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Background: Cognitive disturbances occur early in Huntington’s disease (HD) and place a 
significant burden on the lives of patients and family members. Whilst these impairments are 
typically attributed to deterioration of the frontal-striatal pathways, accumulating evidence 
suggests that hippocampal dysfunction may also contribute to such impairments. Here, we 
employ a novel spatial memory task that has previously been shown to elicit impairments in 
individuals with focal hippocampal lesions, as a means to further investigate the role of 
hippocampal dysfunction in HD.  
 
Method: Sixty-four individuals participated in the study, including 32 healthy controls, 11 
patients with diagnosed HD and 16 premanifest HD gene carriers. We also included an 
additional control group of 5 individuals with focal unilateral basal ganglia lesions. 
Participants undertook a task that measured perception and short-term spatial memory using 
computer-generated visual scenes.  
 
Results: HD patients experienced significant impairments in spatial perception and memory, 
which strongly correlated with disease burden score (DBS). Premanifest gene carriers 
performed at a similar level to healthy controls throughout all aspects of the task indicating 
that the effects seen in the HD patients represent a deterioration in function. Interestingly, 
basal ganglia lesion patients were not impaired in any aspects of the task.  
 
Conclusion: There is evidence of significant deficits in hippocampal-dependent spatial 
cognition in HD that cannot be explained as a function of degeneration to the basal ganglia. 
The impairments were greatest in individuals with higher DBSs, suggesting that deficits 
relate to the disease process in HD. 
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Introduction 
 
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disease that 

typically develops in early to middle adulthood. Whilst traditionally considered a movement 

disorder, cognitive impairments are a prominent feature of the disease and can be evident 

up to 15 years prior to the onset of motor disturbances.[1] Such deficits typically consist of 

impaired “executive functions” such as attention, planning and cognitive flexibility.[2- 4] In 

addition, deficits in emotion recognition [5,6], processing speed [7] and reasoning [8] are 

also common. The cognitive features of HD are generally attributed to neuronal dysfunction 

in cortico-striatal circuits. 

 

Recent evidence suggests that HD patients also have problems with spatial navigation and 

remembering specific locations within a given environment [9-11], although the neural 

underpinnings of these deficits are unclear. Decades of research has highlighted the 

importance of the hippocampus in spatial navigation. For example, studies on the rodent 

hippocampal formation led to the seminal discovery of “place cells”, neurons that fire in 

relation to a rodent’s specific location within an environment regardless of its orientation [12]. 

These findings led to the suggestion that the hippocampus forms a so- called cognitive map 

of the spatial environment. Support for this idea comes from human studies which have 

demonstrated that damage to the hippocampus impairs spatial memory, primarily affecting 

allocentric rather than egocentric spatial processing (i.e. the recall of locations relative to the 

environment as opposed to relative to the body.) [13,14] In addition, functional imaging 

studies have shown that the hippocampus is activated during spatial navigation of virtual 

environments (e.g. 15, 16) and that hippocampal volume correlates with navigational 

performance. [17,18, 19, 20] 

 

Given that hippocampal volume is reduced in HD during the early stages of the disease [21], 

it is possible that the spatial memory deficits in HD are indicative of hippocampal 

dysfunction. However, it is also possible that such deficits are related to striatal dysfunction 

as studies show that the caudate nucleus, the primary site of degeneration in HD, is also 

implicated in spatial navigation. Evidence suggests that activation of the caudate nucleus 

occurs after repeated exposure to a given environment [22, 23] and this has led to the idea 

that the hippocampus is associated with rapid acquisition of spatial information whereas the 

striatum is more associated with incremental response learning [24]. 

 

Evidence in support of hippocampal mediated cognitive deficits in HD comes from mouse 

models of the disease which display impaired spatial learning during navigation tasks such 



 4 

as the Morris Water Maze,[25] alongside aberrant hippocampal synaptic plasticity [26] and 

reduced neurogenesis [27-29]. In HD patients, our group has recently shown that 

performance on two hippocampal-based tasks, the CANTAB Paired Associates Learning 

(PAL) task and the computerised human analogue of the Morris Water Maze is impaired in 

HD. Early stage HD patients (with a Total Functional Capacity score ≥ 10) were impaired on 

both tasks compared with age and sex matched controls. Such deficits also correlated with 

estimated years to diagnosis in premanifest HD patients (i.e. gene carriers who currently do 

not display sufficient signs or symptoms to warrant a clinical diagnosis). [30]. A finding that 

has recently been replicated by another group (Glikmann-Johnston et al 2019),[31]. 

 

However, our original study was unable to show unequivocally that poor performance on 

these tasks was exclusively due to hippocampal dysfunction, as already stated, other brain 

regions known to be impaired in HD, such as the striatum or frontal cortex, have been shown 

to contribute to deficits on these tests in other diseases. For example, a functional imaging 

study has shown that activation of the caudate nucleus positively correlates with 

performance on the PAL in healthy volunteers and patients with Alzheimer’s disease [32] 

and the Morris Water Maze has also been shown to involve other brain regions including the 

striatum.[33] 

 

In order to address this issue, the current study used a recently developed hippocampal-

dependent task [34], to more completely evaluate hippocampal function in premanifest and 

early stage HD. The spatial memory component of this task, which measures allocentric 

spatial processing, has been shown to elicit deficits in individuals with focal hippocampal 

lesions [34] and Alzheimer’s disease [35], but not in those with fronto-temporal dementia. In 

addition to the main experimental groups, we administered the task to a group of individuals 

with focal lesions to the basal ganglia to minimise the possibility that any impairments 

observed were driven by striatal rather than hippocampal dysfunction.  

 

All of this work seeks to better understand the nature of cognitive deficits in HD alongside 

their neural underpinnings, which is important given that patients and their families often find 

that the cognitive aspects of the disease are more debilitating than motor features[36]. 
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Method  

We report how we determined our sample size, all data exclusions, all inclusion/exclusion 

criteria, whether inclusion/exclusion criteria were established prior to data analysis, all 

manipulations, and all measures in the study. 

A summary of the participants’ demographic details can be found in Table 1. There were 64 

participants in this study, comprising 11 manifest HD patients, 16 premanifest HD gene 

carriers, 32 healthy controls and 5 individuals with focal basal ganglia lesions due to stroke 

or astrocytoma.  

HD patients were recruited from the John Van Geest Centre for Brain Repair, Cambridge. All 

had genetic confirmation of their gene status with a CAG repeat expansion >36. Patients 

were classified as either premanifest (Unified Huntington’s Disease Rating Scale (UHDRS) 

score <5) or early disease stage (UHDRS >5:) by an experienced neurologist with a 

comprehensive knowledge of HD. A disease burden score (DBS) was calculated for each 

patient using the formula [(CAG – 35.5)*age][37] 

 

Control participants included partners of patients or individuals recruited from the local 

community via advertisement. They were screened for any ongoing neurological or 

psychiatric disorders and were excluded if they had a family history of HD, regardless of 

whether they had undergone genetic testing for the disease or not. 

 

Basal ganglia lesion patients were recruited from the Cognition and Brain Sciences Unit’s 

focal lesion volunteer panel, the Cambridge Cognitive Neuroscience Research Panel 

(CCNRP). These patients have all suffered from a focal, non-traumatic brain injury caused 

by either a stroke or a tumour, within the last 5 years (see Table 2).  

Informed consent was obtained from all participants in accordance with the Declaration of 

Helsinki and the study was approved by the Cambridge Regional Ethics Committee and the 

R&D Department at Addenbrooke’s Hospital. 

 
Neuropsychological assessments 
 
Assessments were administered at the John Van Geest Centre for Brain Repair, either 

subsequent to their routine clinic visit or during a separate appointment, with the exception of 

the basal ganglia lesion patients who received a home visit. The task was administered 

using an A4 booklet format, which included written instructions. At the beginning of each 

subtask there were three practice items, for which the experimenter provided verbal 

feedback if necessary. The subtasks were presented in the same order for each participant. 
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The experimenter turned the pages of the booklet to ensure that each participant received 

the stimulus for the same amount of time. In addition, tests of premorbid IQ (NART), general 

cognitive health (MMSE) and a depression screen (BDI) were carried out. Due to time 

constraints or patient fatigue, some of the additional tests (such as the BDI, MMSE or NART) 

were not completed for a number of participants including controls (see table 1). 

 
Four Mountains Task  

The Four Mountains Task is a recently developed test of spatial memory (available from 

http://fourmountains.org.uk/, 34). Participants are shown an image of a computer-generated 

landscape in an A4 booklet. The landscape depicts four hills of varying shapes and sizes 

placed at different locations around the focal point of the image (Fig. 1).  
 

Either simultaneously (“perception” trial) or following a 2 second delay (“memory” trial), 

participants are then presented with an array of four landscapes, arranged in a 2 x 2 grid, 

and asked to identify which picture contains the original landscape from a different viewpoint.  

 

Each incorrect picture represents one of the following “foils”: 

• Spatial foil: The spatial layout (the position of the hills) has been changed, but the 

order of the hills around the centre is maintained.  

• Configural foil: The spatial layout remains largely intact, but the order of the hills 

around the centre is changed. 

• Elemental foil: The spatial layout remains largely intact, whereas the shape or 

size of one of the hills is changed.  

 

A non-spatial matching task acts as an internal control, during which the four response 

pictures all contain the original landscape but differ according to the prevailing conditions 

(weather, time of day, time of year). Participants must identify the picture taken under the 

same prevailing conditions as the probe landscape. 

 

Both spatial and non-spatial blocks include 15 “perception” trials and 15 “memory” trials. 

Each trial begins with 3 practice items and feedback is provided as necessary. During the 

test items, a neutral prompt is given after 30 seconds if no response is made and after 1 

minute participants are encouraged to make a guess.  Measures recorded for this task 

include the total number of errors made and the type of errors made in the spatial tasks. 

 

 
 

http://fourmountains.org.uk/
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Figure 1. Schematic showing the methodology of the Four Mountains Task (Adapted from 
Hartley et al., 2007): 
Top row images. Example of the computer-generated images used in the Four Mountains test. In 
non-spatial tasks (top left), participants view an image of a landscape for 30 seconds. They are then 
shown four alternative landscapes and must identify which one has been taken under the same 
prevailing conditions as the original. Participants are urged to make their decision based on the time 
of day / time of year that the photographs were taken, by considering cloud coverage and the colour 
of the vegetation. The correct response is the bottom left-hand image. In the spatial tasks (top right), 
of the four landscapes one is the original taken from a different viewpoint whilst the others depict 
landscapes that are different from the original. Participants must identify the image that portrays the 
original landscape taken from a different viewpoint. The correct response is the top left -hand image. 
The top right-hand image is the spatial foil, the bottom left-hand image is the configural foil and 
bottom right-hand image is the element foil. Participants must identify the image that portrays the 
original landscape taken from a different viewpoint. Bottom row images. Both non-spatial and spatial 
tasks included 15 trials measuring perception and 15 trials measuring short-term memory. In 
perception trials (bottom left), the original image is visible throughout the decision-making process. In 
memory trials (bottom right), the original landscape is removed and participants view a blank page for 
2 seconds before being presented with the four alternative images. Hence a decision is made from 
memory, in the absence of the original landscape.  
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Statistical analysis 

IBM SPSS statistics v23 was used to conduct the statistical analysis and the graphs for the 

figures were created using GraphPad Prism Software v7.0.  

 

Demographics 

Group differences in age and IQ were evaluated using a one-way ANOVA followed by post-

hoc analysis with an independent sample t-test. Performance on the Mini Mental State 

Examination (MMSE), the Unified Huntington’s Disease Rating Scale (UHDRS) and the 

Beck Depression Inventory (BDI) was compared between premanifest and manifest patients 

using an independent samples t-test.  

Performance on the Four Mountains Task  

A 4x4 ANOVA with group (premanifest HD, manifest HD, basal ganglia lesion or control) as 

the independent variable and condition (spatial perception, spatial memory, non-spatial 

perception and non-spatial memory) as the dependent variable was conducted to determine 

whether disease affected performance on the Four Mountains Task. To assess the subtask 

performance of each participant group (i.e. controls vs premanifest, controls vs manifest, 

premanifest vs manifest), post-hoc independent sample t-tests were then performed. Finally, 

a Pearson's correlation coefficient (r) was used to measure the strength of the association 

between task scores and DBS.   

 

The ethics approval under which this study was conducted does not allow individual 

anonymised study data to be archived. Data are available on request from Kate Harris (lead 

author) or the Cambridgeshire 2 ethics committee, Cambridge UK.  Access is restricted to 

individuals named on the ethics application. No part of the study procedures or analysis was 

pre-registered prior to the research being conducted.  

 

Results 

Demographic characteristics 

The characteristics of each participant group are shown in Table 1. No significant differences 

were found between controls, basal ganglia lesion patients and HD patients in terms of age 

and premorbid IQ.  

The mean score for both HD groups on the MMSE was 28 out of 30, which lies within the 

normal range. Three patients had a score below the clinical cut-off of 23 (indicating global 

cognitive impairment) and these patients were therefore excluded from the analysis as it 
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seemed that they had not understood the task when their scores were examined. As 

expected, the manifest group had a significantly higher UHDRS motor score than the 

premanifest group (p = <0.001). In all other respects the groups were well matched. Each of 

the basal ganglia lesion patients had a score of 29 or greater in the MMSE, indicative of 

normal cognitive function.  BDI scores did not differ between the basal ganglia lesion group 

and the HD group.  

Table 1. Demographics of participant groups.   
Controls                                    HD  

  
All Premanifest Manifest 

Gender (M:F) 15:17 
(n=32) 

9:18 
(n=27) 

6:10 
(n=16) 

3:8 
(n=11) 

Average age 49.6 (11.9) 
(n=32) 

49.5 (12.2) 
(n=27) 

48 (10.3) 
(n=16) 
(39-67) 

54.7 (13.1) 
(n=11) 
(25-65) 

Premorbid IQ 
(NART) 

(max score 129) 

114.8 (6) 
(n=17) 

114.7 (7.9) 
(n=26)   

 

114.1 (8.6) 
(n=15) 

(97-127) 

115.3 (7.1) 
(n=11) 

(102- 125)                                           

MMSE 
(max score 30) 

ND 28.5 (1.5) 
(n=21) 

28.8 (1.6) 
(n=11) 
(26-30) 

28.3 (1.7) 
(n=10) 
(26-30) 

Depression 
(BDI) 

(max score 63) 

ND 7.8 (10.5) 
(n=16) 

12 (12.2) 
(n=8) 
(0-39) 

8.6 (9.6) 
(n=8) 
(0-29) 

CAG repeat length  N/A 41.5 (3.2) 
(n=22) 

40.8 (1.5) 
(n=13) 
(39-45) 

42.7 (5) 
(n=9) 

(39-55) 

UHDRS 
Motor score 

(max score 124) 
 

ND 8.8 (11.4) 
(n=27) 

1.5 (1.7) 
(n=16) 
(0-4) 

14.9* (6.3) 
(n=11) 
(8-28) 

Disease Burden 
Score (DBS)  

ND 289.1 (76.53) 
(n=22) 

255 (53.7) 
(n=13) 

(176-352) 

337.9 (78.2) 
(n=9) 

(196-488) 
 
Age and task scores are given as mean (± standard deviation). 
ND, not done 
N/A, not available 
* Indicates a significant difference (p < 0.001) when compared with premanifest patients.  
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Table 2. Demographics of basal ganglia lesion patients (n=5).   

 
1 

 
2 

 
3 

 
4 

 
5 

          
        Gender  

          
          M 

 
M 

 
F 

 
F 

 
F 

Age  54 
 
          65 

 
         64 

 
47 

 
45 

Premorbid IQ 
(NART) 

(max score 129) 
129 

 
112 

 
119 

 
113 

 
113 

MMSE 
(max score 30) 30  

 
29 

 
29  

 
30  

 
30  

Depression 
(BDI) 

(max score 63) 
7 

 
5 

 
3 

 
5 

 
3 

Aetiology  Striatocapsular 
infarct  

Lacunar 
infarct 

Focal infarct Pilocytic 
astrocytoma 

Lacunar 
infarct 

Anatomical 
localisation 

Left anterior 
putamen, 

anterior limb of 
internal capsule 

and part of 
caudate 

Right globus 
pallidus and 

internal 
capsule 

 

Left caudate 
body and 
putamen  

 

Right basal 
ganglia 

Right basal 
ganglia  

 

Time since injury 
(years) 2.5 

 
2.11 

 

 
2.8 

 
4 

 
4 

 
 
Four Mountains Test 
 
Scores in each subtask for each participant group are shown in Figure 2 and Table 3.  

A mixed ANOVA with a Greenhouse-Geisser correction indicated that there was a significant 

main effect of “Group” on the Four Mountains Task (F (3, 60) = 9.735, p < 0.001) but with no 

significant interaction between disease and subtask (F (2.7, 162) = 1.939, p = .132), this 

indicates that performance increases or decreases between different disease groups 

(premanifest HD, manifest HD, focal lesion group and controls) but the pattern of responding 

remains the same. 

 

Post-hoc analysis using an independent sample t-test indicated that while performance of 

premanifest patients did not significantly differ from controls in any of the subtasks (p > 

0.05), manifest disease patients scored significantly worse than controls on all subtasks 

(spatial perception (t (41) = 4.24, p < 0.001, d= 1.30); spatial memory (t (41) = 4.88, p < 

0.001, d= 1.73), non-spatial perception (t (41) = 2.13, p = 0.038, d= 0.73 ) and non-spatial 
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memory (t (41) = 2.82, p < 0.007, d= 0.89)). Manifest patients also scored significantly worse 

than premanifest patients in spatial perception (t (25) = 2.45, p = 0.021, d= 0.94) and spatial 

memory (t (25) = 2.52, p = 0.018, d= 1.01) subtasks only.  Finally, manifest patients scored 

significantly worse than basal ganglia lesion patients in the spatial memory task (t (14) 3.00, 

p = 0.010, d= 1.71). It was also investigated whether there was a difference in the pattern of 

foil (error) responses chosen by the different groups, but an ANOVA showed there was no 

significant group by type interaction (data not shown). 

 
 
Table 3. Four Mountains Task scores.  

Controls Basal ganglia 
 lesion 

HD                              

  
 All Premanifest Manifest 

Spatial 
perception 11.8 (2.1) 

 
10.6 (1.6) 9.7 (3.4)* 11 (2.8) 8 (3.5)*† 

Spatial  
memory 11.1 (2.5) 

 
10.4 (1.5) 8.5 (3)*** 9.6 (2.9) 6.9 (2.3)***†‡ 

Non-spatial 
perception 10.9 (1.9) 

 
11.2 (0.4) 9.6 (1.9)* 9.8 (1.9) 9.5 (2.1)* 

Non-spatial 
memory 11.3 (2.1) 

 
          10.8 (0.8) 9.9 (2.6)* 10.7 (2.5) 9 (3)* 

 
Score are mean (± standard deviation). Maximum score = 15.  
*** Indicates a significant result (p < 0.001) compared with controls 
* Indicates a significant result (p < 0.05) compared with controls 
† Indicates a significant result (p < 0.05) compared with premanifest patients 
‡ Indicates a significant result (p < 0.05) compared with basal ganglia patients 
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Figure 2. Performance on the Four Mountains Test. (A) Average scores on each subtask for HD gene 
carriers (premanifest and manifest combined) and control groups. Manifest HD patients perform 
significantly worse than controls in spatial perception (B), spatial memory (C), non-spatial perception 
(D) and non-spatial memory (E). Individual scores are shown as squares. Error bars indicate the 
standard deviation. HD n= 27; Controls n= 32; Basal ganglia lesion n=5.  
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To investigate the extent, if any, whether the scores on the Four Mountains Test were 

influenced by disease burden score (DBS) we calculated Pearson’s correlation coefficient 

(see Fig. 3). For this analysis we grouped together premanifest and manifest patients, 

although it should be noted that five HD gene carriers could not be included in the analysis 

because the CAG repeat length was unknown. Pearson's correlation coefficient (r) showed a 

strong significant negative correlation between DBS score and both spatial perception (r = -

0.79, n= 22 p < 0.001) and spatial memory scores (r = -0.71, n= 22 p < 0.001) and a weaker 

significant correlation with non-spatial memory (r = -0.54, n= 22 p = 0.008). In contrast, DBS 

scores did not correlate with non-spatial perception (r = -0.31, n= 22 p = 0.712).  

 
 
 

 
 
Figure 3. Scattergrams showing correlations between Disease Burden Score (DBS) and each 
subtask of the Four Mountains Test. A&B. DBS correlated with performance in spatial perception and 
memory subtasks. C. DBS did not correlate with non-spatial perception and non-spatial memory 
scores. D. DBS correlated with performance in non-spatial memory. HD n=22 with circles 
representing premanifest HD gene carriers and squares representing manifest HD patients. 
DBS = ((CAGn – 35.5)*Age) 
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Discussion 

Spatial perception and memory 

We have demonstrated that HD patients show impairment in both the spatial perception and 

memory subtasks of the Four Mountains Test. The degree of the impairment for the spatial 

memory subtask was of a similar magnitude to studies of individuals with focal hippocampal 

lesions, who scored between 5/15-8/15 (see Hartley et al (2007), [34], and with patients 

exhibiting early Alzheimer’s disease, where extensive hippocampal dysfunction is known to 

occur, who scored on average 6/15 (see Bird et al. (2010), [35]. 

Whilst this suggests that hippocampal dysfunction underlies the observed deficit in HD 

patients, it is also possible that the caudate nucleus, which undergoes early degeneration in 

HD, also contributed to deficits. However, previous studies have shown that the caudate 

nucleus mediates incremental, stimulus-response learning of a spatial scene, which would 

not have been required in the current task which comprised single-response trials. 

Furthermore, fMRI studies have shown that the caudate nucleus is activated during 

egocentric, rather than allocentric spatial tasks [38]. The current task required participants to 

use allocentric spatial strategies (to recognize an object’s location when viewed from a 

different point of view), which has been shown to require hippocampal function [34]. The shift 

of viewpoint deters participants from making a decision based on egocentric strategies. To 

deter visual matching strategies, foils were presented in addition to the target image, in 

which the size, shape or location of the mountains were altered, but local topographical 

features (lighting, colours and weather conditions) were the same as the target image. 

Furthermore, these topographical features differed in the foils/target image compared to the 

sample image, to further discourage visual strategies. 

Based on this, it can be deduced that the striatum would not be required for the Four 

Mountains spatial task and, consequently, the deficits observed in the current study are 

theoretically more consistent with hippocampal dysfunction. Indeed, we went on to 

demonstrate that in a small group of individuals with heterogeneous focal basal ganglia 

lesions we did not find any deficits in the spatial subtasks of the Four Mountains Test. This 

supports a previous study, which showed that in healthy volunteers, performance on the 

spatial subtask of the Four Mountains test correlated with the volume of hippocampal/para-

hippocampal areas but, crucially, not the volume of the caudate nucleus.[39] However, it is 

important to note that due to the small size of the basal ganglia group in the current study, 

the results should be interpreted with caution. Furthermore, in contrast to the HD patients, 
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the basal ganglia lesion patients had unilateral lesions and therefore the contralateral side of 

the basal ganglia may have preserved function. 

 

Interestingly, a recent functional imaging study has reported activation of both the 

hippocampus and striatum after single-trial learning during a route recognition task, thereby 

challenging the assumption that the caudate nucleus only becomes involved after repeated 

training.[40] Furthermore, in healthy volunteers, there was an interaction between the 

caudate nucleus and the medial temporal lobe during the navigation task, which was 

reduced in patients with HD.[41] Interestingly, the performance of HD patients in the route 

recognition task was nearly equal to that of controls, leading the authors to conclude that the 

hippocampus could compensate for the dysfunction of the caudate nucleus. However, that 

tested route recognition, which in all likelihood involves different neural processes to those 

involved in the spatial processing task used in the current study. Nevertheless, if the striatum 

were to be involved in the current task, our findings would suggest that either (1) there is an 

upper limit to the extent that the hippocampus can compensate for impairments in the 

caudate nucleus beyond which behavioural differences become detectable; or (2) that 

concurrent degeneration of the hippocampus in HD limits its ability to compensate for any 

striatal deficits that only become evident in more difficult tasks.    

In the current study, premanifest HD patients performed in a similar way to controls on the 

spatial subtasks indicating that hippocampal-dependent cognitive dysfunction is not a feature 

of the prodromal stages of the disease. Given the strong correlation between performance 

and the DBS, even in such a small sample of participants, it is apparent that hippocampal 

dysfunction deteriorates in a linear fashion throughout the disease. Therefore, hippocampal 

abnormalities may provide a marker of ongoing disease-related cognitive deterioration in 

HD.  

 

It is important to note that whilst this paper focuses on striatal and hippocampal regions, 

other brain regions are also likely to be involved in the execution of the current task, and 

dysfunction in these regions could have also contributed to the impairments observed in HD 

patients. One such area is the parietal cortex, which is involved in processing visuospatial 

information and undergoes degeneration in the early stages of HD [42]. A recent study found 

that the volume of this region is associated with performance on a visual search and a 

mental rotation task in HD [43]. It is also important to point out that the memory trials 

adopted in our study employed a two second delay between the presentation of the stimulus 

and the target images, and this is presumed to be a test of short-term memory. However, 

this delay period may in fact be measuring attention span and therefore future studies should 
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increase the length of this delay to ensure that the stimulus is indeed properly encoded in 

short-term memory. 

 

Visual perception 

It is noteworthy that, unlike the hippocampal lesion patients in Hartley et al (2007), [34] the 

HD patients participating in our study also scored significantly worse than controls in the 

non-spatial subtasks of the Four Mountains Test. Similarly, patients with Alzheimer’s disease 

(AD) showed impairments in non-spatial perception in addition to their impairments in spatial 

perception and memory, see Bird et al. (2010)[35]. Those authors suggest that deficits in the 

non-spatial task may have been due to confusion caused by the change in rules when 

switching from the spatial to non-spatial tasks. This is certainly plausible with regard to the 

current study, since HD patients have difficulties in set shifting (i.e. in amending their 

strategy in response to a change in instructions),[2] which is presumed to result from frontal 

lobe dysfunction. To test this theory, non-spatial subtasks would need to be administered in 

isolation to AD and HD patients to verify that a true deficit exists.   

It is also impossible to rule out the fact that a general lack of understanding of the Four 

Mountains Test might have caused global deficits in performance. However, although it is a 

crude measure of cognitive function, the Mini Mental State Examination (MMSE) scores did 

not correlate with performance in any of the subtasks except that those HD patients that 

scored in the demented range of the MMSE had scores that were markedly worse 

suggesting that they had not understood the task 

 

Disturbances of visual perception are frequently reported in many chronic CNS 

neurodegenerative disorders and although this has been understudied in HD, there is 

evidence of dysfunction in the visual pathways in both HD patients and HD animal models. 

For example, manifest HD patients, but not premanifest gene carriers, are impaired on the 

Benton Judgement of Line Orientation Test, a measure of visuospatial ability [44]. 

Furthermore, HD patients have been shown to exhibit abnormalities in visually evoked 

potentials [43] and to have reduced grey matter volume in the primary visual cortex.[45] 

Therefore, it is possible that the impairments observed in non-spatial tasks are a reflection of 

impairments in visual perception in the current study, and this should be directly addressed 

in future work.  

In conclusion, we have shown that HD patients demonstrate deficits in a hippocampal-

dependent task of spatial perception and memory as well as more widespread deficits in 
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visual perception and memory. Interestingly, these cognitive deficits appear to be 

independent of striatal impairments given that a small array of patients with specific basal 

ganglia lesions did not exhibit impairments on any of the tasks.  

Clinical relevance 

 The ability to remember the locations of objects and buildings and to successfully navigate 

through familiar environments is a fundamental requirement of everyday life. Deficits in these 

abilities are known to negatively impact the lives of individuals with Alzheimer’s disease and 

Parkinson’s disease.[46] A better understanding of the nature of cognitive deficits in HD will 

be of major benefit to both patients and those who look after them. Until recently, there has 

been a focus on the deficits related to corticostriatal circuitry, but the present study highlights 

the importance of investigating the role of extra-striatal brain regions. There are currently no 

treatments targeting the cognitive aspects of HD, but there is an urgent need for this 

because HD patients and their families often report the cognitive symptoms to be the most 

debilitating aspect of the disease. A better understanding of the neurological underpinnings 

of such cognitive impairments, provided by the current research, could ultimately help with 

the design of future treatments as a number of such approaches are now entering the clinic 

including a trial at our own centre (e.g. https://www.fiercebiotech.com/biotech/eip-bags-cash-

to-trial-ex-vertex-drug-dementia-huntington-s).  
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