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Covariance Analysis of LAV Robust Dynamic
State Estimation in Power Systems
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Abstract—In power system state estimation, the robust
Least Absolute Value robust dynamic estimator is well-known.
However, the covariance of the state estimation error cannot
be obtained easily. In this paper, an analytical equation is
derived using Influence Function approximation to analyze the
covariance of the robust Least Absolute Value dynamic state
estimator. The equation gives insights into the precision of the
estimation and can be used to express the variances of the
state estimates as functions of measurement noise variances,
enabling the selection of sensors for specified estimator pre-
cision. Simulations on the IEEE 14-bus, 30-bus and 118-bus
systems are given to illustrate the usefulness of the equation.
Monte-Carlo experiments can also be used to determine the
covariance, but many data points are needed and hence many
runs are required to achieve convergence. Our result shows
that to obtain the covariance of the state estimation error,
the analytical equation proposed in this paper is four-order of
magnitude faster than a 10,000-run Monte-Carlo experiment
on both the IEEE 14-bus and 30-bus systems.

Index Terms—Phasor Measurement Unit; Dynamic State
Estimation; Innovation Model; Least Absolute Value; Influence
Function.

NOMENCLATURE

k Time index
x(k) True voltage phasors, dimension n× 1
F Process matrix, dimension n× n
G Input matrix
u(k) Control signal
z(k) Measurement vector, dimension m× 1
H Output matrix, dimension m× n
w(k) Process noise at k, dimension n× 1
Q Process noise covariance matrix, dimension n× n
v(k) Measurement noise at k, dimension m× 1
R Measurement noise covariance, dimension m×m
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x′(k) Innovation model state vector, dimension n× 1
Γ Innovation model input matrix, dimension n×m
ε(k) Innovation vector, dimension m× 1
σi Standard deviation of εi(k)
ρij Correlation of εi(k) and εj(k)
ε ε = [ε(1)T , ..., ε(N)T ]T

K∞ Steady-state Kalman gain
J Cost function
ei(k) Measurement residual
E E = [e(1)T , ..., e(N)T ]T

N Measurement batch size
x̂′(k) The state estimates at k
Ψ Partial differential of J over x̂′(N)
IF(·) Influence Function
x̃′(k) Innovation model estimation error x̂′(k)− x′(k)
x̃(k) Estimation error x̂′(k)− x(k)
∆x(k) Innovation model error x′(k)− x(k)
P Covariance of ∆x(k)
f(ε) Joint Probability Density Function of ε
γ(·) Cost function of LAV estimator

I. INTRODUCTION

A. Motivation

Traditionally power systems are assumed to be at steady-
state and for simplicity state estimation was designed for a
static system [1]. However, under normal circumstances, the
states change slowly and continuously [2]. To capture their
dynamic behaviours and monitor the system, dynamic state
estimation techniques have been developed [3], [4]. Dynamic
state estimators have the dual advantages of being more
accurate and the ability to predict the state of the system one-
step ahead [5]. In the past, Power System State Estimation
(PSSE) was treated as a nonlinear problem. In recent years,
with the usage of Phasor Measurement Unit (PMU) which
measures the phasor of the bus voltages and line currents
directly, it is transformed into a linear problem [6].

The Gaussian noise assumption is commonly made in
PSSE problems [1]. However, this assumption is only an
approximation to reality. For example, transient data in
steady-state measurement, instrument failure, human error
or model non-linearity can generate non-Gaussian measure-
ment errors [7], [8]. Outliers that are far away from the
expected Gaussian distribution function can give rise to
misleading estimation results. Robust estimators with non-
quadratic cost functions have been introduced to solve the
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outliers problem in PSSE [1], [9]. Robust estimation has also
been used in conjunction with PMUs recently [6].

B. Literature Review

The existing robust dynamic state estimators can be
broadly divided into two categories, one based on exten-
sions of the Kalman filter [10] and the other based on
the use of M -estimation algorithms in conjunction with
the system innovation model [11], [12]. The Kalman filter
based methods are intuitive. The covariance for the state
estimation error for these methods, although only approx-
imate when robust features are added to the estimators,
can be obtained naturally during the estimation process.
However, they cannot handle large changes in the load and
power generation [13]. The M -estimation based methods
are effective in the presence of outliers [14], [15]. But they
can hardly be implemented in a recursive manner [16], thus
generally suffer from computational load problem because of
batch implementation. However, among all the M -estimators
the Least Absolute Value (LAV) estimator can be made
computationally efficient by transforming into a linear pro-
gramming problem. Therefore, it has been commonly used
in smart grids [1], [6].

The covariance of the state estimation error for the M -
estimators in a dynamic system cannot be obtained easily.
Previously in [16], [17] analytical equations for the co-
variance of the state estimation error of the M -estimator
in a static system has been derived. The extension of the
analytical covariance equation in [16], [17] to dynamic
state estimation is not obvious. Unlike a static system, the
process noise and the process matrix in a dynamic system
are not assumed zero and the identity matrix respectively
[4]. An example (Example 1) will be given to show that
the covariance equation of a static system applied to a
dynamic system gives large error. Monte-Carlo experiments
can also be used to determine the covariance, but many
data points are needed and hence many runs are required
to achieve convergence [18]. For the IEEE 14-bus and 30-
bus systems, the covariance equation derived in this paper is
at least four-order of magnitude faster than using a 10,000-
run Monte-Carlo experiment to obtain the covariance. It is
argued that non-jacobian-based derivative free techniques
based on Radial Basis Function Neural Networks (RBFNNs)
[19]–[25] can also be used in robust state estimation, and
can be efficient. In the case where RBFNNs methods are
extended to state estimation, Monte-Carlo experiments are
still required to determine the covariance. Many data points
are needed and hence many runs are required to achieve
convergence [18], unlike the covariance formula derived in
this paper which will only require one “run” of the equation.

C. Contribution

In this paper, an analytical equation to approximately
calculate the covariance of the state estimation error of the
M -estimator for a dynamic system is derived. Influence

Function (IF), a robust statistic tool [15], is used in the
derivation of the equation. The derived analytical equation is
useful. The equation gives insights into the precision of the
estimation. Using the equation, the covariance of the state
estimation can be expressed as functions of measurement
noise variances enabling the selection of sensors for a spec-
ified estimator precision. The derived equation can be used
for LAV estimator in the presence of the standard Gaussian
measurement noise or Gaussian noise plus measurement
outliers. Although numerical methods can also be used to
find the covariance, the equation derived in this paper as a
mathematical function is not only computationally efficient
but also more insightful than just a numerical answer.

The paper is organized as follows. Robust dynamic state
estimation problem and the LAV estimator are introduced in
Section II. Influence Function analysis is given in Section III.
Simulation examples and conclusions are given in Section IV
and Section V respectively.

II. ROBUST DYNAMIC STATE ESTIMATION

Robust state estimation in dynamic power systems has
been discussed in [6], [11]. This section only gives the
equations necessary for the derivation of the covariance
results in this paper. Detailed explanation of the robust state
estimators as well as their stability and robustness analysis
can be found in textbooks [1], [15]. The following model
is widely used in the study of dynamic power systems [4],
[26].

x(k + 1) = Fx(k) +Gu(k) + w(k) (1)
z(k) = Hx(k) + v(k) (2)

where x(k) ∈ Rn×1, z(k) ∈ Rm×1 and u(k) are the state
vector, PMU measurement and control signal respectively.
Polar coordinates are traditionally used in Supervisory Con-
trol And Data Acquisition (SCADA) systems. In developing
the problem formulation, the paper uses rectangular coor-
dinates, where the real and imaginary parts of bus voltage
phasors are used as the system states in x(k) as shown in
(1) and (2). Rectangular coordinates are commonly used in
conjunction with PMU measurements [6], [16], [17] recently
as the PMU measurements z(k) can be formulated as a
linear function of the state vector x(k) (see equation (2))
simplifying the state estimation problem. The transformation
between rectangular and polar coordinates can be found in
[1], [6]. The process, input and output matrices are given by
F , G and H respectively. Matrices F and G mainly depend
on the setup of the system, including the system topology,
the utilized devices and the operation status of the system.
Matrix H mainly depends on the installation of PMUs and
line impedance of the system. The formulation of (1) and
(2) can be found in textbooks such as [1]. The process
noise, w(k), and measurement noise, v(k), are stationary
and independent Gaussian noise with the covariance matrices
Q and R respectively. The sampling instance k = 1, ..., N .
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Unlike a static system, the process noise and the process
matrix in a dynamic system are not assumed zero and the
identity matrix respectively [4].

A. The Innovation Model

The use of the innovation model in PSSE can be found in
[27]. Innovation model (also referred as innovation represen-
tation) is an alternative representation of the original model
and can be derived from the Kalman predictor. Two models
are equivalent in the sense that their outputs have identical
mean and covariance functions. The details of obtaining the
innovation model as well as its properties can be found
elsewhere [28, Sections 2.5, 2.6] and only the final results
are given here. The model of (1) and (2) can be transformed
into the innovation model.

x′(k + 1) = Fx′(k) +Gu(k) + Γε(k) (3)
z(k) = Hx′(k) + ε(k) (4)

where x′(k) is the state vector in the innovation model and
ε(k) = z(k)−Hx′(k) is the innovation vector. In (3),

Γ = FK∞ (5)

where the steady-state Kalman gain

K∞ = PHT (HPHT +R)−1 (6)

Defining

∆x(k) = x′(k)− x(k) (7)

the covariance is given by

Cov(∆x(k)) = P (8)

where P can be obtained from the following Algebraic
Riccati Equation

P = FPFT − FPHT (HPHT +R)−1HPFT +Q

The covariance matrix of innovation vector is given as

Cov(ε(k)) = HPHT +R (9)

From (9), the standard deviation of εi(k), namely σi =√
(Cov(ε(k)))ii, and the correlation of εi(k) and εj(k),

namely ρij = 1
σiσj

(Cov(ε(k)))ij , can be obtained, where
(·)ij denotes the ith row jth column element of a matrix.

B. Robust Estimator

Substituting (4) into (3) gives

x′(k + 1) = Φx′(k) +Gu(k) + Γz(k) (10)

where Φ = F − ΓH which in practice is nonsingular.

Iterating (10) gives

x′(2) = Φx′(1) +Gu(1) + Γz(1)

...
x′(k) = Φk−1x′(1) + x̄(k) (11)

...
x′(N) = ΦN−1x′(1) + x̄(N) (12)

where

x̄(k) =


0 k = 1∑k−1

j=1 Φj−1Gu(k − j)
+
∑k−1
j=1 Φj−1Γz(k − j)

k = 2, ..., N
(13)

The M -estimator can be obtained by minimizing the
following cost function [1]

J =

m∑
i=1

N∑
k=1

γ(ei(k)) (14)

The measurement residual

ei(k) = zi(k)−Hix̂
′(k) (15)

where (·)i denotes the ith row of a matrix and x̂′(k) is the
estimate of x′(k). The cost function for the LAV estimator
is well known as γ = |ei(k)|. It is given in [1] that the LAV
estimator can also be formulated as the limiting case of the
Multiple-Segment estimator as follows.

γ(ei(k)) =


ei(k)− a2

i

2 a2
i < ei(k)

ei(k)2

2a2
i

−a2
i ≤ ei(k) ≤ a2

i

−ei(k)− a2
i

2 ei(k) < −a2
i

(16)

where ai → 0.

C. The Least Absolute Value Estimator

Differentiating the cost function (14) of LAV estimator
with respect to x̂′(N) gives

Ψ =
∂J

∂x̂′(N)
=

m∑
i=1

N∑
k=1

∂γ(ei(k))

∂(ei(k))

∂(ei(k))

∂x̂′(N)

= −
m∑
i=1

N∑
k=1

∂γ(ei(k))

∂(ei(k))
(HiΦ

k−N )T (17)

As ai → 0, ∂γ(ei(k))
∂ei(k) reduces to the sign function

sgn(ei(k)) and (17) becomes

Ψ = −
m∑
i=1

N∑
k=1

sgn(ei(k))(HiΦ
k−N )T (18)

Putting (18) into matrix form using (13) and (15) gives

Ψ = −H̃T sgn(E)

= −H̃T sgn
(
Z − H̃ (x̂′(N)− x̄(N))

)
(19)

where E = [e(1)T , ..., e(N)T ]T and

H̃ =

HΦ−N+1

...
HΦ0

 , Z =

 z(1)−Hx̄(1)
...

z(N)−Hx̄(N)

 (20)

The estimate x̂′(N) can be obtained by setting Ψ = 0.
By transforming into a linear programming problem, the
LAV estimator can be made computationally efficient and
the details can be found in [1], [6].
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III. INFLUENCE FUNCTION ANALYSIS OF LAV
ESTIMATION

Using IF, an equation is derived to calculate the covariance
of the state estimation error approximately.

A. Influence Function

Recently the use of IF has become popular in PSSE. For
example, in [16], [17] analytical equations for the covariance
of M -estimators in a static system using PMU measurements
has been derived. In [10] a robust Kalman filter based
estimator using PMU measurements is proposed where IF
is used in an intermediate step to estimate the covariance
of a priori estimation. In [14], IF of a t-distribution based
maximum likelihood estimator is proposed to detect and
reject bad data in PMU measurements. Further details of the
IF has been derived elsewhere [10], [15], [29]. This section
only gives the equations necessary for the derivation of the
state estimation error covariance.

In (19), Ψ is a function of x̂′(N). Since LAV estimator is
a unbiased estimator [15], the expectation of the estimate
x̂′(N) is x′(N). Thus, we can use the first-order Taylor
serious expansion of Ψ at x̂′(N) = x′(N) to approximate
the estimate as follows.

∂Ψ

∂x̂′(N)

∣∣∣∣
x̂
′
(N)=x

′
(N)

(x̂′(N)− x′(N))

≈ 0− Ψ|
x̂
′
(N)=x

′
(N)

Therefore

x̂′(N)− x′(N)

≈ −

[
∂Ψ

∂x̂′(N)

∣∣∣∣
x̂
′
(N)=x

′
(N)

]−1

Ψ|
x̂
′
(N)=x

′
(N)

Replacing ∂Ψ

∂x̂
′
(N)

∣∣∣
x̂
′
(N)=x

′
(N)

by its expectation∫ ∞
−∞

∂Ψ

∂x̂
′
(N)

∣∣∣
x̂
′
(N)=x

′
(N)

f(ε)dε gives

x̃′(N) = x̂′(N)− x′(N)

≈ −

[∫ ∞
−∞

∂Ψ

∂x̂′(N)

∣∣∣∣
x̂
′
(N)=x

′
(N)

f(ε)dε

]−1

× Ψ|
x̂
′
(N)=x

′
(N)

= IF(ε) (21)

where ε = [ε(1)T , ..., ε(N)T ]T and f(ε) is the joint proba-
bility density function (pdf) of ε. Equation (21) is known as
the IF of the estimator [15].

In (21), Ψ|
x̂
′
(N)=x

′
(N)

and ∂Ψ

∂x̂
′
(N)

∣∣∣
x̂
′
(N)=x

′
(N)

are ob-

tained as follows. From (4), (11), (12) and (19),

ε = Z − H̃ (x′(N)− x̄(N)) (22)

Using (4), (19) and (22) to obtain

Ψ|
x̂
′
(N)=x

′
(N)

= −H̃T sgn(ε) (23)

From (19),

E = Z − H̃ (x̂′(N)− x̄(N)) (24)

Using (19) and (24),

∂Ψ

∂x̂′(N)

∣∣∣∣
x̂
′
(N)=x

′
(N)

=

(
∂Ψ

∂E

∂E

∂x̂′(N)

)∣∣∣∣
x̂
′
(N)=x

′
(N)

= H̃T ∂sgn(ε)

∂ε
H̃ (25)

Notice that using (22) and (24), the differential
∂sgn(E)
∂E

∣∣∣
x̂
′
(N)=x

′
(N)

=
∂sgn(ε)
∂ε = 2δ gives the Dirac

delta function point mass at ε = 0 with the energy of 2
[30].

Substituting (23) and (25) into (21) gives

x̃′(N) ≈ −
[
H̃T

(∫ ∞
−∞

∂sgn(ε)

∂ε
f(ε)dε

)
H̃

]−1

×
(
−H̃T sgn(ε)

)
= [H̃TΩH̃]−1H̃T sgn(ε) (26)

where

Ω =

∫ ∞
−∞

∂sgn(ε)

∂ε
f(ε)dε

Notice that ε(k) is independent of ε(l), i.e. E[ε(k)ε(l)] = 0
for k 6= l where E[·] denotes the mathematical expectation.
Therefore, Ω is a diagonal matrix of dimension mN ×mN
given as

Ω = diag


√

2

πσ2
1

, ...,

√
2

πσ2
m

, ...,

√
2

πσ2
1

, ...,

√
2

πσ2
m︸ ︷︷ ︸

mN

 (27)

where σi is given in (9).

B. Covariance Analysis

Define the state estimation error x̃(N) = x̂′(N)− x(N).
Using (7), (8) and (21),

Cov(x̃(N)) = Cov(x̃′(N) + ∆x(N))

= Cov(x̃′(N)) + E
(
x̃′(N)∆x(N)T

)
+E
(
∆x(N)x̃′(N)T

)
+ Cov(∆x(N))

= Cov(x̃′(N)) + E
(
x̃′(N)∆x(N)T

)
+E
(
∆x(N)x̃′(N)T

)
+ P (28)

The first three terms in covariance Eq.(28) can be obtained
as follows.

(i) Consider the first term in covariance Eq.(28):
Cov(x̃′(N)).
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Using (26),

Cov (x̃′(N)) =

∫ ∞
−∞

x̃′(N)x̃′(N)T f(ε)dε

≈ [H̃TΩH̃]−1

[∫ ∞
−∞

ΨΨT f(ε)dε

]
[H̃TΩH̃]−T

= [H̃TΩH̃]−1

×
[
H̃T

(∫ ∞
−∞

sgn(ε)sgn(ε)T f(ε)dε

)
H̃

]
[H̃TΩH̃]−T

= [H̃TΩH̃]−1[H̃TΛH̃][H̃TΩH̃]−T (29)

where H̃ is given in (20), Ω in (27) and

Λ =

∫ ∞
−∞

sgn(ε)sgn(ε)T f(ε)dεdiag( . . . Λsub . . .︸ ︷︷ ︸
N

) (30)

Λsub =



1 ζ1,2 . . . . . . ζ1,m

ζ2,1 1
. . .

...
...

. . . . . . . . .
...

...
. . . 1 ζm−1,m

ζm,1 . . . . . . ζm,m−1 1


ζij =

∫ ∞
−∞

sgn(εi(k))sgn(εj(k))

×fij (εi(k), εj(k)) dεi(k)dεj(k)

=
2

π
arcsin(ρij) (31)

The function fij (εi(k), εj(k)) is the joint pdf of εi(k) and
εj(k) and ρij can be obtained from (9). The integration
results in (31) are given in [31].

(ii) Consider the second term in covariance Eq.(28):
E
(
x̃′(N)∆x(N)T

)
.

Using (2) and (4),

ε(k) = −H∆x(k) + v(k) (32)

Subtracting (1) from (3) gives

∆x(k + 1) = Φ∆x(k) + Γv(k)− w(k) (33)

From (26),

E
(
x̃′(N)∆x(N)T

)

≈ [H̃TΩH̃]−1H̃T


E(sgn(ε(1))∆x(N)T )

...
E(sgn(ε(k))∆x(N)T )

...
E(sgn(ε(N))∆x(N)T )

(34)

In (34), E(sgn(ε(k))∆x(N)T ) is of dimension m×n, whose
analytical solution is given as follows.

E(sgn(ε(k))∆x(N)T )

=

{
A(ΦN−k)

T
+BΓT (ΦN−k−1)

T
k < N

A k = N
(35)

where A and B are m×n and m×m matrices respectively.
The elements are given as

Aij = sgn(−HiP
T
j )

√
2(HiPTj )2

π
(
HiPHT

i +Rii
) (36)

Bij =


√

2R2
ii

π(HiPHT
i +Rii)

i = j

0 i 6= j
(37)

The derivation of (35) is given in Appendix.

(iii) Consider the third term in covariance Eq.(28):
E
(
∆x(N)x̃′(N)T

)
.

E
(
∆x(N)x̃′(N)T

)
= E

(
x̃′(N)∆x(N)T

)T
(38)

where E
(
x̃′(N)∆x(N)T

)
is found in (34).

IV. EXAMPLES

In Example 1, a simple example is used to illustrate the
detail calculations for covariance Eq.(28). State estimations
on the IEEE 14-bus, 30-bus and 118-bus systems are giv-
en in Examples 2, 3, 4 and 5. All measurements in the
examples are collected by PMUs. For easy reference, the
parameters of the models and PMU measurement variances
are summarized in Table I. Table I shows the precision of
the PMU measurements in terms of their variance. In all the
examples, the results of covariance Eq.(28) are compared
with the results from Monte-Carlo experiments. It can be
shown that the covariance Eq.(28) is not affected by G and
u(k). The effect of G and u(k) is canceled out in (7) and
(21). This is because the control term Gu(k) is assumed to
be known exactly and does not affect the precision of the
state estimation [32].

A. Example 1: 2 States 4 Measurements

In (1) and (2), let

F =

[
0.98 0

0 0.98

]
, G =

[
0
0

]
, H =


1 0
0 1
1 1
1 1

 (39)

The covariance matrices of the process noise w(k) and
the measurement noise v(k) are given as Q = 0.0012I
and R = diag(0.0032, 0.0042, 0.0052, 0.0052) respectively.
In this example, the estimation batch size N = 3, number
of measurements m = 4.

The innovation model is given by (3) and (4) where P in
(8) is calculated as

P =

[
2.916 −0.610
−0.610 3.287

]
× 10−6 (40)

The covariance of innovation vector is calculated using (9),

Cov(ε(k)) =

[
1.192 −0.061 0.231 0.231

...
...

...
...

]
× 10−5

(41)
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TABLE I
PARAMETERS OF THE MODELS AND NOISES USED IN THE EXAMPLES

Examples 1 2 3 4 5
Bus System 2 States 4 Measurements IEEE 14-bus System IEEE 30-bus System IEEE 118-bus System

Process Model F = 0.98I , G = 0
Process Noise Q = 0.0012I Q = 0.00012I

R11 = 0.0032 Rii = 0.0062,
Measurement R22 = 0.0042 1 ≤ i ≤ 12; Eq.(55) and Eq.(56) Rii = 0.0052

Noise R33 = 0.0052 Rii = 0.0032, (with outliers) for all measurements
R44 = 0.0052 13 ≤ i ≤ 58

Estimator LAV LAV and WLS LAV
Figure — 1 — 2 —
Table — II III IV

From (5), (6) and (10),

Φ = F − ΓH =

[
0.656 −0.067
−0.067 0.697

]
(42)

Covariance Eq.(28) is used to calculate Cov(x̃(3)) and its
first three terms can be obtained as follows.

(i) Consider Cov(x̃′(3)). Substituting (39) and (42) into
(19) gives

H̃ =

[
2.391 0.446 . . . 1 1
0.446 2.120 . . . 1 1

]T
(43)

Equation (41) gives σ2
1 = 1.1916 × 10−5, σ2

2 = 1.9286 ×
10−5, σ2

3 = σ2
4 = 2.9981× 10−5 and upon substituting into

(27) gives

Ω = diag(231.1, 181.7, ..., 145.7, 145.7) (44)

Equation (41) gives ρ1,2 = −0.0402, ρ1,3 = ρ1,4 = 0.1220,
ρ2,3 = ρ2,4 = 0.1113, ρ3,4 = 0.1661 and upon substituting
into (30) gives

Λ = diag(Λsub,Λsub,Λsub) (45)

Λsub =

[
1 −0.026 0.078 0.078
...

...
...

...

]
Using (29), (43), (44) and (45)

Cov(x̃′(3)) ≈
[

2.050 −1.569
−1.569 2.909

]
× 10−6 (46)

(ii) Consider E
(
x̃′(3)∆x(3)T

)
. From (34),

E
(
x̃′(3)∆x(3)T

)
= [H̃TΩH̃]−1H̃T

 E(sgn(ε(1))∆x(3)T )
E(sgn(ε(2))∆x(3)T )
E(sgn(ε(3))∆x(3)T )

 (47)

In (47), E(sgn(ε(k))∆x(3)T ) is calculated using (35), where
A and B are calculated using (36) and (37) respectively.

A =

[
−0.674 0.111 −0.336 −0.336
0.141 −0.597 −0.390 −0.390

]T
× 10−3 (48)

B =

[
2.080 0 0 0

...
...

...
...

]
× 10−3 (49)

Substitute (48) and (49) into (35) to calculate
E(sgn(ε(k))∆x(3)T ). Substituting (43), (44) and
E(sgn(ε(k))∆x(3)T ) into (47) gives

E
(
x̃′(3)∆x(3)T

)
=

[
−0.353 0.213
0.171 −0.494

]
× 10−6 (50)

(iii) Consider E
(
∆x(3)x̃′(3)T

)
. Using (38)

E
(
∆x(3)T x̃′(3)T

)
= E

(
x̃′(3)∆x(3)T

)T
=

[
−0.353 0.171
0.213 −0.494

]
× 10−6 (51)

Finally, substituting (40), (46), (50) and (51) into covari-
ance Eq.(28) gives

Cov(x̃(3)) ≈
[

4.260 −1.796
−1.796 5.207

]
× 10−6 (52)

The 10,000-run Monte-Carlo experiment gives

Cov(x̃(3)) =

[
4.397 −1.821
−1.821 5.162

]
× 10−6

which is close to the result in (52).

If the covariance formula in [16], [17] is used to calculate
the covariance of the state estimation error, the result is given
as

Cov(x̃(3)) ≈
[

3.581 −2.011
−2.011 4.803

]
× 10−6

which is far away from the Monte-Carlo experiment result.
This is because the dynamics of the system are neglected in
[16], [17], i.e. the process matrix F is assumed to be the
identity matrix and the process noise w(k) is not taken into
account.

Notice that (52) is obtained using covariance Eq.(28) by
choosing N = 3. For N = 4 and 20, covariance Eq.(28)
gives

Cov(x̃(4)) ≈
[

3.564 −1.247
−1.247 4.242

]
× 10−6 (53)

Cov(x̃(20)) ≈
[

2.916 −0.610
−0.610 3.286

]
× 10−6 (54)
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The 10,000-run Monte-Carlo experiments give

Cov(x̃(4)) ≈
[

3.581 −1.219
−1.219 4.269

]
× 10−6

Cov(x̃(20)) ≈
[

2.893 −0.634
−0.634 3.256

]
× 10−6

It is clear that the results in (53) and (54) are close to the
Monte-Carlo experiments results.

B. Example 2: The IEEE 14-bus System

Consider the same IEEE 14-bus dynamic power system in
[4] where the system process matrix F = diag(..., 0.98, ...)
and the process noise wi(k) ∼ N (0, 0.00012) for i =
1, ..., 28. The PMUs are located at buses number 2, 4, 6, 7, 9
and 13 according to [16], [33]. The standard deviation of the
12 voltage measurements and 46 current measurements are
given by vi(k) ∼ N (0, 0.0062) for i = 1, ..., 12 and vi(k) ∼
N (0, 0.0032) for i = 13, ...,m where m = 58. The state
vector of the system is given by x = [V re

1 , V
im
1 ..., V re

14, V
im
14 ]T .

The real and imaginary part of the ith bus voltage phasor are
given by V re

i and V im
i respectively. The estimation batch size

N = 3.

The variance of the LAV estimation error calculated from
covariance Eq.(28) is given in Table II Column (a). To give
an idea of its accuracy, it is compared with the variance
obtained from the 10,000-run Monte-Carlo experiment result
in Column (b). The percentage errors between Columns (a)
and (b) are given in Column (c). The maximum percentage
error is 1.7%. According to the Law of Large Numbers, the
Monte-Carlo experiment result becomes more accurate as
more runs are involved [34]. In practice, the number of runs
can be chosen based on the required accuracy of Monte-
Carlo experiment result.

Covariance Eq.(28) can also be used to obtain the variance
of the state estimation error as functions of measurement
variances. Fig. 1 shows how the variance of the real part of
Bus 1 voltage phasor, Var(Ṽ re

1 (N)), varies with the variance
of the ith measurement, Rii, i = 1, ..., 58. The solid curve
is Var(Ṽ re

1 (N)) versus R1,1 with the rest of the elements in
the covariance matrix R unchanged. If for the state estimate
Var(Ṽ re

1 (N)) ≤ 2.00 × 10−6 is specified then from the
solid curve, R1,1 = 0.0022 can be selected. The crosses
in the figure are variances obtained from 10,000-run Monte-
Carlo experiments and they are well approximated by the
solid curve. Although Monte-Carlo experiments can be used
to obtain the covariance of x̂(N) many data points are
needed and hence many simulation runs are required to
achieve convergence. Ten thousand simulation runs using
MATLAB 2018a on a Windows 10 computer configured
with Intel® CoreTM, CPU i7 − 4790, 3.60GHz and 8GB
RAM take 238 seconds to give a set of state covariance.
On the same equipment, Eq.(28) takes less than 0.017
second to perform the same task. Covariance Eq.(28) is four-
order of magnitude (= 238/0.017) faster than a 10,000-
run Monte-Carlo experiment. Consider Fig. 1. There are 58

1 2 3 4 5 6 7 8 9 10

10-3

0.5

1

1.5

2

2.5

3

3.5

4
10-6

Fig. 1. Var(Ṽ re
1 (N)) versus

√
Rii, i = 1, ..., 58. The solid curve shows

Var(Ṽ re
1 (N)) versus

√
R1,1. The crosses are results obtained from Monte-

Carlo experiments and they matched the solid curve.

curves and each curve consists of 90 data points. A total
of 90 × 58 = 5220 data points were used to draw Fig. 1.
Eq.(28) took 0.017s × 5220 = 1.5 minutes to generate the
data points. In contrast, Monte-Carlo experiments require
238s× 5220 = 14.4 days.

C. Example 3: Measurement Outliers

Instead of Gaussian measurement noise, assume that for
i = 1, ..., 12 the measurement noise vi(k) is associated with
the pdf

fi(vi(k)) =
0.99√

2π × 0.0062
exp

(
− vi(k)2

2× 0.0062

)
+

0.01√
2π × 0.062

exp
(
− vi(k)2

2× 0.062

)
(55)

where the first term represents the 99% of “normal” noise
while the second term represents the outliers by the 1%
Gaussian noise with standard deviation (0.06) that is 10
times larger than the “normal” noise standard deviation
(0.006).

For i = 13, ..., 58, the measurement noise vi(k) is
associated with the pdf

fi(vi(k)) =
0.99√

2π × 0.0032
exp

(
− vi(k)2

2× 0.0032

)
+

0.01√
2π × 0.032

exp
(
− vi(k)2

2× 0.032

)
(56)

where the first term represents the 99% of “normal” noise
while the second term represents the outliers by the 1%
Gaussian noise with standard deviation (0.03) that is 10
times larger than the “normal” noise standard deviation
(0.003). The probability density functions in the form of
a mixture distribution in (55) and (56) are also given in [16]
and [15].

For uncertainties with measurement outliers, the variance
of the estimation error from the Monte-Carlo experiment
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TABLE II
THE VARIANCE OF THE ESTIMATION ERROR OF THE LAV AND WLS ESTIMATORS IN THE IEEE 14-BUS SYSTEM.

(a) (b) (c) (d) (e) (f)
Example 2 3
Estimator LAV WLS

Measurement N (0, 0.0062), i = 1, ..., 12 Eq.(55), i = 1, ..., 12
Noise N (0, 0.0032), i = 13, ..., 58 Eq.(56), i = 13, ..., 58

States Eq. (28) Monte-Carlo (a)−(b)
(b) × 100% Monte-Carlo (a)−(d)

(d) × 100% Monte-Carlo

V̂ re
1 3.10 3.14 -1.4% 3.20 -3.2% 4.00

V̂ im
1 3.10 3.07 1.1% 3.20 -3.1% 4.03

V̂ re
2 3.09 3.14 -1.7% 3.17 -2.5% 3.98

V̂ im
2 3.09 3.06 0.9% 3.17 -2.6% 4.01

V̂ re
3 3.12 3.17 -1.5% 3.18 -1.9% 4.03

V̂ im
3 3.12 3.07 1.5% 3.18 -2.1% 4.02

V̂ re
4 3.06 3.10 -1.5% 3.14 -2.6% 3.94

V̂ im
4 3.06 3.02 1.0% 3.14 -2.7% 3.96

V̂ re
5 3.06 3.11 -1.6% 3.13 -2.5% 3.94

V̂ im
5 3.06 3.02 1.2% 3.14 -2.8% 3.97

V̂ re
6 3.11 3.14 -0.9% 3.18 -2.1% 4.01

V̂ im
6 3.11 3.09 0.7% 3.20 -2.7% 4.05

V̂ re
7 3.07 3.12 -1.6% 3.16 -2.8% 3.99

V̂ im
7 3.07 3.03 1.4% 3.15 -2.5% 3.95

V̂ re
8 3.21 3.25 -1.1% 3.30 -2.5% 4.20

V̂ im
8 3.21 3.17 1.5% 3.28 -2.1% 4.12

V̂ re
9 3.08 3.12 -1.1% 3.16 -2.6% 3.99

V̂ im
9 3.08 3.04 1.4% 3.17 -2.9% 3.97

V̂ re
10 3.12 3.14 -0.6% 3.20 -2.5% 4.02

V̂ im
10 3.12 3.08 1.2% 3.22 -3.0% 4.01

V̂ re
11 3.34 3.36 -0.8% 3.39 -1.6% 4.34

V̂ im
11 3.34 3.28 1.6% 3.39 -1.5% 4.35

V̂ re
12 3.30 3.33 -1.0% 3.35 -1.4% 4.24

V̂ im
12 3.30 3.26 1.0% 3.40 -3.0% 4.26

V̂ re
13 3.13 3.16 -1.1% 3.20 -2.1% 4.06

V̂ im
13 3.13 3.09 1.2% 3.22 -2.7% 4.07

V̂ re
14 3.28 3.32 -1.5% 3.32 -1.4% 4.23

V̂ im
14 3.28 3.23 1.6% 3.37 -2.7% 4.31

Sum of Variance (SV) 88.12 88.13 0.0% 90.32 -2.4% 114.02

Variance Unit: ×10−6.

is given in Table II Column (d). The measurement noise
in the Monte-Carlo experiment for Column (d) is Gaussian
noise plus outliers (see equations (55) and (56)). Notice
that Column (a) obtained without measurement outliers in
Example 2 can also be used to approximate the variance
in Column (d) because the effect of the outliers are largely
reduced by the robust LAV estimator. The percentage errors
between Column (d) and Column (a) are given in Column
(e). The maximum percentage error is 3.2%.

This example can also be used to illustrate the benefit of
applying robust estimation for measurements with outliers. If
the WLS estimator [1] is used instead of the LAV estimator,
the variance of the state estimation error obtained from the
10,000-run Monte-Carlo experiment is given in Column (f).

D. Example 4: The IEEE 30-bus System

A new example on the IEEE 30-bus system is given as
follows. The IEEE 30-bus system model is widely used in
the studies of power system design and analysis [17], [35].
There are 10 PMUs strategically located at buses number

2, 4, 6, 9, 10, 12, 15, 18, 25 and 27 according to [17].
The system process matrix and process noise are chosen
as F = diag(..., 0.98, ...) and wi(k) ∼ N (0, 0.00012) for
i = 1, ..., 60 as before. The the standard deviation is chosen
as vi(k) ∼ N (0, 0.0052) for all measurements i = 1, ..., 104
[17]. The estimation batch size N = 3. The variance
of the LAV estimation error calculated from covariance
Eq.(28) is given in Table III Column (a), and compared
with the variance obtained from the 10,000-run Monte-Carlo
experiment in Column (b). The percentage errors between
Columns (a) and (b) are given in Column (c). To save space,
only 2 states and the SV is presented.

The covariance Eq.(28) can be used to obtain the variation
of the SV with respect to the PMU measurement variance
as shown in Fig. 2. The blue curve in Fig. 2 shows that if
we specify the SV of 0.9 × 10−4, then the PMU on Bus
27 with variance of 0.0022 can be selected with the other
9 PMUs remain unchanged. For the IEEE 30-bus system,
one covariance calculation using 10,000-run Monte-Carlo
experiment takes 783 seconds while equation (28) takes
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TABLE III
THE VARIANCE OF THE ESTIMATION ERROR OF THE LAV ESTIMATOR IN

THE IEEE 30-BUS SYSTEM.

(a) (b) (c)

States Eq. (28) Monte-Carlo (a)−(b)
(b) × 100%

V̂ re
1 1.50 1.52 -1.0%

V̂ im
1 1.50 1.48 1.6%
...

...
...

...
SV 133.77 128.88 3.8%

Variance Unit: ×10−6.

1 2 3 4 5 6 7 8 9 10
10-3

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4 10-4

Fig. 2. SV versus measurement quality of the PMU on Bus 27 while
the other 9 PMUs remain unchanged. Measurement variance Ri,i, i =
95, 96, ..., 104 are associated with the PMU on Bus 27. The solid curve
shows SV versus the quality of the PMU on Bus 27 calculated from
covariance Eq.(28). The crosses are results obtained from Monte-Carlo
experiments and they matched the solid curve.

0.065 second, four-order of magnitude faster. In example
2, using 10,000-run Monte-Carlo experiments 14.4 days are
required to draw Fig. 1 for the IEEE 14-bus system. To draw
a similar figure for the IEEE 30-bus system, 79.9 days would
be required. Even if a lower level of precision is accepted
and the Monte-Carlo runs are reduced to 1,000, it will still
take 8 days.

E. Example 5: The IEEE 118-bus System

A larger IEEE 118-bus system is also used to verify the
precision of the proposed method. The PMUs are locat-
ed according to [33]. The process matrix, process noise,
measurement noise and estimation batch size are chosen
as F = diag(..., 0.98, ...), wi(k) ∼ N (0, 0.00012) for
i = 1, ..., 236, vi(k) ∼ N (0, 0.0052) for all measurements
i = 1, ..., 452 and N = 3 respectively. The variance
of the LAV estimation error calculated from covariance
Eq.(28) is given in Table IV Column (a), and compared
with the variance obtained from the 10,000-run Monte-Carlo
experiment in Column (b). The percentage errors between
Columns (a) and (b) are given in Column (c). To save
space, only 2 states and the SV is presented. The percentage
error of SV between the proposed formula and the 10,000-

run Monte-Carlo experiment is 3.5%, which should be
practically acceptable.

TABLE IV
THE VARIANCE OF THE ESTIMATION ERROR OF THE LAV ESTIMATOR IN

THE IEEE 118-BUS SYSTEM.

(a) (b) (c)

States Eq. (28) Monte-Carlo (a)−(b)
(b) × 100%

V̂ re
1 0.765 0.738 3.6%

V̂ im
1 0.765 0.725 5.5%
...

...
...

...
SV 163.86 158.31 3.5%

Variance Unit: ×10−6.

V. CONCLUSION

In this paper, an analytical equation is derived using IF
approximation to calculate the covariance of the dynamic
state estimation error of the robust LAV estimator. The
equation gives insights into the precision of the estimation
and can be used to express the variances of the state esti-
mates as functions of measurement noise variances, enabling
the selection of sensors for specified estimator precision.
Simulations on the IEEE 14-bus, 30-bus and 118-bus sys-
tems are given to illustrate the usefulness of the equation.
Monte-Carlo experiments can also be used to determine the
covariance, but many data points are needed and hence many
runs are required to achieve convergence. For the IEEE 14-
bus and 30-bus examples, the covariance equation is at least
four-order of magnitude faster than the 10,000-run Monte-
Carlo experiment. The derived equation can be used for
LAV estimator in the presence of the standard Gaussian
measurement noise or Gaussian noise plus measurement
outliers because the effect of the outliers are largely reduced
by the robust LAV estimator. The maximum percentage
error between covariance equation and the Monte-Carlo
experiment result in the presence of measurement outliers
is 3.2% in the IEEE 14-bus system example.
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APPENDIX

The derivation of (35) is given below.

E(sgn(ε(k))∆x(N)T ) =

 E(sgn(ε1(k))∆x(N)T )
...

E(sgn(εm(k))∆x(N)T )


(57)

Case 1: k < N .

Iteratively writing (33) gives

∆x(k + 1) = Φ∆x(k) + Γv(k)− w(k)

∆x(k + 2) = Φ∆x(k + 1) + Γv(k + 1)− w(k + 1)

= Φ2∆x(k) + ΦΓv(k) + Γv(k + 1)

−Φw(k)− w(k + 1)

... =
...

∆x(N) = ΦN−k∆x(k) + ΦN−k−1Γv(k)

+

N−k−1∑
i=1

Φi−1Γv(N − i)

−
N−k∑
i=1

Φi−1w(N − i) (58)

Use (32) and (58) to derive (59). Notice that the last two
terms

∑N−k−1
i=1 Φi−1Γv(N − i) and

∑N−k
i=1 Φi−1w(N − i)

in (58) are independent of ε(k). Therefore,

E(sgn(εi(k))∆x(N)T )

= E (sgn (−Hi∆x(k) + vi(k))

×
(

∆x(k)T (ΦN−k)
T

+ v(k)TΓT (ΦN−k−1)
T
))

= E
(
sgn(−Hi∆x(k) + vi(k))∆x(k)T

)
(ΦN−k)

T

+E
(
sgn(−Hi∆x(k) + vi(k))v(k)T

)
ΓT (ΦN−k−1)

T

= Ai(Φ
N−k)

T
+BiΓ

T (ΦN−k−1)
T

(59)
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where Ai and Bi are 1×n and 1×m row vectors respectively
given by

Ai = E
(
sgn(−Hi∆x(k) + vi(k))∆x(k)T

)
=

 E (sgn (−Hi∆x(k) + vi(k)) ∆x1(k))
...

E (sgn (−Hi∆x(k) + vi(k)) ∆xn(k))


T

(60)

Bi = E
(
sgn(−Hi∆x(k) + vi(k))v(k)T

)
=

 E (sgn (−Hi∆x(k) + vi(k)) v1(k))
...

E (sgn (−Hi∆x(k) + vi(k)) vm(k))


T

(61)

In (60) and (61), Ai and Bi are calculated as follows.

Consider Ai. The jth element in Ai in (60) is given by

Aij = E (sgn (−Hi∆x(k) + vi(k)) ∆xj(k)) (62)

where −Hi∆x(k) and ∆xj(k) are correlated. The correla-
tion can be determined as follows.

Corr (−Hi∆x(k),∆xj(k))

=
Cov (−Hi∆x(k),∆xj(k))√

Var(−Hi∆x(k))
√

Var(∆xj(k))
(63)

where Corr(·) denotes correlation. In (63),

Cov (−Hi∆x(k),∆xj(k)) = E ((−Hi∆x(k))∆xj(k))

= E

(
−

n∑
l=1

Hil∆xl(k)∆xj(k)

)
= −HiP

T
j (64)

Var(−Hi∆x(k)) = HiPH
T
i (65)

Var(∆xj(k)) = Pjj (66)

where P is given in (8). Substituting (64), (65) and (66) into
(63) gives

Corr (−Hi∆x(k),∆xj(k)) = −
HiP

T
j√

HiPHT
i

√
Pjj

(67)

Using the correlation in (67), isolate the part of
−Hi∆x(k) in (62) that is independent of ∆xj(k) as follows.

−Hi∆x(k) = −Hi∆x(k) +
HiP

T
j

Pjj
∆xj(k)−

HiP
T
j

Pjj
∆xj(k) (68)

where the expression in the square bracket is independent of
∆xj(k). This can be verified by showing that the correlation
between the square bracket and ∆xj(k) is zero.

Corr

([
−Hi∆x(k) +

HiP
T
j

Pjj
∆xj(k)

]
,∆xj(k)

)

=

Cov
([
−Hi∆x(k) +

HiP
T
j

Pjj
∆xj(k)

]
,∆xj(k)

)
√

Var
[
−Hi∆x(k) +

HiPT
j

Pjj
∆xj(k)

]
Var(∆xj(k))

(69)

Substituting (64), (65), and (8) into (69) gives

Corr

([
−Hi∆x(k) +

HiP
T
j

Pjj
∆xj(k)

]
,∆xj(k)

)
= 0

Finally, substituting (68) into (62) gives

Aij = E

(
sgn

(
−
HiP

T
j

Pjj
∆xj(k)−Hi∆x(k)

+
HiP

T
j

Pjj
∆xj(k) + vi(k)

)
∆xj(k)

)
(70)

= E (sgn (cij∆xj(k) + v̄ij(k)) ∆xj(k)) (71)

where

cij = −
HiP

T
j

Pjj
(72)

v̄ij(k) = −Hi∆x(k) +
HiP

T
j

Pjj
∆xj(k) + vi(k)

Obviously v̄ij(k) is independent of ∆xj(k). Denote the
variance of v̄ij(k) as

s2
v̄ij = Var(v̄ij(k))

= Var(−Hi∆x(k)) + 2Cov

(
−Hi∆x(k),

HiP
T
j

Pjj
∆xj(k)

)

+Var

(
HiP

T
j

Pjj
∆xj(k)

)
+ Var(vi(k)) (73)

Substituting (64), (65), (8) and Var(vi(k)) = Rii into (73)
gives

s2
v̄ij = HiPH

T
i − 2

(HiP
T
j )2

Pjj
+

(HiP
T
j )2

Pjj
+Rii

= HiPH
T
i −

(HiP
T
j )2

Pjj
+Rii (74)

Since ∆xj(k) and v̄ij(k) are independent, (71) can be
solved using

Aij =

∫∫ ∞
−∞

sgn (cij∆xj(k) + v̄ij(k)) ∆xj(k)

×f∆xj(k)fv̄ij(k)d(∆xj(k))d(v̄ij(k)) (75)

where f∆xj(k) and fv̄ij(k) are pdfs given by

f∆xj(k) =
1√

2πPjj
exp

(
−∆xj(k)2

2Pjj

)
(76)

fv̄ij(k) =
1√

2πs2
v̄ij

exp

(
− v̄ij(k)2

2s2
v̄ij

)
(77)

Rewriting (75) gives

Aij = sgn(cij)

∫∫ ∞
−∞

sgn
(

∆xj(k) +
v̄ij(k)

cij

)
∆xj(k)

×f∆xj(k)fv̄ij(k)d(∆xj(k))d(v̄ij(k)) (78)
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Substitute (76) and (77) into (78). Notice that

sgn
(

∆xj(k) +
v̄ij(k)

cij

)
=

{
−1 −∞ ≤ ∆xj(k) ≤ −v̄ij(k)/cij
1 −v̄ij(k)/cij ≤ ∆xj(k) ≤ ∞

Therefore,

Aij = sgn(cij)

∫ ∞
−∞

fv̄ij(k)

×

[∫ −v̄ij(k)/cij

−∞
(−1)∆xj(k)f∆xj(k)d(∆xj(k))

+

∫ ∞
−v̄ij(k)/cij

(+1)∆xj(k)f∆xj(k)d(∆xj(k))

]
d(v̄ij(k))

= sgn(cij)

∫ ∞
−∞

fv̄ij(k)

×

[
2Pjj

1√
2πPjj

exp
(
− (v̄ij(k)/cij)

2

2Pjj

)]
d(v̄ij(k))

= sgn(cij)

√√√√√ 2P 2
jj

π(Pjj +
s2v̄ij
c2ij

)
(79)

Substitute cij and s2
v̄ij from (72) and (74) into (79). Noticing

that Pjj is always positive,

Aij = sgn(−HiP
T
j )

√
2(HiPTj )2

π
(
HiPHT

i +Rii
) (80)

Consider Bi. The jth element in Bi in (61) is given by

Bij = E (sgn (−Hi∆x(k) + vi(k)) vj(k)) (81)

Let z̄i(k) = −Hi∆x(k) whose variance is denoted by s2
z̄i .

Notice that z̄i(k) is independent from vj(k) and

s2
z̄i = Var(−Hi∆x(k)) = HiPH

T
i (82)

Replacing −Hi∆x(k) in (81) with z̄i(k) gives

Bij = E (sgn (z̄i(k) + vi(k)) vj(k)) (83)

If i = j, (83) can be solved as follows. Since vi(k) and
z̄i(k) are independent,

Bii =

∫∫ ∞
−∞

sgn (z̄i(k) + vi(k)) vi(k)fvi(k)

×fz̄i(k)d(vi(k))d(z̄i(k)) (84)

where

fvi(k) =
1√

2πRii
exp

(
−vi(k)2

2Rii

)
(85)

fz̄i(k) =
1√

2πs2
z̄i

exp
(
− z̄i(k)2

2s2
z̄i

)
(86)

Substitute (85) and (86) into (84). Notice that

sgn (vi(k) + z̄i(k))

=

{
−1 −∞ ≤ vi(k) ≤ −z̄i(k)
1 −z̄i(k) ≤ vi(k) ≤ ∞

Therefore,

Bii =

∫ ∞
−∞

fz̄i(k)

[∫ −z̄i(k)

−∞
(−1)vi(k)fvi(k)d(vi(k))

+

∫ ∞
−z̄i(k)

(+1)vi(k)fvi(k)d(vi(k))

]
d(z̄i(k))

=

∫ ∞
−∞

fz̄i(k)

[
2Rii

1√
2πRii

exp
(
− z̄i(k)2

2Rii

)]
d(z̄i(k))

=

√
2R2

ii

π(Rii + s2
v̄ii)

(87)

Substituting s2
z̄i in (82) into (87) gives

Bii =

√
2R2

ii

π
(
HiPHT

i +Rii
)

Finally,

Bij =


√

2R2
ii

π(HiPHT
i +Rii)

i = j

0 i 6= j
(88)

where from (83) Bij = 0 for i 6= j since z̄i(k) + vi(k) is
independent of vj(k).

Case 2: k = N .

From (32), ε(N) = −H∆x(N) + v(N) Therefore, using
(58) and (59)

E(sgn(εi(N))∆x(N)T )

= E
(
sgn(−Hi∆x(N) + vi(N))∆x(N)T

)
= Ai (89)

where Aij is calculated using (80).

Let A = [..., ATi , ...]
T , B = [..., BTi , ...]

T . Substituting
(59) and (89) into (57) gives

E(sgn(ε(k))∆x(N)T )

=

{
A(ΦN−k)

T
+BΓT (ΦN−k−1)

T
k < N

A k = N
(90)

Equations (90), (80) and (88) correspond to (35), (36) and
(37) respectively.
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Point-by-point Response to Editor Comment.

Editor: The paper requires minor revisions as suggested by reviewer.

Response: The paper has been revised accordingly. The reply to the reviewer is given below.
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Point-by-point Response to Reviewer 2 Comment.

Reviewer: Although the authors have revised this manuscript according to reviewers’ comments, the size of the system
(IEEE 30-bus system) is still too small for state estimations. Please conduct simulation studies of practical large-scale
system such as IEEE 118-bus, IEEE 300 Bus, and Polish system as mentioned in Matpower.

Response: A new “Example 5: The IEEE 118-bus System” is added on page 9 of the revised paper as follows.

“A larger IEEE 118-bus system is also used to verify the precision of the proposed method. The PMUs are located according
to [33]. The process matrix, process noise, measurement noise and estimation batch size are chosen as F = diag(..., 0.98, ...),
wi(k) ∼ N (0, 0.00012) for i = 1, ..., 236, vi(k) ∼ N (0, 0.0052) for all measurements i = 1, ..., 452 and N = 3
respectively. The variance of the LAV estimation error calculated from covariance Eq.(28) is given in Table IV Column
(a), and compared with the variance obtained from the 10,000-run Monte-Carlo experiment in Column (b). The percentage
errors between Columns (a) and (b) are given in Column (c). To save space, only 2 states and the SV is presented. The
percentage error of SV between the proposed formula and the 10,000-run Monte-Carlo experiment is 3.5%, which should
be practically acceptable. ”

Table IV is given on page 9 of the revised paper.


