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Electronic health records are being increasingly used in
medical research to answer more relevant and detailed
clinical questions; however, they pose new and signif-
icant methodological challenges. For instance, obser-
vation times are likely correlated with the underlying
disease severity: Patients with worse conditions utilise
health care more and may have worse biomarker val-
ues recorded. Traditional methods for analysing longi-
tudinal data assume independence between observation
times and disease severity; yet, with health care data,
such assumptions unlikely hold. Through Monte Carlo
simulation, we compare different analytical approaches
proposed to account for an informative visiting pro-
cess to assess whether they lead to unbiased results.
Furthermore, we formalise a joint model for the obser-
vation process and the longitudinal outcome within an
extended joint modelling framework. We illustrate our
results using data from a pragmatic trial on enhanced
care for individuals with chronic kidney disease, and
we introduce user-friendly software that can be used
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to fit the joint model for the observation process and a
longitudinal outcome.
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1 INTRODUCTION

The analysis of longitudinal data is essential to understand the evolution of disease and the effect
of interventions over time. A source of longitudinally recorded data that is being used increas-
ingly often in medical research is health care consumption data; that is, data sources that have
been constructed by extracting and linking electronic health records from primary, specialist, and
hospital care with other data sources such as nationwide registries for epidemiological surveil-
lance. Several examples of cohorts constructed in such a way are emerging in a variety of medical
fields: amongst others, kidney disease (Hemmelgarn et al., 2009; Runesson et al., 2016), cardio-
vascular disease (Denaxas et al., 2012), and end-of-life health care (Tanuseputro et al., 2015). Data
cohorts constructed by extracting medical records have thousands—if not millions—of individ-
uals with hundreds of measurements each: The availability to researchers of such vast amount
of data allows answering more relevant and detailed clinical questions but poses new challenges.
In terms of reporting, guidelines have emerged to improve discovery, transparency, and replica-
bility of research finding utilising routinely collected data (Benchimol et al., 2015). In terms of
methodological challenges, first and foremost, observation times are likely to be correlated with
the underlying disease severity in health care consumption data sets. For instance, individuals
tend to have irregular observation times as patients with more severe conditions (or showing early
symptoms of a disease) tend to visit their doctor or go to the hospital more often than those with
milder conditions (and no symptoms). Their worse disease status is also likely to be reflected in
worse biomarkers being recorded at such visits, causing abnormal values of such biomarkers to
be overrepresented and normal values to be underrepresented. Taking this pattern to the extreme,
healthy individuals may not appear in health records at all, leading to cohort selection bias; this
is a separate issue that is not dealt with in this manuscript.

Traditional methods used to analyse longitudinal data rely on the assumption that the under-
lying mechanism that controls the observation time is independent of disease severity; however,
that is unlikely with health care consumption data. It can be shown that failing to account for
informative dropout in a longitudinal study could yield biased estimates of the model parameters
(McCulloch, Neuhaus, & Olin, 2016; Wu & Carroll, 1988), and so does näively applying traditional
methods when the follow-up is irregular and related to the outcome (Pullenayegum & Lim, 2016).
Despite the potential for bias, there is some evidence pointing toward a lack of awareness of the
potential for bias in longitudinal studies with health care data irregularly collected over time: In
a recent literature review on the topic, Farzanfar et al. (2017) showed that 86% of studies did not
report enough information to evaluate whether the visiting process was informative or not, and
only one study used a method capable of dealing with an informative observation process. This is
concerning when the aim of a research project is aetiology.

Bias may arise when data on covariates and outcomes are collected at irregular,
subject-specific intervals; in fact, when analysing data originating from electronic health records,
data is collected only when study subjects consume health care (e.g., by visiting their doctor or
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going to the hospital). As a consequence, visit times are likely to be informative and to depend
on the clinical history of an individual. The visiting process in this setting is therefore deemed
to be informative (or dynamic, outcome dependent). The bias that one may encounter when the
observation process is informative can be classified in two types: selection bias or confounding
(Hernán, McAdams, McGrath, Lanoy, & Costagliola, 2009). Selection bias arises because of the
selection of observed individuals only in the analysis. This bias is the same bias induced by infor-
mative censoring due to loss to follow-up (Hernán, Hernández-Díaz, & Robin, 2004): Censoring
is the extreme case of an observation process where an individual is not observed ever again.
Conversely, confounding arises when there are common causes of both the exposure and the out-
come, for example, when the consequent visit times are decided by physicians or patients based
on, for example, current health status, which itself is associated with the observed longitudinal
outcome. Hernán et al. (2009) describe selection bias and confounding originating from dynamic
observation processes more in detail, including directed acyclic graphs (DAGs) that illustrate the
underlying causal mechanism.

In the past years, several methods have been developed to deal with longitudinal data ter-
minated by informative dropout (Kurland, Johnson, Egleston, & Diehr, 2009); conversely, the
problem of informative visit times has received considerably less attention. Despite that, a few
methods emerged that can be broadly categorised in two families: methods based on inverse inten-
sity of visit weighting (IIVW, an extension of inverse probability of treatment weighting [IPW];
Robins, Rotnitzky, & Zhao, 1995) and methods based on shared random effects (Liu, Huang, &
O'Quigley, 2008). An introduction to the various methods is presented elsewhere (Pullenayegum
& Lim, 2016). Nevertheless, to the best of our knowledge, there is only one comparison existing
in the current literature that yielded negative results: Neuhaus et al. (2018) conclude that fitting
ordinary linear mixed models disregarding the observation process yielded the smallest bias and
showed that adding regular visits to the observation schedule (if possible) reduced that bias even
further.

Throughout this paper, we focus on the problem of informative visiting process by assuming
that the dropout process is not informative. First, we describe characteristics of the observation
process and we define when it can be deemed informative in Section 2. Then, we introduce a
joint model for the observation and longitudinal processes that can be easily extended within a
multivariate generalised linear and nonlinear mixed-effects models framework (Crowther, 2017)
in Section 3, and introduce the IIVW method in more detail in Section 4. We compare the per-
formance of this model against other alternatives that have been introduced in the literature via
Monte Carlo simulation in Section 5. Finally, we illustrate the use of the joint model using data
from a pragmatic trial in chronic kidney disease (CKD) and discuss our conclusions in Sections 6
and 7, respectively.

2 CHARACTERISTICS OF THE OBSERVATION PROCESS

An observation process can have regular or irregular visits. With regular visits, the jth visit time
for the ith individual Tij is the same for all individuals: Tij = tj ∀ i, j, with i = 1, 2, … ,n and
j = 1, 2, … ,ni. Conversely, with irregular visits that is no longer true. With irregular visits, the
observation process—denoted by the counting process Ni(t)—can be defined to be completely at
random when visit times and outcomes are independent (Pullenayegum & Lim, 2016):

E[ΔNi(t)|Ȳi(∞), X̄i(∞)] = E[ΔNi(t)],
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where ΔNi(t) = Ni(t) − Ni(t−), with t− being the instant of time right before t. Ȳi(∞) and X̄i(∞)
denote the values of outcome and covariates for any t > 0.

The observation process can be deemed informative when it is not completely at random, that
is, when the condition above is not verified. In that case, it is possible to identify the following
two scenarios.

• Observation process at random, when visiting at time t is independent of the outcome at time
t given data recorded up to time t:

E
[
ΔNi(t)|X̄i(t), N̄i(t−), Ȳ obs

i (t−),Yi(t)
]
= E

[
ΔNi(t)|X̄obs

i (t), N̄i(t−), Ȳ obs
i (t−)

]
,

where X̄i(t) and X̄obs
i (t) denote the covariates history up to time t and its observed values, N̄i(t−)

denotes the history of the observation process up to time t−, and Ȳ obs
i (t−) denotes the observed

values of the outcome up to time t−.
• Observation process not at random, where the definition of missing at random does not hold.

That is, the scenario where visiting at time t is not independent of the outcome at time t, even
after conditioning on data recorded up to time t:

E
[
ΔNi(t)|X̄i(t), N̄i(t−), Ȳ obs

i (t−),Yi(t)
] ≠ E

[
ΔNi(t)|X̄obs

i (t), N̄i(t−), Ȳ obs
i (t−)

]
.

Gruger, Kay, and Schumacher (1991) illustrate four possible models that could be linked to
the abovementioned scenarios.

1. The examination at regular intervals model, consisting of observation times that are predefined
and equal for all patients. This scenario yields the so-called balanced panel data.

2. The random sampling model, consisting of a sampling scheme (e.g., an observation process)
that is not predefined, but still independent of the disease history of the study subjects.

3. The doctor's care model, consisting of an observation process that depends on the charac-
teristics of the patient at the moment of the current doctor's examination. For instance, a
doctor could require stricter monitoring for subjects with more advanced disease status or
with abnormal values of a biomarker.

4. The patient self-selection model, yielding observations that are triggered by the patients them-
selves. According to this model, patients may choose to visit their doctor when they feel
unwell, or they may choose to skip a visit that was preplanned when they feel the treatment
they are receiving is not beneficial to their health status. Unfortunately, the factors that cause
patients to self-select themselves are generally unknown or not recorded.

Models (1) and (2) could be characterised as observation completely at random; model (3) could
be characterised as observation at random; finally, model (4) could be characterised as observation
not at random.

3 A JOINT MODEL FOR THE OBSERVATION PROCESS AND
A LONGITUDINAL OUTCOME

Let Dij(t) = I(Tij = t) denote the presence of an observation at time t for the ith individual:
At each Dij(t) = 1, a new observation of the longitudinal outcome Yij is recorded. Let t̃i𝑗 be the
gap time between the jth and ( j + 1)th measurement for the ith individual. Let d̃i𝑗 be the binary
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indicator variable that denotes whether the gap time t̃i𝑗 is observed (or not). In practice, gap times
are always observed except when the observation process is censored at the end of follow-up, for
example, the date when the data extraction occurs. Let zij be the covariate vector for the longi-
tudinal outcome, and let wi be the covariate vector for the observation process; zij and wi do not
necessarily overlap, and it is assumed that both could be extended to include time-dependent
exogenous covariates (e.g., wij). We model the observation process and the repeated measures
process using a joint longitudinal and survival model. Conditional on random effects ui, the sub-
model for the time to each observation is a proportional hazards model with hazard for gap
time t̃i𝑗 :

r
(

t̃i𝑗|wi𝑗 ,ui, 𝜃t
)
= r0(t̃i𝑗) exp(wi𝑗𝛽 + ui), (1)

where 𝜃t = 𝛽. The submodel for the jth longitudinal observation for the ith individual is

(𝑦i𝑗|Di𝑗(t) = 1, zi𝑗 ,ui, vi, 𝜃𝑦) = mi𝑗 + 𝜖i𝑗 = zi𝑗𝛼 + 𝛾ui + vi + 𝜖i𝑗 , (2)

where 𝜖i𝑗 ∼ N(0, 𝜎2
𝜖 ) and 𝜃𝑦 = {𝛼, 𝛾, 𝜎2

𝜖 }.
Equation (1) is a recurrent-events model for the observation process, with r0(t̃i𝑗) any para-

metric or flexible parametric (Royston & Parmar, 2002) baseline hazard function (also referred
to as baseline intensity—we use the terms hazard and intensity interchangeably throughout this
manuscript). Equation (2) is a linear mixed model for the longitudinal outcome with a random
intercept vi. The two processes are linked together via the shared, individual-specific, random
effect ui. Including the 𝛾 parameter in the longitudinal model allows for an association between
the two equations, association that will be estimated from data; when 𝛾 = 0, the two processes
are independent of each other; that is, the observation process is not informative. Finally, we
assume that the random effects follow a multivariate normal distribution with null mean vector
and variance–covariance matrix Σu,v.

The model is fitted using maximum likelihood; the individual-specific contribution to the
likelihood can be written as

Li(𝜃) = ∫ p
(

t̃i𝑗 , d̃i𝑗 , 𝑦i𝑗 , bi; 𝜃
)

dbi

= ∫
ni∏
𝑗=1

p
(

t̃i𝑗 , d̃i𝑗|bi, 𝜃t
)

p(𝑦i𝑗|bi, 𝜃𝑦)p(bi|𝜃b)dbi,

where 𝜃 = {𝜃t, 𝜃y, 𝜃b} is the overall parameters vector, bi = {ui, vi} is the vector of random effects,

p
(

t̃i𝑗 , d̃i𝑗|bi, 𝜃t
)
= r

(
t̃i𝑗|wi𝑗 ,ui, 𝜃t

)d̃i𝑗 exp

(
−∫

t̃i𝑗

0
r(s|wi𝑗 ,ui, 𝜃t)ds

)

is the contribution to the likelihood of the time to the jth observation in individual i,

p(𝑦i𝑗|bi, 𝜃𝑦) =
(
2𝜋𝜎2

𝜖

)−1∕2 exp
(
−
(𝑦i𝑗 − mi𝑗)2

2𝜎2
𝜖

)
is the contribution of the jth longitudinal observation, and p(bi|𝜃b) is the density of the random
effects. The likelihood does not have a closed form, as it is necessary to integrate out the distri-
bution of the random effects; methods such as Gaussian quadrature and Monte Carlo integration
can be used for that purpose (Pinheiro & Bates, 1995).
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FIGURE 1 Simplified directed acyclic graph depicting a joint model for a longitudinal
outcome and its observation process

A simplified DAG that illustrates how the joint model accounts for the correlation between
a longitudinal outcome Y and its observation process R is included as Figure 1 (Liu, Zheng, &
Kang, 2018); X represents covariates included in the model, and U represents the shared ran-
dom effects. After adjusting for all covariates (e.g., confounders) X, the longitudinal outcome
and the observation process are associated only through the shared U. However, when estimat-
ing the joint model, we assume a distribution for U (e.g., Gaussian) and we integrate it out of
the marginal likelihood, blocking the path between Y and R. Therefore, for the joint model to
be valid, the observation process has to be at least at random, according to the definition of
Section 2.

This model is nested within a wide family of multivariate generalised linear and nonlinear
mixed-effects models (Crowther, 2017). The model presented in this section can easily be extended
to multiple random effects (potentially nested within each other), to different parametric and
flexible parametric baseline hazard formulations for the recurrent-events model, and to include
other outcomes (e.g., a dropout process, or a second longitudinal outcome); we focus on the model
formulated in this section for simplicity. Finally, this joint model (and several extensions) can
be easily fitted in Stata using the user-written command merlin (Crowther, 2018). We produce
example code that is included in the Online Supplementary Material.

4 INVERSE INTENSITY OF VISIT WEIGHTING

The bias induced by an informative observation process can be adjusted by using the IIVW
method first proposed by Robins et al. (1995) as an extension of the IPW method (Cole & Hernán,
2008). This method was further developed by Båžková and Lumley (2007), and there are a few
examples of this method applied in practice (Båžková, Brown, & John-Stewart, 2010; Van Ness,
Allore, Fried, & Lin, 2009). The IIVW approach accommodates an informative observation pro-
cess in a marginal regression model by weighting each observation by the inverse of the probability
of each measurement to be recorded. This approach creates a pseudopopulation in which the
observation process is static and can be ignored. The weights can be estimated by fitting a regres-
sion model including all covariates that inform the observation process and further stabilised
to increase efficiency (Cole & Hernán, 2008). The weighting model could include current and
past values of any covariate that may affect the visiting process; however, as with IPW, all covari-
ates that might be related to the observation process should be included in the weighting model;
otherwise, bias will incur.

The approach we illustrate follows from Van Ness et al. (2009). The model used to estimate
weights is an Andersen-Gill recurrent-events model (Andersen & Gill, 1982) for the observation
process, assuming a gap-time scale (as described in Section 3):

r
(

t̃i𝑗
)
= r0

(
t̃i𝑗
)

exp(zi𝜂),
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where t̃ are gap times between consecutive observations, ri(t̃) is the intensity of visit for individual i
at gap time t̃, r0(t̃) is the unspecified baseline intensity at gap time t̃, and zi is a vector of coefficients
that are assumed to accurately describe the observation process for individual i. 𝜂 is a vector of
regression coefficients that is estimated using the Cox partial likelihood method and a robust
jack-knife estimator for the variance of the regression coefficients. The inverse intensity of visit
weights are estimated by taking the inverse of the linear predictor exp(zi𝜂̂) at each time point,
and further normalised by subtracting the mean inverse weight and adding the value 1 to each
weight; the distribution of the weights is therefore centred on the value 1. Finally, two further
adjustments are needed. First, because the last data entry for each individual represents the end of
follow-up of the study, each weight is shifted by one time point. Second, given that each individual
is observed at least once (i.e., at baseline), a weight of one is assigned to the first observation of
each individual.

The marginal model for the longitudinal outcome is then fit using generalised estimating
equations and including the normalised inverse intensity of visit weights as probability weights
in the model. The model has the form

E(𝑦i𝑗) = 𝛼0 + Zi𝛼1 + ti𝑗𝛼2,

and can be fit using readily available statistical software. We use the Stata command glm.

5 A MONTE CARLO SIMULATION STUDY

Aim
We design a simulation study aimed to assess the impact of ignoring the observation process in
longitudinal mixed-effects models when the observation process is informative.

Data-generating mechanisms
We simulate data from the following joint model:

r(t̃) = r0(t̃) exp(Zi𝛽 + ui)
𝑦i𝑗|(Di𝑗(t) = 1) = 𝛼0 + Zi𝛼1 + ti𝑗𝛼2 + 𝛾ui + vi + 𝜖i𝑗 .

Zi is a time-invariant covariate (for simplicity) representing a binary treatment, simulated from
a Bernoulli random variable with probability 0.5: Zi ∼ Bern(1, 0.5). The coefficient associated to
the treatment variable is 𝛽 = 1 for the observation process; 𝛼1 = 1 for the longitudinal process.
The fixed intercept of the longitudinal model is 𝛼0 = 0, and the fixed effect of time is 𝛼2 = 0.2. The
random effects ui and vi are simulated from a Normal random variable with null mean and vari-
ance 𝜎2

u = 1 and 𝜎2
v = 0.5, respectively. The residual error of the longitudinal model is assumed

to follow a Normal distribution with null mean and variance 𝜎2
𝜖 = 1. We assume independence

between the random effects and the residual variance, and between random effects (i.e., Σu,v is a
diagonal matrix with diag(Σu,v) = {𝜎2

u, 𝜎
2
v }). We assume independent random effects for simplic-

ity, but we show in the Online Supplementary Material how to fit a joint model with correlated
random effects. The joint model with correlated random effects can be thought of as a reparame-
terisation of the joint model with independent random effects, where the association parameter 𝛾
is related to the correlation between the two random effects in the bivariate version. The baseline
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hazard from the recurrent visit process is assumed to follow a Weibull distribution with shape
parameter p = 1.05; we vary the scale parameter 𝜆 and, therefore, the baseline intensity of the
visiting process, with 𝜆 = {0.10, 0.30, 1.00}. These baseline intensities along with the value of 𝛽
correspond to an expected median gap time between observations of 5.83 and 2.25 years for unex-
posed and exposed individuals if 𝜆 = 0.10, 2.05, and 0.79 years if 𝜆 = 0.30, and 0.65 and 0.25
years if 𝜆 = 1.00, respectively. Each observation time is simulated using the inversion method
of Bender, Augustin, and Blettner (2005), assuming a gap-time scale (where the time index is
reset to zero after the occurrence of each observation; the resulting recurrent-events model is
then a semi-Markov model). We vary the association parameter 𝛾 between the two submodels,
with 𝛾 = {0.00, 1.50}; we expect all models to perform similarly when 𝛾 = 0, that is, when the
longitudinal process is independent of the observation process.

In addition to simulating data from the joint model above, we generate the observation pro-
cess by drawing from a Gamma distribution. Specifically, we draw the observation times from a
Gamma distribution with shape = 2.00 and scale:

exp(−𝜓𝛽Zi + 𝜉i),

where 𝜉i is simulated from a Normal distribution with null mean and variance 𝜎2
𝜉
= 0.1. Zi is the

same binary treatment covariate as before, with the same associated parameter 𝛽 = 1. The value
of 𝜓 defines the association between the observation, for example, when 𝜓 = 0, the observation
process is not informative; we set 𝜓 = {0.00, 2.00}. We also simulate a scenario where the obser-
vation process depends on treatment and on previous values of the longitudinal outcome Y. In
this setting, we draw observation times from a Gamma distribution with shape = 2.00 and scale

exp(−𝜓𝛽Zi + 𝜔𝑦i,𝑗−1 + 𝜉i)

for the jth observation time of the ith individual, with𝜓 = 2.00 and𝜔 = 0.20. Finally, we simulate
a scenario from a joint model to which we add regular (i.e., planned) visits every year, as suggested
by Neuhaus et al. (2018). We simulate this scenario from the abovementioned joint model, and we
set 𝛾 = 3.00 and 𝜆 = 0.05 to obtain an observation process that is sparse and strongly associated
with the longitudinal outcome.

We simulate 200 study individuals under each data-generating mechanism and the recur-
rent observation process continues for each individual until the occurrence of administrative
censoring, which we simulated from a Unif(5, 10) random variable.

We define the last gap time for each individual as the difference between the last observation
and the censoring time.

Estimands
The main estimand of interest is the vector of regression coefficients 𝛼 = {𝛼0, 𝛼1, 𝛼2}, with specific
focus on the treatment effect 𝛼1. In the Online Supplementary Material, we also report on the
estimated association parameter 𝛾 and on the estimated variance of the random effects and the
residual errors: 𝜎2

u, 𝜎2
v , and 𝜎2

𝜖 .

Methods
We fit five competing models to each simulated data set:

1. Model A, the joint model described above (at the beginning of the “Data-generating mecha-
nisms” section) and corresponding to the true data-generating mechanisms when simulating
data from a joint model;
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2. Model B, a linear mixed model including the number of visits (centred on the mean value) as
a fixed effect in the model;

3. Model C, a linear mixed model including the cumulative number of visits as a fixed effect in
the model;

4. Model D, a linear mixed model that disregards the observation process completely;
5. Model E, a marginal model fitted using generalised estimating equations and inverse intensity

of visit weights.

Model A is fit using merlin (Crowther, 2018) and gsem in Stata. Model B follows from pre-
vious work by Goldstein, Bhavsar, Phelan, and Pencina (2016), where they demonstrate that,
conditioning on the number of health care encounters, it is possible to remove bias due to an
informative observation process (they denote this bias as “informed presence bias”). We therefore
include the number of observations per individual, centred on the mean value, in a mixed-effects
model for the longitudinal outcome:

𝑦i𝑗 = 𝛼0 + Zi𝛼1 + ti𝑗𝛼2 + nc
i𝛼3 + vi + 𝜖i𝑗 ,

with vi a random intercept and nc
i the number of observations for the ith individual. Model C is

analogous to Model B, adjusting for the cumulative number of measurements up to time j instead,
denoted as n̄it𝑗 :

𝑦i𝑗 = 𝛼0 + Zi𝛼1 + ti𝑗𝛼2 + n̄it𝑗 𝛼3 + vi + 𝜖i𝑗 .

Model D is analogous to Models B and C, assuming 𝛼3 = 0. Models B, C, and D are fit using
the mixed command in Stata. Models A, B, C, D are fit assuming an independent structure for
the variance–covariance matrix of the random effects. Finally, Model E is fitted following the
two-stage procedure presented in Van Ness et al. (2009) and illustrated in Section 4.

Performance measures
We will assess average estimates and standard errors, empirical standard errors, bias, and cover-
age probability of 𝛼̂m, with m = {0, 1, 2}. However, the main performance measures of interest
are bias and coverage probability: the former quantifies whether an estimator targets the true
value on average, whereas the latter represents the proportion of times that a confidence inter-
val based on 𝛼̂m,k and ŜE(𝛼̂m,k) contains the true value 𝛼m, with k indexing each replication.
We compute and report Monte Carlo standard errors to quantify the uncertainty in estimat-
ing bias and coverage (Morris, White, & Crowther, 2019). If we assume that Var(𝛼̂m) ≤ 0.1
(or, equivalently, SE(𝛼̂m) ≤ 0.32) and we require a Monte Carlo standard error for bias of
0.01 or lower, given that MCSE(Bias) =

√
Var(𝛼̂m)∕K, we would require a number of repli-

cations K = 1,000. The assumed standard error is larger than the standard errors reported by
Liu et al. (2008) for a model similar to Model A. The expected Monte Carlo standard error for
coverage, assuming a worst-case scenario of coverage = 0.50, would be 0.02, which we deem
acceptable. Therefore, we proceed by simulating 1,000 independent data sets for this simulation
study.

Software
The simulation study is coded and run using Stata version 15, built-in functions (such as mixed,
glm,gsem), and the user-written commandssurvsim (Crowther & Lambert, 2012) andmerlin
(Crowther, 2018); results of the simulation study are summarised using R (R Core Team, 2019)
and the R package rsimsum (Gasparini, 2018). All the codes required to simulate data, fit each
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model, and produce summary tables and figures are publicly available on the GitHub page of the
first author (https://github.com/ellessenne/infobsmcsim).

Results
We focus on results for the estimated treatment effect 𝛼1, which are depicted in Figure 2. Tab-
ulated values are included in the Online Supplementary Material, alongside results for the
other regression coefficients 𝛼0, 𝛼2, estimated variances of the random effects, summaries for
the association parameter 𝛾 , and convergence rates of each model under each data-generating
mechanism.

Descriptive results Each simulated data set had 200 distinct individuals; summary descrip-
tive statistics for each data-generating mechanism are included in Table 1. The median sample
size per simulated data set varied between 666 and 4,482, the median number of measurements
per individual varied between 2 and 13, and the median gap time between observations varied
between 0.13 and 1.31 (years). In simulated scenarios from the joint model, as expected, a higher
baseline intensity of visit process yielded more frequent measurements and a larger number of
measurements overall; values were not affected by the association parameter.

Results for noninformative observation processes When the observation process was not
informative, all models estimated regression coefficients with null to negligible bias. Coverage
probability of the regression coefficients was also optimal, with slight undercoverage for the
intercept term 𝛼0 and the treatment effect 𝛼1 for estimates originating from the IIVW model.
Mean squared errors were similar across the range of scenarios with a noninformative obser-
vation process. Bias for the variance of the residual error term was null to negligible as well,
with good coverage. Conversely, the variability of the random intercept v was estimated with
slight negative bias from all models, with subpar coverage (between 90% and 95 %); this is
expected as we use maximum likelihood and not restricted maximum likelihood. Finally, the
estimated variance of the random effect linking the two outcomes in the joint model was posi-
tively biased with coverage of approximately 75%; the magnitude of bias decreased as the baseline
intensity 𝜆 increased.

Results for informative observation processes When generating data from a Γ distribu-
tion depending on treatment only, all models were able to estimate the regression coefficients
with no bias, optimal coverage probability, and comparable mean squared errors. Conversely,
in all other scenarios, the models performed quite differently. In the scenario with observation
times simulated from a Γ distribution depending on treatment and previous values of the lon-
gitudinal outcome, all models but Model B (adjusting for the number of measurements) could
estimate the treatment effect with null or minimal bias; Model B overestimated the treatment
effect. The same pattern was observed for coverage of the treatment effect, with Model B under-
covering, and for the mean squared errors. The effect of time was estimated with small bias and
good coverage from all models, with Model E (IIVW model) performing slightly worst; mean
squared errors were comparable. In scenarios simulated from a joint model, as expected, the joint
model (Model A) performed best overall, with minimal to no bias, optimal coverage, and the low-
est mean squared errors. Model C (adjusting for the cumulative number of measurements) and
Model D (plain mixed model) overestimated the intercept term and underestimated the treat-
ment effect whilst showing small bias when estimating the effect of time. Interestingly, both

https://github.com/ellessenne/infobsmcsim
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FIGURE 2 Bias (a), coverage (b), and mean squared error (c) of the estimated treatment effect 𝛼1. The orange
colour identifies scenarios where the summary statistics were significantly different than the target value (0 for
bias, 95% for coverage) using Z-tests based on estimated Monte Carlo standard errors
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TABLE 1 Summary characteristics of simulated data under each data-generating mechanism

Data-generating mechanism Sample size No. of measurements Gap time

Γ distribution not 938 (918–957) 4 (3–6) 1.31 (0.74–2.17)
depending on treatment
JM (𝛾 = 0.00, 𝜆 = 0.10) 666 (634–705) 2 (1–4) 0.91 (0.33–2.12)
JM (𝛾 = 0.00, 𝜆 = 0.30) 1,564 (1,475–1,667) 5 (2–9) 0.37 (0.13–0.94)
JM (𝛾 = 0.00, 𝜆 = 1.00) 4,489 (4,188–4,815) 13 (6–27) 0.13 (0.04–0.33)
Γ distribution depending 3,444 (3,296–3,606) 11 (4–28) 0.23 (0.12–0.41)

on treatment
Γ distribution depending on Y 2,564 (2,457–2,670) 9 (4–20) 0.31 (0.16–0.60)

treatment and previous
JM (𝛾 = 1.50, 𝜆 = 0.10) 669 (637–707) 2 (1–4) 0.90 (0.33–2.11)
JM (𝛾 = 1.50, 𝜆 = 0.30) 1,556 (1,461–1,654) 5 (2–9) 0.37 (0.13–0.94)
JM (𝛾 = 1.50, 𝜆 = 1.00) 4,482 (4,218–4,794) 13 (6–26) 0.13 (0.04–0.33)
JM (𝛾 = 3.00, 𝜆 = 0.05) 1,842 (1,818–1,867) 9 (7–10) 1.00 (1.00–1.00)

with regular visits

Note. Values are median with interquartile interval.

models showed that the bias when estimating the effect of time decreased as the baseline inten-
sity 𝜆 increased: as expected, including more measurements allows to better estimate the effect
of time. Model B performed worst when estimating the effect of treatment, with large negative
bias. It also yielded biased intercept and effect of time; however, as with Models C and D, bias for
the estimate of time decreased as more measurements were available. Finally, Model E slightly
overestimated the effect of treatment. Model E showed increasing bias when estimating the inter-
cept as the visiting process was denser, whilst (analogously as with Models B, C, and D) showing
less biased estimates of the effect of time as the baseline intensity increased. All models with
the largest biases showed also poor coverage and the largest standard errors. Overall, in settings
simulated from a joint model, Model B and Model E performed worse and showed the largest
biases. In the scenario simulated from a joint model with a sparse observation process and reg-
ular yearly visits, the joint model (Model A) and the plain mixed model (Model D) performed
best, managing to recover the true values of all regression coefficients with no bias, and opti-
mal coverage probabilities and mean squared errors. Model B managed to estimate the effect of
time with small bias, but largely overestimated the intercept and underestimated the treatment
effect. Model C managed to estimate the intercept and the treatment effect with small or no bias,
but severely underestimated the effect of time. Coverage and mean squared errors followed the
same pattern.

Results for the association parameter 𝜸 The estimating procedure worked well when the
two submodels were not associated. For instance, there was no bias, coverage probabilities were
optimal, and mean squared errors were small, irrespectively of the baseline intensity of visit 𝜆.
Conversely, when the submodels were associated (𝛾 = 1.50), the estimated association parame-
ter was slightly negatively biased (−0.11 to −0.06), with suboptimal coverage (75% to 83%). Mean
squared error decreased when the baseline intensity of visit increased. Finally, the scenario sim-
ulated from a joint model with a strong association parameter 𝛾 = 3.00 and regular visits showed
the worst performance, with large negative bias (−3.7289), poor coverage, and large mean squared
error. Including regular visits caused 𝛾 to shrink toward the null, with a median estimate of
−0.7289.
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Convergence rates Convergence rates for all models included in this comparison were gen-
erally good. All models showed a perfect convergence rate of 100% except the joint model, which
showed a lower convergence rate of 96% and 99% in two simulated scenarios, both with an infor-
mative observation process. However, the remaining scenarios showed a perfect convergence rate
for the joint model as well.

6 APPLICATION

We fit the models included in this comparison to data obtained from the Primary–Secondary
Care Partnership to Prevent Adverse Outcomes in Chronic Kidney Disease (PSP-CKD) study
(ClinicalTrials.gov Identifier: NCT01688141; Major et al., 2019). PSP-CKD is a cluster-randomised
controlled pragmatic trial of enhanced CKD care against usual primary care management.
From the Nene Clinical Commissioning Group, Northamptonshire, UK, 49 primary care prac-
tices were randomised to either enhanced care or usual care; informed consent was provided
at the practice level. Adult individuals with CKD were identified from each practice by using
a research version of the web-based CKD management and audit tool IMPAKT (available
at http://www.impakt.org.uk/); all data were anonymised prior to removal from the primary
care practice. Individuals were included if a recorded estimated glomerular filtration rate
(eGFR) below 60 ml/min/1.73 m2 was found during 5 years before the date of randomisa-
tion; eGFR was estimated using the Modification of Diet in Renal Disease (MDRD) equation
(Levey et al., ).

We extracted baseline data (collected retrospectively at the date of randomisation and up
to 5 years prior) from the PSP-CKD study consisting of all longitudinal eGFR measurements
recorded during routine visits to the practices prior to randomisation; we also extracted the
gender of each participant. This resulted in 239,468 eGFR measurements for 36,527 individ-
uals, of which 14,268 (39%) were males and the remaining 22,259 (61%) were females. The
median gap time between observations was 0.35 years (129 days), with interquartile interval of
0.11 – 0.74 years (39 – 272 days). We aim to evaluate whether the longitudinal eGFR trajectory
before randomisation to treatment differs between males and females.

We start by evaluating whether the visiting process could be informative. First, we computed
Spearman's rank correlation between gap time and gender: (𝜌 = 0.01). The correlation coeffi-
cient was significantly different than zero. Second, we fitted a linear mixed model for gap time
versus gender with a random intercept and a random gender effect, and we found a significant
association, as females had an 8.56-day-longer gap time (95% CI: 5.58 – 11.54). Finally, fitting the
Andersen-Gill model for the observation process as described in Section 4 with gender as the only
covariate included in the model yielded a hazard ratio of 0.9589 (with 95% C.I.: 0.9398 – 0.9783)
for females compared with males. In conclusion, we found the gap time to be associated with
gender; hence, we deem the visiting process to likely be informative.

We fit the models included in the comparison, with gender as the binary exposure variable.
The joint model included gender as the only covariate in the observation process submodel, and
so did the recurrent-events model utilised to fit weights for the IIVW model.

The estimated coefficients for the longitudinal trajectory from each model are presented
in Figure 3. The marginal model estimated an intercept and gender effect significantly differ-
ent than the other four models: Specifically, the estimated intercept from the marginal model
was approximately two units lower, and the effect of gender was approximately seven times
higher and statistically significant, compared to a nonstatistically significant effect of gender

http://www.impakt.org.uk/
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estimated by the remaining models. The estimated effect of time was similar between all mod-
els (approximately -0.70 per unit of time), with the exception of the mixed model adjusting for
the cumulative number of measurements as a time-varying covariate (estimated effect of approx-
imately −0.60). The interaction between gender and time was similarly estimated by all models,
ranging between 0.4679 and 0.5158, and was statistically significant. This showed that females
had a slower decline in renal function over time compared to men. The estimated coefficient
for the observation process from the joint model shows a reduced risk of having a measured
value for females compared to males (approximately 6%, hazard ratio of 0.9417 with 95% CI:
0.9245 – 0.9589). This value, jointly with the estimated value of the association parameter 𝛾
(-3.8018, 95% CI: -3.9943 to -3.6092), seem to confirm that the observation process is informed
by gender.

Overall, all models estimated a similar longitudinal trajectory (Figure 4), with the IIVW model
being the exception. We saw in the results of our simulations in Section 5 that the IIVW model
yielded biased results for the exposure and the intercept of the longitudinal model under a variety
of scenarios, and we observe this difference in our applied setting as well. Interestingly, all other
models performed similarly, even the mixed model adjusting for the total number of measure-
ments; our simulations showed that the effect of a binary exposure was estimated with bias, but
we did not saw this difference in practice.
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FIGURE 3 Forest plot with estimated coefficients for the longitudinal component, models fit to the
application data from the PSP-CKD study. Each estimated coefficient is included as text placed on the leftmost
side of each subplot. PSP-CKD = Primary–Secondary Care Partnership to Prevent Adverse Outcomes in Chronic
Kidney Disease
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7 DISCUSSION

In this article, we formalise the problem of informative visiting process within a framework of
multivariate generalised linear and nonlinear mixed-effects models, including causal considera-
tions. Via Monte Carlo simulation, we illustrate (1) how ignoring an informative visiting process
leads to biased estimates of the regression coefficient of a longitudinal model and (2) we com-
pare some of the methods that have been proposed in the literature to account for it. To the best
of our knowledge, there is only one comparison currently in the literature (Neuhaus et al., 2018),
albeit they include different models in their comparison and simulate an informative observation
process differently by first generating a grid of potential observation times and then relating the
probability of being observed to a given functional form of current (or lagged) covariates. They also
do not include a joint model analogous to the model introduced in our manuscript in Section 3
in their comparison.

As expected, the joint model that accounts for the informative observation process by mod-
elling it via a recurrent-events survival model performed best. Interestingly, the mixed-effects
model that disregarded completely the observation process performed worse than the joint model,
but outperformed other methods; the inflation in the variance of the random intercept of the
plain mixed model seemed to capture part (if not most) of the variability due to the observation
process, although this result needs to be thoroughly tested in more complex scenarios (e.g., with
random effects of time, etc.). The mixed models adjusting for the total number of measurements or
the cumulative number of measurements (as a time-varying covariate) performed worst, and we
would not recommend their usage in practice in these settings; this finding contrasts the findings
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of Goldstein et al. (2016), although their settings were quite different than ours. Further to that,
they acknowledged the potential for collider bias (due to conditioning on a collider, the number of
measurements) when the phenotyping algorithm for determining the exposure has high sensitiv-
ity; indeed, in our settings, the sensitivity is perfect as there is no misspecification of the exposure.
An additional possible explanation could be that, in our settings, the model adjusting for the total
number of measurements is in fact conditioning on the future, as the total number of observations
is not determined at the beginning of the study. This may be explaining the poor performance of
this method in the settings of our simulations. The performance of the marginal model fitted using
generalised estimating equations and inverse intensity of visit weights laid between the plain
mixed model and the remaining mixed models; furthermore, its performance seemed to improve
when the observation pattern became denser, except for the intercept term 𝛼0. This pattern was
generally observed throughout all scenarios and models, as the performance seemed to increase
with more frequent observation patterns; this finding is consistent with Hernán et al. (2009). The
results of our simulations are consistent with those of Neuhaus et al. (2018): The IIVW approach
showed bias in all the settings of their simulation where the observation process was informa-
tive, even when adding regular visits to the study. To compute the weights of the IIVW approach,
applied researchers need to correctly specify the model for the visit process, a challenging task,
especially when not all the information required to fit the correctly specified model is observed
(or known). We also observed that the IIVW model performed quite differently than the other
methods in our applied example, although the observed difference does not seem to be clinically
relevant.

Most importantly, our simulations show that, under the null, all the approaches compared in
this study produce unbiased estimates of the regression coefficients, the implication being that
overmodelling the observation process does not seem to introduce bias in the analysis. In settings
where it is not clear whether the observation process is informative or not, fitting the joint model
would provide applied researchers with a method for estimating (and testing) the association
between the two outcomes: This could be especially useful, for example, as a sensitivity analysis
of standard mixed-effects models.

The joint model for the observation process and a longitudinal outcome that we described in
Section 3 can be further extended. For instance, additional random effects could be introduced
in the model to account for, say, heterogeneity in the trajectory of the longitudinal outcome over
time. The functional form of the effect of time (both fixed and random) could also be gener-
alised by using fractional polynomials or splines; the longitudinal trajectories need to be modelled
appropriately and best fit could be assessed via information criteria such as the Akaike informa-
tion criterion and Bayesian information criterion. In fact, in the applied example of Section 6, we
assumed a linear effect of time on eGFR for simplicity; in actual applied projects, one should assess
whether the final model is correctly specified. One could also extend the model to account for
time-varying treatments, in both the observation process and longitudinal outcome submodels.
That would however require further investigations to assess the performance of the joint model
in those settings.

We assumed the treatment to be constant over time for simplicity, but in real-life settings,
individuals are likely to start and drop treatment when deemed necessary by their treating physi-
cian. We assumed the baseline hazard of the recurrent-events model for the observation process
to follow a Weibull distribution: This assumption could be further relaxed, and one could assume
any parametric function, or even use flexible, spline-based formulations (e.g., Royston & Parmar,
2002). Additionally, for diseases with a high mortality rate, a terminal event that truncates obser-
vation of the longitudinal process is likely to be informative in the sense that it likely correlates
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with disease severity. That is, dropout is likely to be informative as the tendency to drop out after
the occurrence of a terminal event is related to the current level of the longitudinally recorded
biomarker. The proposed model could be easily extended to include a third equation with a
time-to-event submodel for the dropout process, as in Liu et al. (2008). All of these extensions
can be fit within the general framework of Crowther (2017) using the Stata command merlin.
Finally, we could explore the association structure between the two submodels. For instance,
we could reverse the association structure and include 𝛾 in the observation submodel: In that
setting, assuming a positive association, higher values of the longitudinal process would lead
to a more frequent visiting process (and vice-versa in the setting of negative association). The
observation process could also depend on lagged values of the longitudinal outcome or of the expo-
sure; this would relax the semi-Markov assumption in some of our data-generating mechanisms.
More biologically (and clinically), plausible association structures (such as the current value, cur-
rent slope, cumulative effect parametrisations) could also be investigated; more details are in
Rizopoulos (2012).

In conclusion, it is important to account for the visiting process when analysing health care
utilisation data, and we showed that ignoring it leads to biased estimates. Given the wide range
of applied settings in which this could be relevant, the review of Farzanfar et al. (2017) points
toward a lack of awareness of the problem and the lack of readily available, user-friendly soft-
ware to fit more complex joint models; throughout this paper, we outlined a framework in which
merlin could be easily used to fit complex joint model and help to reduce this translational gap.
We provide example code using Stata in the Online Supplementary Material.
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