let φk denote the corresponding eigenvectors, let ei := qi − qmin denote the error at

the ith iteration of a gradient-descent algorithm for solving (3.2), where qmin is the

unknown minimizer of (3.2), and let e
(k)
i denote the component of ei in the direction

of the kth eigenvector. That is,

ei =
N∑

k=1

e
(k)
i φk.

Now consider one gradient descent step,

qi+1 = qi − βg,

where g = Hqi + b is the gradient of the objective function at qi, and β > 0 is a

parameter that controls the step length. Simple algebra yields an update formula for

the components of the error after the gradient step:

e
(k)
i = (1− βλi)e(k)

i−1. (3.3)

From (3.3), we see that, to take the ridgeline step length for the ith iteration—the

step length that would make e
(i)
i = 0—we should set β = 1/λi. Gradient descent
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with ridgeline step lengths is illustrated in Figure 3.3. With this step length, other

eigenvector components of the error decrease as follows for k > i in (3.3):

e
(k)
i = (1− λk/λi)e(k)

i−1.

Iterating this process, the components of the error have the following exact formula

after i iterations:

e
(k)
i =

{
0, k ≤ i,(

1− λk
λ1

)(
1− λk

λ2

)
. . .
(

1− λk
λi

)
e

(k)
0 , k > i.

(3.4)

Theorem 1. If the ith step length is chosen such that e
(i)
i = 0 (i.e., ridgeline step

length), then the error bound

J(qi)− J(qmin) ≤
(
κ− 1

κ

)2i

(J(q0)− J(qmin)) , (3.5)

holds for gradient descent on the quadratic objective function J(q) := 1
2
q∗Hq + q∗b.

This bound is sharp for i < N , in the sense that there exist H, b, and q0 such that

the inequality in (3.5) may be made arbitrarily close to equality.

Proof. Applying the arithmetic-geometric mean inequality to (3.4) and using the

ordering of the eigenvalues yields the component-wise error bound

|e(k)
i | =

(
1− λk

λ1

)(
1− λk

λ2

)
. . .

(
1− λk

λi

)
|e(k)

0 |

≤
(

1− λk
λ1

+ 1− λk
λ2
± · · ·+ 1− λk

λi

i

)i

|e(k)
0 |

=

(
1− λk

(
1

i

i∑

l=1

1

λl

))i

|e(k)
0 |

≤
(

1− λk
λ1

)i
|e(k)

0 |

≤
(

1− 1

κ

)i
|e(k)

0 |

=

(
κ− 1

κ

)i
|e(k)

0 |

for k > i (and by construction, e
(k)
i = 0 for k ≤ i).
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Using the definitions of J and ei, the fact that Hqmin = −b, and the inequality

from the previous paragraph, we have the bound

J(qi)− J(qmin) =
1

2
e∗iHei

=
N∑

k=1

λk|e(k)
i |2

≤
(
κ− 1

κ

)2i N∑

k=1

λk|e(k)
0 |2 (3.6)

=

(
κ− 1

κ

)2i

|J(q0)− J(qmin)|,

as required.

To construct a problem for which this bound is sharp, let the first N−1 eigenvalues

be distinct but nearly equal positive numbers that differ from λ1 by at most some

small number ε > 0. As ε→ 0, we have
(

1− λN
λ1

)(
1− λN

λ2

)
. . .

(
1− λN

λi

)
→
(

1− 1

κ

)i
,

which implies

|e(N)
i | →

(
κ− 1

κ

)i
|e(N)

0 |.

Hence the inequality in (3.6), and consequently the inequality in (3.5), can be made

arbitrarily close to equality by taking b = 0 and

q
(k)
0 = e

(k)
0 :=

{
ε, k < N

1, k = N,

and letting ε→ 0.

This shows that the effectiveness of first-order algorithms is fundamentally lim-

ited for high-dimensional ill-conditioned problems. Perhaps some future algorithm

could eliminate zig-zagging (indeed, CG, BFGS and Nesterov methods greatly reduce

zig-zagging), but no first order method can eliminate hypercube paths. First order

algorithms can only explore in the affine subspace consisting of the initial guess plus

the span of the previously computed gradients, and this affine subspace cannot con-

tain shallow directions without also first containing all steeper directions (unless the

initial guess is lucky and does not contain any steep components to begin with).
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3.2 Second-order methods

In order to eliminate dependence of the convergence rate on the conditioning of

the problem, optimization algorithms must account for the directional scalings of the

objective function in all (or almost all) directions, for all (or almost all) iterations.

Second-order methods do this by:

1. Making a local quadratic model of the optimization problem based on a Taylor

series.

2. Solving a linear system to find the solution of the quadratic model.

3. Moving towards the solution of the model, then repeating these steps until

convergence.

..

.
J (q)

.

local quadratic

approximation ..

Figure 3.4: Newton and Gauss-Newton methods construct a local quadratic model of J

about the current point, move towards the minimizer of the quadratic model, then repeat.
Illustration depicts “complete” Newton steps that jump to the minimizer of the model (step
length parameter, β = 1).

Reduced space methods form a local quadratic model of the objective function, then

find the minimizer of the model (see Figure 3.4). Full space methods form a local

quadratic model of the Lagrangian function, then find the saddle point of the model.

Standard versions of these methods build the local model by taking a Taylor series

of the overall function (objective or Lagrangian), while Gauss-Newton and sequential

quadratic programming (SQP) variants take Taylor series of intermediate quantities.

Below we will discuss all four methods: reduced space vs. full space and standard vs.
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Method Seeking Linear system Based on
Taylor series of

Reduced space
Newton Minimum of J Hp = −g J

Reduced space
Gauss-Newton Minimum of J Hgnp = −g G

Full space
Newton Saddle point of L Kw = −l L

Full space
Gauss-Newton Saddle point of L Kgnw = −l A(q)u− f(q)

Table 3.1: Summary of second-order methods for solving the deterministic inverse
problem.

Gauss-Newton. These methods are summarized in Table 3.1. In Chapter 5, we will

see that an effective preconditioner for the linear system associated with any one of

these methods can be used to build effective preconditioners for the linear systems

associated with all of the other methods.

For the standard reduced space Newton’s method, we have the asymptotic con-

vergence rate

‖g(qi+1)‖ ≤ C ‖g(qi)‖2 ,

where g(qi) and g(qi+1) are the gradients of J at the ith and (i + 1)th iterations,

respectively, and C is a constant that does not depend on the condition number of the

Hessian. So, Newton’s method improves on first order methods in that convergence

is quadratic rather than linear (the number of correct digits roughly doubles each

iteration), and in that the convergence rate does not depend on the conditioning of

the Hessian. Convergence of the full space Newton method is also quadratic and

independent of the conditioning of the problem. Convergence of the Gauss-Newton

variants is fast, but not quadratic in general.

Here we present only the basic idea of the methods. For in depth discussion about

how to choose step length parameters, when to terminate linear solves, how to deal

with potential indefiniteness of the Hessian, proofs of convergence, and other impor-

tant details, we highly recommend [157]. A discussion of these methods in the context

of PDE-constrained optimization can be found in [5]. With minor modifications, ev-
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erything we present can also be adapted for use in trust-region methods, since these

methods give rise to similar linear systems that must be solved at each iteration.

3.2.1 Reduced space

In reduced space methods, at each iteration we minimize one of the local quadratic

models for J derived in Section 2.6. Given the current point, qi, we minimize:

min
p

J(qi) + g∗p+
1

2
p∗H̃p, (3.7)

where H̃ is either H or Hgn, and H̃ and g are evaluated at qi. If we use H, we call

this the reduced space Newton method, and if we use Hgn, we call this the reduced

space Gauss-Newton method. Since the model is quadratic, solving this minimization

problem reduces to solving the linear system

H̃p = −g.

Once this linear system is solved, one updates

qi+1 = qi + βp, (3.8)

where β is a step length parameter. Then the process repeats at qi+1, and at qi+2,

and so on, continuing until convergence.

3.2.2 Full space

From the theory of Lagrange multipliers, the solution to the full-space problem,

(2.8), is a saddle point of the following Lagrangian function:

L(q, u, λ) :=
1

2
‖Bu− y‖2

Y +
1

2
‖q − q0‖2

R + λ∗ (A(q)u− f(q)) . (3.9)

In this framework, u is viewed as a free variable—away from the saddle point the pair

of variables q and u may fail to satisfy the state equation. Let zi =
[
qi ui λi

]T
de-

note an instance of all variables in the Lagrangian formulation. Second-order methods

for the full space problem mirror second-order methods for the reduced space prob-

lem, but we make a local quadratic approximation of L instead of J, and seek the

saddle point of the quadratic approximation rather than its minimum.
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Truncating the Taylor series of L after the quadratic term yields the quadratic

model

L(zi + w) ≈ L(zi) + l∗w +
1

2
w∗Kw,

where

l ' ∂L

∂z

and

K ' ∂2L

∂z2

is the KKT operator.

Alternatively, replacing the state equation constraint with its linearization about

qi and ui in (2.8) yields the quadratic program:

min
p,v

1

2
‖Bv − (y −Bui)‖2

Y +
1

2
‖p− (q0 − qi)‖2

R ,

such that A(qi)v + Tp = A(qi)ui − f(qi),
(3.10)

for perturbations p to qi and v to ui. Here, T is the sensitivity of A(q)u − f(q) to

changes in q, i.e.,

Tp :=

(
∂A

∂q
(qi)p

)
ui −

∂f

∂q
(qi)p.

The solution to (3.10) is the saddle point of the quadratic Gauss-Newton Lagrangian:

Lgn(p, v, γ) :=
1

2
‖Bv − (y −Bui)‖2

Y +
1

2
‖p− (q0 − qi)‖2

R

+ γ∗ (Av + Tp− (A(qi)ui − f(qi))) (3.11)

=Lgn(zi) + l∗w + w∗Kgnw, (3.12)

where we define the Gauss-Newton KKT operator

Kgn ' ∂2Lgn

∂w2
,

and the perturbation variable w :=
[
p v w

]T
.

In either case, the saddle point of the quadratic model is the solution to the linear

system

K̃w = −l, (3.13)

where K̃ is either K or Kgn. If we use K, we call this the full space Newton method,

and if we use Kgn, we call this the full space Gauss-Newton method. After solving

(3.13) for w, we update zi+1 = zi + βw and repeat the process until convergence.
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3.3 Krylov methods prefer clustered eigenvalues

Each iteration of the second-order optimization methods discussed in Section 3.2

requires solving a linear system of the form

Mx = b, (3.14)

where M is either H, Hgn, K, or Kgn. Krylov methods [187] are often the best matrix-

free methods for solving these linear systems. The performance of Krylov methods

depends on the spectral properties of M . The more clustered the eigenvalues of M ,

the faster the convergence [82, 192].

We illustrate the convergence of Krylov methods with MINRES [161] applied to

a self-adjoint linear system of the form (3.14). The jth iterate of MINRES, xj, is de-

fined as the vector with minimum residual within a subspace generated by repeatedly

applying M to b. Specifically,

xj := arg min
z∈Kj

‖b−Mz‖,

where Kj is the Krylov subspace

Kj = span
(
b,Mb,M2b, . . . ,M j−1b

)
.

The following well-known result characterizes the convergence of MINRES in terms of

the result of a hypothetical polynomial approximation problem involving the spectrum

of M .

Theorem 2 (Convergence of MINRES). Let xj be the jth MINRES iterate for solving

Mx = b, and let Qj denote the set of all jth order polynomials Q satisfying Q(0) = 1.

We have

‖b−Mxj‖2 = min
Q∈Qj

N∑

k=1

Q(λk)
2b2
k,

where λk are the eigenvalues of M , and bk are the components of b in the basis of

eigenvectors of M .

Proof. See Appendix D.
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1

(a) Isolated eigenvalues, 3rd
order polynomial.

1

(b) Clustered eigenvalues,
3rd order polynomial.

1

(c) Cluster plus one isolated
eigenvalue, 4th order polyno-
mial.

Figure 3.5: MINRES polynomials Q(s) for different eigenvalue distributions. Red dots
indicate the eigenvalue locations. Equal importance assigned to each eigenvalue (bk = 1,
for k = 1 . . . N).

For in-depth analysis and discussion of the convergence of Krylov methods, see

[173]. Results analogous to Theorem 2 are derived there for a variety of Krylov

methods, including GMRES [172], a generalized version of MINRES that does not

require M to be symmetric.

From Theorem 2, we see that MINRES implicitly finds a jth order polynomial

Q(s) such that:

1. Q(0) = 1.

2. |Q(λk)| is as small as possible for all eigenvalues λk of M .4

The performance of MINRES is determined by how well 2 can be achieved while

satisfying 1. This leads to the following consequences:

• A polynomial of degree j can take on any set of j roots. Thus if M has j distinct

eigenvalues, MINRES will converge in at most j iterations.5 See Figure 3.5a.

• It is easier to force a polynomial to be small on a small interval than on a large

interval. If the eigenvalues of M reside within one cluster (see Figure 3.5b),

the convergence rate of MINRES will depend on the size and location of the

4The relative magnitude of b2k compared to b2j determines the relative importance of making
Q(λk) small compared to Q(λj).

5This is ignoring the impact of numerical rounding errors, which may lead to more required
iterations when j is large.
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cluster. The smaller and further away from the origin the cluster is, the better.

In particular, a minimax argument shows that the convergence rate depends on

the ratio of the largest eigenvalue in the cluster to the smallest eigenvalue in

the cluster. This ratio is the condition number of M .

• If the eigenvalues of M consist of multiple clusters, or a combination of clusters

and isolated eigenvalues, then MINRES will converge fast if those clusters are

small and well-separated from each other and the origin. See Figure 3.5c.

Thus we seek a preconditioner, P , that compresses the spectrum of P−1M into a

small number of well-conditioned clusters. The application of a Krylov method to

solve a preconditioned version of (3.14) will then yield an accurate solution in a small

number of iterations.

3.4 Summary

We use second-order methods since first-order methods are ineffective for high-

dimensional ill-conditioned problems. Second-order methods require solving a large

ill-conditioned linear system at each iteration, where the coefficient operator for the

linear system is either H, Hgn, K, or Kgn. We use Krylov methods to solve these

linear systems. Krylov methods can be sped up by using a preconditioner that clusters

the spectrum of the coefficient operator.
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Chapter 4

Spectrum of the Hessian and Information

The spectrum of the data misfit Gauss-Newton Hessian, Hgn
d , characterizes how

informative the data are about the parameter. The larger an eigenvalue of Hgn
d is,

the more informative the data are about the component of the parameter in the

associated eigenvector direction.

We make this precise by carrying out the following plan: In Section 4.1, we use

the generalized eigenvalue problem of Hgn
d and R to simultaneously factor the prior

and a Gaussian approximation to the posterior into products of independent one-

dimensional Gaussian random variables. These one-dimensional random variables

are the components of the parameter in the normalized generalized eigenvector basis.

Then in Section 4.2, we use the information theory concept of mutual information,

along with a limiting argument, to quantify how much more information one can learn

from the data about the component of the parameter in the kth generalized eigenvector

direction, as compared to the component of the parameter in the jth generalized

eigenvector direction. We show (Theorem 4) that this difference in information is

given by

log d
1/2
k − log d

1/2
j ,

where dk and dj are the corresponding generalized eigenvalues of Hgn
d .

4.1 Simultaneously factoring the prior and posterior

Let Φ be the matrix of normalized1 generalized eigenvectors, φk, for the generalized

eigenvalue problem of Hgn
d and R, let di be the generalized eigenvalues associated with

1Often in the literature the length of φk is not set to 1, but rather is scaled such that rk = 1. We
do not use this convention, since our natural notion of length is captured by the underlying norm
of the space ‖·‖, rather than the norm induced by R.
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Hgn
d , and let rk be the generalized eigenvalues associated with R. That is,

{
Φ∗Hgn

d Φ = diag(dk)

Φ∗RΦ = diag(rk),

with columns φk of Φ satisfying

‖φk‖ = 1.

Recall from Section 2.3 and Section 2.4 that our prior, π(q), is normally distributed,

with covariance Cprior = R−1. Also recall from Section 2.6 that the posterior can be

locally approximated by a normal distribution, π̃(q|y), with covariance (Hgn
d +R)−1.

This posterior corresponds to the hypothetical inverse problem in which the parameter-

to-observable map is replaced by its linearization.

Theorem 3. Both π(q) and π̃(q|y) separate into products of independent 1D normally

distributed random variables in the coefficients q(k). Specifically, let

q =
∑

k

q(k)φk

be the expansion of q in the generalized eigenvector basis. Then

π(q) =
∏

k

π(q(k)), and π̃(q|y) =
∏

k

π̃(q(k)|y),

where π(q(k)) are normal distributions with variance r−1
k , and π̃(q(k)|y) are normal

distributions with variance (dk + rk)
−1.

Proof. Let q
(k)
0 denote the component of q0 in direction φk. Since Φ diagonalizes R,

the prior separates into an independent product of 1D Gaussians as follows:

π(q) ∝ exp

(
−1

2
(q − q0)∗R(q − q0)

)

= exp

(
−1

2

(∑

k

(q(k) − q(k)
0 )φk

)∗
R

(∑

k

(q(k) − q(k)
0 )φk

))

= exp


−

∑

k

(
q(k) − q(k)

0

)2

2r−1
k




=
∏

k

exp

(
−(q(k) − q(k)

0 )2

2r−1
k

)
,
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from which the results regarding π(q) directly follow.

Since Φ simultaneously diagonalizes both R and Hd, it also diagonalizes the pos-

terior covariance, (Hd + R)−1. Hence the results regarding π̃(q|y) follow from the

same argument, except with the posterior covariance and mean replacing the prior

covariance and mean, respectively.

4.2 Informativeness of the data

The mutual information between random variables X and Z is

I(X;Z) =

∫ ∫
π(x, z) log

(
π(x, z)

π(x)π(z)

)
dx dz,

where π(x, z) is the joint distribution between X and Z, π(x) is the marginal distribu-

tion in X, and π(z) is the marginal distribution in Z. Mutual information quantifies

the expected amount of information we would gain about one of the random variables

if we learned the value of the other variable. For more details on mutual information,

see [69].

Let Q(k) denote the random variable associated with q(k) for the approximate

inverse problem in which π̃(q|y) is the posterior.

Proposition 1. The mutual information between the data and a single component of

the parameter takes the form:

I(Q(k);Y ) =
1

2
log (1 + dk/rk) . (4.1)

Proof. Direct calculation shows that if X and Z are random variables, and if X

is normally distributed with variance σ2
prior and X|Z is normally distributed with

variance σ2
post, then

I(X;Z) =
1

2
log

(
σ2

prior

σ2
post

)
. (4.2)

The desired result follows from substituting σ2
prior = r−1

k and σ2
post = (dk + rk)

−1 into

(4.2) and performing algebraic manipulations.
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data info. prior info.

I(Q(k);Y )

Figure 4.1: Venn diagram illustrating both the information contained in the data, and the
prior information. The information contained in the data consists of both the information
learned by incorporating the data (the mutual information I(Q(k);Y ), the shaded region),
as well as the information contained in the data that is not learned because it is already
known (the overlapping region). Caution: the mutual information is not the overlapping
region in this diagram.

Mutual information quantifies the expected amount of information a Bayesian

analyst would gain about qk if they learned the value of y, taking into account their

prior knowledge (notice the presence of rk in (4.1)). But in our case, we want to

know how informative y is about qk, independent of the prior knowledge of the person

performing the analysis. For example, if one is totally certain about the parameter

beforehand (Dirac prior), then the mutual information is zero. Yet this does not mean

that the data are uninformative. Intuitively, the data may contain information that

the Bayesian analyst cannot “learn” because they already know it, and information

they already know is excluded from the mutual information (see Figure 4.1). That

information is useless to them, but perhaps could be useful to someone else who has

different prior knowledge.

A natural approach to characterizing the informativeness of the data (independent

of the prior) is to maximize the mutual information over all possible priors in a given

class, thereby determining the theoretical maximum amount of information that could

be learned by any Bayesian analyst. Unfortunately, this maximization procedure fails

for the class of Gaussian priors because it yields infinite mutual information: as the

variance of the prior grows to infinity, the mutual information diverges. To remedy
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this, we instead compare the mutual information associated with one component, q(k),

with that of another component, q(j). In this case we will see that the divergent terms

cancel out and the difference in mutual information converges to a finite limit.

Imagine we start with the same prior uncertainty for q(k) as for q(j), and then learn

the value of y. Would we, on average, gain more information about q(k) or q(j)? How

much more? Note that we are not saying that the priors for q(k) and q(j) will always be

equal.2 We are merely considering a hypothetical scenario where they happen to be

equal in order to make a fair comparison of the information gained. Quantitatively,

this question reduces to evaluating the mutual information difference

I(Q(k), Y )− I(Q(j), Y ), (4.3)

under the hypothetical scenario where our priors for both Q(k) and Q(j) are normally

distributed with the same variance, r−1
k = r−1

j = c. If this quantity is positive, the

data are more informative about q(k), and if negative, the data are more informative

about q(j).3 Although I(Q(k), Y ) and I(Q(j), Y ) both diverge as c→∞ (uninformative

prior limit) and therefore cannot be maximized over the class of all Gaussian priors,

the mutual information difference, (4.3), converges to a finite value as c→∞.

Theorem 4. Suppose that the parameter-to-observable map is affine.4 Also suppose

the priors for q(k) and q(j) have equal variance, r−1
k = r−1

j = c. Then for dk 6= 0 and

dj 6= 0, we have

lim
c→∞

I(Q(k), Y )− I(Q(j), Y ) = log d
1/2
k − log d

1/2
j . (4.4)

Proof. Substituting (4.1) into (4.4) and performing algebraic manipulations yields

I(Q(k), Y )− I(Q(j), Y ) =
1

2
log (1 + dk/rk)−

1

2
log (1 + dj/rj)

=
1

2
log

(
1 + dkc

1 + djc

)
.

2Indeed, if the priors for all modes were equal then the prior would not be well-defined in the
limit where q is infinite-dimensional.

3One can interpret this as an information-theoretic analogue of the likelihood principle.
4Generally the map will be nonlinear; this theorem applies to local linearizations.
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As c→∞, the constant 1 becomes negligible in both the numerator and the denom-

inator, so

lim
c→∞

I(Q(k), Y )− I(Q(j), Y ) = lim
c→∞

1

2
log

(
dkc

djc

)

=
1

2
log

(
dk
dj

)
= log d

1/2
k − log d

1/2
j ,

as required.

These results from Theorem 4 relate the informativeness of the data to the eigen-

values of Hd. The more informative the data are about the component of the param-

eter in an eigenvector’s direction, the larger the associated eigenvalue. As a result,

when more informative data are included in the inversion, small eigenvalues become

large, and large eigenvalues become larger. Numerical methods and precondition-

ers that perform worse as more eigenvalues of Hd become large (almost all existing

methods and preconditioners, as we will see in Chapter 6) therefore cannot be data-

scalable.
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Chapter 5

Hessian and KKT Facts

This chapter takes a step back from the main argument of the dissertation to

present a few well-known facts that will be required in future chapters. Primarily,

we discuss facts related to the Hessian and KKT operators, and connections among

these operators.

In Section 5.2, we will show how to compute the objective function, J, and the

gradient, g, and show how to apply the Hessian, H, to vectors. The procedure for

applying H to vectors is matrix-free; it does not require building the Hessian’s (dense)

matrix representation. We summarize the procedures for performing these tasks in

Table 5.1. These procedures will be used in solving the inverse problem with methods

described in previous chapters.

In Section 5.3, we present formulas for the Hessian-like operators Hgn, K, and

Kgn, and other relevant operators. These formulas provide insight into the structure

of Hgn, K, and Kgn, and will be required in subsequent chapters when we review the

literature and build our preconditioners.

In Section 5.4, we will show that H and Hgn are Schur complements of K and

Kgn (respectively) for q, and that H and K converge to Hgn and Kgn (respectively)

in the small data misfit limit. These connections are summarized in Figure 5.1. They

imply that it does not matter which Hessian or KKT operator we choose to build

a preconditioner for, because the ability to efficiently precondition or solve linear

systems with any one lets us efficiently precondition any of the others. This justifies

our choice, in subsequent chapters, to build preconditioners for the Gauss-Newton

operators Hgn and Kgn.

The proofs of the results in this chapter follow from application of standard tech-

inques from multivariate calculus and linear algebra, and are not particularly enlight-

ening. Thus we relegate proofs for results in this chapter to Appendix D.
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5.1 Prerequisite partial derivative operators

Before we present the main points of this chapter, we must define a few partial

derivative operators. These operators appear in the derivative computation process

in Section 5.2, in the formulas in Section 5.3, in the proofs in Section 5.4, and in other

places throughout the dissertation.

Definition 1 (Prerequisite partial derivative operators). We define the operators T ,

Θ, and Ξ, to be the linear operators with the following actions:

T : p 7→
(
∂A

∂q
p

)
u− ∂f

∂q
p

Θ : p 7→
(
∂A

∂q
p

)∗
λ

p∗1 Ξ p2 := λ∗
(
∂2A

∂q2
p1p2

)
u− λ∗

(
∂2f

∂q2
p1p2

)
.

The operators T , Θ, and Ξ are sparse when A is sparse, and may be efficiently

computed and stored. For example, if one term in the weak form associated with A

is

(u, v) 7→
∫

Ω

eq∇u · ∇v,

then the corresponding term in the bilinear form associated with T is

(p, v) 7→
∫

Ω

peq∇u · ∇v.

If finite element discretization is used, the operator T can be assembled into a matrix

T using procedures similar to those used to assemble A from A.

5.2 Computing derivatives of J

In Table 5.1 we see the following results:

1. Computing J requires computing u, which requires the solution of the state

equation.

2. Computing g requires computing an adjoint variable λ by solving a linear system

which takes a form adjoint to the form of the state equation.
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Equation/Formula Action to take

State equation Au = f Solve for u

Objective function J = 1
2
‖Bu− y‖2

Y + α
2
‖q − q0‖2

R Compute J

Adjoint equation A∗λ = −B∗Y (Bu− y) Solve for λ

Gradient g = R(q − q0) + T ∗λ Compute g

Incremental
forward equation Aη = −Tp Solve for η

Incremental
adjoint equation A∗ξ = −Θp−B∗Y Bη Solve for ξ

Hessian-vector
product Hp = Rp+ Ξp+ Θ∗η + T ∗ξ Compute Hp

Table 5.1: The processes for computing the objective function, computing the gradi-
ent, and applying the Hessian to a vector (we prove the correctness of this table in
Theorem 5).

3. Applying H to a vector requires computing an incremental forward variable,

η :=
du

dq
p,

and an incremental adjoint variable,

ξ :=
dλ

dq
p.

Computing η requires solving a linear system which takes the same form as the

state equation, and computing ξ requires solving a linear system which takes

the same form as the adjoint equation.

Theorem 5. The procedure described in Table 5.1 correctly computes the objective

function, J, the gradient, g, and the action of the Hessian on an arbitrary vector, Hp.

Proof. See Appendix D.
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5.3 Formulas for other operators

The operators G, Hgn
d , Hd, l, K, and Kgn can be expressed in terms of formulas

involving the original operators in the problem and the sparse computable partial

derivatives of the original operators defined in Definition 1.

Theorem 6 (Formulas for Hgn
d , Hgn, L, K, and Kgn). The following formulas hold:

dG

dq
= G = −BA−1T (5.1)

d2J
gn
d

dp2
' Hgn

d = T ∗A−∗B∗Y BA−1T (5.2)

d2Jgn

dp2
' Hgn = Hgn

d +R (5.3)

(
∂L

∂z

)∗
= l =




R(q − q0) + T ∗λ
B∗Y (Bu− y) + A∗λ

Au− f


 (5.4)

∂2L

∂z2
' K =



R + Ξ Θ∗ T ∗

Θ B∗Y B A∗

T A


 (5.5)

∂2Lgn

∂z2
' Kgn =



R T ∗

B∗Y B A∗

T A


 . (5.6)

Proof. See Appendix D.

5.4 Connections among operators

Since H is the Schur complement of K for q (Theorem 7), the abilty to perform

solves with K can be used to perform solves with H, and vice versa (Corollary 1

and Corollary 2). Preconditioners for H can therefore be exploited to build precon-

ditioners for K (see, for example, [39, 40, 111]), and vice versa. This applies to the

standard versions of these operators, as well as to their Gauss-Newton variants, Hgn

and Kgn.

The Gauss-Newton variants of these operators well-approximate the standard ver-

sions if the data misfit, ‖Bu− y‖Y , is small (Theorem 8). Per the Morozov discrep-

ancy principle, this will be the case for properly regularized inverse problems with
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Kgn Hgn

Schur complement

small residual
approximation

small residual
approximation

Schur complement

Figure 5.1: Commutative diagram relating The Hessian, the KKT operator, and their
Gauss-Newton variants.

low noise. Even when ‖Bu− y‖Y is large, algorithms that use the Gauss-Newton op-

erators often outperform algorithms that use the standard operators. No one knows

why Gauss-Newton methods often perform well when the noise is large, though sev-

eral explanations have been proposed [62]. One reason for Gauss-Newton methods’

surprisingly good performance may be the fact that Hgn is always positive whereas

H may be indefinite away from the optimal point.

Connections among H, Hgn, K, and Kgn are summarized in Figure 5.1.

Theorem 7 (K → H). H is the Schur complement of K for q:

H = Kqq −
[
Kqu Kqλ

] [Kuu Kuλ

Kλu Kλλ

]−1 [
Kuq

Kλq

]
, (5.7)

where we denote the blocks of K with subscripts (e.g., Kqu is the linear operator

associated with ∂2L
∂q∂u

). The result also holds if H is replaced by Hgn and K is replaced

by Kgn.

Proof. See Appendix D.

Corollary 1 (K solver → H solver). The following implication holds:

K



p
η
ξ


 =



b
0
0


 =⇒ Hp = b.

The implication also holds if K is replaced by Kgn and H is replaced by Hgn.
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Corollary 2 (H solver → K solver). The following implication holds:





Av = d

A∗γ = c−B∗Y Bv

Hp = b−Θ∗v − T ∗γ

Aη = d− Tp

A∗ξ = c−Θp−B∗Y Bξ

=⇒ K



p
η
ξ


 =



b
c
d


 . (5.8)

The implication also holds if H is replaced by Hgn, K is replaced by Kgn, and the

terms containing Θ are replaced by zero.

Proof. See Appendix D.

Theorem 8 (H,K → Hgn, Kgn). We have

H = Hgn +O(‖G(q)− y‖Y ), (5.9)

where the Hessians are evaluated at any point, and

K = Kgn +O(‖G(q)− y‖Y ), (5.10)

where the KKT operators are evaluated at the solution to the full-space optimization

problem.

Proof. See Appendix D.
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Chapter 6

Existing Hessian Solvers, Preconditioners, and

Approximations

In previous chapters, we saw that the computational bottleneck for solving large-

scale inverse problems with highly informative data is the solution of a linear system

of the form

Mx = b,

where M is either the Hessian, the Gauss-Newton Hessian, the KKT operator, or the

Gauss-Newton KKT operator.1 In this chapter we review solvers, preconditioners,

and approximations (SPAs) for these linear systems. Solvers solve the linear system

directly, preconditioners speed up the solution of the linear system when used in

Krylov methods, and approximations can be used to build preconditioners. SPAs for

Hessians, KKT operators, or other similar operators have been developed in many

different contexts, including parameter estimation, optimal control, PDE-constrained

optimization, optimal design, and saddle point systems arising in mixed discretiza-

tions of forward problems [34, 67, 139]. However, existing SPAs are not satisfactory.

New SPAs are needed.

6.1 Desired properties for SPAs

To evaluate the quality of a SPA for a Hessian or KKT system, one should consider

the performance of the SPA with respect to the following desired properties:

(a) Problem generality: An SPA has problem generality if it may be used to

1This chapter contains content from [8] (Nick Alger, Umberto Villa, Tan Bui-Thanh, and Omar
Ghattas. A data scalable augmented Lagrangian KKT preconditioner for large-scale inverse prob-
lems. SIAM Journal on Scientific Computing, 39(5):A2365–A2393, 2017.) and [7] (Nick Alger,
Vishwas Rao, Aaron Myers, Tan Bui-Thanh, and Omar Ghattas. Scalable matrix-free adap-
tive product-convolution approximation for locally translation-invariant operators. arXiv preprint
arXiv:1805.06018, 2018. Submitted.).
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solve a wide variety of inverse problems.

(b) Efficient solvers for subproblems: If using the SPA involves solving sub-

problems, it is desirable for us to have efficient solvers for those subproblems.

(c) Mesh-scalability: SPAs are mesh-scalable if their effectiveness does not de-

grade substantially as the meshes used to discretize the problem are refined.

(d) Regularization robustness: SPAs are regularization robust if their effective-

ness does not degrade substantially as the regularization is weakened (e.g., as

the regularization parameter α is made smaller).

(e) Data-scalability: SPAs are data-scalable if their effectiveness does not degrade

substantially as more informative data are included in the inverse problem.

For inverse problems, we view the goal of robustness to arbitrarily-chosen values

of the regularization parameter, (d), to be unwarranted and unnecessarily restrictive.

As we saw in Section 2.7, for properly regularized inverse problems the regularization

operator and regularization parameter are not arbitrary. Rather, they are chosen

in response to the data available in the problem. They should constrain parameter

modes that are not informed by the data, while minimally modifying components

of the parameter that are informed by the data. A preconditioner should perform

well as the informativeness of the data increases while the strength of the regulariza-

tion decreases correspondingly, but it need not perform well in an under-regularized

regime where the regularization is weak but the data are uninformative. In an under-

regularized regime, a good preconditioner would simply accelerate convergence to

noise, i.e., more rapid solution of the wrong optimization problem. We advocate de-

signing preconditioners that perform well with increasingly informative data, (e), for

which the regularization parameter is considered a dependent parameter—chosen so

that the inverse problem is neither substantially over- nor under-regularized. This

extra flexibility permits design of the preconditioner to better achieve the entire set of
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desired properties (a)–(e). Currently there is no known SPA that achieves all of these

desired properties. The preconditioners we present in later chapters do not achieve

all of these properties either, but they do improve upon existing SPAs, particularly

with respect to data-scalability.

6.2 Dense factorization of the Hessian

The Hessian is dense since it contains the dense operators A−1 and A−∗. If the

number of degrees of freedom in the parameter discretization is N , then a matrix

representation of the Hessian would contain N2 entries. So for moderate-scale or

large-scale problems, matrix representations of the Hessian are too large be built,

stored, or factorized.

For example, there are 27 million degrees of freedom for a parameter field dis-

cretized on a 300×300×300 grid with one degree of freedom per gridpoint. In this case

storing a matrix representation of the Hessian would require (27 million)2 ≈ 2.9 ·1015

bytes of memory in single precision floating point format. This is more than the mem-

ory capacity of the worlds most powerful supercomputer as of March 2018 (Sunway

TaihuLight, 1.31 · 1015 bytes [99]). Even if we could store a matrix representation of

the Hessian, building it would require solving O(N) PDEs (two PDE solves to build

each column). This translates to solving 54 million PDEs, an infeasible task with

current computing power. Furthermore, even if we could build and store a matrix

representation of the Hessian, using this matrix representation to solve linear systems

would require factorizing it, which is even more costly than construction and storage.

6.3 Sparse-direct factorization of the KKT matrix

Since the KKT matrix is typically sparse2, one can solve linear systems with the

KKT matrix as the coefficient matrix by factorizing the KKT matrix with sparse

direct methods. For comprehensive coverage of sparse-direct methods, see [72]. How-

2If matrix representations of the operators A, B, R, T , Y , Θ, and Ξ are sparse, then the KKT
matrix, which contains only these operators (and not their inverses) within its blocks, is sparse as
well. The matrix representations of these operators are typically sparse because they arise from
finite element discretization of differential operators. Differential operators act locally, and finite
element discretization of an operator that acts locally yields a sparse matrix.
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ever, sparse-direct methods are only mesh-scalable in terms of memory in spacetime

dimension d = 1 or d = 2, and only mesh-scalable in terms of operations in spacetime

dimension d = 1. We discuss the relationship between the spacetime dimension and

the performance of sparse-direct methods in Appendix B.

6.4 Multigrid

Existing multigrid methods for distributed parameter inverse problems [46] are

not data-scalable. These multigrid methods are classically categorized into three

main categories: (1) speeding up or preconditioning forward and adjoint solves, (2)

using multigrid to precondition the Hessian, and (3) collective smoothing.

Methods in category (1) do not use multigrid to address the fundamental diffi-

culties stemming from highly data informed inverse problems because speeding up

the forward (and adjoint) solves does not address the challenge of creating a precon-

ditioner that is data-scalable. The required number of forward/adjoint solves scales

with the informativeness of the data.

The big difficulty with category (2) is that, when the regularization is chosen ap-

propriately, the regularization and data misfit terms of the reduced Hessian compete

with each other (see Section 2.7.1). Thus smoothers for the regularization term tend

to be roughers for the data misfit term, and vice versa. So multigrid methods be-

longing to the second category tend to be restricted to the case R ≈ I. We note

papers [1, 2, 4, 79, 80], on elliptic, parabolic, and Stokes source inversion problems

with this restriction. Effective smoothers for the Hessian in an elliptic boundary data

optimal control problem and a shape-optimization problem have been constructed

using Fourier/pseudo-differential symbol analysis [10, 13].

In collective smoothing, category (3), one designs multigrid smoothers for the

entire KKT system (parameter, forward, and adjoint) at once [44, 45]. Collective

smoothers also tend to either require R ≈ I, e.g., [182], or substantially degrade in

performance as the regularization parameter decreases, e.g., [16].
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6.5 Low-rank approximation and regularization precondition-
ing

Regularization preconditioning and methods based on low-rank approximation of

the (regularization preconditioned) data misfit Hessian are robust and widely used,

but not data-scalable. This is because they well-approximate the regularization term,

but rely on brute-force to deal with the data misfit term, and the data misfit term

increases in relative importance compared to the regularization term as more infor-

mative data are included in the inversion. These methods rely on the fact that Hd

is usually a compact operator [52, 53, 54, 191], and therefore has arbitrarily accurate

finite-rank approximations. The physical meaning of this compactness is that the

observations inform only a finite number of the components of the parameter (see

Chapter 4 for a discussion of the connection between the spectrum of Hd and the

informativeness of the data).

Low-rank approximation To take advantage of the data misfit Hessian’s com-

pactness, one can build a low-rank approximation of the data misfit Hessian, or of

the regularization preconditioned data misfit Hessian, and use this low-rank approxi-

mation along with the Sherman-Morrison-Woodbury formula to solve linear systems

involving the overall Hessian [55, 59, 71, 96, 164, 178]. These low-rank approximation

can be constructed with classical methods such as Lanczos or Arnoldi iterations, or

modern randomized SVD [118]. These methods require only application of the data

misfit Hessian to vectors. The number of required Hessian applications is of the order

of the rank of the desired approximation. However, even when the prior precondi-

tioned data misfit Hessian is low-rank in the sense that the rank, r, is much less than

the parameter dimension, N , the cost of computing the low-rank approximation may

be prohibitive. As seen in Section 5.2, applying the data misfit Hessian to a vector

involves multiple PDE solves, so low-rank approximation of the data misfit Hessian

requires O(r) linearized forward/adjoint PDE solves. For large-scale problems with

e.g. N of order 106, even a compression of 0.1% still means that thousands of forward

solves are needed, which is often computationally expensive [51, 64, 126]. Moreover,

since r grows with increasingly informative data, these methods are not data-scalable.
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Figure 6.1: Regularization preconditioning and low-rank approximation of the
regularization-preconditioned Hessian deal with all of the uninformed modes of the pa-
rameter simultaneously, but require brute-force to deal with the informed modes.

Regularization preconditioning Alternatively, one can use Krylov methods to

solve linear systems with the Hessian as the coefficient operator, and use the regular-

ization operator as the preconditioner. With this regularization preconditioning, the

preconditioned Hessian is the identity plus a compact operator, so Krylov methods

applied to the preconditioned Hessian will converge at mesh independent, superlinear

rates3 [19, 98, 122]. Intuitively, regularization preconditioning deals with the infinite

set of uninformed parameter modes simultaneously, but requires many Krylov iter-

ations to deal with the leftover finite set of informed parameter modes (see Figure

6.1, and also our discussion of the convergence of Krylov methods in Section 3.3).

Since the regularization is usually an elliptic differential operator (see Section 2.7.2),

applying the inverse of the regularization to a vector requires an elliptic PDE solve,

which can be done with multigrid and is considered cheap in the inverse problem

context. However, since the eigenvalues of the regularization preconditioned Hessian

corresponding to informed modes are typically well-separated, each informed com-

ponent of the parameter will require roughly one Krylov iteration, so Hessian solves

using regularization preconditioning will require large numbers of Krylov iterations

3Here, by superlinear, we mean that the norm of the error asymptotically decays superlinearly
with respect to the number of Krylov iterations.
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on problems with highly informative data [5].

6.6 Adjoint Schur complement and block scaling precondi-
tioners

Rather than precondition the Hessian, which is the Schur complement of the KKT

operator for the parameter (see Theorem 5.7), one may instead build precondition-

ers based on block factorizations of the KKT operator that eliminate the parameter

and state, resulting in a Schur complement for the adjoint variable [22, 35, 121, 167,

168, 169, 175, 176, 177, 180]. This approach requires one to design preconditioners

for the objective block (the 2×2 block corresponding to q and u in K) and for the

Schur complement associated with the adjoint variable. Several preconditioners in

this class achieve mesh-scalability and regularization robustness, e.g., [26, 162, 163].

The drawbacks to preconditioners in this class include that they only apply to specific

problems, or that they make restrictive assumptions about the B, R, and T oper-

ators. The restrictions B ≈ I and/or R ≈ I are common. The restriction B ≈ I

rules out inverse problems with limited observations, and the restriction R ≈ I rules

out smoothing regularization, which is well-suited for distributed parameter inverse

problems (see Section 2.7.2).

Preconditioners based on the adjoint Schur complement are closely related to

abstract “block-scaling” approaches in which one searches for optimal block diago-

nal preconditioners for saddle point/KKT systems [199, 154, 155]. In certain cir-

cumstances, these approaches achieve regularization robustness, but typically these

preconditioners either require observations everywhere (B ≈ I), or other restrictive

assumptions. The block diagonal preconditioner



αI

B∗B + αÂ∗A
1
α
I


 (6.1)

was recently proposed to overcome the observations everywhere limitation [138]. Here

Â∗A is a 4th order elliptic operator that is spectrally equivalent to A∗A. This pre-

conditioner was proven to be mesh-scalable and regularization robust for a specific
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source inversion problem with L2 regularization (L2, R ≈ I, T ≈ −I). Despite sub-

stantial differences in motivation and analysis, our proposed augmented Lagrangian

KKT preconditioner presented in Chapter 7 could be considered as a generalization

of this work to more general operators R and T .

6.7 Convolution interpolation

Since the linear operator that performs a convolution may be numerically full-

rank (e.g., convolution with a delta function, the identity operator) or high-rank

(e.g., convolution with a Gaussian with a small standard deviation), interpolation of

convolution operators can, where applicable, be used to approximate dense operators

with far fewer terms than the rank of the operator. The Hessian preconditioner we

present in Chapter 8 is based on interpolation of convolution operators.

Convolution interpolation schemes fall into two categories: product-convolution

schemes where the element-wise products with weighting functions are performed

before the convolutions, and convolution-product schemes where these operations are

performed in the opposite order4. That is,

f 7→
r∑

k=1

ϕk ∗ (wk · f)

︸ ︷︷ ︸
product-convolution

vs. f 7→
r∑

k=1

wk · (ϕk ∗ f)

︸ ︷︷ ︸
convolution-product

. (6.2)

Convolution interpolation schemes have been used in many fields including im-

age restoration and deblurring [88, 86, 94, 149, 150, 185, 184, 3, 97, 115, 170, 166],

wireless communication signal processing [125], ultrasound imaging [153], systems

biology [103], and Hessian approximation in seismic inversion [198].5 Convolution

interpolation schemes differ in how they construct the functions wk and ϕk. For a

comprehensive overview of existing schemes for constructing these functions, we refer

the reader to the excellent summaries in [77, 87, 100].

Broadly, existing schemes can be categorized by whether the span of the functions

wk is fixed, or the span of the functions ϕk is fixed, or both of the spans are fixed,

4Reader beware: in some papers this naming convention (product-convolution vs. convolution-
product) is reversed!

5In many of these applications, the impulse response is known as the point spread function (PSF),
as it corresponds to the spreading of a point source of light as it passes through an optical system.
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or neither of the spans are fixed. Schemes then attempt to find the remaining (not

fixed) functions so that the error in the operator approximation is small. Established

choices for the span of the functions ϕk include the span of impulse responses of A

to a collection of delta function sources at fixed locations (we do this), subspaces

of this span, and the span of functions with known analytic forms (e.g., Gaussians,

spherical harmonics). Established choices for the span of the functions wk include

spans of Fourier modes, piecewise polynomials on a regular grid (e.g., piecewise con-

stants, piecewise linear functions, B-splines), wavelets, radial basis functions [38], and

functions based on Kriging.

On one hand, existing schemes where the functions wk are not fixed6 require more

access to A than merely the ability to apply it to vectors. On the other hand, existing

schemes where the functions wk are fixed do not permit spatial adaptivity (with one

exception). This includes existing sectioning approaches which partition the domain

into pieces on a regular grid, then use different functions ϕk for each piece [149]. The

exception is [24], which proposes partitioning the domain with an adaptively refined

grid. However, [24] only proposes the concept; [24] suggests that the reader develop

application-specific algorithms to perform the adaptivity in practice. The adaptive

product-convolution scheme we present in Chapter 8 provides a fully specified, general

purpose framework for performing adaptive refinement. The scheme we present also

improves upon existing convolution interpolation schemes in the way it overcomes

issues related to boundaries.

6.8 Hierarchical matrices

Hierarchical matrix (H-matrix) methods are theoretically asymptotically scalable

for many Hessians, but in practice are computationally costly. Also, the cost scales

with wave frequency for Hessians and KKT operators in wave inverse problems, so

H-matrix methods are not data-scalable for these problems.

Hierarchical matrices [112] are matrices that may be full-rank, but the blocks of

6The terminology for this is potentially confusing: in the literature, computed (rather than fixed)
functions wk are known as “adaptive” weighting functions, but this is unrelated to our “adaptive
grid” weighting functions
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Figure 6.2: Clusters (6.2a), cluster tree (6.2b), and block structure (6.2c) for a HODLR
H-matrix, with dense blocks on the diagonal and low-rank blocks off the diagonal.

the matrix associated with clusters of degrees of freedom that are far away from each

other (or satisfy some other admissibility condition) are low-rank. This structure

allows for compressed storage and fast (nearly linear) matrix arithmetic, including

matrix inversion and factorization. Special subclasses of H-matrices allow for greater

compression and faster matrix arithmetic (e.g., H2-matrices [114] and closely related

HSS matrices [61, 194], among others). For an overview of H- and H2-matrices, see

[42, 113].

Classical H-matrix construction techniques assume that the original matrix is

stored in memory in dense or sparse format, and convert it to H-matrix format

by computing low-rank factorizations of its low-rank blocks using standard numerical

linear algebra. If the matrix is not stored in memory but individual matrix entries can

be computed efficiently, the matrix can be efficiently converted to H-matrix format

by performing CUR factorizations for each of its low-rank blocks [29, 43, 186]. Since

we can access the Hessian only by applying it and its adjoint to vectors, we cannot

use these H-matrix construction techniques.

More recently, an asymptotically scalable matrix-free H-matrix construction tech-

nique was proposed based on a recursive “peeling process” that involves computing

low-rank factorizations of blocks at the coarsest level of the H-matrix block cluster

hierarchy, then the using the low-rank factorizations at the coarsest level to help com-

pute low-rank factorizations at next coarsest level, and so on all the way to the finest

level [130]. The method was improved in [141, 142] for hierarchically off-diagonal

low-rank (HODLR) matrices and hierarchically block separable (HBS) [143] matrices
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(restrictive special cases of H and H2 matrices). Yet it has several subtle limitations:

• Although asymptotically scalable in theory, the peeling process must apply the

original operator to a large number of vectors in practice.

• Constructing a less accurate approximation by applying the original operator

to fewer vectors is dangerous. Errors at any step of the “peeling process”

compound during subsequent steps.

• The approximation procedure is purely algebraic and does not take into account

any other properties of the underlying operator. This makes the method more

general, at the cost of potentially being less efficient than specialized schemes

that do take advantage of additional properties.

There has been recent progress on improving the peeling process to address these

issues [47].

The KKT operator is typically sparse. Thus the KKT operator can be converted

toH-matrix format, then inverted, using classicalH-matrix techniques. However, this

process may be inefficient since blocks of the inverse of the KKT operator may have

a much larger hierarchical rank than the Hessian. In particular, when the forward

problem involves high-frequency wave propagation (such as the wave model problem),

complex long-range interactions cause the solution operator for the forward problem,

A−1, to have poor H-matrix approximations (and since A is contained within a block

of K, this causes K−1 to have poor H-matrix approximations).

We remember that the Hessian can be formed as a Schur complement through

algebraic combinations of blocks of the KKT operator (see Theorem 7), so in prin-

ciple one can construct an H-matrix approximation of H by converting blocks of K

into a H-matrices, then algebraically combining these blocks into the desired form

using H-matrix arithmetic. However, the Hessian often operates on functions defined

on boundaries, time slices, or other lower dimensional domains than the domains

of functions the intermediate blocks of the KKT matrix operates on. Furthermore,

although H-matrix arithmetic and inversion is asymptotically scalable, it is still com-

putationally expensive.
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6.9 Other methods

Preconditioning techniques based on sparse approximation, such as incomplete fac-

torization, sparse approximate factorization, sparse approximate inverses, or banded

approximations [31, 32, 33, 36, 73, 81, 90, 93, 135, 136, 171, 193], are not useful to us

since the relevant matrices (the inverse, LU factors, or Cholesky/LDLt factors of H

or K) have poor sparse approximations.

Preconditioners built by reusing gradient or Krylov information from previous

Newton iterations [85, 91, 92, 145, 146] cannot be data-scalable because, at best,

they can reduce cost of performing many Newton steps to the cost of performing one

Newton step. Yet even one Newton step can be arbitrarily computationally expensive

if the data in the inverse problem are highly informative about the parameter.

A variety of problem-specific Hessian solvers and preconditioners have been de-

veloped using a diverse set of techniques, including analysis of the pseudo-differential

symbol [23] of the reduced Hessian [11, 14, 15], matrix probing [66, 74], approximate

sparsity in wavelet frames [120], and analytic expressions derived for model problems

[2, 12, 95, 96, 102, 190].

74



Chapter 7

Augmented Lagrangian KKT preconditioner

In this chapter we propose clustering the spectrum of the Gauss-Newton KKT

operator,

Kgn =



αR0 T ∗

B∗Y B A∗

T A


 , (7.1)

by using the following block diagonal preconditioner,

P :=



αR0 + ρT ∗T

B∗Y B + ρA∗A
1
ρ
I


 , (7.2)

where I denotes the identity map associated with the appropriate inner product (in

the computations, a mass matrix).1 We further propose choosing ρ =
√
α based on

theoretical results and numerical evidence (recall α is the regularization parameter

in the deterministic framework). We prove that, using our preconditioner (7.2), the

symmetrically preconditioned KKT operator satisfies the condition number bound

cond
(
P−1/2KgnP−1/2

)
≤ 3

(1− β)δ
, (7.3)

where cond (·) denotes the condition number, and δ and β are bounds on the eigen-

values of the arithmetic and geometric means of certain damped projectors. Based

on the nature of the damped projectors, we expect these eigenvalue bounds to be

satisfied with good constants δ and β if the inverse problem is neither over- nor

under-regularized.

1This chapter contains content from, and is primarily based on, [8] (Nick Alger, Umberto Villa,
Tan Bui-Thanh, and Omar Ghattas. A data scalable augmented Lagrangian KKT preconditioner for
large-scale inverse problems. SIAM Journal on Scientific Computing, 39(5):A2365–A2393, 2017.).
Required contribution and copyright statement: Nick Alger framed the problem, developed the nu-
merical algorithms, wrote the code, performed the theoretical analysis, and wrote the paper. The
other coauthors engaged in regular helpful discussions about the work and helped edit the paper.
Nick Alger holds the copyright on the paper.
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In our theory and numerical experiments we assume that A and R0 are invertible

maps. Although the application of preconditioner (7.2) and the abstract theory we

present do not depend on invertibility of T , much of the intuition behind the assump-

tions of the theory is lacking in the case where T is non-invertible. Nevertheless,

there are many inverse problems characterized by invertible T operators. Remedies

for the case where T is not invertible are the subject of ongoing research. In addition

to source inversion problems (addressed in Section 7.6 and Section 7.7), coefficient

inverse problems in which the state and parameter share the same discretization often

give rise to invertible T . While existing data-scalable KKT preconditioners usually

require regularization operators R0 that are spectrally equivalent to the identity (see

Chapter 6), our preconditioner (7.2) performs well even if R0 is a discretization of an

unbounded operator (e.g., Laplacian regularization).

7.1 Overview

In Section 7.4.2 we prove the condition number bound (7.3). In Section 7.6 we

derive quantitative bounds on δ and β for the special case of source inversion problems

with spectral filtering regularization. When the regularization is chosen appropriately,

these bounds are independent of the mesh size and of the information content in the

data.

In Section 7.7 we numerically demonstrate the effectiveness of the preconditioner

on a Poisson source inversion problem with highly informative data and Laplacian

regularization. Preconditioning the KKT system with our preconditioner results in

greater accuracy in three MINRES iterations than the widely-used regularization

preconditioning on the Hessian system achieves in 50 conjugate gradient iterations.

Even though the regularization is not a spectral filter, our preconditioner still exhibits

mesh independence and good scalability with respect to a decrease in the regulariza-

tion parameter by 10 orders of magnitude. As suggested by our theory, we see that

the performance of the preconditioner in the small regularization regime actually

improves as more data are included in the inversion.
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7.2 Commentary on solving the preconditioner subsystems

Applying our preconditioner (7.2) requires the solution of two subsystems with

coefficient operators

αR0 + ρT ∗T (7.4)

and

B∗Y B + ρA∗A, (7.5)

respectively. This can be a challenge. However, Hessian preconditioning and KKT

preconditioning for large-scale inverse problems with highly informative data are fun-

damentally difficult endeavors, and the operators (7.4) and (7.5) have many advan-

tages over the alternatives.

To begin with, we typically have easy access to the entries of the concrete matrix

representations of these operators.2 Thus we have at our disposal the entire arse-

nal of symmetric positive definite sparse preconditioning techniques that deal with

matrix entries; e.g., incomplete factorizations, factorized sparse approximate inverses

[93], and modern multilevel techniques including algebraic multigrid and hierarchical

interpolative factorizations [124]. This stands in direct contrast to the Hessian, which

is dense owing to the inverses of the forward and adjoint operators within it, and as

such may be accessed only via matrix-vector multiplies.

Additionally, the data misfit Hessian (which often acts as a compact operator) and

the regularization operator (which often acts as a differential operator) tend to act in

opposition to each other by construction (we discussed this in Section 2.7.1). Since the

reduced Hessian is the sum of these operators, it is difficult to design preconditioners

that are effective for both terms in the reduced Hessian at the same time. In contrast,

the different terms in our subsystems tend not to act in opposition to each other.

In typical applications R0 is chosen to be an elliptic differential operator, and T

is either identity-like, or acts like a differential operator. Thus there is good reason

to believe that multilevel techniques will be effective on the system αR0 + ρT ∗T in

2Although (dense) inverses of mass matrices can arise in concrete representations of these sub-
systems due to the adjoint operation, these inverse mass matrices can typically be replaced with
spectrally equivalent sparse lumped mass approximations.

77



situations of practical interest. A similar argument applies to B∗Y B+ρA∗A whenever

the forward operator A is amenable to multilevel techniques. In the numerical results

section (Section 7.7), we see that for a source inversion problem with an elliptic PDE

constraint, replacing the two subsystem solves with a few algebraic multigrid V-cycles

results in nearly the same convergence rate as performing the solves exactly.

Of course, the operators in our subsystems are squared, and such squaring should

always done with caution. However, subsystems involving squared operators are also

present in state of the art preconditioners that have been proposed in the literature

(see Section 6.6). In particular, a matrix spectrally equivalent to B∗Y B+ρA∗A shows

up in the preconditioner proposed in [138].

7.3 Derivation of the preconditioner

The preconditioner in (7.2) is derived from a block diagonal approximation to the

KKT operator associated with an augmented Lagrangian formulation of the quadratic

optimization problem (3.10). That is, the optimization problem that arises at each

iteration of the full space Newton method for solving the deterministic framework.

In the following derivation, it will be convenient to group the parameter and state

variables into a single vector x :=

[
q
u

]
. With this grouping, optimization problem

(3.10) takes the following standard quadratic programming form,

min
x

1

2
x∗Mx− b∗x

such that Cx = r,
(7.6)

where

r = A(qk)uk − f(qk), b :=

[
αR0(qk − q0)
B∗Y (Buk − y)

]
, C :=

[
T A

]
,

and M is the (generally singular) operator

M :=

[
αR0

B∗B

]
.

The KKT operator from equation (7.1) then becomes,

Kgn :=



αR0 T ∗

B∗B A∗

T A


 =

[
M C∗

C

]
. (7.7)
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For non-singular M , it is well-established [148] that the following positive definite

block diagonal preconditioner,

[
M

CM−1C∗

]
, (7.8)

clusters the eigenvalues of the preconditioned operator onto at most three distinct

values. Note that the positive operator CM−1C∗ is the negative Schur complement

for the adjoint variable. Since the objective block M is singular whenever B is

not full rank (i.e., in the case of limited observations), we cannot directly use this

result. However, (7.6) has the same solution as the following augmented optimization

problem,

min
x

1

2
x∗Mx− b∗x+

ρ

2
‖Cx− f‖2

such that Cx = f,

where the constraint is enforced strictly, but an additional quadratic penalty term

is added to the objective function to further penalize constraint violations when an

iterate is away from the optimal point. The KKT operator for this augmented opti-

mization problem is [
M + ρC∗C C∗

C

]
. (7.9)

With this augmentation, the objective block is now nonsingular provided that M is

coercive on the null space of C (i.e., the optimization problem is well-posed).

The positive definite block diagonal preconditioner analogous to (7.8) but based

on the augmented KKT operator (7.9) is

[
M + ρC∗C

C(M + ρC∗C)−1C∗

]
. (7.10)

This preconditioner clusters the spectrum of the original (non-augmented) KKT op-

erator onto the union of two well-conditioned intervals [106]. However, this pre-

conditioner is not practical since it is computationally difficult to perform solves

(M + ρC∗C)−1, as well as apply the Schur complement C(M + ρC∗C)−1C∗ and its

inverse. Thus we construct the preconditioner in (7.2) by replacing these blocks with

cheaper approximations.
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Intuitively, when ρ is large, constraint violations are more strongly penalized by

the objective, so the adjoint variable does not need to “work as hard” to enforce the

constraint. This manifests in better conditioning of the Schur complement for the

adjoint, C(M + ρC∗C)−1C∗. Indeed, it is easy to see that C(M + ρC∗C)−1C∗ → 1
ρ
I

as ρ→∞. To this end, we expect the approximate preconditioner

[
M + ρC∗C

1
ρ
I

]
, (7.11)

to perform well when ρ is large. The preconditioner (7.11) is, essentially, a mechanism

for using an unconstrained penalty method to precondition a constrained optimization

problem.

The augmented objective block, M + ρC∗C, takes the form

M + ρC∗C =

[
αR0 + ρT ∗T ρT ∗A

ρA∗T B∗Y B + ρA∗A

]
.

Since this 2×2 block operator is difficult to solve, we cannot use preconditioner (7.11)

directly, and must make further approximations. In particular, the off-diagonal blocks

are scaled by ρ, so when ρ is small we expect the relative importance of these blocks

to be reduced. Dropping the off-diagonal blocks in M + ρC∗C and then substituting

the result into (7.11) yields our overall 3× 3 block diagonal preconditioner (7.2),

P :=



αR0 + ρT ∗T

B∗Y B + ρA∗A
1
ρ
I


 .

One hopes that it is possible to choose ρ large enough that the Schur complement is

well approximated by 1
ρ
I, but at the same time small enough that the objective block is

well-preconditioned by the block diagonal approximation. Our theory and numerical

results in subsequent sections suggest that these competing interests can be balanced

by choosing ρ =
√
α, provided that the inverse problem is appropriately regularized.

In the next section we provide an abstract theoretical analysis of the preconditioner

without making any assumptions about the value of ρ. A more specific analysis for

source inversion problems with spectral filtering regularization, which motivates our

choice of ρ, is performed in Section 7.6.
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7.4 Abstract analysis of the preconditioner

In this section we analyze the preconditioned KKT operator, showing that it is

well-conditioned if bounds on the arithmetic and geometric means of certain damped

projectors are satisfied. First, we highlight the structure of the preconditioned KKT

operator, state the necessary arithmetic and geometric mean bounds, and recall a

prerequisite result from Brezzi theory. Then we prove bounds on the condition number

of the preconditioned KKT operator based on the arithmetic and geometric mean

bounds.

7.4.1 Prerequisites

7.4.1.1 Preconditioned KKT operator

Let E denote the symmetrically preconditioned KKT operator,

E := P−1/2KgnP−1/2,

with P and Kgn defined in (7.2) and (7.7), respectively. Direct calculation shows that

the symmetrically preconditioned KKT operator has the following block structure,

E =



I −Q∗Q Q∗

I − U∗U U∗

Q U


 , (7.12)

where the operators Q and U are defined as

Q := T

(
α

ρ
R0 + T ∗T

)−1/2

, U := A

(
1

ρ
B∗Y B + A∗A

)−1/2

.

For convenience, we further denote the objective and constraint blocks of the precon-

ditioned system by X and Z, respectively, where

X :=

[
I −Q∗Q

I − U∗U

]
, Z :=

[
Q U

]
, (7.13)

so that the preconditioned KKT operator takes the form

E =

[
X Z∗

Z

]
. (7.14)
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7.4.1.2 Arithmetic and geometric mean assumptions

The quality of the preconditioner depends on the arithmetic and geometric means

of the following two damped projectors,3

ΠR := QQ∗ = T

(
α

ρ
R0 + T ∗T

)−1

T ∗, (7.15)

and

Πd := UU∗ = A

(
1

ρ
B∗Y B + A∗A

)−1

A∗.

Note that if T is invertible, we have

Πd = T

(
1

ρ
Hgn
d + T ∗T

)−1

T ∗, (7.16)

where we recall the formula Hgn
d := −T ∗A−∗B∗Y BA−1T for the data misfit Gauss-

Newton Hessian.

As damped projectors, it is easy to show that the eigenvalues of ΠR and Πd are

bounded between 0 and 1. The degree to which the eigenvalues of ΠR are damped

below 1 is controlled by the strength of the damping term α
ρ
R0 and its interaction

with the eigenstructure of T . Similarly, the degree of damping of the eigenvalues of

Πd is controlled by the strength of the damping term 1
ρ
Hgn
d and its interaction with

the eigenstructure of T (or the interaction of the damping term 1
ρ
B∗Y B with the

eigenstructure of A, when T is not invertible).

Assumption 1 (Damped projector AM-GM bounds). We assume there exist con-

stants β, δ such that the following bounds on the spectrum of the arithmetic and geo-

metric means of the damped projectors hold:

a) 0 < δ ≤ 1

2
λmin (ΠR + Πd) ,

b) λmax (ΠRΠd)
1/2 ≤ β < 1,

3Recall that T (γI + T ∗T )−1T ∗ approximates the orthogonal projector onto the column space
of T for small γ. With this in mind, one can view an operator of the form T (D + T ∗T )−1T ∗ as
an approximate projector onto the column space of T , damped by the operator D. We call such
operators damped projectors.
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where λmin(X) and λmax(X) denote the smallest and largest eigenvalues of an operator

X, respectively.

Theorem 10 will establish that the larger δ is and the smaller β is, the more

effective preconditioner (7.2) is.

Qualitatively, if T is invertible and the regularization is chosen to act in opposi-

tion to the data misfit, as desired for the problem to be properly regularized based on

the discussion in in Section 2.7.1, then αR0 will act strongly on vectors that G acts

weakly on, and vice versa. Thus we expect the damping in ΠR to be strong where the

damping in Πd is weak, and vice versa. Consequently, it is reasonable to hypothesize

that Assumption 1 will be satisfied with good constants for inverse problems that are

properly regularized. Making this intuition precise requires careful analysis of the

interaction between the eigenstructures of R0, Hgn
d , and T , which must be done on

a case-by-case basis. We perform this analysis for the special case of source inver-

sion problems with spectral filtering regularization in Section 7.6, and expect similar

behavior to hold in more general situations.

7.4.1.3 Brezzi theory for well posedness of saddle point systems

The proof of the coercivity bound for our preconditioned KKT operator invokes

Brezzi theory for saddle point systems [49, 76, 195]. In particular, we use a recently

discovered bound in [128], which is slightly sharper than bounds derived from the

classical theory. Here we state the prerequisite theorem (without proof), and refer

the reader to [128] for more details. This theory can be stated in much greater

generality than what we present here.

Theorem 9 (Krendl, Simoncini, and Zulehner). Let E be the saddle point system

E =

[
X Z∗

Z

]
,

where X is self-adjoint and positive semidefinite. Further suppose that

• X is coercive on the kernel of Z, i.e.,

0 < a ≤ inf
x∈Ker(Z)
x6=0

x∗Xx

‖x‖2 .
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• X is bounded, i.e., ‖X‖ < b.

• The singular values of Z are bounded from below, i.e.,

0 < c ≤ σmin(Z).

Then the minimum singular value of E, σmin(E), is bounded from below, with the

bound
a

1 +
(
b
c

)2 ≤ σmin(E). (7.17)

7.4.2 Bound on the condition number of the preconditioned KKT oper-
ator

To apply Brezzi theory (Theorem 9) to our problem, we need a coercivity bound

for X on the kernel of Z, a continuity bound for X on the whole space, and a

coercivity bound on Z, where the constants for these bounds are denoted a, b, and c,

respectively. We use the particular structure of the KKT operator (7.7), along with

Assumption 1, to derive these bounds in Section 7.4.2.1. In Proposition 2 we derive

bounds for a and b, and then in Proposition 3 we derive a bound for c.

In Section 7.4.2.2 we derive well posedness and continuity bounds on the pre-

conditioned KKT operator, E, and then combine these bounds to provide an upper

bound on the condition number of E. Well posedness of E is proven in Proposition 4,

using Brezzi theory in the form of Theorem 9. Continuity of E is proven directly in

Proposition 5. Finally, the overall condition number bound for E is given in Theorem

10.

7.4.2.1 Bounds on X and Z

Proposition 2 (Bounds a, b for X). The eigenvalues of X restricted to the kernel of

Z are bounded below by 1− β, where β is defined in Assumption 1. That is,

0 < 1− β ≤ inf
x∈Ker(Z)
x 6=0

x∗Xx

‖x‖2 .

Additionally,

‖X‖ ≤ 1.
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Proof. For vectors z ∈ Ker(Z), we have,

x∗Xx = x∗(X + Z∗Z)x ≥ λmin(X + Z∗Z)||x||2. (7.18)

This augmented operator has the following block structure,

X + Z∗Z =

[
I −Q∗Q

I − U∗U

]
+

[
Q∗

U∗

] [
Q U

]
=

[
I Q∗U

U∗Q I

]
.

Thus the eigenvalues λ of X + Z∗Z satisfy,
[
I Q∗U

U∗Q I

] [
v
ξ

]
= λ

[
v
ξ

]
,

or, [
Q∗U

U∗Q

] [
v
ξ

]
= (λ− 1)

[
v
ξ

]
. (7.19)

Solving for v from the block equation associated with the first row block of (7.19)

and substituting into the second yields,

U∗QQ∗Uξ = (λ− 1)2ξ.

Thus, the magnitudes of the shifted eigenvalues, |λ − 1|, are the square roots of the

eigenvalues of U∗QQ∗U . By a similarity transform, the eigenvalues of U∗QQ∗U are

the same as the eigenvalues of the operator QQ∗UU∗, and by the second part of

Assumption 1, we know that these eigenvalues are bounded above by β. Thus,

|λ− 1| ≤ λmax(QQ∗UU∗)1/2 ≤ β.

which implies,

1− β ≤ λ,

so that,

x∗Xx ≥ (1− β) ‖x‖2 ,

from which the inf-sup bound directly follows.

Since QQ∗ and UU∗ are damped projectors, their eigenvalues reside in the interval

[0, 1], as do the eigenvalues of Q∗Q and U∗U . Using the definition of X in (7.13), this

implies that the singular values of X reside in the interval [0, 1], and so we have the

upper bound ||X|| ≤ 1.
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Proposition 3 (Bound c for Z). The singular values of the preconditioned constraint

are bounded below, with bound,

0 <
√

2δ ≤ σmin(Z).

Proof. Since U is invertible, Z =
[
Q U

]
has full row rank. Thus the singular values

of Z are the square roots of the eigenvalues of

ZZ∗ = QQ∗ + UU∗.

Recalling the arithmetic mean assumption (Assumption 1a), we have

0 < δ ≤ 1

2
λmin (QQ∗ + UU∗) =

1

2
λmin (ZZ∗) ,

or

0 <
√

2δ ≤ σmin(Z).

7.4.2.2 Well posedness, continuity, and conditioning of the precondi-
tioned KKT operator, E

Proposition 4 (Well posedness of E). The singular values of E have the following

lower bound:

0 <
2

3
(1− β)δ ≤ σmin(E).

Proof. Based on the results of Proposition 2 and Proposition 3, and the block struc-

ture of E from (7.14), we can apply bound (7.17) from Theorem 9 to E with a = 1−β,

b = 1, and c2 = 2δ. Doing this and then using the fact that 0 < δ ≤ 1, we get the

desired lower bound on the minimum singular value:

σmin(E) ≥ 1− β
1 + 1

2δ

=
2(1− β)δ

1 + 2δ
≥ 2

3
(1− β)δ.

Proposition 5 (Continuity of E). The singular values of E are bounded above by 2.

I.e.,

σmax(E) ≤ 2.
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Proof. To prove the upper bound, we directly estimate the quantity |w∗1Ew2| for

arbitrary w1, w2. Denote the blocks of w1 and w2 by,

w1 =



p1

v1

ξ1


 , w2 =



p2

v2

ξ2


 .

Recalling the blockwise definition of E from (7.12) and using the triangle inequality,

we have

|w∗1Ew2| =

∣∣∣∣∣∣
[
p∗1 v∗1 ξ∗1

]


I −Q∗Q Q∗

I − U∗U U∗

Q U





p2

v2

ξ2



∣∣∣∣∣∣

= |p∗1(I −Q∗Q)p2 + p∗1Q
∗ξ2 + v∗1(I − U∗U)v2 + v∗1U

∗ξ2 + ξ∗1Qp2 + ξ∗1Uv2|

≤ |p∗1(I −Q∗Q)p2|+ |p∗1Q∗ξ2|+ |v∗1(I − U∗U)v2|+ |v∗1U∗ξ2|+ |ξ∗1Qp2|+ |ξ∗1Uv2|.
(7.20)

Since the operators Q and U have singular values between zero and one, we can

eliminate all of the intermediate operators in (7.20), yielding

|w∗1Ew2| ≤ ‖p1‖ ‖p2‖+‖p1‖ ‖ξ2‖+‖v1‖ ‖v2‖+‖v1‖ ‖ξ2‖+‖ξ1‖ ‖p2‖+‖ξ1‖ ‖v2‖ . (7.21)

By Cauchy-Schwarz, three of the terms on the right hand side of (7.21) can be esti-

mated as follows:

‖p1‖ ‖p2‖+ ‖v1‖ ‖ξ2‖+ ‖ξ1‖ ‖v2‖ ≤
(
‖p1‖2 + ‖v1‖2 + ‖ξ1‖2)1/2 (‖p2‖2 + ‖v2‖2 + ‖ξ2‖2)1/2

= ‖w1‖ ‖w2‖ .

The other three terms can be estimated similarly:

‖p1‖ ‖ξ2‖+ ‖v1‖ ‖v2‖+ ‖ξ1‖ ‖p2‖ ≤ ‖w1‖ ‖w2‖ .

Thus we have the overall estimate

|w∗1Ew2| ≤ 2 ‖w1‖ ‖w2‖ ,

which implies σmax(E) ≤ 2, as required.

Theorem 10 (Conditioning of E).

cond (E) ≤ 3

(1− β)δ
.

Proof. Divide the upper bound from Proposition 5 by the lower bound from Propo-

sition 4.
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7.5 Spectral filtering and appropriate regularization assump-
tions

To better characterize the constants δ and β in the condition number bound

in Theorem 10, in this section we propose appropriate regularization assumptions

(Assumption 2) that limit the degree to which the inverse problem can be over- or

under-regularized. These assumptions are motivated by an analysis of the error in

the reconstruction of the parameter (Section 2.7.1), and apply to spectral filtering

regularization operators (Definition 2). Since one part of Assumption 2 (specifically,

Assumption 2b) is novel, we discuss that part in greater detail.

Since construction of spectral filtering regularization operators is too expensive for

large-scale inverse problems with highly informative data, Assumption 2 is used for

theoretical analysis only. In Section 7.6 we will prove that satisfying Assumption 2

implies the existence of good constants δ and β for source inversion problems, thereby

guaranteeing that our preconditioner will perform well on these problems.

7.5.1 Spectral filtering regularization

Definition 2. An operator R0 is a spectral filtering regularization operator for a

linear inverse problem with data misfit Hessian Hgn
d if R0 and Hgn

d share a common

basis of eigenvectors φk. We denote the eigenvalue of Hgn
d corresponding to φk by dk,

and the eigenvalue of R0 corresponding to φk by rk.

By convention we order dk in descending order (dk ≥ dk+1). Note that the de-

scending order for dk forces an order (possibly non-monotone) for rk.

Spectral filtering regularization is ideally suited for inverse problems—by manip-

ulating the regularization singular values rk, one can selectively filter out undesirable

components of the parameter from the reconstruction without affecting the recon-

struction of the desirable components. The larger rk, the more component φk is

penalized, and vice versa. Limiting cases of spectral filtering regularization include:

• identity regularization (R = I), where all singular vectors are penalized equally,

and
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• truncated SVD, where singular vectors φk are not penalized at all if dk is above

a given threshold, but are penalized infinitely4 otherwise.

Spectral filtering regularization is routinely used for small to moderate sized inverse

problems, and for large inverse problems that admit low-rank approximations to the

parameter-to-observable map. However, aside from identity regularization, spectral

filtering regularization is generally computationally infeasible for large-scale inverse

problems with highly informative data. In fact, spectral filtering regularization re-

quires computing the dominant singular vectors and singular values of G in order

to construct R, and the number of dominant singular vectors of G scales with the

informativeness of the data. Thus we view spectral filtering as an idealized form of

regularization that practical regularization operators attempt to approximate. For a

more comprehensive discussion of spectral filtering and its relation to other regular-

izations, we refer the reader to the classic monograph [83].

7.5.2 Appropriate regularization assumptions

In light of the discussion of over- and under-regularization in Section 2.7.1, we

propose the following appropriate regularization assumptions for spectral filtering

regularization operators:

Assumption 2 (Appropriate regularization). There exist constants µ and ν such

that,

a) 0 < µ ≤ dk + αrk,

b) (dkrk)
1/2 ≤ ν <∞,

for all k.

Assumption 2a is already required for the quadratic optimization problem (3.10)

to be well-posed. It says that the regularization cannot be arbitrarily small in basis

directions φk to which the observations are insensitive, but allows the regularization

4That is, the reconstruction of the component of q in the direction φk is set to zero.
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to be arbitrarily small in directions φk to which the observations are sensitive. In con-

trast, Assumption 2b prevents the regularization from being large in basis directions

φk to which the observations are sensitive, but still allows the regularization singular

values to diverge (rk → ∞ as k → ∞), as long as the sensitivity of the observations

to changes to the parameter, dk, goes to zero in the inverse manner. Informally, As-

sumption 2a says that the problem is not under-regularized, and Assumption 2b says

that the problem is not over-regularized.

Since Assumption 2a is standard, we do not discuss it further. The motivation

for Assumption 2b is less obvious, so we provide a more in-depth discussion of it. To

begin with, the multiplicative nature of Assumption 2b makes it a relatively weak

assumption compared to other possible candidates for preventing over-regularization.

In particular, observe that the eigenvalues of R−1
0 Hgn, are dk/rk +α. Thus situations

in which the strength of R0 on a mode is inversely proportional to how informed that

mode is (i.e., rk ≈ 1
dk

) can lead to arbitrarily poor conditioning of the regularization

preconditioned Hessian while still satisfying Assumption 2b with a constant of order

one.

An instructive model problem that illustrates Assumption 2b is the Poisson source

inversion problem on a rectangular domain, with Laplacian regularization, zero Dirich-

let boundary conditions for both A and R0, and distributed observations of the first

nobs Fourier modes of the state variable in the domain. That is,

• T = I and Y = I.

• A = R
1/2
0 = ∆D, where ∆D is the Laplacian operator with zero Dirichlet bound-

ary conditions, and

• B is a wide rectangular operator with Fourier modes as right singular vectors

(the same as A and R0), but with singular values σk = 1, k = 1, . . . , nobs.

Substituting these operators into formula Hgn
d = −T ∗A−∗B∗Y BA−1T , and working

in the basis of Fourier modes, we see that

dk =

{
1/λ2

k, k = 1, . . . , nobs,

0, k > nobs,
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where λk is the kth eigenvalue of ∆D. At the same time, the singular values of R0 are

rk = λ2
k. Thus dkrk = 1 for k = 1, . . . , nobs and dkrk = 0 for k > nobs, so Assumption

2b holds with constant ν = 1, regardless of the number of observations, nobs.

7.6 Analysis of the source inversion problem with spectral
filtering regularization

In Section 7.4.1.2 we hypothesized that the damped projector arithmetic and ge-

ometric mean assumptions (Assumption 1) are satisfied with good constants δ and

β whenever an inverse problem is properly regularized. Then in Section 7.5 we for-

mulated another assumption (Assumption 2) that quantifies the concept of proper

regularization for spectral filtering regularization operators. Here we show that As-

sumption 2 implies Assumption 1 for the source inversion problem. Specifically, in

Theorem 11 and Corollary 3 we prove quantitative bounds on the constants δ and

β for source inversion problems that are neither over- nor under-regularized in the

manner made precise by Assumption 2. The more appropriate to the problem the

regularization is, the better the bounds.

Definition 3. An inverse problem is a source inversion problem if the parameter q

being inverted for is the right-hand-side of the state equation. That is, T = −I, and

state equation takes the simplified form,

Au = q,

where A does not depend on q.

Theorem 11. Let R0 be a spectral filtering regularization operator for a source in-

version problem (see Definition 2 and Definition 3). If R0 satisfies appropriate regu-

larization Assumption 2 with constants µ and ν, then Assumption 1 is also satisfied,

with constants

δ =
1

2

(
1 +

α

ρ2
ν2

)−1

and β =

(
1 +

1

ρ
µ

)−1/2

.

Proof. For δ, we seek a lower bound on the eigenvalues of the arithmetic mean of the

damped projectors ΠR and Πd (as defined in (7.15) and (7.16), respectively), while for

91



β we seek an upper bound on their geometric mean. For source inversion problems

these damped projectors take the form

ΠR =

(
α

ρ
R0 + I

)−1

and Πd =

(
1

ρ
Hgn
d + I

)−1

.

Furthermore, for spectral filtering regularization, R0 and Hgn
d share the same eigen-

vectors, and have eigenvalues rk and dk, respectively. Thus the eigenvalues δk of the

arithmetic mean 1
2
(ΠR + Πd) can be estimated as

δk =
1

2

(
1

α
ρ
rk + 1

+
1

1
ρ
dk + 1

)
≥ 1

2

(
1 +

α

ρ2
dkrk

)−1

≥ 1

2

(
1 +

α

ρ2
ν2

)−1

.

In the first inequality we have combined fractions, and used the non-negativity of rk,

dk and monotonicity of the function f(x) = x/(a + x). In the second inequality we

have used Assumption 2b.

Similarly, we use the Assumption 2a to bound the eigenvalues βk of the geometric

mean (ΠRΠd)
1/2 as

βk =

(
1

α
ρ
rk + 1

· 1
1
ρ
dk + 1

)1/2

≤
(

1 +
α

ρ
rk +

1

ρ
dk

)−1/2

≤
(

1 +
1

ρ
µ

)−1/2

.

The following corollary of Theorem 11 shows that the preconditioner will be ef-

fective in the low to moderate regularization regime (α ≤ 1) if we choose ρ =
√
α.

Corollary 3. If the conditions of Theorem 11 are satisfied, and α ≤ 1, and the

regularization parameter is chosen as ρ =
√
α, then Assumption 1 is satisfied, with

constants

δ =
1

2

(
1 + ν2

)−1
and β = (1 + µ)−1/2 .

Proof. Substituting in ρ =
√
α into the results of Theorem 11, we immediately have

the desired lower bound on the arithmetic mean of damped projectors with constant

δ = 1
2

(1 + ν2)
−1

. For the geometric mean, Theorem 11 implies

λmax (ΠRΠd)
1/2 ≤

(
1 + α−1/2µ

)−1/2
.
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But note that for α ≤ 1 we have

(
1 + α−1/2µ

)−1/2 ≤ (1 + µ)−1/2, (7.22)

and so we get the desired upper bound with β = (1 + µ)−1/2.

7.7 Numerical results

We apply our method to a Poisson source inversion problem with pointwise obser-

vations randomly distributed throughout a rectangular domain Ω = [0, 1.45]× [0, 1],

using Laplacian regularization. Specifically, we take q, u, and v to reside in the space

of continuous piecewise linear functions on a uniform triangular mesh with mesh size

parameter h, with the L2 inner product. The state equation

Au := ∆Du = q,

is the Poisson equation discretized by the finite element method, with homoge-

neous Dirichlet boundary conditions enforced by the symmetric Nitsche method [156].

Pointwise observations of the form

yk = (Bu)k = u(xk),

are taken for a collection of points {xk ∈ Ω}nobs
k=1 , shown in Figure 7.1. Noise is not

included in the inverse problem since we are interested in preconditioners for the low

noise, big data, small regularization limit. The regularization operator is defined by

R0 := ∆N + tI,

where ∆N is the Laplacian operator with Neumann boundary conditions discretized

by the finite element method, and t = 1/10.

The true source field, qtrue, used to generate the observations, yk, is a grayscale

image of the Peter O’Donnell Jr. building at the University of Texas at Austin, scaled

to contain values in [0, 1], and shown in Figure 7.1. The combination of sharp edges

and smooth features in this image make this an ideal test case for highly informative

data and small regularization.
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Figure 7.1: Left: True source field qtrue used for all inversions. Center: Reconstruction q
for the case of nobs = 2000 observations with regularization parameter α = 10−8 and mesh
size h =

√
2 · 10−2. Right: Observation locations xk, denoted by dots.

Abstract vectors q, u, η are represented concretely by lists of nodal degrees of free-

dom q,u,η, respectively. The norm of a concrete vector, e.g., ‖q‖, is the Euclidean

norm (square root of the sum of the squares of the entries). Since we use uniform

meshes and present only relative errors, this is spectrally equivalent to using the

function space L2 norm on the underlying function being represented by the concrete

vector. We use the FEniCS [134] package to assemble concrete matrix representations

of A, R0, T , and I, which are denoted A, R0, T, and W, respectively. The diagonal

lumped mass matrix is denoted WL, with diagonal entries given by row sums of the

mass matrix: (WL)ii =
∑

j Wij. The concrete sparse matrix representation of the

observation operator is denoted B. Its (i, j) entry, Bij, equals the evaluation of the

jth basis function at the ith observation location.

In a concrete basis, the KKT operator (7.1) becomes,



αR0 −W

BTB AT

−W A






q
u
η


 =




0
BTy

0


 . (7.23)

The reconstructed function q based on the exact5 solution of this KKT system with

regularization parameter α = 10−8 is shown in Figure 7.1.

In a concrete basis the preconditioner (7.2) becomes

P =



αR0 + ρW

BTB + ρATW−1A
1
ρ
W


 . (7.24)

5By “exact,” we mean that the result of a computation is accurate to tolerance 10−12 or smaller.
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In our numerical experiments, we consider three variants of this preconditioner.

• BDAL, exact: all solves in preconditioner (7.24) are performed exactly.

• BDAL, lumped mass, exact: the mass matrix W is replaced with the

lumped mass matrix WL, but preconditioner solves are performed exactly with

this replacement.

• BDAL, lumped mass, multigrid: the mass matrix is replaced by the lumped

mass matrix, and the solves for αR0 +ρWL and BTB+ρATW−1
L A are replaced

by a small number of algebraic multigrid V-cycles.

For algebraic multigrid we use the root-node smoothed aggregation [160, 189] method

implemented in PyAMG [30], with the default settings. One V-cycle is used for

αR0 + ρWL, and three V-cycles are used for BTB + ρATW−1
L A.

7.7.1 Convergence comparison

In Figure 7.2, we show a convergence comparison between between MINRES on

the KKT system preconditioned by our block diagonal augmented Lagrangian precon-

ditioner, and conjugate gradient on the Hessian preconditioned by the regularization

term (CG-HESS). For our block diagonal augmented Lagrangian preconditioner, we

also show results for lumped mass and algebraic multigrid approximations to the sub-

systems being solved. The regularization, forward, and adjoint solves used for the

reduced Hessian solve are all performed exactly. The mesh size is h =
√

2 · 10−2, the

number of observations is 2000, and the regularization parameter is α = 10−8. Error

is measured with respect to the converged solution to the linear system (7.23), i.e.,

‖q− qk‖ / ‖q‖. This allows us to make a fair comparison between the reduced and

full space methods.

In terms of Krylov iteration count, our preconditioner far outperforms regulariza-

tion preconditioning on the Hessian. The error in our method after three iterations is

much less than the error after 50 iterations of regularization preconditioning on the

reduced Hessian. Performance with the lumped mass approximation is almost identi-

cal to performance with exact solves. In the case with the multigrid approximation,
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Figure 7.2: Relative error in the parameter, ‖q− qk‖ / ‖q‖, for the big data Poisson source
inversion problem, as a function of the number of Krylov iterations. The observation loca-
tions, regularization parameter, and mesh size are the same as in Figure 7.1 (nobs = 2000,
α = 10−8, h =

√
2 · 10−2).

Figure 7.3: Visual comparison of the 3rd, 15th, and 50th Krylov iterates (nobs = 2000,
α = 10−8, h =

√
2 · 10−2). Top row: reconstruction using MINRES on the KKT system

with our “BDAL, lumped mass, exact” preconditioner. Bottom row: reconstruction using
CG on the Hessian with regularization preconditioning.
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Table 7.1: Mesh scalability study for our “BDAL, lumped mass, exact” preconditioner
over a range of meshes. The table shows the number of MINRES iterations required to
achieve parameter convergence to relative error 10−5. The number of observations is
nobs = 2000, and the regularization parameter is α = 10−8. The observation locations
xk are the same for all mesh sizes.

h # triangles MINRES iterations
5.68e-02 1800 51
2.84e-02 7200 50
1.89e-02 16200 51
1.41e-02 29000 51
1.13e-02 45250 51
9.44e-03 65100 51
8.09e-03 88550 51
7.07e-03 116000 51
6.29e-03 146700 51
5.66e-03 181000 51

we see roughly the same asymptotic convergence rate as the exact solve, but with a

lag of 10 to 20 iterations. In our numerical experiments we also observed that MIN-

RES with our “BDAL, lumped mass, multigrid” preconditioner takes considerably

less time per iteration than CG on the Hessian, which is expected since applying the

Hessian requires solving the forward and adjoint equations to a high tolerance within

each CG iteration.

In Figure 7.3, we see that the reconstruction using the Hessian starts off smooth,

then slowly includes information from successively higher frequency parameter modes

as the CG iterations progress. In contrast, our preconditioner applied to the KKT

system reconstructs low and high frequency information simultaneously.

7.7.2 Mesh scalability

To test mesh scalability, we solve the Poisson source inversion problem on a se-

quence of progressively finer meshes using MINRES with our block diagonal aug-

mented Lagrangian preconditioner. The same regularization parameter, α = 10−8,

and observation locations, {xk}2000
k=1 , are used for all meshes. The numbers of itera-

tions k required to achieve a relative error of ‖q− qk‖ / ‖q‖ < 10−5 are shown in

Table 7.1. All meshes are uniform triangular meshes. The coarsest mesh has size
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h = 5.7 · 10−2 with 1, 800 triangles, and the finest mesh has h = 5.7 · 10−3 with

181, 000 triangles. To quantify the error, the exact solution q was computed for each

mesh using a sparse factorization of the KKT matrix. All results are based on the

lumped mass approximation for mass matrices within the preconditioner.

The results clearly demonstrate mesh independence. The number of MINRES it-

erations required remains essentially constant over a two orders of magnitude increase

in problem size, differing by at most one iteration across all mesh sizes.

7.7.3 Regularization and data scalability
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Figure 7.4: Regularization and data scalability study for our “BDAL, lumped mass, exact”
preconditioner. Plot shows the number of MINRES iterations k required to achieve relative
error ‖q− qk‖ / ‖q‖ < 1e− 5.

A data and regularization robustness study is shown in Figure 7.4. The number of

MINRES iterations k required for the method to converge to an error ‖q− qk‖ / ‖q‖ <
10−5 is plotted for values of the regularization parameter in the range α ∈ [10−10, 1.0],

and number of observations nobs ∈ {150, 600, 2400, 9600}. The mesh size is fixed at
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h =
√

2 · 10−2, and for each value of nobs, the observation locations, xk, are fixed as

the regularization parameter varies.

The overall performance of the preconditioner is relatively steady over a broad

range of values of α and nobs. The performance of the method does decrease as

the regularization parameter goes to zero for a fixed number of observations (upper

left, Figure 7.4). However, the combination of small regularization parameter and

small number of observations corresponds to the under-regularized regime, which

we would not find ourselves in for an appropriately regularized problem. As the

number of observations increases, the performance of the method improves in the

small regularization regime while slightly worsening in the large regularization (over-

regularized) regime, as suggested by our theory. This behavior is consistent with a

data-scalable method: one can take small values for the regularization parameter if

that choice is supported by the data available in the problem.
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Chapter 8

Adaptive Product-Convolution Approximation

We present an adaptive product-convolution scheme for approximating locally

translation-invariant operators.1 That is, operators A : l2(Ω)→ l2(Ω) satisfying

A [y, x] ≈ A [y − x+ p, p] (8.1)

whenever x is not too far from p (see Figure 8.1). In this chapter, ‘A’ denotes a

generic locally translation-invariant operator to be approximated (unlike the rest of

the dissertation, in which A denotes the state operator). We consider the case in

which Ω is a box2 in Zd.

In this chapter, we detail the scheme and use it to build a preconditioner for the

Hessian for the advection model problem. In Chapter 9 we will use the scheme to

approximate a Schur complement that arises within a domain decomposition method

for preconditioning the Hessian in the wave inverse problem. Our scheme is also well-

suited for approximating or preconditioning operators that arise in Schur complement

techniques [129, 174] for solving partial differential equations (PDEs), integral oper-

ators, covariance operators with spatially varying kernels, and Dirichlet-to-Neumann

maps or other Poincaré–Steklov operators in multiphysics problems. These operators

are typically dense and implicitly defined, and often do not admit a global low-rank

approximation, making them difficult to approximate with standard techniques. We

present numerical results using our adaptive product-convolution scheme to approxi-

mate other, non-Hessian, operators in Appendix E.

1This chapter contains content from, and is primarily based on, [7] (Nick Alger, Vish-
was Rao, Aaron Myers, Tan Bui-Thanh, and Omar Ghattas. Scalable matrix-free adaptive
product-convolution approximation for locally translation-invariant operators. arXiv preprint
arXiv:1805.06018, 2018. Submitted.). Required contribution and copyright statement: Nick Alger
framed the problem, developed the numerical algorithms, wrote the code, performed the theoretical
analysis, and wrote the paper. The other coauthors engaged in regular helpful discussions about the
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p
y-x+px y

level sets of A •[  , x]
level sets of A •[  , p]

Figure 8.1: Our convolution-product scheme is suitable for operators that are locally ap-
proximately translation invariant. That is, operators for which the response at y to a point
source at x is similar to the response at y − x+ p given a source of equal magnitude at p.

Let ϕp be the impulse response of A at p, i.e., the function created by applying A

to a point source centered at point p, then translating the result to recenter it at 0:

ϕp [z] = (Aδp) [z + p] , z ∈ Ω− p. (8.2)

By “point source,” δp, we mean the Kronecker delta that contains the value 1 at

location p and zeros elsewhere. If A were translation-invariant (i.e., if (8.1) held with

equality for all x, y), then A would be the convolution operator A : f 7→ ϕp ∗ f . To

approximate operators that are only locally translation-invariant, we patch together

a collection of convolution operators, each of which well-approximates A locally. Our

approximation of A, denoted Ã, takes the following form:

Af ≈ Ãf :=
r∑

k=1

ϕEk ∗ (wk · f), (8.3)

where the wk are locally supported weighting functions that overlap and form a par-

tition of unity, ‘·’ denotes pointwise multiplication of functions, ∗ denotes convolution

work and helped edit the paper. Nick Alger holds the copyright on the paper.
2One can use our scheme in more general settings by mapping the domain to a box and interpo-

lating functions onto a regular mesh.
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(see Section 8.1.2 for more details on notation), and the functions ϕEk are modified3

versions of the (translated, recentered) impulse responses ϕpk associated with a col-

lection of sample points, pk. Each point pk is contained within the support of the

associated weighting function wk.

The basic form of (8.3) is known as a product-convolution approximation, and is

well-established in the literature (see Section 6.7). Here we improve upon existing

schemes by:

• Adaptively and automatically choosing the sample points pk.

• Addressing issues related to boundaries.

In Section 8.1 we overview our results and present prerequisite background material.

In Section 8.2 we derive our scheme, explain how we choose pk, and detail the pro-

cess for constructing wk and ϕEk . In Section 8.3 we detail how Ã can be used once

constructed, including how to efficiently convert it to hierarchical matrix (H-matrix)

format. In Section 8.4 we perform an a-priori error analysis of our scheme. We

demonstrate our scheme numerically on the advection-diffusion Hessian in Section

8.5.

8.1 Background
8.1.1 Overview of results

The scheme we present is matrix-free in the sense that constructing Ã only re-

quires the ability to apply A and its adjoint, A∗, to vectors. Access to the matrix

representation of A is not needed. Once constructed, we can compute any matrix

entry of Ã in O(1) work. We can apply Ã and Ã∗ to vectors in nearly linear work

using the fast Fourier transform (FFT). Blocks of Ã and Ã∗ can be applied to vectors

in work that is nearly linear in the size of the block.

Often the ultimate goal is to solve linear systems with A as the coefficient operator.

Krylov methods can be used to solve these systems [58]. However, the convergence of

Krylov methods depends heavily on the spectral structure of the coefficient operator,

3To address issues with boundary artifacts, we construct ϕE
k by extending the function ϕpk

outside
of Ω− pk using information from neighboring functions, ϕpj

(more on this in Section 8.2.5).
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leading to slow convergence when A is ill-conditioned. To address this, we explain

how Ã can be efficiently converted to H-matrix format. Once in H-matrix format,

Ã can be efficiently factorized or inverted using H-matrix arithmetic, then used as

a preconditioner. Alternatively, one can build circulant preconditioners from Ã [60,

149].

We choose the sample points, pk, in an adaptive grid: in regions where the error is

large, we refine the grid. The effect of this refinement process is to place more sample

points in regions where A is less translation-invariant, and fewer sample points in

regions where A is more translation-invariant. The adaptivity is performed using a

randomized a-posteriori error estimator.

Boundaries introduce two difficulties for product-convolution schemes:

1. Boundary artifacts: The impulse response associated with pk is naturally

defined on Ω − pk, but the product-convolution scheme (8.3) requires it to be

defined on a larger set. The three standard extension techniques—extending

the impulse response by zero, reflecting it across the boundary, or replicating it

periodically—all create boundary artifacts wherever artificial data are used in

place of undefined data.

2. Boundary effects: The underlying operator may fail to be translation-invariant

near boundaries due to boundary conditions or other physically meaningful ef-

fects.

To overcome 1, we extend the support of the impulse responses using information

from neighboring impulse responses. To overcome 2, we use anisotropic adaptivity.

Our adaptive refinement scheme senses the coordinate direction in which A is least

translation-invariant within a cell, and preferentially subdivides the cell in that di-

rection. This allows the scheme to efficiently approximate operators that are not

translation-invariant in directions perpendicular to boundaries, but are translation-

invariant in directions parallel to boundaries. Boundary effects due to boundary

conditions typically exhibit this direction-dependent form of translation-invariance

(regardless of the type of boundary condition).
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In Theorem 12, we prove that the error in our scheme is controlled by the local

failure of translation-invariance in A. This, together with adaptivity, implies con-

vergence: our scheme will continue to add new sample points until it achieves the

desired error tolerance. The more translation-invariant A is, the fewer sample points

will be used. Additionally, Theorem 12 implies that our approximation scheme will

not introduce boundary artifacts. Without our impulse response extension procedure,

the bound in Theorem 12 would fail near the boundary.

We demonstrate the scheme on a spatially varying blur operator, on the non-local

component of an interface Schur complement for the Poisson operator, and on the

data misfit Hessian for an advection dominated advection-diffusion inverse problem.

Our scheme outperforms existing methods:

• Our scheme converges much faster than non-adaptive product-convolution ap-

proximation for the spatially varying blur operator.

• The number of sample points required to approximate the non-local component

of the Poisson Schur complement is independent of the mesh size.

• Approximation using a small number of sample points yields a high quality

preconditioner for the Poisson Schur complement.

• The number of sample points required to approximate the advection-diffusion

Hessian is independent of the Peclet number, a proxy for the informativeness

of the data in the inverse problem.

• A Hessian preconditioner that results from using our approximation performs

well even if the Peclet number is large.

We also find that the randomized a-posteriori error estimator performs much better

than standard theory predicts: we see that it performs almost as well with 5 random

samples as it does with 100.

Although our scheme will eventually converge to any desired error tolerance, it is

most useful for computing moderately accurate approximations (say, 80% to 99% ac-

curate) of “difficult” operators that are poorly approximated by standard techniques.
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In our numerical tests, we observe that the convergence slows beyond this accuracy.

Moderate accuracy approximation is sufficient for many engineering applications, and

is ideal for building preconditioners.

8.1.2 Setting and notation

In this chapter we work in l2 spaces on Zd or subsets of Zd; these spaces arise

when one discretizes a function on a continuous domain using a regular grid. We

write ‖·‖Fro to denote the Frobenius norm, and ‖·‖Fro(X)to denote the square root of

the sum of squares of all entries of an operator corresponding to indices in X. So, for

example, ‖A‖Fro = ‖A‖Fro(Ω×Ω).

We routinely encounter Cartesian products of intervals, which we call boxes and

denote with a capital letter in sans-serif font, e.g., C. Boxes are characterized by their

minimum point and maximum point : the points in the box that are component-wise

less than or equal to all other points in the box, or greater than or equal to all other

points in the box, respectively. We denote the minimum and maximum points of a

box with the same letter as the box, but lower-case, and with the subscripts “min”

and “max”, respectively. For example, C =×d

i=1
[cimin, c

i
max], where×is the Cartesian

product of sets. We write corners(C) :=×d

i=1
{cimin, c

i
max} to denote the set of corners

of C. The (approximate) midpoint, cmid, of the box C is the integer vector closest to

the real vector (cmax + cmin)/2. The linear dimension of a box is the sum of all the

dimensions of the box:
∑d

i=1 c
i
max − cimin.

Minkowski set arithmetic is used for addition and subtraction of one set with

another set, negation of a set, and addition and subtraction of a set with a point:

X + Y = {x+ y : x ∈ X, y ∈ Y }, X − Y = {x− y : x ∈ X, y ∈ Y },

and similar for negation of a set, and addition and subtraction of a point from a set.

The number of elements in a set X is denoted |X|. We reserve N for the total number

of points in the domain: N := |Ω|.
The evaluation of f at x is denoted f [x], and f [C] ∈ l2(C−cmin), with (f [C]) [x] :=

f [x+ cmin]. Likewise, A [y, x] is the (y, x) “matrix entry” of A, and A [T, S] ∈
l2 ((T− tmin)× (S− smin)) with (A [T, S]) [y, x] := A [y + tmin, x+ smin]. That is, A [T, S]
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is the T, S “block” of A. A dot within indexing brackets, as in A [C, · ] or A [ · ,C],

indicates the matrix of all columns or rows of A corresponding to points in C, respec-

tively. The action of a linear operator A on a vector f is denoted Af . We write A∗

to denote the adjoint of A. That is, A∗ [y, x] = A [x, y], where the over-line indicates

the complex conjugate.

A dot between two functions denotes pointwise multiplication of those functions:

(f · g) [x] := f [x] g [x] .

An asterisk between two functions denotes convolution of those functions:

(ψ ∗ f) [y] :=
∑

x∈Zd

f [x]ψ [y − x] . (8.4)

If the domains of functions f, ψ are only subsets of Zd, we define their convolution

to be the result of extending f, ψ by zero so that they are defined on all of Zd, then

convolving them using formula (8.4). We use the term “convolution rank” to denote

the number of terms in a weighted sum of convolution operators (e.g., r in (8.3)).

We define the functions

δp [x] :=

{
1, x = p,

0, otherwise
and 1X :=

{
1, x ∈ X,
0, otherwise.

We denote the support of a function f by supp(f). By the “support” of a function,

we mean the largest set on which the function could, in principle, be non-zero (inde-

pendent of whether the numerical value of the function happens to be zero). We call

a function of N nearly linear if it scales as O(N logaN) for N →∞, where a is some

small non-negative integer (say a ∈ {0, 1, 2}).

8.1.3 Product-convolution vs. convolution-product

Product-convolution schemes perform element-wise products with weighting func-

tions first and convolutions second, while convolution-product schemes reverse this

order:

Af ≈
r∑

k=1

ψk ∗ (ωk · f)

︸ ︷︷ ︸
product-convolution

vs.
r∑

k=1

ωk · (ψk ∗ f)

︸ ︷︷ ︸
convolution-product

. (8.5)
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Since the entries of a convolution operator L : f 7→ ψ ∗ f are L [y, x] = ψ [y − x],

product-convolution and convolution-product approximations have the following (y, x)

matrix entries:

A [y, x] ≈
r∑

k=1

ωk [x]ψk [y − x]

︸ ︷︷ ︸
product-convolution

vs.
r∑

k=1

ωk [y]ψk [y − x]

︸ ︷︷ ︸
convolution-product

. (8.6)

Both schemes are non-symmetric, but the adjoint of a product-convolution operator

is a convolution-product operator, and vice versa. The operators defined by the

following actions are adjoints of each other:

r∑

k=1

ψk ∗ (ωk · f)

︸ ︷︷ ︸
Ãf

adjoint←−−→
r∑

k=1

ωk ·
(
flip
(
ψk
)
∗ f
)

︸ ︷︷ ︸
Ã∗f

, (8.7)

where flip (ψ) [x] := ψ [−x], and the over-line indicates the complex conjugate. Here

we use a product-convolution scheme.

8.2 The adaptive product-convolution approximation

If A were translation-invariant (i.e., if (8.1) held with equality for all x, y ∈ Zd),

then A would be the convolution operator defined by the action Af = ϕp ∗ f , where

ϕp is the impulse response of A at p, as defined in (8.2). For example, the solution

operator for a homogeneous PDE on an unbounded domain is translation-invariant,

and ϕp is the Green’s function for the PDE. Of course, translation-invariant operators

are rare in practice. It is more common for A to only be approximately translation-

invariant (see Figure 8.1), and for the approximate translation-invariance to be valid

only locally. That is,

A [p+ y − x, p] ≈ A [y, x] when x ∈ U (8.8)

for some neighborhood U consisting of points “near” p. We will provide a rigorous

analysis of approximation errors in Section 8.4; for now we leave the exact nature of

this approximate equality (≈) intentionally vague. Just as translation-invariance of A

implies that A is a convolution operator, local approximate translation-invariance of
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A implies that A can be locally approximated by a convolution operator. Specifically,

(8.8) implies

Ag ≈ ϕp ∗ g when supp(g) ⊂ U. (8.9)

In order to approximate the action of A on functions f supported on a larger region of

interest, we patch together local convolution operator approximations. Let {Uk}rk=1

be a collection of sets covering supp(f), let {wk}rk=1 be a partition of unity subordinate

to this cover, let pk ∈ Uk for k = 1, . . . , r, and define ϕk := ϕpk . If the following local

approximations hold:

Ag ≈ ϕk ∗ g when supp(g) ⊂ Uk, k = 1, . . . , r, (8.10)

then A can be globally approximated as follows:

Af = A
r∑

k=1

wk · f =
r∑

k=1

A(wk · f) ≈
r∑

k=1

ϕk ∗ (wk · f). (8.11)

The first equality follows from the partition unity property of the functions wk, the

second follows from the linearity of A, and the approximate equality follows from the

local approximation property (8.10) and the fact that supp(wk · f) ⊂ Uk.

8.2.1 Overview of the approximation

The previous derivation leads us to approximate A with the following product-

convolution approximation:

Ãf :=
r∑

k=1

ϕEk ∗ (wk · f), (8.12)

where

•
{
ϕEk
}r
k=1

are modified (“extended”) versions of the impulse responses

ϕk [z] = (Aδpk) [z + pk] , z ∈ Ω− pk, (8.13)

for a collection of sample points {pk}rk=1.

• The sample points {pk}rk=1 reside in a collection of overlapping sets {Uk}rk=1

that cover Ω:

pk ∈ Uk for k = 1, . . . , r and Ω ⊂
r⋃

k=1

Uk.
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• {wk}rk=1 is a partition of unity subordinate to the cover:

supp(wk) ⊂ Uk for k = 1, . . . , r and
r∑

k=1

wk [x] = 1 for all x ∈ Ω.

Our scheme is defined by the points pk, the sets Uk, the partition of unity weighting

functions wk, and the extended impulse response functions ϕEk .

In general, translation-invariance varies spatially. By this, we mean that the

size of the neighborhood U on which the error in (8.8) is sufficiently small depends

on the location of U . To fix ideas, suppose that A is the solution operator for an

inhomogeneous elliptic PDE. In this case, the size of U will typically be small if

the coefficient in the PDE varies over short length scales within U , and large if the

coefficient varies over large length scales within U . In order to capture such spatial

variations in translation-invariance while minimizing the number of sample points

used, we choose pk and Uk adaptively (Section 8.2.2 and Section 8.2.3). A randomized

adjoint based a-posteriori error estimator (Section 8.2.6) drives the adaptivity.

Due to boundary effects, translation-invariance typically fails in directions per-

pendicular to a boundary, but holds in directions parallel to that boundary. For

example, let ϕp be the Green’s function at p for a homogeneous PDE on an infinite

half-space. Although ϕp changes as p approaches the boundary, by symmetry it does

not change as p moves parallel to the boundary. In order to address this direction-

dependent translation-invariance, we refine anisotropically, subdividing preferentially

in directions that ϕp changes the most as a function of p (Section 8.2.7).

The adaptive refinement procedure creates unusually shaped neighborhoods Uk.

We construct harmonic weighting functions, wk, on these sets by solving local Laplace

problems (Section 8.2.4).

Because of boundaries, the domains of definition of the functions ϕk are not large

enough for the convolutions in the naive product-convolution formula,
∑r

k=1 ϕk ∗
(wk · f), to be well-defined. Extending functions by zero as needed makes these

convolutions well-defined, but this leads to boundary artifacts wherever zeros are

used in place of undefined data. These boundary artifacts are purely a side effect

of the scheme and are unrelated to real boundary effects present in the underlying

109



(a) A (b) Ã (c) Top: ϕ. Mid: ϕleft. Bot: ϕright.

Figure 8.2: Extending impulse responses by zero leads to boundary artifacts even if A is,
itself, a convolution operator. Here A (8.2a) takes a function defined on [1, N ], extends it
by zero to Z, convolves it with a Gaussian ϕ (8.2c), then restricts the result to [1, N ]. The
approximation, Ã (8.2b), linearly interpolates between convolution with ϕleft at 1 and ϕright

at N , where ϕleft and ϕright (8.2c) are the impulse responses of A to point sources centered
at 1 and N , respectively, with extension by zero used as needed. Black indicates value 1,
and white indicates value 0 in 8.2a and 8.2b.

p
Uk

k

(a) Blocky neighborhood Uk associated
with an interior sample point pk.

Uk
p
k

(b) Blocky neighborhood Uk associated
with a boundary sample point pk.

Figure 8.3: Sample points pk (black points) form an adaptively refined grid within Ω (all
gray and black points). The blocky neighborhood Uk associated with sample point pk
(shaded light gray region) is the union of all leaf cells that contain pk.

operator A; they occur even in the case where A is, itself, a convolution operator

(see Figure 8.2). To eliminate such boundary artifacts, we extend the functions ϕk

outside of their natural support by using information from neighboring functions ϕj

to create “extended” impulse response functions ϕEk (Section 8.2.5).

8.2.2 Adaptive grid structure

We will choose the sample points, pk, so that they form an adaptively refined

rectilinear grid (for example, see Figure 8.3). This section defines the structure of the

adaptive grid; the procedure for constructing it will be explained in Section 8.2.3.
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We organize the domain Ω into a binary tree, T, of boxes C ⊂ Ω which we call

cells. The root of T is the whole domain Ω. Cells may be either refined or not refined;

refined cells are internal nodes in T and unrefined cells are leaves of T. We denote the

set of all leaves of the tree by leaves(T). Refined cells C are subdivided in a chosen

direction into a set of two child cells that share an internal facet (more about how we

choose the subdivision direction in Section 8.2.7). We denote the set of children of C

by children(C). The corners of all cells form the set of sample points:

{pk}rk=1 =
⋃

C∈T
corners(C).

Since the cells share facets, typically more than one cell contains a given sample point.

We write

cells(pk) := {C : C ∈ leaves(T), pk ∈ C}

to denote the set of all leaf cells containing pk. We define the blocky neighborhood,

Uk, associated with a sample point pk as the union of all leaf cells containing pk:

Uk :=
⋃

Ci∈cells(pk)

Ci.

Sample points pk and pj are neighbors if they share a common leaf cell. That is, there

exists a leaf cell C such that pk ∈ C and pj ∈ C. Note that under this definition pk

is neighbors with itself. We write nbrs(k) ⊂ {1, . . . , r} to denote the set of indices of

sample points that are neighbors of pk, including pk itself. In other words, j ∈ nbrs(k)

if pk and pj are neighbors.

8.2.3 Adaptive refinement algorithm

Starting with Ω subdivided once in all directions, we repeatedly estimate the error

in all cells in leaves (T) using an a-posteriori error estimator, then refine the leaf cell

with the largest error. The refinement process continues until either (a) the desired

error in the approximation is achieved, or (b) a predetermined maximum number of

sample points pk is reached. At each step of the refinement process we construct

or modify the functions wk and ϕEk using methods that will be described in Section

8.2.4, Section 8.2.5, and Section 8.2.8. We perform the a-posteriori error estimation
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Figure 8.4: Construction of wk for d = 2. For each box in Uk we assign wk the value 1
at sample point pk and 0 at all other sample points. For edges between sample points, we
compute the values of wk by solving the discrete 1-D Laplace equation, using the previously
assigned values at sample points as Dirichlet boundary conditions. For faces, we compute
the values of wk by solving the discrete 2-D Laplace equation, using the previously computed
edge values as Dirichlet boundary conditions. Finally, we form wk on Uk by combining its
constituent pieces on each box.

with a randomized method that will be described in Section 8.2.6. We choose which

direction to subdivide cells in using a method that will be described in Section 8.2.7.

The complete algorithm is summarized in Algorithm 1.

8.2.4 Harmonic weighting functions

We construct harmonic partition of unity weighting functions, wk, by solving

discrete local Laplace (diffusion) problems recursively on subsets of Uk. This process

is equivalent to the construction of harmonic basis functions in finite element methods

[41], and also shares conceptual ties with partition of unity finite element methods

[20] and the construction of coarse basis functions in agglomerated element algebraic

multigrid [127].

The blocky neighborhood Uk is a union of d-dimensional boxes. The boundary of

each d-dimensional box is a union of (d − 1)-dimensional facets, each of which is a

box. There are 2d facets, corresponding to either the front or the back of the box in

each coordinate direction. Facets that contain hanging nodes (“broken facets”) are

the union of several smaller (d − 1)-dimensional boxes. Hence the boundary of each

d-dimensional box can be expressed as the union of (d− 1)-dimensional boxes, where

we exclude broken facets in favor of their constituent smaller boxes. In the same way,

the boundary of each (d−1)-dimensional box is a union of (d−2)-dimensional boxes,

and so forth all the way down until we reach a set of 0-dimensional sample points. We
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build harmonic weighting functions by solving the Laplace equation (−∆wk = 0) on

these boxes recursively in dimension, using the values from lower-dimensional boxes

as Dirichlet boundary conditions for higher-dimensional boxes. For sample points

pj (the lowest level), we assign wk [pk] = 1 and wk [pj] = 0 for j 6= k. Figure 8.4

illustrates this process for d = 2. Linearity, the maximum principle, and induction on

boxes of increasing dimension show that the functions wk form a partition of unity

on Ω.

For the discrete Laplace equation we use the (positive definite) discrete graph

Laplacian; this is equivalent to discretizing the continuous Laplacian using a standard

Kronecker sum finite difference approximation on a regular grid. The local Laplace

problems can be solved efficiently (in time proportional to the number of unknowns)

with multigrid [21, 48].

8.2.5 Extended impulse response functions

To construct ϕEk , we first compute the impulse responses ϕk of A at the points pk

by applying A to point sources, then translating the results (see (8.13)). To eliminate

boundary artifacts, we create ϕEk by extending the support of ϕk, using data from

neighboring functions ϕj to fill in regions outside of supp(ϕk).

1. For z within supp(ϕk), we set ϕEk [z] := ϕk [z].

2. For z outside supp(ϕk) but within supp(ϕj) for at least one neighboring ϕj, we

define ϕEk [z] as the average of all neighboring ϕj [z] whose support contains z.

3. For z outside supp(ϕk) and outside supp(ϕj) for all neighboring ϕj, we set

ϕEk [z] := 0.

Figure 8.5 illustrates this procedure for a 1-dimensional example. Our theory still

holds if we use any weighted average of neighboring ϕj [z] in Step 2, provided the

weights are non-negative and sum to one. We use the average since it simplifies the

implementation and the explanation, and since more elaborate schemes are likely to

yield only minimal improvements. The fact that we set some entries of ϕEk [z] to zero
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Aδp1

p1

Aδp2 Aδp3

p2 p3 0φ3
φ2 φ1 0

φ2E

Figure 8.5: Illustration of impulse response extension procedure in 1 dimension. To con-
struct ϕE2 , we extend the support of ϕ2 by filling in regions where ϕ2 is undefined with
values from ϕ1 and ϕ3.

in Step 3 is irrelevant since our scheme never accesses these entries (this will follow

from Proposition 6).

In preparation for the theory in Section 8.4, we now describe the process of con-

structing ϕEk more precisely. First, we construct the following counting functions:

ck := 1Ω−pk +
∑

j∈nbrs(k)
j 6=k

1(Ω−pj)\(Ω−pk).

Since supp(ϕj) = Ω − pj, ck [z] counts how many ϕj will contribute to ϕEk [z]. Next

we compute

vk [z] :=

{
1/ck [z] , z ∈ supp(ck)

0, otherwise,

and define

v
(j)
k :=

{
vk · 1Ω−pk , j = k

vk · 1(Ω−pj)\(Ω−pk), j ∈ nbrs(k), j 6= k,
(8.14)

The function v
(j)
k [z] is the weight given to neighboring impulse response ϕj at point

z when constructing ϕEk . Finally, we construct ϕEk :

ϕEk :=
∑

j∈nbrs(k)

v
(j)
k · ϕj. (8.15)

8.2.6 Randomized a-posteriori error estimator

In order to decide which cells to refine, we wish to compute the error in the

approximation,

eC :=
∥∥∥
(
Ã− A

)
[Ω,C]

∥∥∥ , (8.16)
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for all cells C ∈ leaves(T ). Computing these norms is prohibitively expensive, so

instead we estimate them. If M is any matrix with N columns, then the following

sample average approximation estimates the square of its Frobenius norm:

||M ||2 = E
(
||Mζ||2

)
≈ 1

m

m∑

i=1

||Mζi||2 =
1

m
‖MZ‖2 , (8.17)

where ζ, ζi ∼ N(0, 1)N , are independent and identically distributed (i.i.d.) Gaussian

random vectors, E is the expected value, m is the number of samples used in the

sample average approximation, and Z ∼ N(0, 1)N×m is an i.i.d. Gaussian random

matrix (the matrix with columns ζi) [18]. Hence we can form an estimator, ηC ≈ eC,

by forming a random matrix Z ∼ N(0, 1)N×m, computing

Y = A∗Z and Ỹ = Ã∗Z,

then extracting blocks of the results, and taking norms:

ηC :=
1√
m
‖Ỹ [C, · ]− Y [C, · ] ‖. (8.18)

By performing the randomized sample average approximation with the adjoints A∗

and Ã∗, we apply these operators once per sample, then post process the results to get

estimators for all cells. Using the original operators A and Ã instead would require

us to apply these operators to new random vectors for each cell.

It is straightforward to adapt the Chernoff bound in [18] to get an upper bound

on the number of samples required. However, this bound is overly pessimistic; in

practice we find the estimator is effective with only a handful of samples.

8.2.7 Anisotropic refinement: choosing the subdivision direction

We refine anisotropically by estimating the direction that ϕp changes the most

as a function of p, then subdividing in that direction. This allows us to capture

changes to ϕp in directions where translation-invariance fails, without refining the

grid in directions where translation-invariance holds.

Let C be a cell that we have chosen to subdivide based on the randomized a-

posteriori error estimator described in Section 8.2.6. For each coordinate direction i
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in which C is big enough to be refined (cimax − cimin > 2), we partition the functions

ϕEk associated with the corners of C into two groups. One group is the set of ϕEk

associated with corners in the “front” of the cell (+) in the ith coordinate direction,

and the other group is the set of ϕEk associated with the “back” of the cell (−) in the

ith coordinate direction:

Ψi+ :={ϕEk : pk ∈ corners(C), pik = cimax},

Ψi− :={ϕEk : pk ∈ corners(C), pik = cimin}.

Next, we construct “average” ϕEk functions for the front and back of the cell, respec-

tively:

ϕi+ :=
1

2d−1

∑

ϕE∈Ψi+

ϕE and ϕi− :=
1

2d−1

∑

ϕE∈Ψi−

ϕE.

Then we determine how much these average impulse responses change from the front

to the back in direction i by computing ‖ϕi+ − ϕi−‖l2(Ω−cmid). Finally, we subdivide C

in the coordinate direction i in which the average impulse response changes the most.

8.2.8 Construction cost

Algorithm 1 shows the complete algorithm for constructing Ã. Updating Ã after

refining a cell requires us to apply A to point sources centered at the new sample

points created during the refinement. Hence the entire refinement process requires

us to apply A to r vectors, where r is the total number of sample points in the final

product-convolution approximation.

The dominant cost in the error estimation process is the cost of computing A∗Z

and Ã∗Z for a random matrix Z with q columns. Since A∗Z is constant throughout

the refinement process, we compute it once at the beginning.

Although Ã changes every time we refine a cell, after performing a refinement

we do not have to recompute Ã∗Z from scratch. To see this, recall from (8.7) that

the adjoint of our product-convolution operator is a convolution-product operator

with the convolution functions reflected about the origin and complex conjugated. In

order to recompute Ã∗Z after refining cells, we only need to compute the convolutions

flip
(
ϕEk

)
∗ ζi for each column, ζi, in Z, and each sample point, pk, that is new or has
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Algorithm 1 Construction of Ã

Input: v 7→ Av, v 7→ A∗v, Ω, τ , q
Output:

(
wk, ϕ

E
k

)r
k=1

1: Draw random matrix Z ∼ N(0, 1)N×q

2: Compute Y = A∗Z . Cost: q applications of A∗

3: Initialize T with Ω as its root
4: Refine T by subdividing Ω once in each coordinate direction
5: Construct blocky neighborhoods Uk
6: Construct harmonic weighting function wk
7: Compute impulse response functions ϕk = Aδpk . Cost: 3d applications of A
8: Construct extended impulse response functions ϕEk
9: Compute Ỹ = Ã∗Z . Cost: q × 3d convolutions

10: Form local error estimators ηC

11: Form overall error estimator ηΩ

12: while ηΩ > τ do
13: Find cell C ∈ leavesT with the largest ηC

14: Determine subdivision direction, i, for C
15: Subdivide C in direction i
16: Construct Uk that are new or modified by the refinement
17: Construct wk for new or modified Uk
18: Compute ϕk = Aδpk for all new pk . Cost: 1 application of A per new pk
19: Construct new or modified ϕEk
20: Update Ỹ . Cost: O(q) convolutions per new pk
21: Form new or modified local error estimators ηC

22: Form overall error estimator ηΩ
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a new neighbor.4 The convolutions for old sample points without new neighbors have

been computed previously and can be re-used within (8.7). Thus the error estimation

process requires computing O(rm) convolutions. As we will discuss in Section 8.3.2,

each of these convolutions can be done with the FFT in O(N logN) work. Updating

the functions wk can be done locally. This requires negligible work compared to

the other costs already discussed. Putting all these pieces together, constructing Ã

requires

O (rC +mC∗ + rmN logN) ,

work, where C and C∗ are the costs to apply A and A∗ to one vector, respectively.

8.3 Using the product-convolution approximation

The product-convolution format allows us to perform useful operations with Ã

that we cannot perform with A.

8.3.1 Computing matrix entries of Ã

Our approximation Ã is a product-convolution scheme and therefore (as seen in

(8.6)) has the following matrix entries:

Ã [y, x] =
r∑

k=1

wk [x]ϕEk [y − x] =
∑

k:x∈Uk

wk [x]ϕEk [y − x] . (8.19)

Using (8.19) we can compute individual matrix entries of Ã in O(1) time even though

Ã is not stored in memory in the conventional sense.

8.3.2 Applying Ã or Ã∗ to vectors

Applying Ã or Ã∗ to a vector requires computing r convolutions, r pointwise

vector multiplications, and some vector additions (see equations (8.12) or (8.7), re-

spectively). Out of these operations, the r convolutions are the most computationally

expensive. Since the convolution theorem allows us to compute each of these convo-

lutions using the FFT (after appropriate zero padding) [123] at O(N logN) cost, the

cost of applying Ã or Ã∗ to a vector is O(rN logN).

4The function ϕE
k depends on neighboring impulse responses due to the extension procedure.
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T

B

0

(a) Boxes of interest for convolution

0

B0S0

T'

(b) Translated boxes

Figure 8.6: Boxes of interest for computing (ϕ ∗ f) [T]. S: support of f . T: target region
of interest. B: region of ϕ that influences the result. S0,T

′,B0: translated boxes used in
computation.

8.3.3 Applying blocks of Ã or Ã∗ to vectors

One can implicitly apply a convolution operator to a function that is supported

in a source box S then restrict the results to another target box T, by performing a

convolution between a function supported on a box with the same shape as S and

a function supported on a box with the same shape as T − S, then translating the

results. Specifically, a change of variables shows that if f is supported on S, then

(ϕ ∗ f) [T] = (ϕ0 ∗ f0) [T′] ,

where

f0 [x0] :=

{
f [x0 + smin] , x0 ∈ S0,

0 else,
ϕ0 [z0] :=

{
ϕ [z0 + bmin] , z0 ∈ B0,

0 else

with S0 := S− smin, T′ := T− tmin + smax− smin, B := T− S, and B0 := B− bmin. This

is illustrated in Figure 8.6. Thus one can apply a block of a convolution operator to

a vector in work that scales nearly linearly with the linear dimensions of the block:

O(σ log σ) where σ = |S| + |T|. To apply Ã [T, S] or Ã∗ [T, S] to a vector, we use

this method for each convolution in the sums ((8.12) and (8.7)) defining Ã or Ã∗,

respectively, that could be non-zero. Since the functions wk are supported on the

sets Uk, the terms in these sums that could be non-zero correspond to sets Uk that
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intersect S when multiplying Ã [T, S] with a vector, and T when multiplying with

Ã∗ [T, S] with a vector. As a result, it costs

O(rS σ log σ)︸ ︷︷ ︸
f 7→Ã[T,S]f

and O(rT σ log σ)︸ ︷︷ ︸
f 7→Ã∗[T,S]f

(8.20)

work to apply Ã [T, S] and Ã∗ [T, S] to vectors, respectively. Here rS and rT are the

number of sets Uk that intersect S and T, respectively.

8.3.4 Conversion to hierarchical matrix format

Construction of a hierarchical matrix proceeds in the following steps:

1. The degrees of freedom are partitioned hierarchically into a cluster tree.

2. The matrix entries are partitioned hierarchically into a block cluster tree.

3. A low-rank approximation is constructed for each block of the matrix that is

marked as low-rank (i.e., admissible) within the block cluster tree.

The H-matrix construction process is scalable if we can construct low-rank approxi-

mations of the low-rank blocks (Step 3) in work that scales nearly linearly with the

dimensions of the block. The method for efficiently applying blocks of Ã and Ã∗

to vectors, outlined in Section 8.3.3, allows us to do this using Krylov methods or

randomized SVD [118]. Whenever the Krylov method or randomized SVD requires

the application of a block or its adjoint to a vector, we perform this computation

using the method in Section 8.3.3. Alternatively, formula (8.19) for the matrix en-

tries of Ã allows us to construct a low-rank approximation of a block by forming a

CUR approximation [65, 137, 186], as is done in [29, 43, 186]. Whenever the CUR

approximation algorithm requires a row, column, or entry of the block, we access it

using (8.19).

Since applying the block Ã [T, S] to a vector costs O(σ log σ) work, where σ =

|S| + |T|, whereas accessing a row or column costs O(σ) work, the CUR approach

is asymptotically more scalable than the Krylov or randomized SVD approaches by

a log factor. However, the CUR approach is less robust, and typically has poorer
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dependence on the rank of the blocks. In either case the overall cost of constructing

the H-matrix scales nearly linearly with N . Moreover, the construction process only

uses the approximation, Ã. It does not require expensive application of A.

8.4 Theory

Here we show that the error in Ã is controlled by the failure of A to be locally

translation-invariant with respect to a locally expanded cover, {UE
k }rk=1, created by

unioning each Uk with its neighbors:

UE
k :=

⋃

j∈nbrs(k)

Uj.

This provides an a-priori error estimate for the approximation, and shows that the

approximation will not contain boundary artifacts.

Let Fk be the following functions that measure how much the impulse response of

A at pk fails to represent the impulse response of A at x (see Figure 8.1):

Fk [y, x] := A [y − x+ pk, pk]− A [y, x] . (8.21)

We aggregate these Fk to form a function F which measures, pointwise, how much A

fails to be locally translation-invariant with respect to the cover {UE
k }rk=1. Specifically,

we define

F [y, x] := max
k:(y,x)∈µEk

|Fk [y, x] |, (8.22)

where the sets

µEk := {(y, x) : x ∈ UE
k , y ∈ Ω, y − x+ pk ∈ Ω} (8.23)

are defined to be all (y, x) ⊂ Ω × Ω such that x ∈ UE
k , and Fk [y, x] is well-defined

without resorting to extension by zero. In Theorem 12 we will show that

‖Ã− A‖ ≤ ‖F‖. (8.24)

If we instead maximized over k : x ∈ UE
k rather than k : (y, x) ∈ µEk in (8.22), then the

right hand side of bound (8.24) would be undefined, because evaluating ‖F‖ requires

evaluating A [y − x+ pk, pk], and y − x + pk may be outside of Ω even if x, y, and
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pk are in Ω. Extending A by zero would make ‖F‖ well-defined, and would make

the theory simple, but then the bound would be unnecessarily large due to boundary

artifacts. Achieving bound (8.24) while maximizing over k : (y, x) ∈ µEk in (8.22)

requires the boundary extension procedure of Section 8.2.5, and is the reason why

proving bound (8.24) will require several pages rather than a few lines.

A multi-step path leads to Theorem 12. In Proposition 6 we show that Ã can be

reinterpreted as a weighted sum involving the original (not extended) impulse response

functions ϕk, but with weighting functions that form a partition of unity on Ω×Ω, and

are supported in the sets µEk . Proposition 6 relies on a lemma about the functions v
(j)
k

used in our impulse response extension procedure (Lemma 2), which in turn relies

on a lemma about Minkowski sums of boxes (Lemma 1). After establishing these

prerequisites, in Proposition 7 we show that Ã−A can be represented as a weighted

sum of the Fk functions, with the same weighting functions as in Proposition 6.

Finally, we use Proposition 7 and the properties of these weighting functions to prove

bound (8.24) in Theorem 12.

Lemma 1. If S and T are boxes, and S is at least as large as T in the sense that

simax − simin ≥ timax − timin for i = 1, . . . , d, then S + T = S + corners(T).

Lemma 2. We have

∑

j∈nbrs(k)

v
(j)
k [z] =

{
1, z ∈ Ω− Uk,
0, otherwise.

(8.25)

Proof. By construction,

∑

j∈nbrs(k)

v
(j)
k [z] =

{
1, z ∈ supp(ck),

0, otherwise,

and supp(ck) =
⋃

j∈nbrs(k)

(Ω− pj). We now show that Ω − Uk =
⋃

j∈nbrs(k)

(Ω− pj) . To

that end, recall that Uk is the union of leaf boxes Ci that contain pk. Thus

Ω− Uk = Ω−
⋃

Ci∈cells(pk)

Ci =
⋃

Ci∈cells(pk)

(Ω− Ci) .
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Since Ci ⊂ Ω, we see that Ω is at least as large as −Ci (in the sense of Lemma 1).

Applying Lemma 1 to Ω− Ci and performing algebraic manipulations yields:
⋃

Ci∈cells(pk)

(Ω− Ci) =
⋃

Ci∈cells(pk)

(Ω− corners (Ci)) = Ω−
⋃

Ci∈cells(pk)

corners (Ci) .

Furthermore, by definition the union of all corners of leaf cells containing a point is

the union of all neighboring points, so we have

Ω−
⋃

Ci∈cells(pk)

corners (Ci) = Ω−
⋃

j∈nbrs(k)

pj =
⋃

j∈nbrs(k)

(Ω− pj) ,

which, with the chain of set equalities in previous lines, implies the desired result.

Proposition 6. Let

Wk [y, x] :=
∑

j∈nbrs(k)

wj [x] v
(k)
j [y − x] . (8.26)

1. The entries of Ã can be written as:

Ã [y, x] =
r∑

k=1

Wk [y, x]ϕk [y − x] .

2. The functions {Wk}rk=1 form a partition of unity:
r∑

k=1

Wk [y, x] = 1 for all (y, x) ∈ Ω× Ω

3. The partition of unity is subordinate to the cover {µEk }rk=1:

supp(Wk) ⊂ µEk .

Proof.

1 Substituting the definition of ϕEk from (8.15) into the definition of Ã from (8.12)

then performing algebraic manipulations, we have:

Ã [y, x] =
r∑

k=1

wk [x]
∑

j∈nbrs(k)

v
(j)
k [y − x]ϕj [y − x]

=
r∑

k=1

∑

j∈nbrs(k)

wk [x] v
(j)
k [y − x]ϕj [y − x]

=
r∑

j=1

∑

k∈nbrs(j)

wk [x] v
(j)
k [y − x]ϕj [y − x] =

r∑

j=1

Wj [y, x]ϕj [y − x] .
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Going from the second to the third line we used the fact that

∑

a∈X

∑

{b:b∈X,b∼a}
f(a, b) =

∑

b∈X

∑

{a:a∈X,a∼b}
f(a, b)

for any symmetric relation ∼. Note the switch of k and j.

2 Using the definition of Wk in (8.26), we have

r∑

k=1

Wk [y, x] =
r∑

k=1

∑

j∈nbrs(k)

wj [x] v
(k)
j [y − x]

=
r∑

j=1

∑

k∈nbrs(j)

wj [x] v
(k)
j [y − x] =

r∑

j=1

wj [x]


 ∑

k∈nbrs(j)

v
(k)
j [y − x]


 .

If x ∈ Uj and y ∈ Ω, then Minkowski set arithmetic implies y− x ∈ Ω−Uj, so (8.25)

in Lemma 2 implies ∑

k∈nbrs(j)

v
(k)
j [y − x] = 1.

Since supp(wj) ⊂ Uj, this implies

r∑

j=1

wj [x]


 ∑

k∈nbrs(j)

v
(k)
j [y − x]


 =

r∑

j=1

wj [x] = 1.

Thus
∑r

k=1 Wk [y, x] = 1 as required.

3 From the definition of v
(j)
k in (8.14), either supp(v

(j)
k ) = (Ω− pj) \ (Ω− pk) when

k 6= j, or supp(v
(j)
k ) = Ω− pj when k = j. In either case supp(v

(j)
k ) ⊂ Ω− pj. Thus

(y − x /∈ Ω− pj) =⇒
(
v

(j)
k [y − x] = 0

)
,

which is equivalent to the statement

(y − x+ pj /∈ Ω) =⇒
(
v

(j)
k [y − x] = 0

)
. (8.27)

Since Wk consists of a sum of terms, each term containing v
(k)
j [y − x], statement

(8.27) implies (note the swap of k, j):

(y − x+ pk /∈ Ω) =⇒ (Wk [y, x] = 0) . (8.28)
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Additionally, since each wj in the sum defining Wk is supported in the blocky neigh-

borhood Uj, and since the union of these blocky neighborhoods Uj is UE
k , we have

(
x /∈ UE

k

)
=⇒ (Wk [y, x] = 0) . (8.29)

Altogether, (8.28), (8.29), and the definition of µEk in (8.23) imply supp(Wk) ⊂ µEk .

Proposition 7. The pointwise error in our product-convolution approximation takes

the following form:

Ã [y, x]− A [y, x] =
∑

k:(y,x)∈µEk

Wk [y, x]Fk [y, x] . (8.30)

Proof. From Proposition 6 and the fact that ϕk [z] = A [z + pk, pk], we know that

Ã [y, x] =
r∑

k=1

Wk [y, x]A [y − x+ pk, pk] ,

Hence the pointwise error in the approximation takes the following form:

Ã [y, x]− A [y, x] =
r∑

k=1

Wk [y, x]A [y − x+ pk, pk]− A [y, x]

=
r∑

k=1

Wk [y, x] (A [y − x+ pk, pk]− A [y, x])

=
r∑

k=1

Wk [y, x]Fk [y, x] =
∑

k:(y,x)∈µEk

Wk [y, x]Fk [y, x]

Going from the first line to the second line we used the partition of unity property of

Wk from Proposition 6. Going from the second to the third line we used the definition

of Fk. In the last equality on the third line we used the fact that supp (Wk) ⊂ µEk .

Theorem 12. We have

‖Ã− A‖ ≤ ‖F‖. (8.31)

Proof. Using the result of Proposition 7, the fact that Wk form a partition of unity,

and the definition of F yields the pointwise error bound

|Ã [y, x]− A [y, x] | =

∣∣∣∣∣∣
∑

k:(y,x)∈µEk

Wk [y, x]Fk [y, x]

∣∣∣∣∣∣
≤ max

k:(y,x)∈µEk
|Fk [y, x] | = F [y, x] .
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The overall bound, (8.31), follows directly from the definition of the norm and this

pointwise bound.

Remark 1. Let

T [y, x] := A [y + x, x]

be the spatially varying impulse response function (see, e.g., [38] for a more in-depth

discussion of the SVIR). Under the change of variables h := p−x, ξ := y−x, we may

express the failure of local translation invariance in terms of the SVIR as follows:

A [y − x+ p, p]− A [y, x] = − (T [ξ, p+ h]− T [ξ, p]) .

If x is near p, then h is small, so

T [ξ, p+ h]− T [ξ, p] ≈ dT

dp
(ξ, p)h.

Hence, if our scheme is applied to a discretization of a continuous operator, the

smoother the function x 7→ T [y, x] is, the better our scheme will perform.

8.5 Numerical Results

Here we numerically test our scheme on the Hessian for the advection-diffusion

model inverse problem (Section 1.1.2). We will see that our scheme requires roughly

the same convolution rank to achieve a desired error tolerance regardless of how large

the Peclet number is. The Peclet number controls the ratio of advection to diffusion.

The larger the Peclet number, the less information about the parameter is destroyed

by diffusion. Hence the Peclet number serves as a proxy for the informativeness of the

data about the unknown parameter. While regularization preconditioning performs

poorly when the Peclet number is large, a preconditioner constructed using our scheme

performs well when the Peclet number is large.

Additionally, the randomized a-posteriori error estimator achieves good perfor-

mance with only a handful of random samples: our scheme performs almost as well

with m = 5 as it does with m = 100.
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Problem setup We use our adaptive product-convolution scheme to approximate

the data misfit Hessian,

A := Hd,

and then use this approximation, in combination with H-matrix methods, to build

a preconditioner for the overall Hessian, H = Hd + R, for the advection-diffusion

model inverse problem. Recall that in this inverse problem one inverts for the initial

concentration, q, of a contaminant plume, u, based on timeseries measurements, y, of

the contaminant plume as it flows past sensors. Specifically, we consider the following

PDE: {
∂u
∂t

= 1
Pe

∆u− ( 0
1 ) · ∇u, t ∈ [0, 1],

u = q, t = 0,
(8.32)

where Pe is the Peclet number. The region of interest and support of q is the unit

square, Ω = [0, 1]2, and the desired unbounded domain for the PDE is R2. To

simulate the effect of having an unbounded domain, we extend the computational

domain beyond [0, 1]2 on all sides and use Neumann boundary conditions on the

outer, larger, domain. We use y to denote the known noisy time series observations

of u on the top boundary: y(x, t) = u(x, t)+ζ, x ∈ Γ, t ∈ (0, 1], where Γ := [0, 1]×{1}
and ζ is 1% independent and identically distributed Gaussian noise.

We use Laplacian regularization, R = α∆, where ∆ is a discretization of the

Laplacian operator with zero Dirichlet boundary conditions, and α = 10−3 is the

regularization parameter. This value of α was chosen since it satisfies the Morozov

discrepancy principle to within a 5% tolerance for all Peclet numbers considered. For

discretization, we use piecewise linear finite elements defined on a regular rectilinear

100×100 mesh of triangles, with 100 time steps. We use backward Euler time stepping

and SUPG stabilization [50].

We use an image of the University of Texas “Hook’em Horns” logo as the ini-

tial concentration, m. The sharp edges in this image are computationally expensive

to recover using existing methods. The solutions to the inverse problem for Peclet

numbers in the range 100 to 105 are shown in Figure 8.7.
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True concentration Reconstruction

Pe=100

Reconstruction

Pe=102

Reconstruction

Pe=104

Figure 8.7: Advection-diffusion inverse problem Hessian: True initial concentration
m (left image) and optimal reconstructions for Peclet numbers 100, 102, and 104 (all other
images, left to right). The regularization parameter used for the reconstruction is α =
10−3, which satisfies the Morozov discrepancy principle within a 5% tolerance for all Peclet
numbers considered.

Preconditioning the Hessian Good general purpose preconditioners for the Hes-

sian in the advection-diffusion inverse problem with a large Peclet number have not

been available (see Chapter 6 and [5] for a discussion of these issues). But now our

convolution-product scheme allows us to build a good preconditioner as follows: first

we form a product-convolution approximation of Hd, then convert it to H-matrix

format, then symmetrize it, then add a small amount of identity regularization, then

combine it with R, then finally invert the combined H-matrix with fast H-matrix

arithmetic. In detail, we form the following approximation to the inverse of the

Hessian, which we use as a preconditioner:

P−1 :=
(

(H̃d + H̃d

T
)/2 + τ ‖Hd‖ I +R

)−1

≈ H−1. (8.33)

Here τ ‖Hd‖ I is a small amount of additional regularization (I is the identity matrix).

We use τ = 0.0025. Matrix addition, scaling, and inversion in (8.33) are performed

with H-matrix arithmetic. For H-matrices, we use the standard coordinate splitting

nested-bisection binary cluster tree5, and the standard diameter-less-than-distance

5Degrees of freedom are split into two equally-sized clusters by a hyperplane normal to widest
coordinate direction for that cluster. Then each cluster is split into two smaller clusters in the same
way, and so on, recursively. The splitting continues until the number of degrees of freedom in a
cluster is less than 32.
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Conv, q=100

Figure 8.8: Advection-
diffusion inverse problem
Hessian: Relative error in the
truncated SVD (‘TSVD’) low-
rank approximation compared
to our product-convolution
approximation (‘Conv’) as the
(convolution) rank, r, changes.
We show convergence curves for
our scheme using both q = 5
and q = 100 random samples
for the a-posteriori error esti-
mator. Black dots correspond
to the adaptive grids visualized
in Figure 8.9.

r=9 r=24 r=51 r=91

Figure 8.9: Advection-diffusion inverse problem Hessian: Intermediate stages of
adaptive grid refinement corresponding to black dots in Figure 8.8.

admissibilty condition6. Here, we use a fixed rank of 20 for the low-rank approxima-

tions performed during H-matrix construction and arithmetic.

Results Figure 8.8 compares the convergence of our product-convolution scheme

(‘CONV’) to truncated SVD low rank approximation (‘TSVD’) when Pe = 104. Our

scheme performs better than TSVD: at r = 100 our scheme has less than 1% error

whereas TSVD has approximately 71% error. Like the Poisson problem, the conver-

gence curve for q = 5 is almost identical to the convergence curve for q = 100. Figure

8.9 shows the adaptive meshes from four different stages of the adaptive refinement

6We mark a block of the matrix as low rank (admissible) if the distance between the degree of
freedom cluster associated with the rows of the block and the diameter of the degree of freedom
cluster associated with the columns of the block is less than or equal to the diameter of the smaller
of the two degree of freedom clusters.
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Figure 8.10: Advection-diffusion in-
verse problem Hessian: The (con-
volution) rank, r, required to achieve
a relative approximation error of 10%
for a variety of Peclet numbers, Pe.
‘TSVD’ indicates truncated SVD low
rank approximation, and ’Conv’ indi-
cates our product-convolution scheme.

process from Figure 8.8. Our scheme chooses to adaptively refine in the direction

of the vertical flow, prioritizing refinement near the top surface. We expect similar

results would hold for inverse problems involving non-vertical, non-uniform flow if the

convolution grid were aligned with the streamlines of the flow.

Figure 8.10 compares our scheme to TSVD for a sequence of increasing Peclet

numbers, from Pe = 101 to Pe = 105. The curves show the (convolution) rank, r,

required to achieve a relative error tolerance of 10% (estimated using q = 5 random

adjoint samples). Whereas the required rank for TSVD grows dramatically as Pe

increases, the required convolution rank for our scheme remains constant.

Figure 8.11 shows the convergence of Krylov methods for solving the Hessian lin-

ear system using GMRES with our preconditioner (‘GMRES-CONV’), compared to

conjugate gradient with regularization preconditioning (‘CG-REG’), for Pe = 104.

Here the product-convolution approximation is computed to a 5% relative error tol-

erance. Our preconditioner substantially outperforms regularization preconditioning,

coverging rapidly even though the Peclet number is large. In Figure 8.12, we show

intermediate reconstructions associated with 1, 5, and 50 Krylov iterations, for both

GMRES-CONV and CG-REG. CG-REG first reconstructs large-scale features of m,

then medium-scale features, then small-scale features, while GMRES-CONV recon-

structs features of m at all scales simultaneously. Even one iteration of GMRES-

CONV yields a visually reasonable reconstruction.
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Figure 8.11: Advection-
diffusion inverse problem
Hessian: Convergence of conju-
gate gradient with regularization
preconditioning (‘CG-REG’),
compared to GMRES with our
product-convolution precondi-
tioner, (8.33) (‘GMRES-CONV’),
for solving the Hessian linear
system. Here Pe = 104, and the
product-convolution approxima-
tion is accurate to 5% relative
error.
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Figure 8.12: Advection-diffusion inverse problem Hessian: Comparison of parameter
reconstructions associated with terminating the Krylov solver after 1, 5, and 50 iterations,
for both GMRES with our preconditioner (‘GMRES-CONV’), and conjugate gradient with
regularization preconditioning (‘CG-REG’). Here Pe = 104, and the product-convolution
approximation is accurate to 5% relative error.
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Chapter 9

Domain Decomposition Wave Preconditioner

In this chapter we construct a domain decomposition solver for the operator

BHYB + ρAHW−1
L A, (9.1)

for the single-frequency wave inverse problem. The solver for (9.1) will be robust to

large numbers of observations, high wave frequencies, and small ρ. Here bold letters

denote the concrete sparse matrix representations of the original (non-bold) opera-

tors, and WL is a diagonal lumped mass approximation of the mass matrix. Also

recall that A is the coefficient matrix for the state equation, B is the observation

operator, and Y is a sparse noise coraviance operator. The resulting domain de-

composition preconditioner for (9.1), combined with a multigrid preconditioner for

αR0 + ρTHW−1T, 1 could be used in the augmented Lagrangian KKT framework

from Chapter 7 to precondition the KKT matrix for single frequency single source

wave inverse problem. While the preconditioner we present for (9.1) is effective, chal-

lenges remain to make the overall KKT preconditioner effective. Nevertheless the

preconditioner we present for (9.1) represents a substantial step towards this goal.

The strategy for solving (9.1) will be to break the domain into pieces: one small

part, Ωt, near the surface containing the support of the observation operator, another

large part, Ωb, below the surface, and an interface Γi separating Ωt from Ωb (see Fig-

ure 9.1). Properly addressing the coupling between the subdomains is complicated,

and the solver we present will be much more involved than standard domain decom-

position solvers for forward problems. The main difficulty will be construction of a

preconditioner for a Schur complement associated with degrees of freedom in Ωt ∪ Γi

1Since R0 is a Laplacian-like operator, and since T ∗T is a positive multiplication operator, αR0+
ρTHW−1

L T can be effectively preconditioned with multigrid. We cannot use multigrid for (9.1)
since A is a high frequency wave operator, and multigrid performs poorly for high-frequency wave
problems.

132



observations observationsΩt

Ωb

Γi

Figure 9.1: The top subdomain containing observations, Ωt, the bottom subdomain, Ωb,
and the interface separating the subdomains, Γi. Not drawn to scale; the top subdomain
will be much thinner relative to the bottom subdomain than shown here.

for an expanded matrix that is algebraically equivalent to (9.1) but has twice as many

variables. The Schur complement will consist of two terms. The first term will be ap-

proximated with a PML truncation, and the second term will be approximated with

the product-convolution scheme from Chapter 8. To improve the local translation in-

variance of the second term, we will use algebraically exact impedance-to-impedance

interface conditions to couple the two subdomains.

9.1 Algebraic impedance-to-impedance interface conditions

In forward (non-squared) wave problems, impedance-to-impedance maps have bet-

ter numerical properties than nonlocal components of Schur complements based on

naive algebraic splittings [105]. To illustrate the idea, let T := (t, i) denote the

degrees of freedom in the top subdomain (including interface), and consider decom-

posing the wave operator A into blocks based on subdomains. Algebraic truncation

causes ATT to have an artificial “hard” boundary at Γi that reflects waves, whereas

the Schur complement ATT −ATbA
−1
bb AbT cannot have a hard boundary because Γi

is an internal inferface that allows waves to pass through it. The non-local term,

−ATbA
−1
bb AbT , (9.2)

must contain strong complex long range interactions to correct for this discrepancy.

In contrast, impedance boundary conditions are “soft” and allow waves to exit one

subdomain and enter another with less reflection. As a result, splittings based on

impedance boundary conditions—splittings where the outgoing impedance in one
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subdomain is the incoming impedance boundary condition in the other subdomain,

and vice versa—yield correction terms of the form (9.2) that contain weaker and less

complex long-range interactions.

Later in this chapter we will need to approximate a matrix of the form

ATbA
−1
bb WLA−Hbb AbT ,

which is like (9.2), but squared. We apply an impedance-to-impedance splitting to our

problem pre-emptively, so that when this matrix arises, it will be more translation-

invariant and therefore easier to approximate with our product-convolution scheme

from Chapter 8. Unfortunately, modifying the interface conditions at the continuum

(PDE) level results in discrepancies along Γi upon discretization. Waves propagate

these discrepancies throughout the whole domain, polluting the solution everywhere

and causing considerable error. To avoid these errors, we change interface conditions

algebraically, ensuring that the modified system has the same solution as the original

system at the discrete level.

Let [
Att Ati

Ait Ã
top

ii

]
and

[
Ã

bot

ii Aib

Abi Abb

]
(9.3)

be the coefficient matrices that result from discretizing the Helmholtz equation on

Ωt ∪ Γi and Γi ∪ Ωb, respectively, with the same mesh and finite elements used for

A, but with incoming impedance boundary conditions on Γi in both cases. That is,

boundary conditions of the form

du

dn
− iq1/2u = z on Γi,

where n is the normal vector to the subdomain and z is an arbitrary forcing impedance.

Here the submatrices in the (i, i) blocks, Ã
top

ii and Ã
bot

ii , differ from Aii due to the in-

clusion of impedance boundary conditions. By duplicating interface variables within

the linear system 


Att Ati 0
Ait Aii Aib

0 Abi Abb






ut
ui
ub


 =




f t
f i
f b


 , (9.4)
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we create the following system defined on Ωt ∪ Γi ∪ Γi ∪ Ωb:



Att Ati 0 0

Ait Ã
top

ii Aii − Ã
top

ii Aib

Ait Aii − Ã
bot

ii Ã
bot

ii Aib

0 0 Abi Abb




︸ ︷︷ ︸
Ã




ut

ui

uj

ub




=




f t

f i

f i

f b




. (9.5)

We denote the overall coefficient matrix in (9.5) by Ã, and define for later convenience

the matrices

Z↑ := Aii − Ã
top

ii , and Z↓ := Aii − Ã
bot

ii .

The matrices A and Ã are algebraically equivalent in the sense that if (ut,ui,uj,ub)

solves (9.5), then (ut,ui,ub) solves (9.4). But in Ã, the top (T ) and bottom (B :=

(i, b)) subdomains are coupled with impedance-to-impedance interface conditions on

Γi.

9.2 Replacing A with Ã in BHYB + ρAHW−1
L A

By performing algebraic manipulations, we may replace A with Ã in any linear

system with (9.1) as the coefficient matrix. Consider the system

BHYBu + ρAHW−1
L Au = f . (9.6)

Applying A−H to (9.6) on the left, applying A−1 on the right, and defining the

auxiliary variables w := Au and p := A−Hf , yields the following equivalent system

A−HBHYBA−1w + ρW−1
L w = p. (9.7)

Let E1 be the matrix that takes the vector
[
ut,ui,ub

]T
and duplicates interface

variables, mapping it to the vector
[
ut,ui,ui,ub

]T
. Let E2 be the matrix that takes

the vector
[
ut,ui,uj,ub

]T
and deletes the second interface variable, mapping it to

the vector
[
ut,ui,ub

]T
. The algebraic equivalence of A and Ã may be restated as

the equality

A−1 = E2Ã
−1

E1. (9.8)
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Substituting (9.8) into (9.7) yields the system

ET
1 Ã
−H

E2
TBHYBE2Ã

−1
E1w + ρW−1

L w = p, (9.9)

which contains Ã instead of A. To solve (9.6), we may instead compute p = A−Hf ,

then solve (9.9) for w, then compute u = A−1w.

9.3 Expanded system

Matrix entries of the coefficient matrix in (9.9) are not available, owing to the

presence of the dense matrices Ã
−1

and Ã
−H

within it. However, just as the dense

Hessian is equivalent to the algebraically equivalent sparse KKT matrix (see Chapter

5), the dense linear system (9.9) is equivalent to the following sparse linear system:




W−1
L 0 ET

1

0 1
ρ
ET

2 BTYBE2 Ã
H

E1 Ã 0







w
ξ
η


 =




p
0
0


 , (9.10)

where ξ and η are auxiliary variables.

Performing a block LU factorization of the coefficient matrix in (9.10), then per-

forming algebraic manipulations, shows that ξ and η solve the following linear system:

[
1
ρ
B̃
T
YB̃ Ã

H

Ã −W̃L

] [
ξ
η

]
=

[
0

−E1WLp

]
, (9.11)

where W̃L := E1WLET
1 and B̃ := BE2. To solve (9.9) (and therefore solve (9.6),

as per the discussion in Section 9.2), we may instead solve (9.11) for ξ and η, then

compute w = WL(p− ET
1 η).

9.4 Reordering and block-factoring the expanded system

Reordering system (9.11) so that all degrees of freedom are grouped by their

subdomain (top, T , or bottom, B), rather than by the variable (ξ or η) yields the

136



equivalent linear system




1
ρ

(
B̃
H

YB̃
)
TT

Ã
H

TT 0 Ã
H

TB

ÃTT −
(
W̃L

)
TT

ÃTB −
(
W̃L

)
TB

0 Ã
H

BT 0 Ã
H

BB

ÃBT −
(
W̃L

)
BT

ÃBB −
(
W̃L

)
BB




︸ ︷︷ ︸
M




ξT

ηT

ξB

ηB




︸ ︷︷ ︸
x

=




0

− (WLp)T

0

− (WLp)B




︸ ︷︷ ︸
g

,

(9.12)

or Mx = g, where M, x, and g are the coefficient matrix, unknown, and right hand

side of (9.12), respectively. Let MTT , MTB, MBT , and MBB denote the coarse-level

blocks of M (the four 2× 2 blocks separated by dashed lines in (9.12)). With respect

to this partitioning, M has the following block triangular factorization:

[
MTT MTB

MBT MBB

]
=

[
I MTBM−1

BB

0 I

] [
S 0

MBT MBB

]
, (9.13)

where

S := MTT −MTBM−1
BBMBT (9.14)

is the Schur complement for the top degrees of freedom. Replacing S with an ap-

proximation Ŝ (to be discussed in Section 9.5) in (9.13) yields the following overall

preconditioner M̂ for M:

M̂ :=

[
I MTBM−1

BB

0 I

] [
Ŝ 0

MBT MBB

]
.

If we can apply M̂
−1

to vectors, then we can use M̂ as a preconditioner within Krylov

methods to efficiently solve Mx = g. As per the discussion in previous sections, this

allows us to solve linear systems with BHYB + ρAHW−1
L A as the coefficient matrix,

our desired goal.

Applying M̂
−1

to vectors requires us to performing a sequence of two block tri-

angular solves. The nontrivial operations required by these block triangular solves

are the application of M−1
BB to two vectors, and the application of Ŝ

−1
to one vector

(see Algorithm 5). Since M̃BB is permutation equivalent to a block-triangular matrix

with ÃBB and Ã
H

BB on the diagonal blocks, we can apply M−1
BB to vectors by solving
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a linear system with Ã
H

BB as the coefficient matrix, then solving a linear system with

ÃBB as the coefficient matrix, in sequence (see Algorithm 6). These Helmholtz sys-

tems are the same as the forward and adjoint problems, except they are defined on a

slightly smaller domain (Γi∪Ωb instead of Ωt∪Γi∪Ωb) and have impedance boundary

conditions instead of Dirichlet boundary conditions on their top surface. Thus the

same methods one uses for solving the forward and adjoint equations can be used to

solve these systems, at essentially the same cost. Constructing a good preconditioner

Ŝ ≈ S is more difficult; this is the subject of the next section.

9.5 Interface Schur complement preconditioner

Direct calculation shows that the non-sparse component of S can be separated

into two terms as follows:

MTBM−1
BBMBT = MTBD−1MBT + E3FET

3 (9.15)

where we define

D :=

[
0 Ã

H

BB

ÃBB 0

]
, and F := ÃiBÃ

−1

BB

(
W̃L

)
BB

Ã
−H
BBÃ

H

iB,

and ET
3 as the matrix that takes a vector (ξT ,ηT ), and returns ηi. In other words,

E3FET
3 is a matrix containing zeros in all locations, except for the diagonal block

corresponding to interface degrees of freedom for η, which contains F.

We will carry out the following plan to create a preconditioner Ŝ ≈ S:

1. We approximate MTBD−1MBT with a PML truncation (Section 9.5.1)

2. We approximate F with our product-convolution approximation (Section 9.5.2).

3. After replacing these terms with their approximations within S, we create an

approximate expanded system, Mtrunc, by undoing the process that formed S

from M. But because of the PML truncation, Mtrunc will be much smaller than

M, and because of the product-convolution approximation, the matrix entries

of Mtrunc will still be available (Section 9.5.3).
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4. We form a hierarchical matrix representation of Mtrunc, and factorize it using

H-matrix arithmetic.

To approximately solve a linear system with S as the coefficient operator, we instead

solve the approximate expanded system with Mtrunc as the coefficient operator, and

extract out the necessary components of the result. We define Ŝ
−1

to be the operator

that carries out this process.

9.5.1 PML truncation

The first term in (9.15),

MTBD−1MBT ,

has the following pattern of action:

1. Wavefields in ΩT are used to generate two sources of waves on Γi.

2. Two uncoupled wave equations are solved in the bottom subdomain ΩB, using

the sources on Γi from step 1 as the right hand sides.

3. Properties of the resulting wave fields are observed along Γi, then transferred

to ΩT .

We can approximate this 3-step process at greatly reduced cost by using partially

matched layer (PML) truncations. In Step 2, instead of solving the wave equations

in all of ΩB, we truncate the domain just below Γi, using a PML layer to simulate

the effect of waves generated on Γi leaving the truncated domain without reflection

(see Figure 9.2). Then the wave equations are solved in a smaller truncated domain,

Γi ∪ Ωk, where Ωk is a thin subdomain just below Γi containing the PML layer. By

performing this PML truncation, we are neglecting the effect of wave reflections off of

features below the PML layer, as these reflections are typically less significant than

direct, unreflected, waves. PML truncation techniques like this have already been

used to great effect for preconditioning forward wave problems [84, 179, 197].

Let Ã
trunc

and W̃
trunc

L denote the PML-truncated versions of Ã and W̃L, respec-

tively, which are defined on Ωt∪Γi∪Γi∪Ωk and include the effects of the PML layer in
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Ωt
ΩkPML PML

Figure 9.2: Truncated domain. Partially matched layer (PML) below the dashed line in
Ωk. Not drawn to scale; the top and truncated domains will be only 2 finite element cells
thick (much thinner than shown here).

Ωk. Also let Mtrunc and Dtrunc be the same as M and D, respectively, except defined

on Ωt ∪ Γi ∪ Γi ∪ Ωk, and with Ã
trunc

and W̃
trunc

L replacing Ã and W̃L, respectively.

We approximate the first term in (9.15) as follows:

MTBD−1MBT ≈Mtrunc
TK

(
Dtrunc

)−1
Mtrunc

KT ,

where the subscript K := (i, k) denotes the degrees of freedom that reside in Γi ∪Ωk.

9.5.2 Product-convolution approximation

The operator

F = ÃiBÃ
−1

BB

(
W̃L

)
BB

Ã
−H
BBÃ

H

iB

is not amenable to PML truncation approximation since the action of F involves a

sequence of two wave solves in Ωb instead of one. Waves propagate from the interface

into the domain in the first wave solve, then the resulting wave field is used as a

distributed source for propaging waves back to the interface. Truncating the domain

would neglect back propagating waves emanating from below the truncated domain

in the second wave solve, which are significant. Instead we approximate F using

product-convolution approximation.

If the soundspeed were horizontally uniform (but possibly vertically variable),

and if the domain were semi-infinite in the horizontal direction, and if we ignore

discretization concerns and consider the operator F at the continuum level, then

by symmetry F would be perfectly translation-invariant, so our product-convolution

scheme would approximate F perfectly with one sample point. With a soundspeed
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(a) |Fgrid| without impedance-to-
impedance interface conditions

(b) |Fgrid| with impedance-to-impedance
interface conditions

Figure 9.3: Comparison of |Fgrid| without (9.3a) and with (9.3b) the algebraic change
to impedance-to-impedance interface conditions discussed in Section 9.1. Changing to
impedance-to-impedance interface conditions reduces complex long-range interactions in
Fgrid, thus increasing translation-invariance.

that varies horizontally, short-range interactions within F will be locally translation-

invariant, and the length scale for local translation invariance of these short-range

interactions will be the length over which the soundspeed varies substantially in the

horizontal direction. This length scale is a property of the medium and does not

depend on the wave frequency. However, translation invariance fails for long range

interactions within F, since these interactions depend on complicated long-distance

pathing of high-frequency waves in a non-uniform medium. This is where the change

to impedance interface conditions from Section 9.1 pays off. With impedance interface

conditions, long range interactions within F are damped, as compared to long range

interactions within the analogous operator that would arise if we did not modify the

interface conditions (see Figure 9.3). This damping of long range interactions within

F greatly reduces the convolution-rank of F, so that fewer sample points are required

to approximate it.

Two discretization issues prevent us from applying the product-convolution ap-

proximation to the matrix F directly. First, translation-invariance only makes sense

at the continuum level for an operator if that operator maps from a dual space of
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distributions to a space of functions, so that the impulse response of the operator

to a delta function source makes sense. At the discrete level this means the matrix

must take dual vectors as input and yield vectors as output. But F maps vectors

to dual vectors instead. Therefore, we sandwich F between inverse mass matrices

W−1
ii so that the resulting operator, W−1

ii FW−1
ii , maps dual vectors to vectors, as de-

sired. Second, the degree of freedom locations for the finite element Lagrange nodes

may not reside on a uniform grid, as is required for our discrete product-convolution

scheme. We overcome this problem by interpolating functions onto a regular grid be-

fore performing the product-convolution approximation, then mapping the resulting

functions back after the product-convolution approximation.

Let VΓ be the restriction to Γi of the finite element space used for u, let {φk}Nk=1

be the finite element basis for VΓ, and let {x}Mk=1 be the Lagrange nodes for the basis

(φk(xj) = δij). Likewise, let G be the space of piecewise linear functions defined

on a regular grid covering Γi (not including the PML layer), let {φ′k}M
′

k=1 be a finite

basis for G, and let {x′}M ′k=1 the associated Lagrange nodes. We define P1 : VΓ → G

and P2 : G → VΓ to be the following interpolation matrices mapping between these

spaces:

(P1)ij := φj(x
′
i) and (P2)ij := φ′j(xi).

By choosing the regular grid sufficiently fine, we have P2P1 ≈ I, since this combined

operator interpolates functions in the VΓ to G, then back to VΓ. Thus we have

F ≈WiiP2P1W
−1
ii FW−1

ii PT
1 PT

2 Wii

= WiiP2FgridP
T
2 Wii

where we define

Fgrid := P1W
−1
ii FW−1

ii PT
1 .

The operator Fgrid operates on functions defined on a regular grid, and maps dual

vectors to vectors. Thus Fgrid satisfies the necessary conditions for us to approximate

it with a product-convolution approximation. We illustrate Fgrid’s local translation

invariance in Figure 9.3. We form the approximation

F̂grid ≈ Fgrid
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by applying our product-convolution scheme from Chapter 8 to Fgrid. Then we sym-

metrize the result to get the approximation

F̂
sym

grid :=
(
F̂grid + F̂

H

grid

)/
2.

Each application of Fgrid to a vector costs one wave solve with ÃBB as the coeffi-

cient matrix and one wave solve with Ã
H

BB as the coefficient matrix, so constructing

F̂grid requires 2r + 2q wave solves. Recall that r is the convolution-rank of the ap-

proximation, and q is the number of adjoint matrix-vector products used to form

the error estimators. Once Fgrid is constructed, we may use it to form the following

approximation of F:

F̂ := WiiP2F̂
sym

gridPT
2 Wii.

Since F̂ is a product of sparse matrices with a product-convolution operators, we may

efficiently compute matrix entries of F̂ and apply blocks of F̂ to vectors.

9.5.3 Expanded truncated system

Substituting our approximations from Section 9.5.1 and Section 9.5.2 into the the

appropriate terms in S yields the following approximation:

S ≈ Ŝ := MTT −Mtrunc
TK

(
Dtrunc

)−1
Mtrunc

KT − E3F̂ET
3 . (9.16)

Just as S is the Schur complement for the top variables for M, Ŝ is the Schur com-

plement for the top variables for the matrix

M̂
trunc

:=

[
MTT − E3F̂E3 Mtrunc

TK

Mtrunc
KT Dtrunc

]
(9.17)

Because of the PML truncation, the matrix M̂
trunc

is much smaller than M. All

matrices within M̂
trunc

are sparse, except for F̂, which is a product of sparse matrices

with a product-convolution operator. We can solve any linear system with Ŝ as the

coefficient operator by instead extending the right hand side by zero into the truncated

domain, solving the expanded linear system with M̂
trunc

as the coefficient operator,

then extracting the top components of the solution (see Algorithm 2).
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9.5.4 Hierarchical matrix approximation of M̂trunc and definition of Ŝ

To solve linear systems with M̂
trunc

as the coefficient matrix, we construct a hierar-

chical matrix representation of M̂
trunc

, then factor M̂
trunc

using H-matrix arithmetic.

Since M̂ is sparse, except for the presence of F̂, and since F̂ is the product of sparse

matrices with a product-convolution operator, we convert M̂
trunc

to H-matrix format

by forming low-rank approximations of its admissible blocks via randomized SVD (as

described in Section 8.3.4). Using CUR approximations to form low rank approxima-

tions of admissible blocks is also possible.

To approximately solve the linear system SxT = yT , we extend xT by zero so

that it is defined in the truncated domain, permute variables to make the ordering

consistent with M̃
trunc

, apply
(
M̃

trunc
)−1

using the H-matrix factorization of M̃
trunc

,

then extract the top and bottom components of the result and unpermute. We define

Ŝ
−1

to be the result of this process. This process is detailed in Algorithm 2.

Algorithm 2 Application of Ŝ
−1

to a vector

Computes: x̂T = Ŝ
−1

yT
Requires: solver for M̂

trunc

1: procedure Solve S hat(yT )

2: Solve M̂
trunc

[
x̂T
x̂K

]
=

[
yT
0

]
using H-matrix factorization of M̂

trunc
.

3: return x̂T

We could have formed and factorized an H-matrix approximation of M, avoid-

ing the PML truncation of Section 9.5.1 and product-convolution approximation of

Section 9.5.2. Why did we not do this? Why is H-matrix approximation of M̂
trunc

prefferable H-matrix approximation of M? The reasons are:

• M̂
trunc

is much smaller than M since it operates on the truncated domain which

is quasi lower-dimensional. Thus, even if the H-rank of M and M̃
trunc

were

the same, constructing and factorizing M̃
trunc

would be much cheaper than

constructing and factorizing M.
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• The observation operator block, 1
ρ
B̃
H

YB̃, has a local regularizing effect near

the observations since it causes waves to scatter off of the observation locations

and decohere. This regularizing effect is minimal within M since most of the

domain is far from the observations. But the regularizing effect is large in M̂
trunc

since the degrees of freedom for M̂
trunc

are all in the truncated domain near the

observations. As a result, the H-rank of M̂
trunc

is much less than the H-rank

of M.

These two reasons make M̂
trunc

substantially more amenable to H-matrix approxi-

mation than M.

9.6 Setup and solve algorithms

The overall process for solving (9.6) consists of a setup phase (Algorithm 3) and

a solve phase (Algorithm 4). The solve phase requires applying M̂
−1

to vectors

(Algorithm 5), which in turn requires applying M−1
BB to vectors (Algorithm 6) and

applying Ŝ to vectors (Algorithm 2). We describe Algorithm 3 and Algorithm 4 here,

and Algorithm 5 and Algorithm 6 in in Appendix C. We already detailed Algorithm

2 in Section 9.5.4.

Algorithm 3 Setup for M̂ (preconditioner for M)

1: Assemble Helmholtz impedance matrices Ã
top

ii and Ã
bot

ii .

2: Form Ã and W̃L.
3: Form M.
4: Form PML truncation matrices Ã

trunc
and W̃

trunc

L .

5: Construct solvers for ÃBB and Ã
H

BB.
6: Construct solver for Wii.
7: Construct regular grid covering Γi.
8: Form P1 and P2.
9: Construct product-convolution aproximation F̂grid. . Cost: 2r + 2q wave solves.

10: Construct H-matrix representation of M̂
trunc

.

11: Factorize H-matrix representation of M̂
trunc

.
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Algorithm 4 Solver for BHYB + ρAHW−1
L A

Solves: BHYBu + ρAHW−1
L Au = f

Requires: M, WL, solver for A, solver for AH , solver for M̂

1: procedure Solve AABB(f)
2: p← A−Hf

3: g←
[
0nT

− (WLp)T 0nB
− (WLp)B

]T

4: Solve Mx = g for x with GMRES, using M̂ as a preconditioner

5:
[
ξT ηT ξB ηB

]T ← x

6:
[
ηt ηi

]T ← ηT
7:

[
ηj ηb

]T ← ηB

8: q←
[
ηt ηi + ηj ηb

]T
9: w←WL (p− q)

10: u← A−1w.
11: return u

9.7 Numerical Results

We use our method, as described in Algorithm 4, to solve the linear system (9.6).

We also use conjugate gradient to solve the system, using AHW−1
L A as the precon-

ditioner. We denote our method by ‘DDWAVE,’ and we denote conjugate gradient

preconditioned by AHW−1
L A by ‘AA.’ We compare the number of Krylov iterations

to solve the linear system for DDWAVE to the number of Krylov iterations to solve

the linear system for AA. We report results for error tolerances ranging from 10−1

to 10−6. We use a fixed error tolerance of 20% for the product-convolution approxi-

mation used when constructing the DDWAVE preconditioner. For observations, we

use Neumann observations along the top surface of the domain. We discretize the

problem with P 2 finite elements on a regular mesh of tetrahedra, with approximately

5 mesh vertices per wavelength. For DDWAVE, GMRES iterations are used to solve

the auxiliary linear system Mx = g, and M̂ is used as a preconditioner. In either

case (DDWAVE or AA), each Krylov iteration requires one forward wave solve and

one adjoint wave solve.

In Table 9.1 we compare DDWAVE to AA over a range of penalty parameters, ρ,

ranging from 102 to 10−8. We use a fixed frequency ω = 50. For all ρ considered,
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Table 9.1: (Iterations vs. ρ) Number of iterations required to solve (ρAHW−1
L A +

BHYB)u = f , for a variety of penalty parameters ρ = 102, 101, . . . , 10−8 (Column 1)
and relative error tolerances, ranging from 10−1 to 10−6. That is the number of Krylov
iterations used to construct an approximtion solution u such that ||u−utrue||/||utrue||
is less than the desired tolerance, where utrue is the exact solution to the linear
system. Here f is a i.i.d Gaussian random vector, and ω = 50. We indicate our wave
domain decomposition method with ‘DDWAVE’, and indicate using ρAHW−1

L A as
a preconditioner by ‘AA’. Column 2 shows the number of sample points used to
form the product-convolution approximation of Fgrid, so that the relative error in the
product-convolution approximation is less than 20%. Columns 3-8 show the number
of GMRES iterations required for solving Mx = g, so that when u is built from the
x using the methods discussed in this chapter, u satisfies the desired error tolerance.
Columns 9-14 show the number of conjugate gradient iterations for solving the linear
system using ρAHW−1

L A as the preconditioner. Dashed entries (‘—’), indicate that
the method did not converge to the desired tolerance.

ρ
DDWAVE AA

r 10−1 10−2 10−3 10−4 10−5 10−6 10−1 10−2 10−3 10−4 10−5 10−6

102 16 3 6 8 11 13 15 57 90 138 268 454 661
101 18 3 5 8 10 13 15 88 137 227 562 — —
100 18 4 6 8 10 12 15 135 262 553 986 — —

10−1 16 4 6 9 11 13 15 269 532 — — — —
10−2 18 3 6 8 10 13 15 417 761 — — — —
10−3 16 3 6 8 10 13 15 — — — — — —
10−4 15 4 6 8 10 13 15 — — — — — —
10−5 18 3 6 8 10 13 15 — — — — — —
10−6 15 3 6 8 10 12 15 — — — — — —
10−7 14 4 6 8 11 13 — — — — — — —
10−8 16 3 6 9 11 13 — — — — — — —

DDWAVE requires far fewer iterations to converge to the same tolerance. Further-

more, while the required number of Krylov iterations with AA grows as ρ decreases,

the number of Krylov iterations required by DDWAVE, and the number of sample

points required to construct the DDWAVE preconditioner, remain constant. Overall,

DDWAVE is more efficient than AA, and DDWAVE is scalable with respect to ρ

(penalty parameter scalable), while AA is not.

In Table 9.2, we compare DDWAVE to AA over a range of frequencies, ω, ranging

from 10 to 100. As ω increases, the mesh used to discretize the problem is refined,

causing the number of observations to increase. We use a fixed penalty parameter,

ρ = 10−1. For all frequencies considered, DDWAVE substantially outperforms AA.

As a general trend, the number of Krylov iterations for AA grows as ω increases,
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Table 9.2: (Iterations vs. ω) Number of iterations required to solve (ρAHW−1
L A +

BHYB)u = f , for a variety of angular frequencies ω = 10, 20, . . . , 100 (Column 1)
and relative error tolerances rangin from 10−1 to 10−6. That is the number of Krylov
iterations used to construct an approximtion solution u such that ||u−utrue||/||utrue||
is less than the desired tolerance, where utrue is the exact solution to the linear
system. Here f is an i.i.d Gaussian random vector, and ρ = 10−1. We indicate our
wave domain decomposition method with ‘DDWAVE’, and indicate using ρAHW−1

L A
as a preconditioner by ‘AA’. Column 2 shows the number of sample points used to
form the product-convolution approximation of Fgrid, so that the relative error in the
product-convolution approximation is less than 20%. Columns 3-8 show the number
of GMRES iterations required for solving Mx = g, so that when u is built from the
x using the methods discussed in this chapter, u satisfies the desired error tolerance.
Columns 9-14 show the number of conjugate gradient iterations for solving the linear
system using ρAHW−1

L A as the preconditioner. Dashed entries (‘—’), indicate that
the method did not converge to the desired tolerance.

ω
DDWAVE AA

r 10−1 10−2 10−3 10−4 10−5 10−6 10−1 10−2 10−3 10−4 10−5 10−6

10 5 3 6 7 9 10 12 118 119 119 119 119 120
20 8 3 5 7 9 11 13 360 429 435 438 439 439
30 12 3 5 8 10 13 15 284 581 759 956 1000 —
40 13 4 6 8 10 12 15 266 435 765 — — —
50 16 3 6 8 10 12 14 269 503 — — — —
60 18 3 6 8 11 14 15 235 454 882 — — —
70 20 3 6 8 11 14 16 211 414 987 — — —
80 21 4 6 9 12 14 16 232 453 768 — — —
90 23 4 6 9 13 15 17 209 377 705 — — —
100 25 3 6 9 12 15 17 200 384 702 — — —

while the number of Krylov iterations for DDWAVE remains constant as ω increases.

The required number of sample points used to construct DDWAVE does grow as ω

increases, but the growth rate is slow and the number of sample points remains small

for all frequencies considered. Overall, DDWAVE performs substantially better than

AA. DDWAVE is scalable with respect to ω (frequency scalable), while AA is not.

In Table 9.3, we report the number of sample points required to achieve a de-

sired relative error tolerance for the product-convolution approximation used within

DDWAVE. We also report the number of Krylov iterations required for the overall

relative error in the solution, u, to drop below a fixed tolerance of 10−5. Here ω = 50

and ρ = 10−2. For loose tolerances in the product-convolution approximation, the

number of sample points remains small. As the tolerance tightens, the number of
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Table 9.3: Impact of the error tolerance for approximating Fgrid with our product-
convolution scheme on computational cost. Here ω = 50 and ρ = 10−2. Row 1 shows
the tolerance used for ‖Fgrid − F̂grid‖/‖Fgrid‖. Row 2 shows the number of sample
points, r, required to achieve the tolerance. Row 3 shows the number of GMRES
iterations required for solving Mx = g so that when u is built from the x using the
methods discussed in this chapter, ||u − utrue||/||utrue|| < 10−5, where utrue solves
(ρAHW−1

L A + BHYB)utrue = f .

product-convolution tolerance 0.50 0.44 0.37 0.31 0.24 0.18 0.11 0.05 0.02
r 5 5 5 9 11 20 35 78 253

Krylov iterations 21 21 21 15 14 12 11 11 11

sample points increases. At the same time, the required number of Krylov iterations

decreases as the product-convolution tolerance tightens and the approximation be-

comes more accurate. Because of error due to the PML truncation (Section 9.5.1), the

number of Krylov iterations asymptotes to 11 as the error in the product-convolution

approximation becomes small. Overall, as the product-convolution approximation

becomes more accurate, the required number of sample points increases while the

required number of Krylov iterations decreases. It appears that the ‘sweet spot” to

minimize both the number of sample points and the number of Krylov iterations

occurs for a tolerance of 20% for the product-convolution approximation.
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Chapter 10

Conclusion

Existing methods for solving large-scale inverse problems perform poorly if the

data are highly informative about the unknown parameter. As certain quantities in

the inverse problem increase—e.g., the number of observations, or the Peclet num-

ber, or the wave frequency—the informativeness of the data about the parameter

increases. This makes small eigenvalues of the data misfit Hessian become large, and

large eigenvalues become larger. Then, as these eigenvalues become larger, existing

methods for solving the inverse problem perform worse. But if data-scalable Hessian

preconditioners are available, they can be used to solve the inverse problem efficiently

regardless of how informative the data are about the parameter.

Building data-scalable Hessian preconditioners is difficult; at present, few data-

scalable Hessian preconditioners exist. To address this, we developed a novel KKT

preconditioner for a diffusion inverse problem, a novel Hessian preconditioner for an

advection inverse problem, and a novel preconditioner for an operator that arises

in connection with preconditioning the KKT operator for a wave inverse problem.

We showed that these preconditioners are data-scalable, and outperform existing

preconditioners.

To precondition the diffusion KKT operator, we created an augmented KKT pre-

conditioner based on a block diagonal approximation to an augmented Lagrangian

version of the KKT operator. We proved bounds on the condition number of the

preconditioned system in an abstract setting, specialized the analysis to the case of

source inversion problems with spectral filtering regularization, and tested the precon-

ditioner numerically on the diffusion source inversion problem with highly informative

data and small regularization parameter. Our analysis and numerical results showed

that the augmented KKT preconditioner is mesh and data scalable when the reg-

ularization does not over-penalize highly informed parameter modes and does not
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under-penalize uninformed modes. The development and analysis of the augmented

KKT preconditioner were problem-independent, so it could also be applied to other

inverse problems that satisfy certain requirements. The primary limitation of the

augmented KKT preconditioner is that it applies only to inverse problems with in-

vertible T operators. Many problems of practical interest have invertible T operators,

including source inversion problems in which the parameter and state variables are

discretized with the same mesh and finite elements. Extending the preconditioner to

non-invertible T operators is a direction for future research.

To precondition the advection Hessian, we created a matrix-free adaptive product-

convolution operator approximation scheme. The efficiency of the scheme depends on

the degree to which the operator being approximated is locally translation-invariant.

The scheme improves on existing product-convolution schemes by providing an auto-

mated method for performing adaptivity, and by addressing issues related to bound-

aries. We used the scheme to build a preconditioner for the advection Hessian that

far outperforms low-rank approximation and regularization preconditioning. As the

Peclet number increased, the cost to solve the Hessian system remained roughly con-

stant using our new preconditioner.

Our product-convolution scheme is also well-suited for approximating or precon-

ditioning operators that arise in Schur complement methods for solving partial differ-

ential equations (PDEs), operators that arise in image deblurring, integral operators,

covariance operators with spatially varying kernels, and Dirichlet-to-Neumann maps

or other Poincaré–Steklov operators in multiphysics problems. These operators are

often dense, implicitly defined, and high-rank, making them difficult to approximate

with standard techniques. In Appendix E we provide numerical results of applying

the scheme to other, non-Hessian, operators. The product-convolution scheme is best

suited to moderate accuracy approximations (say, 80% to 99% accuracy), which are

well-suited for the purpose of building preconditioners. A target for future research

is to apply our product-convolution scheme to the wave Hessian directly.

As a step towards preconditioning the wave KKT operator, we created a domain

decomposition preconditioner for the operator B∗B+ρA∗A. This operator arises when

151



one applies the augmented Lagrangia KKT framework to the wave KKT operator for

inversion using a single frequency and a single source. Within the preconditioner, we

used the adaptive product-convolution scheme to approximate a second order interface

Schur complement. We saw that our preconditioner for B∗B + ρA∗A is scalable with

respect to the wave frequency and the penalty parameter: the preconditioner performs

well when ω is large, and when ρ is small. Using the preconditioner for B∗B+ρA∗A to

build a preconditioner for the complete inverse problem KKT operator is a direction

for future research.
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Appendix A

Bayesian Solution Methods

Whereas the computational task in the deterministic framework is obvious—solve

an optimization problem to get q—the task in the Bayesian framework is less clear.

The “solution” to the Bayesian inverse problem, π(q|y), is a posterior probability

distribution defined on a high-dimensional space, and is therefore far too large to be

discretized, computed, and stored on a computer.1

In order to extract useful statistical information from π(q|y), it is sufficient to

generate samples from it. With samples {qk}ni=1 drawn from π(q|y), expectations of

arbitrary functions ψ(q) can be computed with Monte-Carlo approximations, e.g.,

Eπ(q|y)ψ ≈
1

n

n∑

i=1

ψ(qi).

This allows one to, for example, compute the mean, variance, and higher moments of

quantities of interest.

Bayesian sampling methods that do not account for the directional scalings of

the probability distribution being sampled from cannot efficiently sample from high-

dimensional probability distributions. The eigenstructure of the Hessian locally char-

acterizes the directional scalings of the posterior probability distribution in an inverse

problem. Hence, in order to be effective for large-scale problems, Bayesian sampling

methods must either use the Hessian, or perform operations that are effectively equiv-

alent to using the Hessian. Data-scalable use of the Hessian in these methods can be

performed efficiently if a good Hessian preconditioner is available.

1For low- and moderate-dimensional parameters, one can directly characterize π(q|y) using poly-
nomial chaos or Karhunen–Loève expansions [101], measure-theoretic approaches towards the inverse
problem [57], sparse grids [63], or other non-sampling based methods. However, in large-scale big
data problems (where the dimension of the parameter subspace informed by the data is large) these
approaches are infeasible.
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A.1 Throwing darts at an ellipsoid

Imagine throwing darts at an ellipsoidal dartboard (See Figure A.1). This serves

as an analogy for the proposal step in Markov Chain Monte-Carlo (MCMC), impor-

tance sampling, and other procedures that sample from the posterior using a proposal

distribution. The dart-throwing distribution corresponds to the proposal distribution,

and the ellipsoid corresponds to the region of non-negligible probability for the pos-

terior.

If you stand close to the dartboard, your throws will hit the ellipsoid with high

probability, but will cluster near the center and rarely hit regions to either side. If

you stand far away from the dartboard you will rarely hit the ellipsoid, but your

hits will cover the ellipsoid more evenly. More generally, if the directional scalings

of your dart throwing distribution do not match those of the dartboard, you cannot

simultaneously hit the dartboard with high probability and achieve high coverage of

the dartboard.

Likewise, sampling procedures that use a proposal are efficient when samples

from the proposal provide good coverage of the region of high probability of the

posterior, and land in that region often. Thus the directional scalings of the proposal

distribution should match the directional scalings of the posterior as much as possible.

(a) High success, low coverage. (b) Low success, high coverage.

Figure A.1: Using a proposal distribution with covariance that does not match that of the
true distribution is analogous to trying to hit a ellipsoidal dartboard by throwing darts at
it. A.1a: if you stand close to the dartboard, your throws will usually hit it, but the hits
will provide poor coverage. A.1b: if you stand far from the dartboard, your throws will
usually miss, but the hits will provide good coverage.
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A.2 Sampling methods

Since the Hessian is the inverse covariance of a local Gaussian approximation to

the posterior (see Section 2.6), sampling methods that do not use the Hessian (either

explicitly or implicitly) struggle to capture the directional scalings of the posterior,

and therefore perform poorly. In Metropolis-Hastings Markov Chain Monte-Carlo,

poorly scaled proposal distributions result in either low acceptance rates or small

step sizes. In the dart throwing analogy from Section A.1, low acceptance rates cor-

respond to standing far away from the dartboard, and small step sizes correspond to

standing close to the dartboard. Both of these scenarios lead to high autocorrelation

of the chain, so that long sample chains are required to generate a small number of

statistically independent samples.

In resampling methods such as importance sampling, failure to account for the

directional scalings of the posterior leads to weight collapse, where almost all of the

weight is assigned to a single sample. In the dart throwing analogy, this corresponds

to the case where only one dart hits the dartboard. In particle methods, the analog of

weight collapse is particle collapse, where the particles all converge to the same point.

To prevent particle collapse, a mutation step is typically performed. The mutation

step uses other techniques, which require properly scaled proposal distributions.

Delayed rejection adaptive metropolis (DRAM) [110] and ensemble Kalman filter-

ing methods [9, 89] account for the directional scalings of the posterior by iteratively

approximating the posterior covariance during the sampling process. However, build-

ing the covariance approximation from scratch is slow, so these methods also perform

poorly on large-scale big data distributed parameter inverse problems. Rather than

build the proposal covariance iteratively, the Laplace approximation proposal uses

the local Gaussian approximation from Section 2.6, evaluated at the MAP point. In

this case, the inverse of the Hessian is the proposal covariance. Extensions of this

idea use information from the Hessian at many points to build an approximation of

the global covariance [70, 71, 178]. Stochastic Newton MCMC [140, 164] uses Hes-

sian information to construct a Gaussian approximation of the posterior at each step

within an MCMC chain. Proposals at a given point in the chain are drawn from the
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local Gaussian approximation at that point.

More advanced methods such as randomize-then-optimize and Riemannian man-

ifold MCMC account for the bending of the posterior in addition to its directional

scalings. Randomize-then-optimize [25, 158] generates proposed samples by solving

nonlinear deterministic optimization problems of the form (2.8), but with randomly

perturbed data. In Riemannian manifold MCMC [56], one views the Gauss-Newton

Hessian as a Riemannian metric on the parameter space. High-quality proposals are

generated by tracing geodesics on the associated Riemannian manifold.

Stein variational gradient methods [133] move particles so that they approximate

the posterior as well as possible, as measured by KL-divergence. Unlike other particle

methods that require mutation, Stein variational methods avoid particle collapse by

including a constraint that pushes particles apart. Standard versions of Stein vari-

ational gradient methods use a modified version of the gradient of the negative log

posterior to move the particles at each stage, yielding a method analogous to gradient

descent. Like gradient-based methods for the deterministic problem, Stein variational

gradient methods require large numbers of iterations to converge for ill-conditioned

problems. However, a Newton version of the Stein variational gradient method, re-

quiring Hessian solves, was recently proposed [78]. On examples presented in [78],

the standard version of the method required thousands of iterations for convergence

while the Newton version required approximately ten iterations.

A.3 Required Hessian operations

The Bayesian sampling methods from Section A.2 that use the Hessian must

perform subsets of the following operations:

(a) Applying the Hessian to vectors:

z 7→ Hz.

(b) Performing Hessian solves:

z 7→ H−1z.
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(c) Applying the Hessian inverse square root:

z 7→ H−1/2z.

(d) Computing the ratio of the determinant of the Hessian at one point (H1) to

that of another point (H2):
det(H1)

det(H2)
. (A.1)

The Laplace approximation and stochastic Newton require (a) and (d) to evaluate

the proposal density, and (c) to generate samples. Randomize-then-optimize requires

solving deterministic optimization problems. This can be done efficiently with New-

ton’s method, which requires (b). Evaluating the density of the randomize-then-

optimize proposal (in order to metropolize the method) also requires (a) and (d).

Riemannian manifold MCMC requires (a), (c), and (d). Riemannian manifold MCMC

also requires computing the action of higher-order derivative tensors, but perform-

ing Hessian operations remains the primary computational bottleneck. The Newton

variant of the Stein variational gradient method requires (a) and (b).

Applying the Hessian to vectors, (a), can be performed efficiently using adjoint

methods. We will describe how to do this in Section 5.2. Hessian solves, (b), can

be performed efficiently using Krylov methods if a good Hessian preconditioner is

available (see Section 3.3).

Current implementations of sampling methods that use the Hessian inverse square

root, (c), and the Hessian determinant ratio, (d), compute low-rank approximiations

of the prior preconditioned data misfit Hessian, then use these low-rank approxima-

tions to perform these operations. However, in Chapter 4 we will see that the rank

of Hd grows with the informativeness of the data, making computation of these low-

rank approximations more expensive as more informative data are included in the

inversion. Thus these methods are not data-scalable in current implementations.
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However, if a data-scalable Hessian preconditioner is available, we can use ratio-

nal approximations to perform operations (c) and (d) in an efficient, data-scalable

manner. We briefly summarize rational matrix function approximations in Section

A.3.1, and describe how to use these approximations to perform (c) in Section A.3.2

and (d) in Section A.3.3. For (c) and (d) we will use rational approximations to the

inverse square root and logarithm.

A.3.1 Rational matrix function approximation

Rational approximation of a function f of a matrix M takes the form

f(M) ≈ p(M)

q(M)
,

where p and q are polynomials. For concreteness, assume that the degree of q is m,

that the degree of p is less than or equal to m, and that the roots ri of q are negative.

This is the case for the inverse square root and the logarithm. In this case, using

partial fractions yields the following expansion of the rational function:

p(M)

q(M)
= c0 + c1 (M + µ1I)−1 + c2 (M + µ2I)−1 + · · ·+ cm (M + µmI)−1 ,

where µi := −ri are positive. Applying this rational approximation to a vector,

z 7→ p(M)

q(M)
z,

therefore requires solving m linear systems with positively shifted versions of M as

the coefficient operator. These linear systems can be solved efficiently with Krylov

methods if a good preconditioner is available (see Section 3.3). Rather than nest a

Krylov method within a rational approximation, one may instead use preconditioned

rational Krylov methods [108, 109] to perform the whole process at once.

Rational approximations converge rapidly. Specifically, suppose that f is analytic

on C except for singularities or a branch cut on (−∞, 0], and suppose that M is a

real matrix with positive eigenvalues. In this case several methods exist for choosing

ci and µi such that the rational approximations converge geometrically in m, and the

convergence constant scales logarithmically in the condition number of M . See [117]

and the references therein for a discussion of these issues.
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(a) Third order polynomial
approximation of s−1/2.

(b) First order rational ap-
proximation of s−1/2.

order polynomial
error

rational
error

1 3.6 · 10−1 4.5 · 10−2

2 2.6 · 10−1 3.1 · 10−3

3 1.9 · 10−1 2.1 · 10−4

4 1.4 · 10−1

5 1.1 · 10−1

(c) L2 relative error for poly-
nomial and rational approx-
imations of s−1/2 on [1, 100].

Figure A.2: Least-squares optimal approximation of s−1/2 on [1, 100] using polynomial ap-
proximation compared to rational approximation. Rational approximation performs much
better. Intuitively, this makes sense. The graph of s−1/2 looks like a shifted version of the
graph of s−1, but does not look like shifted versions of the graphs of s, s2, s3, etc.

It follows that highly accurate rational approximations can be achieved with

m = O (log κ)

terms, where κ is the condition number of M . In contrast, oscillations cause polyno-

mial approximation of f(M) to perform much worse, leading to algebraic dependence

on κ. Figure A.2 illustrates the difference between polynomial approximation and

rational approximation for the inverse square root.

A.3.2 Inverse square root

To apply the Hessian inverse square root to a vector ((c) in Section A.3), one

can use the rational approximation method of Section A.3.1, with f(s) = s−1/2 and

M = H. This requires solving m linear systems of the form

(H + µI)z = b,

which can be performed efficiently if good Hessian preconditioners are available. The

number of solves, m, will grow with the logarithm of the condition number of H, which

grows as increasingly informative data are included in the inverse problem. But since

the dependence on the condition number is only logarithmic, we still consider this

method to be data-scalable.
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A.3.3 Determinant ratio

Computing the determinant ratio from (d) in Section A.3 is equivalent to com-

puting

det(H−1
2 H1). (A.2)

Recalling the identity

log det(M) = trace(log(M)),

we see that(A.2) can also be computed by computing

trace(log(H−1
2 H1)︸ ︷︷ ︸
X

), (A.3)

and exponentiating the result. The idea here is to compute this trace with a matrix-

free randomized trace estimator [18], using rational approximations to the matrix

logarithm to apply log(H−1
2 H1) to vectors as needed. Specifically, given a matrix X,

we may estimate its trace with the Monte-Carlo sum:

trace(X) = E (z∗Xz) ≈ 1

n

n∑

i=1

z∗iXzi,

where z and {zi}ni=1 are random vectors with Gaussian independent and identically

distributed entries. Computing this Monte-Carlo sum requires applying X to zi for

i = 1, . . . , n. For us, X = log(H−1
2 H1). Hence we may use this randomized trace

estimator to compute (A.3) if we can perform n matrix-vector products of the form

z 7→ log(H−1
2 H1)z.

Each of these matrix-vector products can be performed using the rational approxima-

tion method described in Section A.3.1, with M = H−1
2 H1 and f(s) = log(s). This

requires solving linear systems of the form (H−1
2 H1 + µI)z = b, or equivalently,

(H1 + µH2) z = H2b.

These systems can be solved efficiently if good Hessian preconditioners are available.

The numerical properties of H−1
2 H1 work in our favor. Likely, the spectrum of

H−1
2 H1 will be clustered around 1, and rational approximations to the matrix loga-

rithm perform best when the spectrum is clustered in this way.
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Appendix B

Dimension dependence of sparse-direct methods

The dominant cost within sparse-direct methods for problems with d spacetime

dimensions is the construction and factorization of dense Schur complement matrices

associated with (d − 1)-dimensional groups of degrees of freedom called “separator

fronts.” For a problem discretized on cube with n gridpoints per dimension (e.g.,

n × n × n for d = 3), constructing and factoring these Schur complements requires

O
((
n(d−1)

)3
)

operations, and O
((
n(d−1)

)2
)

memory. If d = 2, it turns out that this

is the same amount of memory that is required to store the right hand side vector for

the problem (up to a constant), so sparse-direct methods are mesh-scalable, in terms

of memory, in 2 spacetime dimensions. In 3 or more dimensions, significantly more

memory is required to factorize the Schur complement as compared to storing the

right hand side, so sparse-direct methods are not mesh-scalable in terms of memory

in 3 dimensions. Sparse-direct methods are mesh-scalable in terms of operation count

in 1 dimension, but not in 2 or more dimensions.

We illustrate the dimension-dependence of sparse-direct methods by describing

LU factorization of a matrix with nested-dissection ordering. All other memory-

efficient large-scale sparse-direct methods, e.g., multi-frontal methods, have similar

properties. In nested-dissection ordering, the degrees of freedom are partitioned into

three groups: two groups which do not interact with each other, and a third group

called the separator front which interacts with itself and the other two groups (see

Figure B.1). Ideally, we want the separator front to be as small as possible. Each

of the two non-interacting groups are partitioned into three subgroups, separated by

new separator fronts. The partitioning process continues recursively until the number

of degrees of freedom in each non-interacting group is less than a predetermined

threshold. Abstractly, the partitions form a binary tree in which the internal nodes

of the tree are the separator fronts, and the leaves are small non-interacting groups
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of degrees of freedom that are not partitioned any further.

separator front

(a)

separator fronts

(b)

    small non-interacting
degree of freedom groups

(c)

Figure B.1: Separator fronts partition degrees of freedom into three parts. Two parts (gray
dots) that do not interact with each other, and one (black dots) that interact with both
other parts. The process continues recursively until only small non-interacting degree of
freedom groups remain. Illustrations depict degree-of-freedom locations in physical space.
Dashed lines indicate which degrees of freedom interact with which other degrees of freedom;
here degrees of freedom interact with only their neighbors.

The matrix is now ordered so that rows and columns corresponding to degrees of

freedom in lower levels of the tree precede rows and columns corresponding to degrees

of freedom in higher levels of the tree. When Gaussian elimination eliminates a group

of degrees of freedom in this ordering, Schur complement updates fill in portions of

the L and U factor matrices associated with all separator fronts “up the tree” which

touch these degrees of freedom (see Figure B.2). Whereas the subatrices associated

with separator fronts are sparse in the original matrix, these Schur complement up-

dates make them dense in the factor matrices. We thus must store and perform

factorizations on dense submatrices associated with internal interactions within each

separator front.

In d dimensions, the separator fronts are (d − 1)-dimensional (see Figure B.3).

Thus sparse-direct methods for d-dimensional problems require storing and factoriz-

ing dense matrices associated with internal interactions within (d − 1)-dimensional

separator fronts. Standard dense factorization of these matrices requires O ((d− 1)2)

memory and O ((d− 1)3) operations.

Suppose we have a 2D n × n mesh of gridpoints. The largest separator front is

a collection of n gridpoints residing on a 1D line, so the Schur complement for the

separator front is a dense n × n matrix, which requires O(n2) memory and O(n3)
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Figure B.2: B.2a: partitioning of the degrees of freedom in a 2D domain by nested-dissection
ordering. Lines indicate seperator fronts. B.2b: tree of degree of freedom groups. The
root is the biggest separator front. Internal nodes are separator fronts. Leaves are the
noninteracting boxes at the lowest level.

n

separator 
   front

(a) 1D

n

n

separator front

(b) 2D

separator 
    frontn

n
n

(c) 3D

Figure B.3: Separator fronts in a d-dimensional problem are (d − 1)-dimensional. In a 1D
problem with n degrees of freedom, the separator front contains O(1) points. In a 2D n×n
problem, the separator front contains O(n) points. In a 3D n×n×n problem, the separator
front contains O(n2) points.
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operations to build and factorize. Since the total number of degrees of freedom is n2,

building and factorizing this Schur complement requires the same amount of memory

(up to a constant) as simply storing the solution to the problem (n2 vs. O(n2)).

This makes sparse-direct factorization mesh-scalable in terms of memory. However,

it takes n times more operations to build and factorize this Schur complement than

it does to look at the solution (n2 vs. O(n3)), so sparse-direct factorization is not

mesh-scalable in terms of operations.

If we have a 3D n × n × n mesh, the largest separator front is a collection of n2

gridpoints on a 2D plane, so building and factorizing the Schur complement associated

with that separator front requires O ((n2)2) = O(n4) memory and O ((n2)3) = O(n6)

operations. Since the number of degrees of freedom in the mesh is only n3, sparse

direct factorization is therefore not mesh-scalable in 3D.

165



Appendix C

Additional Algorithms

Algorithm 5 Application of M̂
−1

to a vector

Solves:

[
I MTBM−1

BB

0 I

] [
Ŝ 0

MBT MBB

]

︸ ︷︷ ︸
M̂

[
xT
xB

]

︸ ︷︷ ︸
x

=

[
gT
gB

]

︸ ︷︷ ︸
g

Requires: blocks of M, solver for MBB, solver for Ŝ

1: procedure Solve M hat(g)

2:
[
gT gB

]T ← g
3: z← gT −MTBM−1

BBgB . Cost: 2 wave solves.

4: xT ← Ŝ
−1

z.
5: xB ←M−1

BB (gB −MBTxT ) . Cost: 2 wave solves.

6: x←
[
xT xB

]T
7: return x

Algorithm 6 Application of M−1
BB to a vector

Solves:


 0 Ã

H

BB

ÃBB −
(
W̃L

)
BB




︸ ︷︷ ︸
MBB

[
ξB
ηB

]

︸ ︷︷ ︸
xB

=

[
bB
cB

]

︸ ︷︷ ︸
gB

.

Requires: W̃L, solver for ÃBB, solver for Ã
H

BB

1: procedure Solve MBB(gB)

2:
[
bB cB

]T ← gB

3: ηB ← Ã
−H
BBbB . Cost: 1 wave solve.

4: ξB ← Ã
−1

BB

(
cB +

(
W̃L

)
BB

ηB

)
. Cost: 1 wave solve.

5: xB ←
[
ξB ηB

]T
6: return xB
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Appendix D

Additional Proofs

Proof of Theorem 2. Elements of the Krylov subspace Kj are in bijective correspon-

dence with the set of all (j − 1)th order polynomials, Pj−1, via the map P ↔ P (M)b

(including polynomials P such that P (0) 6= 1). This follows from the definition of

Ki and invertibility of M . Using this bijection, along with the definition of xi and

algebraic manipulations, yields

‖b−Mxj‖2 = min
z∈Kj

‖b−Mz‖2

= min
P∈Pj−1

‖b−MP (M)b‖2

= min
Q∈Qj

‖Q(M)b‖2. (D.1)

The theorem follows from expanding Q(M) and b in the eigenvector basis of M in

(D.1).

Proof of Theorem 5. We proceed one derivative at a time, using ordinary techniques

from multivariable calculus.

Zeroth derivative: The procedure for computing J is a restatement of the defini-

tions of J and u.

First derivative: By the chain rule,

g∗ :=
dJ

dq
=
∂Jd
∂u

du

dq
+
dJR
dq

. (D.2)

Direct calculation shows that

∂Jd
∂u

= (Bu− y)∗ Y B (D.3)

and
dJR
dq

= (q − q0)∗R. (D.4)
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Differentiating the state equation yields:

0 =
d

dq
(Au− f) = A

du

dq
+
∂A

∂q
u− ∂f

∂q

= A
du

dq
+ T,

which implies that
du

dq
= −A−1T. (D.5)

Substituting (D.3), (D.4), and (D.5) into (D.2) yields:

g∗ = − (Bu− y)∗ Y BA−1

︸ ︷︷ ︸
=:λ∗

T + (q − q0)∗R.

Defining a new variable λ := −A−∗B∗Y (Bu− y), which is equivalent to the adjoint

equation in Table 5.1 after rearrangement, we see that the gradient takes the form

shown in Table 5.1.

Second derivative: To compute Hp, we compute the directional derivative of g

in direction p, reducing expressions as far as possible using the chain rule and the

product rule, stopping when we reach variables we already know, operators we already

know, and the new variables η = du
dq
p and ξ = dλ

dq
p. This yields:

Hp =
dg

dq
p = Rp+

(
dT ∗

dq
p

)
λ+ T ∗

(
dλ

dq
p

)

= Rp+

(
dT ∗

dq
p

)
λ+ T ∗ξ

= Rp+

(
∂T ∗

∂q
p

)
λ+

(
∂T ∗

∂u

∂u

∂q
p

)
λ+ T ∗ξ

= Rp+ Ξp+ Θ∗η + T ∗ξ.

Differentiating the state equation in direction p and performing algebraic manip-

ulations yields the incremental forward equation for η shown in Table 5.1.

To derive the incremental adjoint equation for ξ, we differentiate the adjoint equa-

tion in Table 5.1 in direction p. This yields:

d

dq
(A∗λ) p =

d

dq
(−B∗Y (Bu− y)) p,
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which expands to

A∗
dλ

dq
p+

(
dA∗

dq
λ

)
p = −B∗Y Bdu

dq
p,

and this simplifies to the incremental adjoint equation shown in Table 5.1.

Proof of Theorem 6. Differentiating G = Bu(q) with respect to q then using (D.5)

yields (5.1). Formula (5.2) follows from substituting (5.1) into the formula Hgn
d =

GY ∗G. Formula (5.3) follows directly from the definitions. Formulas (5.4), (5.5),

and (5.6) follow from computation of the partial derivatives of L and Lgn, which are

defined in (3.9) and (3.12), respectively.

Proof of Theorem 7. Substituting the formulas for blocks of K in (5.5) into the right

hand side of (5.7) and applying the result to a vector p yields:

Rp+ Ξp−
[
Θ∗ T ∗

] [B∗Y B A∗

A

]−1 [
Θp
Tp

]
. (D.6)

Let η be the solution to the incremental forward equation and let ξ be the solution

to the incremental adjoint equation. Direct calculation shows that (D.6) simplifies to

Rp+ Ξp−
[
Θ∗ T ∗

] [−η
−ξ

]
,

which further simplifies to

Rp+ Ξp+ Θ∗η + T ∗ξ.

Since this is the formula for applying H to p from Table 5.1, and since p was arbitrary,

the left and right sides of (5.7) must be equal.

The fact that Hgn is the Schur complement of Kgn for q follows from the formulas

for these operators in Theorem 6 and block linear algebra.

Proof of Corollary 2. Let the subscript x denote degrees of freedom associated with

both u and λ in K. Since H is the Schur complement for q in K, we have the following

block-LU factorization of K:

K =

[
Kqq Kqx

Kxq Kxx

]
=

[
I KqxK

−1
xx

I

] [
H
Kxq Kxx

]
. (D.7)
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In these LU factors, we encounter the operator

Kxx =

[
B∗Y B A∗

A

]
.

The block structure of Kxx lets us solve a linear system with Kxx as the coefficient

operator by performing a sequence of solves with A and A∗ as coefficient operators:

[
B∗Y B A∗

A

] [
w
χ

]
=

[
e
f

]
⇔

{
Aw = f

A∗χ = e−B∗Bw.
(D.8)

The implication for K and H follows from solving the equation on the right side of the

implication in (5.8) by performing two triangular solves using the LU factorization

of K in (D.7), and using (D.8) both times K−1
xx must be applied in these triangular

solves.

The same reasoning yields the implication for Kgn and Hgn.

Proof of Theorem 8. To prove the result for H and Hgn, recall that Hd ' d2Jd
dq2

and

notice that Jd = 1
2
ρ∗Y ρ, where ρ := G(q)−y denotes the data residual. Differentiating

Jd twice, we have

d2Jd

dq2
=

d2

dq2

(
1

2
ρ∗Y ρ

)
=

(
dρ

dq

)∗
Y

(
dρ

dq

)
+

(
d2ρ

dq2

)∗
Y ρ.

Because dρ
dq

= G, the linear operator associated with the first term is G∗Y G = Hgn
d .

The second term is linear in Y 1/2ρ. Thus

Hd = Hgn
d +O(‖ρ‖Y ). (D.9)

Adding R to each side of (D.9) yields (5.9).

To prove (5.10), recall that solutions to the full-space problem must satisfy 0 = ∂L
∂z

.

In particular,

0 =

(
∂L

∂u

)∗
= B∗Y ρ+ A∗λ.

Solving this equation for λ yields λ = −A−∗B∗Y ρ, which implies λ = O(‖ρ‖Y ), which

implies Θ = O(‖ρ‖Y ) and Ξ = O(‖ρ‖Y ). From the formula for K in (5.5) and the

formula for Kgn in (5.6), we see that K may be written as Kgn plus a block matrix

containing only the operators Θ and Ξ, which implies (5.10).
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Appendix E

Additional Numerical Results

Although we developed our adaptive product-convolution scheme (Chapter 8) to

approximate operators that arise in PDE-constrained inverse problems, the scheme

is effective for approximating operators that arise in many other applications, in-

cluding image deblurring and domain decomposition methods for numerically solving

PDEs.1 In this appendix we use our product-convolution scheme to approximate a

spatially varying blur operator (Section E.1), and the non-local component of the

Schur complement associated with restricting the Poisson operator to an internal

interface (Section E.2). For the spatially varying blur operator, our scheme refines

towards the boundary between blur kernels and refines almost nowhere else, therefore

outperforming the standard non-adaptive scheme which refines everywhere uniformly.

For the Poisson interface Schur complement, our scheme is mesh scalable: it requires

roughly the same convolution rank (number of terms in (8.12)) to achieve a desired

error tolerance regardless of how fine the mesh is. For the Poisson Schur complement,

our scheme, in combination with H-matrix methods, can be used to build an excellent

preconditioner.

In this appendix, as in Chapter 8, ‘A’ denotes a generic locally translation-

invariant operator to be approximated (this notation differs from the rest of the

dissertation, in which A denotes the state operator).

E.1 Spatially varying blur

Problem setup Let a be the following spatially varying blurring kernel,

a(s, t) := exp

(
− s2 + t2

2σ2(s, t)

)
, where σ(s, t) =

{
0.1, s2 + t2 < 0.5,

0.2, s2 + t2 ≥ 0.5.

1This appendix contains content from [7] (Nick Alger, Vishwas Rao, Aaron Myers, Tan Bui-
Thanh, and Omar Ghattas. Scalable matrix-free adaptive product-convolution approximation for
locally translation-invariant operators. arXiv preprint arXiv:1805.06018, 2018. Submitted.).
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Figure E.1: Spatially varying blur: Product-convolution approximation of the spatially
varying blur operator defined in Section E.1. (a) Convergence of our adaptive scheme, com-
pared to convergence of standard product-convolution approximation with an equispaced
regular grid of sample points and local bilinear interpolant weighting functions. (b) Final
grid generated by our adaptive scheme.

Here A is the matrix generated by sampling a on [−1, 1]2 with a 75 × 75 equally

spaced regular grid.

Results Figure E.1a compares product-convolution approximation of A using our

adaptive scheme, versus standard product-convolution approximation of A using an

equally spaced regular grid of sample points, with bilinear interpolation of impulse

response functions, no adaptivity and no boundary extension procedure. Our adaptive

scheme converges much faster than the regular grid scheme.

Figure E.1b shows the final grid generated by our adaptive scheme, in which the

boundary of the circle s2 + t2 = 1 is fully resolved with 2 × 2 cells. Error in the

adaptive procedure is zero (within machine epsilon) for this final grid.

E.2 Poisson interface Schur complement

Problem setup Here we consider the discretized (negative) Laplace operator K ≈
−∆ on the interior of the cube, (−1, 1)3. To build K, we discretize the Laplace

operator on the whole cube, [−1, 1]3 with piecewise linear finite elements on a regular
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n × n × n mesh of tetrahedra, so that there are (n + 1)3 mesh gridpoints. Then we

exclude rows and columns from the resulting matrix that correspond to boundary

degrees of freedom. The resulting (n − 1)3 × (n − 1)3 matrix, K, is the coefficient

matrix for the linear system that would need to be solved to determine the solution

on the interior degrees of freedom for the Poisson problem in the cube with Dirichlet

boundary conditions.

Let ‘i’ denote the degrees of freedom on the interface hyperplane at z = 0 that

separates2 the degrees of freedom in the top half of the cube from the bottom half of

the cube. Let ‘t’ denote the degrees of freedom in the top half of the cube (z > 0), and

let ‘b’ denote degrees of freedom in the bottom half of the cube (z < 0), not including

the interface in both cases. Denote the associated blocks of K by Kit, Ktt, Kti, Kib

and so forth. We use our adaptive product-convolution scheme to approximate the

operator

A := KitK
−1
tt Kti +KibK

−1
bb Kbi.

The matrix −A is the non-local component of the Schur complement for degrees of

freedom on the interface hyperplane, i.e., the matrix

S := Kii −KitK
−1
tt Kti −KibK

−1
bb Kbi.

Matrix entries of A are not directly available; we apply A to vectors by performing

matrix-vector products with Kbi, Kib, Kti, and Kit, and solving linear systems with

Ktt and Kbb as the coefficient matrices. After approximating A with Ã using our

product-convolution scheme, we also construct the Schur complement approximation

S̃ := Kii − Ã.

Such Schur complement approximations could be constructed recursively. One would

subdivide the top and bottom subdomains, then subdivide the subdivisions, and so

on. Approximations of Schur complements at deeper levels of the recursion would

be used when constructing approximations at shallower levels. Here we only present

results for one subdivision.

2We choose n even so that the interface is at z = 0, rather than being slightly offset.
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Figure E.2: Poisson Schur comple-
ment: Relative error in truncated SVD
low-rank approximation (‘TSVD’) com-
pared to our product-convolution ap-
proximation (’Conv’) as the (convolu-
tion) rank, r, changes. We show conver-
gence curves for our scheme using both
q = 5 and q = 100 random samples for
the a-posteriori error estimator. Black
dots correspond to the adaptive grids
visualized in Figure E.3.

r=9 r=76 r=123 r=185

Figure E.3: Poisson Schur complement: Intermediate stages of adaptive grid refinement
corresponding to black dots in Figure E.2.

Results Figure E.2 compares the convergence of our scheme to truncated SVD

(‘TSVD’) approximation for n = 40 (N = (n − 1)2 = 1521). Since the Poisson

Schur complement is high rank, TSVD performs poorly. In contrast, our scheme

performs well: at r = 200 our scheme has less than 0.03% error, whereas TSVD has

approximately 69% error. Figure E.2 also shows that our scheme performs well even

when we use a small number of random samples for the a-posteriori error estimator:

the convergence curve for q = 5 is almost identical to the convergence curve for

q = 100. Figure E.3 displays the adaptive meshes from four different stages of the

adaptive refinement process from Figure E.2. Our scheme adaptively refines towards

the boundary, then the corners. This is expected since boundary effects are the only

source of translation-invariance failure.

Figure E.4 compares our scheme to TSVD on a sequence of progressively finer

meshes, from h ≈ 0.1 to h ≈ 0.01, where h is the distance between adjacent gridpoints

in the mesh. The curves show the (convolution) rank, r, required to achieve a relative
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Figure E.4: Poisson Schur comple-
ment: The (convolution) rank, r, re-
quired to achieve a relative approx-
imation error of 5%, for a variety
of mesh sizes, h. ‘TSVD’ indicates
truncated SVD low rank approxima-
tion, and ’Conv’ indicates our product-
convolution scheme.

error tolerance of 5%. The rank for TSVD grows with the number of degrees of

freedom on the top surface (r ∼ O(1/h2)), offering little improvement over directly

building a dense matrix representation of A column-by-column. In contrast, the

convolution rank for our scheme remains small for all h considered.

Figure E.5 compares the time required to apply A to a vector, versus the time

required to apply Ã to a vector. When applying A to vectors, we solve the necessary

linear systems withKtt andKbb as coefficient operators using PyAMG’s [159] rootnode

algebraic multigrid. When applying Ã to vectors, we use the FFT, as discussed in

Section 8.3.2. For large n, applying Ã to a vector is much cheaper than applying A

to a vector.

In Table E.1 we compare the condition number of the Schur complement, S, with

the condition numbers of the preconditioned Schur complement, S̃−1S, for n× n× n
meshes ranging from n = 10 to n = 100. Here S̃−1 is constructed by converting S̃ to

H-matrix format, then inverting it usingH-matrix arithmetic. ForH-matrices, we use

the standard coordinate splitting nested-bisection binary cluster tree,3 and the stan-

dard diameter-less-than-distance admissibilty condition4. Here, we use a tolerance of

3Degrees of freedom are split into two equally-sized clusters by a hyperplane normal to widest
coordinate direction for that cluster. Then each cluster is split into two smaller clusters in the same
way, and so on, recursively. The splitting continues until the number of degrees of freedom in a
cluster is less than 32.

4We mark a block of the matrix as low rank (admissible) if the distance between the degree of
freedom cluster associated with the rows of the block and the diameter of the degree of freedom
cluster associated with the columns of the block is less than or equal to the diameter of the smaller
of the two degree of freedom clusters.
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Figure E.5: Poisson Schur comple-
ment: The time required to apply Ã to
a vector using the FFT to compute the
convolutions (‘Conv’), compared to the
time required to applyA to a vector, us-
ing multigrid to apply the matricesK−1

tt

and K−1
bb to vectors (‘AMG’). For our

product-convolution scheme, the aver-
age slope between n = 171 and n = 300
(from the final upturn to the end, con-
taining 5 equally spaced n) is 2.2, sug-
gesting an asymptotic cost of O(n2.2)
(theory predicts O(n2 log n)). For alge-
braic multigrid, the average slope be-
tween n = 171 and n = 300 is 3.2, sug-
gesting an asymptotic cost of O(n3.2)
(theory predicts O(n3)).

10−6 for the low-rank approximations performed during H-matrix construction and

arithmetic. The condition number of the (unpreconditioned) Schur complement grows

as O(1/h), where h ≈ 1/n is the mesh size. In contrast, the preconditioned Schur

complement remains extremely well conditioned: the largest value of cond
(
S̃−1S

)
is

1.9 for all meshes considered.
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n cond (S) cond
(
S̃−1S

)
r

10 10.3 1.1 9
20 21.3 1.2 20
30 32.2 1.3 27
40 43.0 1.4 28
50 53.8 1.5 31
60 64.5 1.5 33
70 75.3 1.8 32
80 86.1 1.8 35
90 96.9 1.8 35
100 107.7 1.9 35

Table E.1: Poisson Schur complement: Comparison of condition numbers for the
Poisson interface Schur complement for a range of n× n× n meshes. S is the unpre-
conditioned Schur complement. S̃ is the approximate Schur complement generated by
replacing the nonlocal terms, A, within the Schur complement, with our convolution
aproximation, Ã, with a 5% relative error tolerance. The last column shows r, the
convolution-rank of Ã.
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[28] Frank Bauer and Peter Mathé. Parameter choice methods using minimization

schemes. Journal of Complexity, 27(1):68–85, 2011.

[29] Mario Bebendorf. Approximation of boundary element matrices. Numerische

Mathematik, 86(4):565–589, 2000.

[30] Nathan Bell, Luke N. Olson, and Jacob B. Schroder. PyAMG: Algebraic

multigrid solvers in Python, 2013. Version 2.1.

[31] Stefania Bellavia, Jacek Gondzio, and Benedetta Morini. A matrix-free pre-

conditioner for sparse symmetric positive definite systems and least-squares

problems. SIAM Journal on Scientific Computing, 35(1):A192–A211, 2013.

[32] Michele Benzi. Preconditioning techniques for large linear systems: a survey.

Journal of Computational Physics, 182(2):418–477, 2002.

[33] Michele Benzi, Jane K. Cullum, and Miroslav Tuma. Robust approximate

inverse preconditioning for the conjugate gradient method. SIAM Journal on

Scientific Computing, 22(4):1318–1332, 2000.

[34] Michele Benzi, Gene H. Golub, and Jörg Liesen. Numerical solution of saddle

point problems. Acta Numerica, 14:1–137, 2005.

[35] Michele Benzi, Eldad Haber, and Lauren Taralli. A preconditioning technique

for a class of PDE-constrained optimization problems. Advances in Computa-

tional Mathematics, 35(2):149–173, 2011.

[36] Michele Benzi and Miroslav Tuma. A comparative study of sparse approximate

inverse preconditioners. Applied Numerical Mathematics, 30(2):305–340, 1999.

[37] Jean-Pierre Berenger. A perfectly matched layer for the absorption of electro-

magnetic waves. Journal of Computational Physics, 114(2):185–200, 1994.

[38] Jérémie Bigot, Paul Escande, and Pierre Weiss. Estimation of linear operators

from scattered impulse responses. arXiv preprint arXiv:1610.04056, 2016.

181



[39] George Biros and Omar Ghattas. Parallel Lagrange–Newton–Krylov–Schur

methods for PDE–constrained optimization. Part I: The Krylov–Schur solver.

SIAM Journal on Scientific Computing, 27(2):687–713, 2005.

[40] George Biros and Omar Ghattas. Parallel Lagrange–Newton–Krylov–Schur

methods for PDE–constrained optimization. Part II: The Lagrange–Newton

solver and its application to optimal control of steady viscous flows. SIAM

Journal on Scientific Computing, 27(2):714–739, 2005.

[41] Joseph E. Bishop. A displacement-based finite element formulation for general

polyhedra using harmonic shape functions. International Journal for Numeri-

cal Methods in Engineering, 97(1):1–31, 2014.
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[76] Leszek Demkowicz. “Babuška ⇔ Brezzi?”. Technical Report 06-08, Institute

for Computational Engineering and Sciences, the University of Texas at Austin,

April 2006.
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