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Research over the past 20 years has revealed new functions of
the phloem beyond resource allocation to a system that com-
bines distribution and messaging (Thompson and van Bel, 2013)
analogous to the circulatory and nervous systems in animals.
Apart from allocating resources for maintenance and growth,
the phloem distributes hormonal signals and a broad spectrum
of protein- and RNA-based messages throughout the plant to
regulate a myriad of physiological and developmental processes.
Resources and signals, collectively, coordinate development, and
growth as well as integrate responses to both biotic and abiotic
environmental challenges. The transport of organic compounds
such as sugars, amino acids, and lipidic substances through the
phloem are exploited by a vast and diverse range of pathogens
such as viruses, fungi, nematodes, aphids, and other phloem-
feeding insects. Given its ubiquitous occurrence in land plants,
the phloem seems to be the integrative tissue par excellence. The
contributions included in this research topic encompass the entire
bandwidth of known phloem functions with emphasis on the
diversity in structures and functions.

Differentiation and development of vascular cells is complex
and not well understood. Vascular development partly depends
on environmental cues that have also impacted the evolution of
vascular systems and phloem transport mechanisms. A novel phy-
logenetic approach to identify genes involved in vascular develop-
ment (Martinez-Navarro et al., 2013) shows that several vascular
genes are expressed in green algae (Chlorophyta), the ancestors
of land plants. Analysis of vascular genes in non-vascular and
ancient vascular plants indicates that coordinated expression of
gene sets led to the emergence of the present vascular system
(Martinez-Navarro et al., 2013). Representatives of the Dof gene
family are among the transcription factors involved in vascular
differentiation (Le Hir and Bellini, 2013). Nematode saliva has
the remarkable ability to induce re-differentiation of phloem cells
and their neighbors with the objective to “tap” the sieve-tube sap
(Absmanner et al., 2013).

Ample attention has been paid to the structural diversity,
particularly in the phloem-loading zone, where environmental
changes have unbuffered, and profound effects. The impact of

diverse environmental conditions on leaf structure and carbo-
hydrate processing is demonstrated with Arabidopsis ecotypes
(Adams et al., 2013; Cohu et al., 2013a,b). Within the Asteridae,
there is an immense diversity in minor-vein structures and com-
panion cells (Batashev et al., 2013), which promises a higher
variety of phloem-loading modes in dicots than previously sus-
pected (Slewinski et al., 2013). It appears that a strict subdivision
between apoplasmic and symplasmic phloem-loading species
must be abandoned, since many species dispose over the devices
to operate both modes in parallel. A structural feature of apoplas-
mic phloem loading in dicotyledons—the involvement of transfer
cells—is highlighted in two contributions: one on the evolution-
ary trends, function and induction (Andriunas et al., 2013) and
the other on transcriptional regulators of cell wall invagination
(Chinnappa et al., 2013). A physiological feature of “active” sym-
plasmic phloem loading is the size-selective transfer of sugars
through plasmodesmata, which is challenged here using math-
ematical parameters (Liesche and Schulz, 2013). In grasses, the
arrangement and ultrastructure of collection phloem suggest an
apoplasmic mode of phloem loading (Botha, 2013; Slewinski
et al., 2013). However, the functions of two principal structures in
monocotyledonous leaves i.e., thick-walled sieve tubes and trans-
verse veins remain puzzling (Botha, 2013). Thick-walled sieve
tubes may be viewed as transformed phloem parenchyma cells
(Slewinski et al., 2013) engaged in temporary storage (Botha,
2013).

Carbohydrate processing may be more homogeneous in trans-
port phloem (Slewinski et al., 2013) than in the phloem-loading
zone. Yet, permanently changing conditions require flexible and
diverse solutions for release/retrieval along the pathway (De
Schepper et al., 2013). Central to the release/retrieval concept
is the intercellular competition for sugars that is revealed with
electrical methods for in situ measurement of sucrose uptake
parameters (Hafke et al., 2013). The strong influence of environ-
mental impacts on phloem functioning at each level is addressed
in one comprehensive review by Lemoine et al. (2013).

Long-distance signaling via the phloem can be accomplished
by a variety of physiological mechanisms. Electrical signaling
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along sieve tubes affects both the physiology of distant leaves
as well as photosynthate release/retrieval (Fromm et al., 2013).
Long-distance effects of hormonal signaling on plant develop-
ment have been demonstrated by expressing melon Aux/IAA
genes into tomato plants (Golan et al., 2013). The translocation of
microRNAs through the phloem regulates and coordinates distant
processes such as mineral homeostasis (Kehr, 2013). Evidence is
emerging for remote control of developmental processes in roots
and tubers by phloem-mobile mRNAs (Hannapel et al., 2013).
However, providing unambiguous evidence for some of the key
processes implicated remains challenging and is open for debate
(Hannapel, 2013; Suarez-Lopez, 2013).

RNA-species are most likely translocated as complexes with
RNA-binding proteins (Pallas and Gomez, 2013). As RNAs,
several viruses are translocated as ribonucleoprotein complexes
(Hipper et al., 2013) which might protect the viral core against
the adverse sieve-tube environment and/or confer tagging for
invasion of specific target cells. While the viral complexes move
through sieve tubes with the mass flow, phytoplasmas with sizes
exceeding the diameters of the sieve pores—that are occluded
anyway in response to infection—may be disseminated by alter-
native mechanisms. Remarkably, some plants species are able to
overcome phytoplasma infection through the so-called “recovery
reactions” that are mediated through callose degradation in sieve
tubes (Santi et al., 2013).

The phloem contains attractants and repellents for animal
pathogens. Present work indicates that sterols serve as attrac-
tants (Behmer et al., 2013) to phloem-feeding insects that have
a deficient sterol synthesis, whereas benzylisoquinoline alkaloids
serve as lethal repellents (Lee et al., 2013). It appears that phloem
cells produce and transport an arsenal of defense compounds.
The location of these anti-insect chemicals is significant e.g.,
for genetic manipulation of plants. Defense compounds against
aphids may reside either or both in the pre-phloem pathway or
inside the phloem cells themselves (Will et al., 2013). It is pos-
tulated that the major function of the extrafascicular phloem in
cucurbits is to combat insects (Gaupels and Ghirardo, 2013). In
legumes, giant proteins bodies (forisomes) may be involved in
plant defense by rapid sieve-pore occlusion in response to an
aphid attack (Jekat et al., 2013). The interactions between plants
and aphids appear extremely complex (Louis and Shah, 2013)
which hinders the development of molecular strategies for insect
control. Nonetheless, strategies are being developed to increase
the plant resistance against aphids (Will et al., 2013), and in one
case by engineering of RFO phloem loading (Cao et al., 2013).
The strong increment of RFOs in the sieve-tubes rendered the
plants less attractive to aphids.

As with other research fields, phloem research reveals an ever
receding horizon with undreamed possibilities. This topic shows
the amazingly diverse ability of plants to cope with an infinite
number of environmental challenges by virtue of the vascular
tissues.
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