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Temporal Issues of Market Inefficiency in asset prices with an emphasis on 

commodities 

By: Muhammad Farid Ahmed 

Summary: 
This summary provides an overview of the contributions made in this thesis to the literature. 

No references are included in the summary; these can be found in the Bibliography on page 

156. This dissertation consists of 6 chapters. The first chapter acts as an introduction to the 

thesis and discusses the central theme of the dissertation along with providing a preview of 

what to expect in the following chapters. The contributions of the different chapters vary. 

Chapter 2 is a more introductory chapter and its contributions are perhaps less consequential 

than those in Chapters 3-5.  

Chapter 2 makes contributions to the literature on testing for explosive roots or bubbles. By 

modifying the Bhargava test statistic, we show in Chapter 2 that the Bhargava test can 

address earlier criticisms that had been cited against it; namely that it has low power when 

multiple bubbles are present in a particular series. Through introducing a rolling window 

approach, we are able to address that criticism and show that the modified Bhargava test 

statistic achieves better power. We compare and contrast the power of the modified test with 

the popular GSADF test statistic which has recently become popular in bubble testing 

literature. Another contribution made in this chapter is the application of these tests to a data 

set comprising of 25 commodities. As at the writing of the chapter this was believed to be a 

first attempt to perform bubble testing on a comprehensive commodity data set. Since 

commodities are often deemed to be targets of speculative behaviour, they are a natural 

universe for testing notions of market efficiency as they tend to go through different regimes 

through natural economic processes. Using both tests we are able to detect bubbles in similar 

periods with most of them being concentrated around the two oil price crises (1972-73 and 

1979-80) and the financial crisis (2005-2007). Our conclusion is that the modified Bhargava 

statistic works better than the original statistic and can be used to complement the results of 

other statistics.  

The major contributions of Chapter 3 and 4 are the introduction of different methodologies 

that enable the user to assess how often asset markets are efficient. In Chapter 3 we argue that 

commodity prices can be estimated using switching-regression models including hidden 



 
 

Markov state-switching models. Instead of estimating Markov transition matrices directly 

from the estimation procedure, we estimate the transition matrix separately using unit root 

tests. By restricting the transition matrix to our estimated matrix and then estimating a 

Markov state-switching regression we show that we get more accurate smoothed probabilities 

i.e. a high probability is assigned to explosive states when the price was actually explosive 

and a high probability is assigned to the random walk/efficient state when the price exhibited 

efficient behaviour. This methodology is then extended to the three state case and it is argued 

that the transition matrices estimated this way will inform us of how often commodity 

markets are efficient. The methodology is empirically applied to non-ferrous metals with 

particular attention to Copper; we believe this is an additional contribution of the article. 

Chapter 3 also presents a partial equilibrium model which leads to an estimable reduced form 

expression for commodities and thereby motivates estimation by Markov switching-

regressions. 

Three major contributions are made in Chapter 4. Firstly, we make a theoretical contribution 

to the literature on threshold auto-regressive models with exogenous triggers. Conditions for 

the existence of a mean and variance when a series follows a threshold auto-regressive (TAR) 

process with an exogenous trigger are derived. The second contribution is the use of TAR 

simulations to show that the tests which try to detect bubbles in asset prices lose a substantial 

amount of power when the asset price spends some time in the mean reverting state in 

addition to being in the explosive and random walk states. The third contribution of this 

article is the provision of a framework using TAR models which acts as a metric for market 

efficiency. By considering three states, an efficient/random walk state, a mean reverting state 

and an explosive state, we show that estimating asset prices as TARs with exogenous triggers 

can allow us to measure how often an asset market is efficient. This methodology uses a 

different class of models from those used in Chapter 4. The methodology is then applied to 

the S&P500 and FTSE100 process and it is shown that under the most general model 

specification, the indices primarily exhibit market efficiency.  

Chapter 5 looks deeper into how commodity prices are determined and thereby the main 

contribution is to the literature on commodity market pricing. By making three important 

changes to the commodity storage model of William and Wright (1991), we are able to show 

that our model is able to capture essential features of commodity prices that have not been 

captured by previous iterations. The numerical solution for the model is obtained using the 

Parameterized Expectations Algorithm (PEA) and simulated series based on this solution are 



 
 

able to reproduce some statistical features of real commodity price series including a high 

degree of first order auto-correlation, skewness and kurtosis. A second contribution is with 

regards to the application of the model; we calibrate the model to match five real 

commodities and show that the model’s solution is able to match real life data. The model is 

also able to explain why we observe spikes (bubbles) in commodity prices and cites the 

impact of storage as a probable contributor. Chapter 6 provides concluding remarks on the 

dissertation. 
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CHAPTER 1: Introduction 

Market efficiency is arguably the most talked about and divisive topic in both Economics and 

Finance. Since Fama first introduced the notion of market efficiency in 1965, experts in both 

academia and the professional world have invested a considerable amount of time either emphasizing 

its merits or discrediting it. Many Nobel laureates have been crowned for their contributions towards 

the efficient markets literature; the most recent among them being Fama and Shiller who offer sharply 

contrasting views on market efficiency. Sewell (2011) provides a chronological review of work 

carried out on the efficient market hypothesis. 

This dissertation broadly falls within the market efficiency literature. The contributions made have 

direct implications for market efficiency and how it is generally talked about in the literature. The 

research conducted can neatly fit within 3 wider streams – time series econometrics, finance and 

macroeconomics. It is perhaps most appropriate to consider the location of this thesis at the 

intersection of the above mentioned subjects. The main contributions to the efficient markets literature 

in this dissertation are contained in Chapter 3 and 4 of this manuscript. Chapter 2 discusses efficient 

markets only briefly while Chapter 5 is an attempt to explain price movements that are typically 

associated with market inefficiency.  

When I started my research, my main interest was to develop techniques that could assist in detecting 

‘bubble-like’ or explosive behaviour in commodity markets, how that may impact income distribution 

within an economy and how that in turn could have macroeconomic consequences. However, it was 

clear within a few months that the ‘bubble’ literature in and off itself was too vast for one PhD. This 

explains why, even though the research can generally be classified within the market efficiency 

literature, a large amount of space is dedicated towards explosive, bubble-like regimes and the 

empirical applications often focus on commodities. At the outset, it is paramount that we explain what 

we mean by market efficiency and explosiveness as this is critical for understanding most of the 

research that follows.  

The underlying notion of market efficiency is that the current market price of an asset reflects all 

publicly available information; thus, no additional returns can be made by relying on information that 

exists in the public domain (semi-strong market efficiency). Roberts (1967) introduced the idea of 

strong and weak form market efficiency. If a market is weakly efficient, no additional returns can be 

made by investors through trading on historical information as that information will already be 

reflected in the prevailing price. Semi-strong form market efficiency on the other hand precludes the 

possibility of additional gains based on all publicly available information such as press releases or 

recently released financial information. Strong-form market efficiency goes a step further; if a market 

is strong form efficient, investors cannot make excess returns even if they possess insider information. 
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As stated earlier, economists have dedicated their lives to either proving or disproving each form of 

market efficiency through a variety of methods including parametric and non-parametric tests.  

This thesis primarily considers weak form market efficiency. A weakly efficient market can be 

represented as a random walk with drift (a Martingale is usually sufficient to define efficiency; 

random walk is a stronger assumption). Thus, if 𝑝𝑡 represents the log price of a financial asset, it may 

be written as: 

𝑝𝑡 = 𝛼 + 𝑝𝑡−1 + 𝜂𝑡                                                   (𝟏.𝟏) 

where 𝛼 is a drift term and 𝜂𝑡 represents an independently and identically distributed disturbance term 

(not necessarily normally distributed). Under these assumptions, it is clear that the geometric rate of 

return (𝑝𝑡 − 𝑝𝑡−1) is independent of all past price movements. Throughout this dissertation, any 

reference to market efficiency is to be understood with reference to equation (1.1).  

Bubbles on the other hand are much harder to define. When an asset price experiences a bubble-like 

period, it is said to be deviating from its fundamental value (mostly increasing rapidly) as understood 

by Blanchard et al (1979). While understanding bubbles in this way is somewhat simpler, it raises an 

important question i.e. what is the fundamental value of an asset. Economists who have contributed to 

this literature have gone back and forth over the definition of fundamental prices; an Economist 

comes with a test for bubble detection and argues that it works well with a certain class of assets; a 

second Economist considers the test invalid by arguing that the definition of the fundamental value is 

incomplete and needs to be richer. As we can see, this is an endless and somewhat circular argument. 

Instead of delving into this debate, we classify bubbles or explosiveness (bubbles and explosiveness 

are used interchangeably) with reference to equation (1.1). Consider equation (1.2) below: 

𝑝𝑡 = 𝛼 + 𝜙𝑝𝑡−1 + 𝜂𝑡                                                   (𝟏.𝟐) 

An asset is said to exhibit bubble-like or explosive behaviour if 𝜙 > 1 (statistically significantly 

greater than 1) for a period of time. Thus, if we conduct a right-sided unit root test and reject the null 

hypothesis, we would conclude the presence of a bubble or an explosive root and 𝑝𝑡 would be non-

stationary. Any mention of explosiveness made in this dissertation is to be understood as it has been 

defined above. From a theoretical viewpoint we contend that a richer definition of fundamentals than 

the one above will be able to explain explosiveness. However, this does not diminish the need for tests 

to identify when such periods may occur as they cause a number of distortions in the market and may 

highlight the need for structural reform. We only need to look back to the 2007-2009 financial crisis 

to understand the impact of bubbles in financial markets.   

If a market is efficient as in (1.1) then it cannot exhibit bubble-like behaviour like (1.2); at least not 

long enough for the behaviour to be detected by a unit root test. Market efficiency has been widely 



3 
 

understood in a binary sense; a market is either efficient or inefficient. Econometric tests similarly 

treat market efficiency as an ‘either or’ question. We abstain from a binary classification of market 

efficiency and instead understand assets as going through various ‘states’ or ‘regimes’; market 

efficiency is one such state or regime. In this setting we can observe states that are non-efficient; they 

may be mean reverting (in which case 𝜙 in (1.2) will be less than 1) or explosive. This classification 

immediately raises a number of questions – how can we objectively identify these states? Can a non-

binary understanding of market efficiency help us in better estimating asset prices? What are the 

implications for tests of market efficiency or bubble detection? Can theoretical models help in 

explaining reduced-form state switching behaviour? The main contribution of this thesis, in addition 

to the introduction of a regime based definition of market efficiency, is to provide procedures to 

address some of these questions as well as some tentative answers.  

 In Chapter 2, we extensively discuss various methodologies for detecting bubble behaviour including 

one that has been developed recently i.e. the Philips, Shi and Yu (PSY hereafter) or the Generalized 

Supremum Augmented Dickey Fuller (GSADF hereafter) test (2013). We introduce a new test for 

detecting explosive states and argue that this new test is as good at identifying bubble behaviour as the 

GSADF test; specifically, the test we introduce helps in identification of periods in which the asset 

exhibits explosiveness. Chapter 3 builds on the results of Chapter 2; Chapter 3 begins with the 

introduction of a partial equilibrium model which justifies the use of a state-switching auto-regressive 

function as the reduced form of an asset price under rational expectations. The state-switching auto-

regressive function is then estimated using a Markov state switching algorithm. However, instead of 

using a simple algorithm, we reinforce the algorithm and make it more accurate by estimating 

transition probabilities using the GSADF test.  

Chapter 4 formally introduces the notion of market efficiency as being one of a finite number of states 

in a state-switching model. This Chapter was jointly written with my supervisor, Professor Satchell. In 

this chapter we derive formulae for the first two moments of an asset that may have a state-switching 

form; we outline the conditions that need to be met for the existence of these moments. We go on to 

show that only when these conditions are not satisfied is the power of bubble detection tests, such as 

the GSADF test, high. The most important contribution of this Chapter and perhaps this dissertation is 

the introduction of a methodology that helps us identify how often a market remains efficient. This 

allows us to not only say whether a particular asset market is mostly efficient or inefficient but also 

enables the identification of periods when inefficient states occur.  

Chapter 5 takes the ideas of chapter 4 and applies them to the commodity market by building upon 

William and Wright’s (1991) model of commodity storage. Specifically, the augmented model is able 

to capture features of real commodity data much more accurately than previous attempts. The 

augmented model also helps in explaining why and when we may observe different states in 
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commodities. The driving force behind state-switching behaviour at least from the supply side is 

storage. Each chapter contains a main contribution in addition to one or more minor contributions. 

Below, we briefly highlight the contributions made in each chapter.  

A foray into an area such as bubbles requires a thorough understanding of the literature in order to 

appreciate the significant contributions that have been made and to identify areas where further 

research could be carried out. Chapter 2, entitled ‘Detecting Multiple Collapsing Bubbles: A 

modification to the Bhargava statistic’, begins with an in-depth look into bubble detection literature. 

Building upon an earlier literature review carried out by Camerer in 1989, the Chapter provides a 

more contemporary update. While state-switching is mentioned only with regards to bubble testing, 

the chapter does lay the foundation for Chapters 3 and 4 which deal more explicitly with state-

switching in assets and their implications for market efficiency.  

The two main camps in the market efficiency debate also define the notion of ‘bubbles’ differently. 

On one side, we have Blanchard et al (1979, 1982) and Fama et al (1988) who contend that bubbles 

are a rational aspect of the market. As per their argument, asset prices contain two components, a 

fundamental component (think dividends for a stock market share) and a bubble component which 

collapses periodically with a given probability 𝜋, in each period. If the bubble component does not 

collapse in a particular period it grows at the rate (1 + 𝑟), where ‘r’ is the nominal interest rate. 

Investors continue to price the asset with the bubble component as neglecting the bubble component 

would be considered irrational. Thus, the bubble component exists but investors can distinguish 

between the bubble and the fundamental and understand that the bubble component may collapse in 

any period.  

Opposing the rational bubble theory is the Irrational or fad theory of bubbles chiefly attributed to 

Shiller (1981, 1984, 2005). According to Shiller, asset prices contain an irrational component (instead 

of a rational bubble component) which he refers to as a fad. The fad is not determined by market 

fundamentals as it is not known to arbitrageurs or investors. It arises due to speculation and intrinsic 

evaluation of investors and may thus be attributed to ‘animal spirits.’ The rate at which the ‘fad’ 

component grows depends on agent behaviour and the institutional structure of the asset market.  

A minor contribution of this chapter is an updated analysis of bubble detection tests. As at the writing 

of the chapter, parametric tests of bubble detection could neatly be characterized into 3 categories. 

Most parametric tests try to model bubbles as rational and the tests are carried out on the bubble 

component. The earliest bubble detection tests were based on volatility. The underlying principle of 

volatility based tests is that if a bubble is not present in an asset, then the volatility of the asset price 

cannot exceed the volatility of its fundamentals. These were initially constructed as tests of market 

efficiency and thus became relevant to this literature.  
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A related category of bubble detection tests relied on testing the stationarity properties of asset prices. 

By testing for co-integration, these tests argued that if fundamentals could be made stationary through 

differencing but not the underlying asset price, it would indicate the presence of a bubble component 

which caused non-stationarity. The first two categories of bubble detection or explosive root tests 

were criticized by Evans (1991) who proved that if there were multiple bubbles that kept collapsing, it 

would be very difficult to statistically detect bubbles.  

The third category of bubble detection tests relies on switching-regression analysis and explosive root 

tests. While explosive root tests fail to answer Evans’ criticism, switching-regressions tend to do 

relatively better. It is this switching-regression framework that we build upon to provide a metric for 

market efficiency in Chapter 4. Most recently, the statistic provided by Philips, Shi and Yu (2013) 

also referred to as the GSADF statistic claims to overcome Evans’ criticism. The GSADF statistic is 

an algorithm which uses two rolling and expanding sub-samples to calculate right-sided Dickey Fuller 

statistics. The methodology is able to detect bubbles as well as time stamp periods where these 

bubbles occur. The statistic proves extremely useful for the Markov-state estimation strategy that is 

introduced in Chapter 3.  

Our main contribution in this chapter is the introduction of an alternative statistic, one that 

significantly modifies Alok Bhargava’s (1986) right-sided unit root test. The Bhargava statistic has 

been proven to be more powerful than the Dickey Fuller statistic for the detection of right-sided unit 

roots for small samples (less than 200). However, most asset price series are long and as noted above, 

bubble detection becomes difficult when there are multiple collapsing bubbles in a series; a 

modification to the procedure became necessary. We provide a rolling window algorithm that requires 

the calculation of the Bhargava statistic on each window and argue that this algorithm is as useful for 

detecting bubbles as the GSADF tests.  

In order to show that our test has merit, we numerically calculate the power of the modified Bhargava 

test; our numerical results show that the new test performs just as well as the GSADF statistic. We go 

a step further and empirically conduct the GSADF as well as the modified Bhargava test on a set of 25 

commodities. The empirical application of bubble detection tests on an extensive commodity data set 

is also a significant contribution of this chapter as no in-depth study of bubbles in commodities had 

been carried out when the chapter was written. The modified Bhargava test also performs well 

empirically and is able to detect bubbles in similar periods as the GSADF test. The oil price crises in 

the 70’s and the financial crisis of 2007-2009 are periods where most bubble episodes are seen.  

While our test does not date stamp bubbles as precisely as the GSADF test, it does enable the 

identification of periods where the commodity price may not have been efficient; thus, it is a fairly 

useful test of market efficiency. A major benefit of using our test is that it can be applied to small 

samples; in comparison, the GSADF test loses a lot of power over small samples. We believe that it 
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could be particularly useful in detecting explosive roots in high-frequency data. Thus, Chapter 2 lays 

the foundation for a state based understanding of market efficiency arguing that explosiveness is one 

possible state for an asset price which may otherwise be considered efficient. 

As mentioned above, Markov-state switching has been used to identify explosiveness in markets and 

has therefore been adopted as a tool for detecting market efficiency. As the title suggests, Chapter 3: 

‘Understanding commodity markets using Markovian state-switching,’ uses this technique to identify 

episodes of explosiveness. However, the main contribution of this chapter is methodological. We 

introduce an estimation strategy that uses Markov-state switching and allows us to assign probabilities 

to efficient and non-efficient states.  

The chapter begins with the introduction of a partial equilibrium commodity storage model. While 

simple, the model uses Muth’s (1961) commodity storage setting to derive conditions under which a 

non-linear auto-regressive process can be used as a reduced form expression for commodity 

dynamics. We also derive conditions that need to be satisfied by model parameters for the commodity 

price to exhibit explosive as well as mean reverting behaviour. The critical parameter is the speed 

with which investors change their inventory holdings. This approach is different from the one adopted 

in Chapter 5 as we are able to derive all results analytically while in Chapter 5, the model adds several 

layers of complexity and requires an approximate numerical solution.  

Despite being simple, the model nevertheless provides a motivation for estimating storage based 

commodities through state-switching techniques. The rest of chapter 3 is dedicated towards explaining 

the Markov state-switching technique; a maximum likelihood technique introduced by Kim et al 

(2012) and adopted by Perlin (2014) forms the basis of our numerical solution. The original technique 

allows the user to measure not just state specific parameters but also a transition matrix which 

contains probabilities of switching from one state to other states every period. We noted that a direct 

application of the algorithm on commodity price data estimated high probabilities for explosive and 

mean reverting states during time periods when prices were stable. The estimated parameters were 

often found to be in inadmissible ranges.  

We improve the estimation technique and reduce the numerical burden on the algorithm by first 

estimating the transition probabilities before finding the parameters through the likelihood approach. 

The transition probabilities are estimated through the application of the GSADF test mentioned above. 

Since the GSADF test time stamps periods during which a commodity is in an explosive state, we can 

find the transition probability by using the time stamps. In addition to an explosive state we also 

included a mean reverting state. The computed transition probabilities are used as weights in the 

likelihood function; the estimated parameters were found to be in the correct range and we also noted 

that high probabilities for explosive states were found during the oil and financial crises and thus 
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agreed with the results we found in Chapter 2. Details of the numerical algorithm as well as the 

estimation of the transition matrix have been reserved for the Chapter.  

An in-depth empirical application is provided for the copper market although we also apply the 

technique to other non-ferrous metals. Our results indicate that the copper price (and other non-ferrous 

metals) tends to follow an explosive path when stock levels are low and a mean reverting path when 

there is a glut in the market. However, most metal markets are primarily in the efficient state. The 

procedure allows us to assign probabilities to each of the 3 different states in each period and thereby 

allows us to analyse whether an asset market is efficient at a particular point in time through assigning 

a probability to each state. Thus, our results are intuitively plausible and support not only the partial 

equilibrium model in the chapter but also the augmented commodity storage model in chapter 5.  

A restriction of the technique is that it is realistically limited to 3 states. Each state has to be imposed 

on the model i.e. it does not allow for two mean-reverting or two explosive states. Our procedure of 

estimating transition probabilities and the use of an AR(1) limits the type of states that can be 

detected. The chapter estimates probabilities for an efficient state, a mean-reverting state and an 

explosive state. Estimating transition probabilities for more than 3 states will prove to be considerably 

difficult. Additionally, the numerical algorithm will take considerably longer to estimate the 

parameters. Whereas this chapter introduces the notion of efficient and non-efficient states, a more 

general technique is introduced in chapter 4.  

Chapter 4: ‘What Proportion of Time is a particular Market inefficient?...A Method for analysing the 

frequency of market efficiency when equity prices follow Threshold Autoregressions’ substantially 

improves upon the results from Chapter 2 and 3. We make 3 major contributions in this Chapter 

including a detailed algorithm for a market efficiency metric which arguably is the most important 

contribution in this dissertation. The chapter revolves around the central theme of the dissertation i.e. 

that asset prices go through different states or regimes and one of these states is efficient (usually 

characterized by a random walk).  

Our first contribution in this chapter is the derivation and analysis of analytical expressions for the 

first two moments of an asset price’s distribution when the asset can be estimated as a first order 

threshold auto-regression, if these moments exist. A first order threshold auto-regressive model with 

an exogenous trigger can be written as: 

                                 𝑃𝑡 = 𝜓𝑡−1 +  𝜙𝑡−1𝑃𝑡−1 + 𝜂𝑡 where 𝜂𝑡~𝑁�0,𝜎𝜂2�  (1.3) 

The state switching behaviour is based on the values taken by an exogenous trigger variable, 𝑍𝑡−1. 

Thus, for a 3-state case, where 𝑍𝑡−1 takes values between −∞ and ∞, (1.3) can be written as: 
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 𝜓𝑡−1 = 𝛼1,𝜙𝑡−1 = 𝛽1 𝑖𝑓 − ∞ < 𝑍𝑡−1 < 𝑐1 

𝜓𝑡−1 = 𝛼2,𝜙𝑡−1 =  𝛽2 𝑖𝑓 𝑐1 ≤  𝑍𝑡−1 < 𝑐2 

𝜓𝑡−1 = 𝛼3,𝜙𝑡−1 = 𝛽3 𝑖𝑓 𝑐2 ≤ 𝑍𝑡−1 < ∞ 

where 𝑐1 and 𝑐2 are threshold levels that need to be estimated. The unconditional probability that 𝑍𝑡−1 

will be between any two thresholds 𝑐𝑗 and 𝑐𝑗+1 is given by 𝜋𝑗+1. It is these thresholds that tell us how 

efficient the market is. The values taken by parameters under different states are not necessarily 

consistent with a stationary model; thus, if a price series is non-stationary for a substantial length of 

time the overall price process may become non-stationary and thus, a steady state distribution for the 

process would not exist.  

We derive the conditions that need to be satisfied by a process so that its steady state distribution and 

its first two moments exist. The conditions and expressions are derived for 3 different cases: a case 

with no drift, a case with constant drift in all states and a case with a switching drift. We note that 

when a process has a switching drift in addition to switching slope parameters the moments of the 

process depend not only on the variance of the slope parameters but also the variance of the drift term. 

This explains why model specification is important when estimating a threshold model. Inclusion of a 

switching drift term instead of a constant drift term implies that a lot of the variation in the process is 

captured by the switching drift term; theoretically too, a switching drift term provides a different 

explanation for explosiveness than the case with a constant drift term or a case where no drift is 

assumed.  

Derivation of conditions for the existence of a mean and variance for a threshold auto-regressive 

model raised a number of issues. We realized that when Evans pointed out the inability of bubble tests 

to detect non-stationary behaviour, what he found was that if series were efficient (or had a unit root) 

for a substantially long period of time, conventional tests would have very low power to detect an 

explosive root (considering the threshold model above that would imply 𝜙𝑡 > 1). While Evans 

considered 2 states, we consider a 3 state case; in addition to a weakly efficient state with 𝜙𝑡 = 1 and 

an explosive state 𝜙𝑡 > 1, we also consider a mean reverting state 𝜙𝑡 < 1. The motivation for 

considering a mean reverting state comes from our results in chapter 3. Thus, the second contribution 

made in this chapter is with regards to the power of bubble detection tests when a process follows a 

threshold auto-regressive model with a mean reverting state in addition to an explosive and an 

efficient state.  

We consider processes similar to 1.3 and specify a range of probabilities for our numerical analysis. 

Some of these probabilities imply that the simulated process does not meet the criterion for the 

existence of a mean and variance. In addition to considering exogenous triggers we also consider a 
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trigger variable that follows a Markov process. The Markov-state process is the more realistic 

scenario as the type of triggers we consider tend to be auto-correlated. The test we consider for the 

power test is the GSADF statistic which we have used in this dissertation previously. We use the 

GSADF test since the authors have shown that the test has higher power than other contemporary 

tests. Our results show that the power of the GSADF also reduces considerably when a mean reverting 

state is present. Whenever the parameters and probabilities are such that steady state moments exist, 

we find that the power of the tests is low. Thus, we make an important contribution in the bubble 

detection literature: ignoring a mean reverting state can artificially inflate the power of such tests. 

When applied to real data, these tests may fail to detect bubbles in series which spend a substantial 

proportion of time in a mean reverting state (and as we have noted in Chapter 3, a number of non-

ferrous metals do exhibit mean reverting behaviour).  

The final and arguably the most important contribution made in this chapter is a methodology for 

measuring efficiency in an asset market. Estimating equation (1.3) by restricting one state to be 

efficient (i.e. restricting 𝜙𝑡 to be 1) and identifying thresholds measured through non-linear least 

squares (or through an alternative estimation methodology), we can characterize different states. Not 

only does this provide us estimates of parameters, thereby enabling us to say whether the asset shows 

explosive or mean reverting behaviour, but also allows us to measure the length of time an asset 

spends in the efficient state. We also note, that if the parameters in the non-efficient states are not 

statistically different from the parameters in the efficient state, we may argue that the market is always 

efficient.  

In contrast to the methodology outlined in Chapter 3, we can consider more than 3 states. The 

algorithm can be programmed easily even though the numerical burden may increase considerably 

when more than 3 states are considered. Importantly, we do not need to place any restrictions on the 

inefficient parameters. We may find only explosive, only mean-reverting or only efficient states. 

However, the algorithm also requires finding an appropriate trigger variable. While the trigger 

variable may itself be Markovian, we have to ensure that it is independent of the error term of the 

underlying process. Thus, the main challenge for using the algorithm is the availability of a suitable 

variable that may employed as a trigger. 

To demonstrate how the metric may be used in practice, we provide an illustrative example using the 

S&P500 and the FTSE100 stock market indices. The trigger variable used is the Michigan State 

University’s Consumer Sentiment Index (or MCSI). We justify the use of the trigger variable in the 

chapter and use our methodology to estimate the indices in a 3-state setting. Since the example is 

illustrative we consider all 3 cases outlined in the chapter, i.e. a case with no drift, a case with a 

constant drift and a case with switching drift. As we have previously mentioned, the specification of 
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the drift term is important; it changes our estimates as well as the interpretation of our results. A 

detailed commentary of the results is reserved for the chapter.  

Our setting raises an interesting question for economists and financial analysts alike; what causes the 

state-switching behaviour in commodities and what determines how long you may be in a particular 

state? Since our main class of assets in this thesis has been commodities, we try to answer this 

question for storable commodities in Chapter 5. 

Chapter 5, ‘Making the Commodity Storage Model Empirically relevant,’ resurrects a commodity 

storage model first introduced by Williams and Wright in 1991. The original model has been through 

various iterations over the years but had failed to effectively capture what it had set out to do i.e. 

capture features of real world commodities. Specifically, the model tried to replicate the correlation 

structure of agricultural commodities as well the tendency of commodity prices to jump occasionally 

(what we would refer to as a bubble or an explosive state in the context of this thesis).  

The model is a partial equilibrium model with demand, supply and a storage sector. Storage is the 

main driving force in the model and depends upon the availability of the commodity; availability in 

the model’s setting is defined as current period production and previous period’s storage. Current 

period production depends upon the prevailing weather conditions. Periods with low production 

resulting from adverse weather conditions often lead to a state where no storage is held; this 

substantially increases equilibrium price in the period and also leads to non-linearity in the model 

solution which has to be solved numerically. On the other hand periods where bumper crops are 

observed are characterized by high storage and low prices. These conditions would help us explain 

why different states occur. When prices are high due to low crop output we enter explosive states and 

when storage is high we enter mean reverting states.  

Our main contribution in this chapter is making this model empirically relevant; we introduce 3 

changes in the model which give us a solution that allows us to simulate prices that have similar 

distributional properties to real commodity data. We also use the GSADF statistic to test for bubbles 

in real data and find that while nominal prices show statistically significant evidence of an explosive 

root, real prices show no such evidence even though there is evidence of sharp spikes and downturns. 

Our solution and simulated prices are able to replicate both features.  

Specifically, we make 3 simultaneous changes in the model, 2 of which have been used in this 

literature previously but have not been used together. Firstly, we use an iso-elastic demand curve as 

opposed to a linear demand curve (Gouel, 2013). Secondly, we use a multiplicative convenience yield 

first used by Ng et al (2000). Finally, we introduce saving behaviour in the demand curve by making 

the demand curve a function of not just current price but also future period consumption and hence, 

storage. The final change allows us to better capture the change in demand when storage switches. 
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The main benefit of our approach as opposed to alternative approaches that also claim to replicate 

features of real data is that we retain the simplicity of the model and the numerical solution 

approaches that were first used by Williams and Wright. Our focus also stays on storage. We abstract 

from using a general equilibrium model as it adds significant complexity and numerical burden.  

Our research also has other features which have been missing in other articles on the subject. We 

carry out a thorough sensitivity analysis to understand what parameters influence the correlation 

structure that we find and whether these parameters make economic sense. Price elasticities of 

demand and supply along with the variation in weather are the primary determinants of price and in 

the chapter we provide a detailed argument supporting our findings.  

Finally, we also conduct empirical analysis using a novel identification strategy recently introduced 

by Roberts and Schlenker (2013) which relies on geographical and weather data to correctly identify 

price elasticities. We empirically estimate price elasticities of demand for agricultural commodities 

using their approach and calibrate our model accordingly. Even though we calibrate only one 

parameter, we note that results from our calibrated simulation capture features of real commodity 

prices reasonably accurately and are a substantial improvement compared to previous work carried 

out in the field. Thus, we make significant improvements to a model which allows us to capture 

features of real commodity data through the state-switching mechanism.  

Throughout this dissertation we emphasize the importance of thinking of markets as going through 

different states. This allows us to understand and estimate prices processes better, enabling us to 

identify whether state switches are temporary or permanent. We believe that thinking about financial 

assets in this way opens up the door to a lot of other avenues of research, both theoretical and 

empirical. We have focussed substantially on explosive states and most empirical applications have 

relied on commodity data; however, we strongly believe that the methodologies we have provided 

(particularly in Chapters 3 and 4) are applicable to a wide range of asset classes.  

Each Chapter in the dissertation is self-contained and Chapters may be read independently of each 

other although we do make cross-references across chapters to highlight how the dissertation is 

connected.  
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CHAPTER 2: Detecting multiple collapsing bubbles: A 

modification to the Bhargava Statistic 

 

Chapter 2 applies a significant modification to the Bhargava-Sargan (1986) statistic which enables 

detection of multiple collapsing bubbles in asset prices thereby addressing Evans’ 1991 criticism. We 

compare the statistic to the recently introduced GSADF statistic by Philips et al (2013) and show that 

the modified Bhargava statistic compares favourably with the Philips et al statistic. Using data on 25 

commodities we show that the Bhargava statistic is able to detect multiple bubbles in this setting and 

is able to identify periods in which these may have occurred.  

 

2.1     Introduction 

The financial crisis of 2007-2009 revealed the vulnerability of financial markets to changes in 

expectations. Volatility in credit, stock and commodity markets saw assets attain very high prices 

before collapsing. All major financial crises in the past two centuries have been preceded by, what has 

been termed, bubbles in asset prices and rapid credit growth. Given the consequences of such crises, 

econometricians have taken an interest in devising techniques to detect such episodes. While these 

techniques can be used to improve our understanding of historical episodes of asset bubbles and credit 

growth, they may also be used as a mechanism for early detection of over-exuberance in financial 

markets.  

As mentioned in the introduction, bubbles are to be understood from an econometric perspective i.e. 

instances of explosive behaviour or non-stationarity, usually triggered by speculative activity or 

through a trigger event (such as a stock-out for commodities) with the explosive behaviour sustaining 

for a few time periods and then usually followed by a precipitous decline. While a number of articles 

do come up with theoretical models of bubbles by separating the price of an asset into a fundamental 

and a bubble component, application of the tests to real data does not make this distinction obvious. 

Some attempts have been made to separate fundamentals and bubbles to give a more precise 

quantitative estimate of bubbles.  The interested reader is referred to Alessandri (2006) who uses a 

Kalman filter approach to separate bubbles and fundamentals in US Stock market data.  

At the outset we would like to make a distinction between explosive bubbles that periodically collapse 

and bubbles that are found in other economic literature. The type of bubbles that we consider here are 
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perhaps best understood in the context in which Evans (1991) explains them i.e. bubbles that see 

periods of explosiveness or non-stationarity which are then followed by a very rapid decline. They are 

feature of asset markets. Such bubbles arise over short horizons, usually a few months, and then 

collapse equally quickly. Chapters 3 and 4 consider bubbles one of many states an asset goes through. 

In this chapter, the treatment is slightly different; instead of treating a bubble-like episode as a state 

we regard it as a temporary deviation from the efficient state.  

Bubbles considered in Macroeconomic literature on the other hand, such as those considered by Tirole 

(1985) Carvalho et al (2012) and Ventura et al (2012), are different. Bubbles in their research grow 

much slower and do not collapse as often. Bubbles are modelled as a feature of the asset market and 

they keep growing over long periods of time and their collapse leads to business cycles. A lot of 

progress has been made recently on bubble detection techniques with some of these techniques also 

allowing for dating of exuberant episodes. The most significant recent contribution has come from 

Philips et al (2013, 2010) who use a recursive Augmented Dickey Fuller test to both date and detect 

bubbles.  

The current chapter looks at an alternative to the technique developed by Philips et al. We propose a 

new methodology using the Sargan-Bhargava (1986) statistic to detect bubbles in asset price series. 

The modification also allows us to identify specific periods that show evidence of exuberant 

behaviour and thus, allows an alternative dating mechanism. We show that this modified Bhargava 

test procedure can match the Philips et al test in terms of power when large samples are considered.  

For smaller sample sizes, the modified Bhargava test does better than the Philips et al test. The test 

also has the advantage of not requiring the estimation of any parameters; thus, in the domain of 

elliptical distributions, the conclusions derived from this test will not differ significantly regardless of 

the distribution of the error process. The statistic also has the advantage of having an exact 

distribution, i.e. the critical values are not approximate unlike those used by Philips et al. We compare 

and contrast the two tests to show that the tests are more complementary in nature and lead to the 

same conclusions.  

An alternative way to think about this test would be that it detects periods when the asset price moves 

to an explosive state. In Chapter 4 we outline conditions that are required for a variable to have a 

steady-state distribution. Tests such as the one introduced by Philip et al assume that such a steady-

state distribution exists and thus, rely on stationarity of the underlying process. The modified 

Bhargava statistic on the other hand, due to its local nature, requires no such assumptions to be made 

and may be applied on subsamples.  

The second contribution of this chapter is with regards to the application of these tests. Tests of 

explosiveness have largely been carried out on stock market data using a case study approach. A 
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typical article in this literature usually considers the S&P 500 or the NASDAQ indices with some 

currencies and commodities added on. Our research focuses on commodities; we apply the modified 

Bhargava statistic to 25 commodities. We also applied the GSADF test to the same commodities for 

comparison purposes; these results have not been reported but are available upon request.  

In light of the recent financial crisis, we believe that commodities have become increasingly important 

and they exhibit exuberant behaviour similar to that found in stock markets. Apart from buyers and 

sellers, there is a substantial market for commodity storage which tends to drive prices. Additionally, 

the advent of exchange based trading has allowed investors to enter the market without physically 

storing the commodity and thus, there is scope for speculation. Leverage levels are often high 

resulting in significant speculative activity. Climate change has further added volatility to commodity 

markets. There is a large futures market for commodities and fund managers have started paying 

increased attention to commodity returns when optimizing asset allocation. The London Metal 

Exchange Traded over 156 million contracts in 2016 (as opposed to 85 million in 2007) for metals 

alone, with contract sizes ranging from 5 tonnes to 25 tonnes (London Metal Exchange, 2016). Thus, 

we believe, that commodities, as an asset class, is ideal for bubble analysis.  

With large metal exchanges in Chicago, New York, London and Shanghai, trading activity in 

commodities has been on the rise. A number of Exchange Traded Funds (ETFs) also follow 

commodities, enabling investors to enter this market. Commodities lend themselves readily to this 

type of analysis given that commodity markets often go through peaks and troughs. Looking at a large 

data set of commodities enables us to see how bubbles in commodities tend to emerge and collapse 

together. We show that the modified Bhargava statistic is particularly attuned to detecting such 

behaviour.  

In this chapter we test bubbles in 25 commodities including agricultural, mining and energy 

commodities. The article closest to our research which uses 32 commodities is Gorton et al (2013); 

however, the focus of that article is to estimate the risk premia in commodities using data on futures. 

A more recent article by Etienne et al (2014) looks at bubbles in 12 agricultural commodities. They 

use daily futures data and use the GSADF test. However, we use a more comprehensive data set 

which allows us to comment on contagion in commodity markets. Thus, in addition to the new test 

and dating technique our empirical application is also unique.  

Our results indicate three main periods for commodity price bubbles; these being the two oil crises in 

the 70’s and 80’s and the 2007-08 financial crisis. Both the modified Bhargava and the Philips et al 

tests detected bubbles in a multitude of commodities during these periods, vindicating the proposition 

that financial crises may be preceded by exuberant behaviour in asset prices.  
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The Chapter is organized as follows: Section 2.2 presents a chronological literature review of the 

different techniques that have been applied over time to detect bubbles. This provides a context to the 

bubble literature and a motivation for our modification to the Bhargava statistic and our selection of 

the Philips et al. statistic as a comparative statistic. Section 2.3 explains the proposed modification to 

the Bhargava statistic and also provides an outline of the Generalized Supremum Augmented Dickey 

Fuller statistic. Power comparison between the two tests is carried out in Section 2.4. Section 2.5 

looks at the commodity price data that has been used in the current study. Section 2.6 presents our 

empirical application using commodity data and section 2.7 concludes. 

2.2 Testing for Explosiveness – literature review: 

The backdrop of testing for bubbles is the motivation to either confirm or refute the efficient market 

hypothesis. Testing for bubbles has evolved along with new developments in Time Series and 

Financial Econometrics. With new tools and more powerful computers econometricians have adopted 

more sophisticated methodologies to test for unit roots and explosive roots in order to identify bubble 

behaviour. The pivotal point in bubble literature came in 1991 when Evans in his seminal article 

discussed the notion of periodically collapsing bubbles and the difficulty of detecting a bubble in the 

presence of such behaviour. Almost all tests of bubbles are reduced form tests which specify an 

autoregressive model for the price process of the asset under question. The current section takes a 

chronological view in discussing the vast literature that relates to testing for bubbles. 

2.2.1 Volatility based tests: 

Early tests for bubbles centred on finding excessive volatility than was theoretically possible. Leroy 

and Porter (1981) were among the first to use volatility to test whether stock prices violated the 

efficient market principle, thereby indicating the presence of a bubble. They specified an ARMA 

model and constructed upper and lower bounds on the variance of asset prices. They showed that the 

upper bound on the theoretical variance of a price series should be the sum of the variance of the 

observed price and the variance in deviation from the fundamental price. The theoretical variance is 

derived solely from the variance of fundamentals which in their case was data on dividends. 

Blanchard et al (1982) and Mankiw et al (1985) extend these variance tests to overcome some of their 

limitations. 

Mankiw et al try to address criticisms levelled against volatility tests including the low power 

resulting from finite samples i.e. small sample variance for stock prices can be biased and be expected 

to be higher than the fundamental stock price due to the use of sample means instead of population 

means. Secondly, even in large samples variance could be biased if the dividend process were non 

stationary and instead followed a random walk. They posit a test that does not bias this variance. 

Instead of finding variances around the mean price, they calculate the test statistic around a 
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hypothesized Naïve Forecast Price described as 𝑃𝑡0 = ∑ 𝛽𝑘+1𝐹𝑡∞
𝑘=0 𝐷𝑡+𝑘, where the naïve forecast is 

known to the market. Their test statistic is based on the following relationships:  

                                            𝐸(𝑃𝑡∗ − 𝑃𝑡0)2 = 𝐸(𝑃𝑡∗ − 𝑃𝑡)2 + 𝐸(𝑃𝑡 − 𝑃𝑡0)2; 

𝐸(𝑃𝑡∗ − 𝑃𝑡0)2  ≥ 𝐸(𝑃𝑡∗ − 𝑃𝑡)2 

𝐸(𝑃𝑡∗ − 𝑃𝑡0)2  ≥ 𝐸(𝑃𝑡 − 𝑃𝑡0)2 

𝑃𝑡∗ is the perfect foresight price 𝑃𝑡 is the observed stock price. The perfect foresight and observed 

prices differ by an error term 𝑣𝑡. Assuming the naïve forecast to be a fixed process of past dividends 

and plausible values for the real interest rate, Mankiw et al test for these relationships in similar vein 

to Shiller and LeRoy et al. Though the differences they find are less marked than earlier authors, they 

continue to find violation of the inequalities specified above, concluding that there continued to be 

evidence of fads. 

Tests based on theoretical volatility were criticized by various authors on the ground that the 

specification of fundamentals may be inherently flawed and that part of the high frequency can be 

explained by including unobserved components of fundamental price. Hamilton and Whiteman (1985) 

were among the critics of the variance test approach. In their article they contend that a significant 

deviation of variance from the variance of the dividend processes can also be an indication that 

fundamentals are not properly specified, rather than the process being in a bubble. Hamilton suggests 

that portfolio managers use more information to form their fundamental price and part of this 

information is not available to the econometrician.  

This debate, however, does appear to be circular as one can always find alternative specifications for 

fundamentals that may attempt to explain the variance of a particular series during an explosive 

period. New fundamental specifications would require rigorous theoretical foundations so that 

fundamentals and bubbles can be separated. Summers (1986), provides a different criticism of these 

tests, namely that these tests have very low power to reject the hypothesis of market efficiency.  

2.2.2 Tests of Co-integration and mean reversion: 

Asset prices showing bubble tendencies tend to show evidence of non-stationarity and are likely to 

contain explosive roots. Diba and Grossman (1984) exploited this to outline a strategy for detecting 

bubbles in the price of gold and other assets. They argued that explosive components of a price 

process cannot be made stationary through differencing. Thus, if differencing a price process and its 

fundamentals makes fundamentals stationary but not the price process, a bubble may be present. Diba 

et al also use this methodology in their 1988 paper and apply the methodology to stock prices instead 

of gold.  

(2.1) 
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Campbel et al (1987) formulate a simple VAR which requires that the spread on an asset be equal to 

its theoretical value (in the case of stocks, the expected future values of dividends); if these values 

differ, there will be evidence of a non-predictable term or a bubble. West (1987, 1988) also postulates 

tests using the stationarity properties of the price process. He proposes that the estimates for 

parameters in the present value model should be the same when estimated using two different 

methodologies. He measures the price series using a simple regression and an ARIMA equation for 

the dividends process allowing the parameters to be estimated implicitly. Intuitively, the information 

set used to forecast a price has less information compared to the full information used to determine the 

real price. This lack of information leads to the variance of the forecast being theoretically larger than 

the variance of the price series.  

Fama and French (1988) and Summer and Poterba (1988) use variance ratio tests to find evidence that 

stock prices show mean reversion. They distinguish between temporary and permanent components of 

stock prices arguing that the long term component would show negative correlation thereby showing 

evidence of mean reversion. Violation of these trends will indicate the presence of bubbles although 

the results noted were generally mixed. Bubbles are not periodic and may arise at uncertain intervals 

and collapse at later dates. This criticism considerably lowers the efficacy of the tests discussed 

above. Evans (1991) in his seminal paper first highlighted this issue and hinted at a strategy that could 

be used for further research in this area.  

2.2.3 Tests of explosive roots and switching regressions: 

Evans (1991) argued that if rational bubbles were periodically collapsing they will tend to appear like 

a random walk and fall out of scope of the stationarity and co-integration tests being performed by his 

contemporaries. Evans’ article marked a critical point in bubble testing literature and led researchers 

to focus their attention on periodically collapsing behaviour. Evans used the original Bhargava 

statistic to show how even the most powerful test for detecting bubble behaviour was unable to detect 

explosiveness in a series with multiple collapsing bubbles.  

Hall et al (1999) tried to address the issue by specifying a Markov-switching model for the auto-

regressive parameter and using a more generalized form of the Augmented Dickey Fuller test in order 

to detect periodically collapsing bubbles. Tests of unit roots and co-integration have low power in the 

presence of periodically collapsing bubbles and a series containing a bubble may appear stationary if 

the bubble collapses within the series. The specification used by Hall et al for their Markov-Switching 

Unit root test is as follows: 

∆𝑝𝑡 = 𝜇0(1 − 𝑠𝑡) + 𝜇1𝑠𝑡 + [𝜑0(1 − 𝑠𝑡) + 𝜑1𝑠𝑡]𝑝𝑡−1

+ ��𝜓0𝑗(1 − 𝑠𝑡) + 𝜓1𝑗𝑠𝑡�∆𝑝𝑡−𝑗 + 𝜎𝑒𝑒𝑡                                              (2.2)
𝑘

𝑗=1
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‘st’ is specified to be a homogenous Markov chain on the state space {0,1} with specified transition 

probabilities. Thus, when s = 1, the price series is in a bubble and when s = 0, the bubble collapses 

and the price reverts to fundamentals. Their tests show a marked improvement compared to Evans’ 

test and they are better able to detect bubbles. We use a similar but significantly modified 

methodology to detect not just bubble states but also mean reverting states in Chapter 3. It is also 

worth noting that estimating a price process this way is only possible if the conditions for the 

existence of a distribution are satisfied 

Van Norden et al (2002) separately test fad and bubble specifications within a switching-regression 

framework. They aim to identify which one of the two specifications was more in line with data. 

Other authors who have used similar switching approaches to test for bubbles include Enders et al 

(2001) who aimed at a generalization of the Momentum Threshold Auto Regressive approach 

(MTAR) for multivariate models and Bohl (2003) who used the Enders et al tests to test for the 

presence of periodically collapsing bubbles in Stock Market indices. Philips et al (2010, 2012) use a 

recursive regression methodology to date bubbles and analyse a number of asset prices during the 

financial crisis.  

Knight et al (2014) derive a steady state distribution for a model that includes bubbles in the context 

of regime switching where the bubble process is modelled as an exogenous sunspot. They use results 

derived in Knight and Satchell (2011) and examine conditions under which a steady state distribution 

of price exists. 3 different distributions for the error process are considered and necessary and 

sufficient conditions derived that would ensure the existence of a steady-state distribution.  

Using the results obtained they calculate conditions which would ensure that moments are finite and 

exist. This enables them to show why tests of co-integration that try to test for bubbles through 

standard and DF unit root tests fail to detect the presence of bubbles and have low power. The model 

used is an extension of the Blanchard and Watson (1982) model where the price process is specified 

as: 𝑝𝑡 = 𝑝∗ + 𝑐𝑡  where 𝑝∗represents the fundamental price and 𝑐𝑡represents the bubble term. Given 

this price process the generalized Knight and Satchell model takes the following form: 

𝑝𝑡 − 𝑝∗ = 𝛽1(𝑝𝑡−1 − 𝑝∗) + 𝜀𝑡𝑖𝑓 𝐼𝑡−1 = 0                                              (2.3) 

 𝑝𝑡 − 𝑝∗ = 𝛽2(𝑝𝑡−1 − 𝑝∗) + 𝜀𝑡𝑖𝑓 𝐼𝑡−1 = 1                                             (2.4) 

And 𝐼𝑡−1 is defined as: 

              𝐼𝑡−1 = 0 𝑖𝑓 𝑍𝑡 ≤ 𝑐 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜋                                       (2.5) 

                   𝐼𝑡−1 = 1 𝑖𝑓 𝑍𝑡 ≥ 𝑐 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜋                                          (2.6) 
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 𝑍𝑡 is the forcing variable in the model. Letting 𝛽1 = 0 𝑎𝑛𝑑 𝛽2 =  𝛽 𝑤𝑖𝑡ℎ 𝑋 =  𝑝𝑡 − 𝑝∗. This leads to 

the simplified model 𝑋𝑡 =  𝛽𝐼𝑡−1𝑋𝑡−1 + 𝜀𝑡. Backward substitution leads to 

𝑋𝑡 =  ∑ 𝐵𝑗 ∏ 𝐼𝑡−𝑘𝜀𝑡−𝑗
𝑗
𝑘=1 .∞

𝑗=0  This model allows Knight and Satchell to derive the conditions 

required for strong stationarity. We build upon these results in Chapter 4 which also provides more 

details on this methodology.  

 

Philips, Shi and Yu’s recent contribution has been the most recent development in bubble literature 

and we talk about their methodology at length in the next section. Since we employ the GSADF 

statistic throughout this dissertation, we provide a detailed overview of the statistic.  

 

2.3  Methodology: 
 

In light of the above discussion, it is evident that any serious research on bubble detection will need to 

address Evans’ criticism. His criticism also suggests that markets can appear to be efficient even if 

significant inefficiency is present; this is something we build up on in Chapter 4. Our proposed 

modified Bhargava test attempts to address this criticism. The test is also applicable to a wide range of 

situations as we will show and the fact that the test is designed to be a local test allows it to be used in 

small samples. Our empirical application of the test also fills a gap in literature as most empirical 

bubble testing has been focussed on stock price indices. While interest in commodities has increased, 

a coherent study looking at commodities as an asset class has been lacking.  

 

2.3.1 Modified Bhargava Test: 

The Bhargava statistic, also referred to as the Bhargava-Sargan statistic (1986), is the locally most 

powerful invariant statistic to test for a unit null against an explosive alternative hypothesis. It does 

not rely on any parameter estimates from the underlying process under question and thus allows one 

to test for explosive behaviour in small samples reasonably accurately. Consider the reduced AR(1) 

form for an asset price series:  

𝑝𝑡 = 𝜙𝑝𝑡−1 + 𝜖𝑡                                                             (2.7) 

where 𝜖𝑡 is assumed to be a white noise process and 𝜙𝑡 is the autoregressive parameter and the 

parameter of interest which drives bubble behaviour. The null hypothesis under consideration is: 

𝐻0:     𝜙𝑡 = 1     𝑓𝑜𝑟 𝑡 = 1,2 … … . .𝑇                           (2.8) 

The alternative hypothesis tests for an explosive root in the series, i.e. 

       𝐻1:     𝜙𝑡 > 1  𝑓𝑜𝑟 𝑡 = 1,2 … … … . .𝑇                           (2.9)          
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The original Bhargava (1986) statistic is:  

𝐵 =  
∑ (𝑝𝑡 − 𝑝𝑡−1)2𝑇
𝑡=2

∑ (𝑝𝑡 − 𝑝0)2𝑇
𝑡=2

                                                    (2.10) 

If the series under consideration has a drift component, the Bhargava statistic is: 

𝐵 =  
∑ (𝑝𝑡 − 𝑝𝑡−1)2 − 1

𝑇 − 1 (𝑝𝑇 − 𝑝0)2𝑇
𝑡=2

1
(𝑇 − 1)2 ∑ [(𝑇 − 1)𝑝𝑡 − (𝑡 − 1)𝑝𝑇 − (𝑇 − 𝑡)𝑝0]2𝑇

𝑡=1

    (2.11)                 

We can see from the statistic that the test is not designed for large samples. With large sample sizes, 

the statistic approaches zero and thus, the test becomes trivial. Our methodology will not only allow 

us to apply the test to larger samples but will also try to address Evans’ criticism. The original 

Bhargava statistic did not incorporate a structural break in the series; thus, if one had to test for a 

bubble in the series, it was assumed that the series will be in an explosive state for ever or at least 

explosive enough for the right-sided unit root test to yield statistically significant evidence. Some 

researchers have applied modifications to the Bhargava statistic. Breitung et al (2010) alter the 

statistic so that it is able to detect a structural break in the series. They use a version of the inverse of 

this statistic for their testing procedures. The shortcoming of their modification is that the statistic is 

still unable to detect multiple bubbles in a long time series as it identifies only 1 structural break. 

We use the original form of the statistic but significantly alter how it is applied to data. Bhargava 

himself and Evans, when testing his collapsing bubble hypothesis, applied the Bhargava statistic only 

once for the full series. With availability of longer and more frequent data, it is possible to apply the 

statistic to sub-samples. Since the test is meant to be a local test with limited observations available, 

the statistic can readily be applied to truncated sub-samples. The statistic is particularly useful to 

determine short term exuberance which characterizes behaviour of assets in general and commodities 

in particular during periods of crises. Bhargava noted the exact critical values for his test statistic 

which are contained in table 1 of his 1986 article. He used different sample sizes varying from a size 

of 20 up to 100. The critical values are different for series with a drift term.  

When Evans identified the need for high persistence in bubble terms to enable detection, he used 

simulations of 100 periods and each simulation contained multiple bubbles. Given the high number of 

collapses in his series, the test is unable to distinguish the series from a random walk. However, 

bubbles are a short or medium term phenomenon and with the availability of longer time series it is 

imperative that we will observe periods of collapse.  

There appear to be multiple bubbles in the commodity series under consideration here; however, our 

methodology will help us isolate these instances. Our modification is as follows. Instead of 
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calculating the statistic over the whole series, we split the full sample into shorter sub-samples. Using 

a rolling window over the sub-samples we compute the statistic for each sub-sample. This allows us to 

isolate bubbles and identify periods where explosive behaviour is observed. Since the time series data 

we have is for a maximum of 687 periods, our analysis below uses 700 observations.  

For illustrative purposes suppose that we divide our sample into sub-samples of 100 periods and use a 

rolling window of 50 periods. The rolling window is not necessary and is more a convenience tool to 

help in detection of explosive periods when testing multiple series. We start at the beginning of the 

series and calculate the Bhargava statistic for the first 100 observations. Next, using our rolling 

window, we calculate the Bhargava statistic for observations 50 to 150 and keep using the rolling 

window of 50 observations till the end of the sample.  

Once the rolling methodology described above has been applied and the Bhargava statistic calculated 

for each sub-sample, we obtain a series of Bhargava statistics. Each entry in the series can then be 

compared to the critical values from Bhargava’s original table at conventional significance levels. If a 

particular entry in the series is rejected, we conclude that there is evidence of explosive behaviour in 

the series for that time period. Otherwise, the null of a random walk appears more appropriate. Note 

that this statistic works differently from more conventional tests. The hypotheses are rejected for low 

values of the test statistic. The lower the value of the statistic, the more likely the series is to contain 

an explosive root. This also explains why this is more useful as a local test, as with longer series, the 

critical values will approach zero and we will no longer be able to distinguish between a random walk 

and an explosive series. The figure below, illustrates the methodology. 

 

 

 

 

 

 

 

 

The null of a random walk allows us to use this procedure. Under the null we can assume that 

successive windows are independent as the difference between two consecutive periods is determined 

t = T t = 0 

Overlap 
window 

Sub-sample 1 

Sub-sample 2 

Sub-sample 3 

Sub-sample 4 

Sub-sample 5 

Sub-sample 6 

The Bhargava statistic is calculated at each sub-sample. The sub-sample size 
and the overlap window are decided by the researcher 
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by the error term and not be a deterministic term. The procedure would not have been valid for any 

value of 𝜙 other than 1.  

In each window, the statistic will continue to follow the exact distribution as derived by Bhargava et 

al. If the exact cumulative distribution of the statistic is given by 𝐹(𝑟) = 𝑃(𝐵 < 𝑟), the distribution of 

the modified Bhargava statistic, 𝐵ℎ = min (𝐵1,𝐵2, …𝐵𝑛), can also be derived (where 𝐵1,𝐵2, … 𝐵𝑛, 

represent the Bhargava statistic in each window). 

𝐵ℎ = 𝑃(min(𝐵1,𝐵2, …𝐵𝑛) < 𝑟 = 1 − 𝑃(𝐵1 > 𝑟,𝐵2 > 𝑟…𝐵𝑛 > 𝑟) 

Under the null hypothesis of random walk, 𝐵𝑖 is uncorrelated with 𝐵𝑗 if 𝑖 ≠ 𝑗. Thus,  

𝑃(𝐵𝑖 > 𝑟) = 1 − 𝐹(𝑟), which implies: 

𝐵ℎ = 1 − �1 − 𝐹(𝑟)�𝑛, where n is the total number of windows.  

𝐹(𝑟) does not have a closed form solution; Since the Bhargava statistic is a ratio of quadratic forms in 

normal variables, the exact limit for a test size 𝛼 is calculated using the Imhof procedure (Bhargava, 

1986): 

𝑃[�(1 − 𝑟𝛿𝑘)𝑧𝑖2 ≤ 0]
𝑇−𝑛

𝑖=1

= 𝛼 

Where 𝑧𝑖 are i.i.d (0,1) and 𝛿𝑘 represent the (T-n) smallest eigenvalues of a symmetric 𝑇 ∗ 𝑇 matrix 𝐺, 

given by  

𝐺𝑖𝑗 = (𝑇 + 1 − 𝑗)          𝑗 ≥ 𝑖      (𝑖, 𝑗 = 1, … . ,𝑇) 

For a test of non-stationariy, the Eigen-values are of the form: 

𝛿𝑘 =
1

�4 sin2 �2𝑘 − 1
2𝑇 − 1 �

𝜋
2���

       (𝑘 = 1, … ,𝑇 − 1) 

Further details can be found in Section 3 of Bhargava (1986). We used simulation analysis to derive 

critical values for 𝐵ℎ, and have included our code in Appendix 2 below. We find that the exact critical 

value for a given window size are the same as derived in the original article. The critical values 

depend on the size of the window with smaller window sizes requiring a higher critical value. We 

report our simulated critical values in Table 2.4. 

As the series moves farther away from its initial sub-sample value, the denominator increases faster 

than the numerator even though, the numerator is also increasing due to the presence of the bubble. 𝑦0 
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is adjusted for each sub-sample for which the statistic is calculated. If the null hypothesis of a unit 

root is rejected in favour of the alternative of an explosive root, we can say there is evidence of bubble 

like behaviour in the series which occurs at some point during the sub-sample under consideration. 

Thus, in a 700 observation series containing 13 sub-samples, each 100 observations long with an 

overlapping window of 50, we would say that a bubble is present in the series if for any of the sub-

samples our calculated statistic exceeds the critical value of 0.022. The sub-sample in which this 

statistic is found can be classified as an explosive period.  

This helps us address the multiple collapsing bubble issue highlighted by Evans. A caveat to be noted 

is that even though we can detect multiple bubbles in the full series using this methodology, Evans’ 

critique will still remain valid for each sub-sample. Thus, if there are multiple bubbles within a sub-

sample, the modified test procedure may fail to detect them. However, this may be resolved using a 

different sub-sample size. Reducing the sub-sample size may enable us to detect these bubbles. The 

question of what sample size and overlap size to choose is discussed in Section 2.4.   

 

2.3.2 Philips, Shi and Yu test 

Philips, Shi and Yu (2013, PSY henceforth) built upon the earlier work of Philips, Wu and Yu (2010, 

PWY) and devised the Generalized Supremum Augmented Dickey Fuller statistic (GSADF) in order 

to detect multiple collapsing bubbles. They also suggest a methodology for dating bubbles. For a 

random walk process with an asymptotically negligible drift they devised a recursive regression 

methodology to detect the presence of a bubble in a particular price series. Specifically, the data 

generating process used is: 

𝑝𝑡 = 𝑑𝑇−𝜂 + 𝜃𝑝𝑡−1 + 𝜀𝑡 ,                                                      (2.12) 

where 𝜃 = 1, d is a constant, T is the sample size and 𝜂 > 1/2. The recursive right-tailed Augmented 

Dickey-Fuller statistic is then calculated by specifying an initial window 𝑟𝑤. The empirical regression 

begins with the first value in the series 𝑟0and computes the Dickey-Fuller statistic for the first 𝑟𝑤terms 

in the series. Recursions are then carried out by increasing the number of terms used to run the 

regression and calculate the Dickey-Fuller statistic 1 additional observation at a time. The last 

regression uses all observations in the series and the window spans the whole series. The Sup ADF 

statistic is then found as the supremum of the series of ADF statistics computed using the recursive 

regressions above. Their empirical regression model is 

Δ𝑝𝑡 = 𝛼𝑟0,𝑟𝑤 + 𝛽𝑟𝑜,𝑟𝑤𝑝𝑡−1 + �𝜓𝑟0,𝑟𝑤
𝑖

𝑘

𝑖=1

Δ𝑝𝑡−𝑖 + 𝜀𝑡                (2.13) 
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In this model, 𝑟0 is fixed while 𝑟𝑤 increases by 1 observation for every recursion. 𝑘 represents the lag 

order and 𝜀𝑡 is an iid disturbance term. The Sup ADF statistic (SADF) indicates if bubbles are present 

in a particular series. Date stamping a bubble requires the use of the series of ADF statistics generated 

by the recursive regression. According to PWY’s methodology the start of a bubble is identified as the 

first point in the series when the ADF statistic exceeds the 5% right-tailed critical value based on the 

simulations. Similarly, the collapse of the bubble is identified as the first point following 

identification of a bubble when the ADF statistic falls below the 5% right-tailed critical value. 

Although this methodology could identify multiple bubbles, its power is relatively low compared to 

the GSADF statistic.  

In contrast to the SADF statistic which uses an expanding sample with a fixed starting point, the 

GSADF statistic, re-initializes the recursive regressions by changing the starting point of the series. In 

essence this represents a double recursion to calculate right-tailed Dickey Fuller statistics. To 

illustrate this point further, suppose the first empirical regression comprises the first 𝑟𝑤observations 

and runs from 𝑟1to 𝑟2, so that for the first regression  𝑟𝑤 =  𝑟2 −  𝑟1 . The following iteration in the 

series would keep 𝑟1fixed and increase 𝑟2by including one additional observation. Recursive 

regressions continually increase 𝑟2by one observation and calculate the ADF statistic until 𝑟2is the last 

observation in the series. The SADF test would terminate here.  

The GSADF test on the other hand will re-initialize the recursion by moving 𝑟1from the first 

observation to the second observation and again using 𝑟𝑤observations to initiate the recursive process. 

The recursion will then start again with the ADF statistic being calculated, the sample being increased 

by 1 observation at a time and so on. The double recursion is repeated until 𝑟1 +  𝑟𝑤 gives us the last 

observation in the series at which point the double recursion cannot proceed any further and the last 

recursion will represent the SADF for the last date in the series. The GSADF statistic is then defined 

as the supremum of the ADF statistics calculated from this double recursion (or the suprememum of 

the sequence of SADF statistics), i.e.: 

𝐺𝑆𝐴𝐷𝐹 = 𝑠𝑢𝑝 𝑟2𝜖[𝑟𝑤,𝑇]
𝑟1𝜖[𝑟0,𝑇−𝑟𝑤]

�𝐴𝐷𝐹𝑟1
𝑟2�                      (2.14) 

where 𝑟0is the first observation in the series. The limiting distribution of the GSADF statistic is: 

𝑠𝑢𝑝�  
𝑟2 𝜖 [𝑟0,1]

𝑟1𝜖 [0,𝑟2−𝑟0]

�
1
2 𝑟𝑤[𝑊(𝑟2)2 −𝑊(𝑟1)2 − 𝑟𝑤]− ∫ 𝑊(𝑟)𝑑𝑟[𝑊(𝑟2)−𝑊(𝑟1)]𝑟2

𝑟1

𝑟𝑤
1
2{𝑟𝑤 ∫ 𝑊(𝑟)2𝑑𝑟 − [∫ 𝑊(𝑟)𝑑𝑟]2}

1
2𝑟2

𝑟1
𝑟2
𝑟1

�           (2.15) 

where 𝑟𝑤 = 𝑟2 − 𝑟1and W is a standard Weiner process 

The following diagram, taken from PSY, illustrates this point further. 
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This double recursion leads to a sequence of sup ADF statistics which is used to date bubbles. 

Bubbles are dated by comparing a series’ SADF sequence to the 95% critical SADF sequence which 

PSY obtained through simulating equation (2.15) and (2.16) above. While the PWY test allowed 

detection of multiple bubbles as well, the PSY test allows detection as well as dating of multiple 

bubbles. The PSY test also has higher power than the PWY test. Moving the starting point 𝑟1, allows 

this statistic to overcome the Evans’ criticism. Identification of bubbles is based on the following 

rules: 

         𝑟𝑒 =  𝑖𝑛𝑓�
𝑟2𝜖[𝑟𝑤,𝑇]

�𝑟2:𝑆𝐴𝐷𝐹𝑟2 > 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑉𝑎𝑙𝑢𝑒�                 (2.16) 

                                          𝑟𝑓 =  𝑖𝑛𝑓�
𝑟2𝜖[𝑟𝑒+𝑟𝑏,𝑇]

�𝑟2: 𝑆𝐴𝐷𝐹𝑟2 < 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑉𝑎𝑙𝑢𝑒�           (2.17)  

𝑟𝑒is the start of the bubble, 𝑟𝑓is the collapse date of the bubble and 𝑟𝑏 represents the length of the 

bubble. The SADF sequence for the concerned series is then plotted and compared to the 95% SADF 

sequence. When the SADF sequence crosses and is above the 95% sequence, PSY conclude that the 

series is in an explosive state. When the calculated SADF sequence falls below the 95% SADF 

sequence, the series is a random walk. Multiple bubbles may be identified and dated in this manner.  

Philips et al classify an episode of exuberance a bubble if its length is at least log(T). We follow their 

suggestion and any explosive episodes shorter than log(700) = 3 months, are not considered in our 

results. We use the GSADF statistic to formulate our methodology in Chapter 3. In Chapter 4 we have 

more to say about the statistic and identify scenarios where the GSADF statistic may fall short.  
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As mentioned previously, PSY used the data generating process in (2.12) to obtain critical values 

using 5000 simulations and calibrating 𝑑 =  𝜂 = 1, T = 1680 and 𝑟𝑤= 36 observations. Instead of a 

critical value, this technique generates a critical ‘sequence’ from the simulation SADF sequences. 

Thus, PSY base their inferences on the 95% SADF sequence of critical values. PSY were carrying out 

this test for historical US Stock price data and thus used a sample size of 1680. Our sample size is 

considerably smaller so we need to calculate critical values more attuned to our data. 

We simulate the same data generating process that we used for the modified Bhargava test with 10000 

replications but use T = 687 and 𝑟𝑤= 100 observations in order to compare the results to our modified 

Bhargava statistic results. We also simulated the data generating process by including a time trend 

with a small slope. Note, that the power of the test will be affected when the sample size is changed. 

A bigger sample size is more likely to detect bubbles than a smaller sample using this methodology. 

The critical values obtained when the time trend was included were not significantly different from 

the critical values without trend and were generally lower; thus, we conducted our test with the more 

prudent estimate. The critical values were also not very sensitive to the initial window size of a 100. 

Smaller window sizes did not yield very different critical values. The critical values obtained from 

simulation results are reported in table 2.3 below. 

 

2.4  Power Comparison 
In this section we compare the power of the two tests. Our first comparison considers a relatively 

large sample. Later in this section we also show that the modified Bhargava statistic performs better 

than the PSY test when we decrease the number of observations. This technique may also have 

implications for threshold autoregressive models and may help the researcher in identifying an 

explosive state or a regime change. While we do not touch upon regime-switching models in this 

Chapter, Chapter 3 and 4 will deal with such models in detail.   

PSY showed that their GSADF statistic had very high power, particularly for larger sample sizes. In 

their article they use a range of sample sizes to calculate the power. The results of this analysis are 

contained in table 4 of their paper. The sample sizes they consider are monthly and of sizes 100, 200 

and 400 respectively. The sample sizes that we are primarily concerned with, however, are slightly 

larger. We recalculate the power of both statistics in light of our commodity price data set.  

In order to test the power of our Modified Bhargava Statistic we utilize the process originally used by 

Evans and subsequently built upon by West (1988). Another possible alternative we could have used 

was the one proposed in Knight and Satchell (2011). The main difference between the Knight and 

Satchell model and the Evans model is that the former model uses an exogenous trigger while, the 

Evans model uses an endogenous trigger in the form of a bubble process that together with the 
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fundamental process forms the prevailing price of an asset. The processes thus obtained look similar 

and the only reason for using the Evans model was to aid direct comparison with the power tests 

conducted by PSY for the GSADF statistic. We follow the notation used in Phillips et al.  

The asset price consists of a fundamental component and a bubble component: 

𝑃𝑡 = 𝑃𝑡
𝑓 + 𝜅𝐵𝑡                                         (2.18) 

where 𝑃𝑡
𝑓is the fundamental component, 𝐵𝑡is the bubble component and 𝜅 is a constant that adjusts 

the magnitude of the bubble component and influences the impact of the bubble to the price process.  

𝑃𝑡
𝑓 =

𝜇𝜌
(1 − 𝜌)2 +

𝜌
(1 − 𝜌)

𝐷𝑡                           (2.19)           

with  

𝐷𝑡 = 𝜇 + 𝐷𝑡−1 + 𝜀𝐷,𝑡 ,     𝜀𝐷~𝑁(0,𝜎𝐷2)                               

The term 𝐷𝑡 is the driver of the fundamental price and can be thought of as a cash flow from an asset 

or dividends if one considers stocks. 𝜇 is the drift of the random walk process, 𝜌 represents the 

discount factor (i.e. 1
(1+𝑟)

). The bubble process on the other hand has a trigger value ‘b’. The bubble 

process slowly approaches this trigger value at the rate (1 + 𝑟) as per West (1988).  

When the trigger value is reached the bubble process switches to an explosive process. The duration 

of this explosive process is determined by a Bernoulli process 𝜗 which takes on the value 1 with 

probability 𝜋. To clarify, when the process becomes explosive, the probability of the explosiveness 

continuing is 𝜋. Once the explosive process collapses (i.e. the Bernoulli process takes a value of 0), 

the value of the bubble process collapses to 𝜁after which the bubble starts slowly rising again until the 

trigger is breached. 

𝐵𝑡+1 = 𝜌−1𝐵𝑡𝜀𝐵,𝑡+1,     𝑖𝑓 𝐵𝑡 < 𝑏               (2.20𝑎)             

𝐵𝑡+1 = [𝜁 + (𝜋𝜌)−1𝜗𝑡+1(𝐵𝑡 − 𝜌𝜁)]𝜀𝐵,𝑡+1,    𝑖𝑓 𝐵𝑡 ≥ 𝑏               (2.20𝑏)                                                    

𝜀𝐵,𝑡is a log normally distributed exponential error term with a mean of 1 and a standard deviation of 

0.05. The initial parameter settings are identical to the monthly parameter settings used by PSY and 

are contained in the table below. We note that the simulated process may not satisfy the conditions for 

a steady state distribution to exist (which have been outlined in Chapter 4). 
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𝝁 𝝈𝑫𝟐       D0 𝝆    b    B0    𝝅 𝜻 𝜿 

0.0024 0.0010 1.0 0.985 1 0.50 0.85 0.50 50 

 

The random process generated using the above parameter values contains a number of collapsing 

bubbles as shown in the figure below.  

 

As seen above, the length of each bubble is shorter and there are many more bubbles in this process 

than the number we observe in our data. Both statistics under consideration are applied differently. 

While the GSASDF statistic uses a recursive procedure, the Bhargava procedure uses a rolling 

window; thus, the best comparison will require a small sub-sample size for the Bhargava statistic. We 

conduct our power test using different sub-sample sizes. In empirical application the size of the sub-

sample will be dictated by the data available and whether the bubble to be detected occurred in the 

past or is currently expected to be present in a series. 

Table 2.2 (in the appendix) shows results of power tests for both the Bhargava Statistic and the 

GSADF statistic. We use the data generating processes (2.18) – (2.20) to simulate series containing 

explosive behaviour and apply both the modified Bhargava Statistic and the GSADF statistic. Each 

series has 700 observations. Initial calibration is based on the parameter values above. For the 

GSADF statistic we use an initial window of 100. Using a smaller window does not change the power 

significantly, so we keep the initial window at 100 as we use the same window size for our empirical 

application. For the modified Bhargava test we use different sample sizes and employ an overlapping 

window that is half the size of the sub-sample. Critical values for the GSADF statistic are contained in 

table 2.3 and for the modified Bhargava test in table 2.4. We say that the series contains a bubble if 

the infimum of the modified Bhargava statistic series is less than the critical value as explained in 

section 2.4 above.  
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From Table 2.2 we see that the power of the modified Bhargava test varies according to the sub-

sample size. When we consider a sub-sample size of 20 with an overlapping window of 10, the power 

of the statistic is 99% compared to 97% for the PSY test. Thus, we can clearly see that the modified 

Bhargava statistic holds its own in a power comparison against the PSY test; particularly when the 

sub-sample size is low which is the most relevant comparison given the recursive nature of the PSY 

test. For our empirical application, we use the sub-sample size of 100 and an overlap window of 50, 

primarily to make the analysis of data more tractable and interesting.  

Our power test suggests optimal window-sizes given the size of the data-set. If the objective is to date 

explosiveness, smaller sub-sample sizes will be more appropriate for series with a low number of 

observations, or when the objective is to determine whether a series may currently be in an explosive 

state. For a smaller sample size (<100) a sub-sample size of 20 with a rolling window of 10 will be 

appropriate. For larger samples, a sub-sample size of 100 with a small rolling window (such as 20) 

will yield optimal results. This will keep the analysis manageable while not compromising on 

statistical power. We use a sub-sample size of 100 and a rolling window of 50 in order to be 

consistent with our empirical results and to keep the analysis tractable (while a smaller rolling 

window will have been more appropriate, using a rolling window of 50 allows us to make our results 

presentable; results with a smaller rolling window were not significantly different). Our results 

indicate that even with a relatively large sub-sample size, we are able to detect a number of explosive 

episodes in our data. On the other hand, if the user is not interested in dating explosiveness and is 

primarily concerned with its presence in a series, the smallest sample size (20) will be optimal given 

the results in Table 2.2. 

Next, we show how the power of the Bhargava statistic evolves as we change the initial parameter 

values. We use a sub-sample size of 100 and an overlapping window of 50 observations. Again, we 

use the infimum of the modified Bhargava Statistic in order to test power. If the infimum of the 

modified Bhargava statistic series is less than the 5% critical value (0.022), the null hypothesis is 

correctly rejected in favour of the alternative. As shown above, we obtained a power of 39% for the 

initial parameter values. These are much higher than those observed by Evans (6.5%) for the same 

parameter values.  

For the data at hand, the number of bubbles appears to be lower and of slightly longer duration, 

lasting between 1 and 2 years; thus, in order to conduct a more relevant power test for the commodity 

data we have, we adjust the parameters in order to generate series that have fewer bubbles but a higher 

duration. More precisely, the parameters we alter are 𝜋, the probability of a bubble continuing in the 

next period, which leads to longer bubbles and ‘b’, the trigger value, which determines how often 

explosiveness is triggered in the process. The table below shows the results of our power test for a 
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range of values of 𝜋 and ‘b.’ Each result was obtained using 5000 replications of the data generating 

process outlined above. 

 

‘b’ 𝝅 

0.85 0.90 0.95 0.99 

1.0 39% 52% 77% 97% 

2.0 48% 61% 84% 97% 

3.0 60% 70% 88% 98% 

 

As seen above, the frequency of bubbles and the duration of each bubble appear to have a significant 

impact on the power of the modified Bhargava Statistic. Thus, the statistic, even with a high sub-

sample size is more likely to detect bubbles in data with bubble episodes separated by a number of 

years. This strengthens the argument for using the modified Bhargava statistic for data containing 

multiple bubbles lasting between 1 and 2 years, such as the ones we observe in the commodity price 

data. The figure below was generated from the sample corresponding to 𝜋 = 0.95 and b = 2.0. As we 

can see, there are between 2 and 3 significant deviations from the random walk process which is in 

line with what we observe for most commodities.  

 

The above analysis uses an exogenous, fixed probability value for the binomial random variable 

which triggers the bubble. A more theoretically appealing alternative would make the probability 

endogenous to the data generating process. In a rational bubble framework, rational investors will 

keep investing in the market expecting the bubble to keep growing; however, the possibility of the 

bubble collapsing is always present. The further away the prevailing price moves from the 

Power test for the modified Bhargava statistic  
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fundamentals, the more likely the collapse becomes; thus, the probability of a bubble continuing from 

one period to the next will be endogenous to the data generating process. 

Taking the above analysis into account, we evaluate the modified Bhargava statistic’s power using 

endogenous probabilities. Specifically, the parameter for the binomial random variable determining 

continuation of the bubble is determined as follows: 

𝜋 = 2 �
1

1 + (𝑏𝑡)𝑎
�  

As the size of the bubble increases, the probability of the bubble continuing goes down. The scalar a 

controls how quickly this probability goes down. Multiplying the expression by 2 ensures that when 

the bubble size increases to 1 unit, the probability of the bubble continuing is close to 1. We use the 

same data generating process as (2.18) and (2.19) in order to test the power of our statistic using this 

endogenous probability. Parameter values are identical to our initial power test. The scalar ‘a’ is 

initially set at 0.1. Numerically, this is equivalent to having a probability around 0.99 when the bubble 

size is slightly greater than 1. 

Simulated prices look fairly similar to those generated by the original data generating process. The 

power of the test given endogenous probability is 70% which compares favourably with our previous 

results. Thus, even with endogenous probabilities the test has significant power to detect bubbles that 

last for periods of 1 or more years. Again, if we use shorter sub-samples the power will be much 

higher. As we decrease the scalar ‘a’ further, the power of the test goes up further. The following 

diagram shows a typical simulated price series using an endogenous probability.  

 

Finally, we compare the small sample properties of both the PSY and modified Bhargava statistics. 

For this purpose we used the same data generating process as in (2.18)-(2.20) but instead of 

generating a sample size of 700, we generate a sample of 100 observations. Next we test for bubbles 
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using the modified Bhargava statistic with a sub-sample size of 20 and an overlap window of 10. Note 

that Philips et al have already performed the test for 100 observations in their 2012 article where they 

use an initial window of 40 observations. 5000 such simulations were performed. Philips et al find 

that the power of their GSADF statistic for a sample size of 100 is 55.6% (as reported in their article). 

The modified Bhargava statistic on the other hand has a power of 63%. If we decrease the overlap 

window to 5, the power increases further to 78%. Thus, as the sample size decreases the modified 

Bhargava statistic starts to outperform the PSY test. 

The analysis above shows that the modified Bhargava statistic is a powerful tool for detecting bubbles 

and identifying periods where bubbles may be present. The GSADF statistic has the advantage that it 

can date bubbles more precisely; however, it is computationally more demanding and is less accurate 

in smaller samples. It should also be mentioned that the GSADF statistic uses the Augmented Dickey 

Fuller test which has an asymptotic distribution so it may not be fully reliable with limited data. The 

Bhargava statistic on the other hand has an exact distribution as shown by Bhargava so the test can be 

applied to small samples as well. This will be particularly important when one wants to determine if a 

continuing series is in a bubble contemporaneously. We note further shortcomings of the GSADF 

statistics in Chapter 4.  

As we have shown above, the Bhargava statistic is more flexible and by changing the sub-sample size 

and the overlap window we can modify the procedure to suit the question we are trying to answer. For 

historical analysis and large samples, a sub-sample size of 100 will be more appropriate and the 

GSADF and Bhargava statistics should yield the same result. If on the other hand our interest lies in 

detecting whether the series is in a bubble currently, we may rely on a smaller sub-sample size, such 

as the size 20 we apply above. The modified Bhargava procedure will work much better at the end of 

a sample compared to the GSADF statistic as is evident from our power test with smaller samples. 

Another advantage is that the modified Bhargava test can be used for any elliptical distributions 

without changing the critical values significantly. Thus, if we change the distribution of the error term 

in the data generating process above from a normal to a student’s t-distribution, our critical values will 

not change significantly implying that application of the test will be robust to the distribution of the 

error term. The test does not rely on estimating any parameter values, which is another benefit it 

enjoys of the PSY statistic which requires estimation of the Auto-regressive parameter using OLS 

which can be biased in small samples.  

We have argued above that the modified Bhargava statistic is at least as good at detecting bubbles as 

the GSADF statistic. While the GSADSF statistic may be able to date historical bubbles more 

precisely, the modified Bhargava procedure will be much better at detecting bubbles towards the end 

of a sample and for smaller samples. The new strategy continues performing adequately even with 

relatively large samples. The modified Bhargava procedure is also more flexible and has an exact 
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distribution thereby being more reliable econometrically. Next, we employ the modified Bhargava 

statistic to detect bubbles in commodity price data. For comparison we also performed the GSADF 

test on the same data; the results for GSADF testing are available upon request.   

2.5  Commodity price series and Data: 

Given the turbulence we observed in financial markets from 2007-2009, economists have increasingly 

started considering other asset classes as candidates for bubble testing. For our empirical application, 

we consider 25 commodity price series. Being used as inputs in manufacturing and energy sectors, 

commodity prices can have repercussions for the real economy which makes them interesting. In what 

follows we provide a brief discussion of our data.   

The International Monetary Fund’s (IMF) International Financial Statistics database was used to 

access data on commodity prices. The database contains monthly data on a number of commodities 

starting from 1957. Not all commodity price series begin from 1957 and in fact a number of monthly 

series start from 1971 during the first OPEC oil crisis period. All price series are in nominal US 

dollars. Each price series represents an average spot price calculated for the period in question.  

The price series for a number of metal commodities such as Aluminium, Nickel and Iron Ore initially 

start as yearly series. Contract negotiations for these commodities were carried out on a yearly basis 

so the spot price stayed fixed throughout the year. Thus, contracts were undertaken a year in advance 

which fixed the average price for the importer for a year even though the spot price at a particular 

location was more likely to vary due to transportation costs and inventory considerations. Gradually 

with more liquidity in the market and the development of financial and transportation sectors, more 

regular contract negotiations were possible so that prices were determined on a quarterly and 

eventually on a monthly basis. Currently, pricing data is available on an intra-day basis and thus, there 

is much more variability seen in commodity price series for recent years. The one exception to this 

general trend is Iron Ore.  

Up to the late 2000’s, iron ore pricing took place in private negotiations between iron ore miners and 

Japanese shipping companies who were the primary consumers of raw iron ore. As demand for iron 

ore in China grew and with the emergence of swap contracts for refined Iron Ore, the pricing 

mechanism changed to a more regular monthly frequency. The swap contract itself is priced on a 

regular basis (Mining Journal). Annual contracting reduces the potential of volatility and thereby may 

also preclude the existence of a bubble.  

In addition to individual price series, data on various price indices, prepared by the IMF, was also 

used to get a broader picture across different categories. Group indices are constructed based on 

individual price indices; the weights used are based on the trade value of individual commodities 
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compared to world commodity trade values. The weights are updated every 5 years and 2005 is used 

as the base year to index all commodities. Group commodity indices are likely to be influenced by 

aggregation effects but nevertheless may provide useful information when it comes to understanding 

particular bubble episodes. In most cases the results for these indices corroborate our results for 

individual commodities or the relevant commodity group.  

Table 2.1 shows the commodities used for the tests, including the time period for which monthly data 

were available and the group they have been included in for construction of commodity price indices. 

Precious metals are not the focus of this article and have been included for comparison purposes only 

(they have thus been included in the Miscellaneous group along with price indices). 

Preliminary analysis of the price series’ in levels shows most commodity prices going up around the 

time of the first and second oil price shocks. This is followed by a period of stability in the 90’s and 

the early 2000’s. From 2005 onwards, commodity prices start rising again until 2008 when most 

commodities reach a peak which is fuelled in part by increasing demand from developing countries 

but may also be due to the presence of bubble elements. We would expect our test to detect 

explosiveness in these periods. It should be noted that the real values of commodities have been 

decreasing over time as technology has improved productivity in agriculture and mining. We apply 

our tests to nominal prices; in Chapter 5 we investigate explosive episodes in real prices.  

Following the financial crisis there is a marked decline in most commodity prices; however, the 

decline is not uniform and some commodity prices have risen substantially since the commodity price 

crash in 2009. We aim to provide some context to the explosive episodes we detect to aid the analysis. 

Most explosive periods tend to be triggered by, what might be termed, a productivity shock. 

Following this shock commodity prices tend to exhibit the type of explosive behaviour that is akin to 

the kind of bubble econometric tests are designed to detect.  

2.6  Results 

We only report the results of the modified Bhargava test below but do note the results obtained from 

the GSADF statistic for comparison purposes. As mentioned before, the GSADF testing results are 

available upon request.  

For the purposes of our test and given the length of the commodity price series we conducted the test 

with a sub-sample size of 100 and an overlapping window of 50. We believe that a sub-sample size of 

100 will make the analysis more tractable and will allow us to detect all major episodes of explosive 

behaviour. Since the purpose of this exercise is to compare the explosive periods detected in the 

Bhargava and the GSADF tests, a sub-sample of 100 will suffice. Whereas having a shorter sub-

sample will detect more bubbles, it will make the Bhargava statistic series for each commodity longer 
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and make the comparison much more difficult. However, we will still advocate that a researcher or 

investor, primarily using this procedure to make economic or financial decisions, use a smaller sub-

sample. 

In the commodities under consideration, bubbles have different durations in each series, although 

most periods exhibiting explosive behaviour do not exceed a year. We take each commodity in turn 

and apply the Bhargava statistic with a sub-sample size of 100 and a rolling window of 50. Table 2.5 

shows how the 100 month windows are constructed including the overlap period. Data for all 

commodity series does not start from January 1957; hence, the number of times the statistic is 

calculated is shorter for such series. To give an illustrative example, Window 1 refers to the time 

period January 1957- May 1965. Window 2 starts from March 1961 and goes up to July 1969. The 

period from March 1961 – May 1965 is common to both Windows and is referred to as the overlap 

period. Table 2.6 shows the calculated value of the statistic. The critical values are obtained from 

table 2.4 and correspond to a sub-sample size of 100.  

We fitted a random walk with drift model to each series to identify if the series’ trend component was 

significant. The STAMP software was used for this purpose which uses the Kalman Filter in order to 

estimate a model with unobserved components. Table 2.6 shows the results of our tests and also lists 

whether each series has a significant trend component. All commodity series had a statistically 

significant trend component with the exception of Tea, Coal, Gasoline and the Beverages index. 

Although the trends were statistically significant, their magnitude was small. Thus, the relevant 

critical value to use is the one with trend. It should be noted that the results do not vary greatly even if 

we employ the statistic without the trend and use de-trended critical values.  

Table 2.6A shows the Bhargava statistic values for Food commodities. For a majority of the 

commodities, the statistic is able to detect an explosive root in periods where bubble like behaviour 

was observed. Particularly important are Windows 3, 4, 11 and 12 which correspond to the oil crises 

and the financial crisis period respectively. Additionally, the statistic is also able to capture instances 

of explosive behaviour in individual series. For instance, the increase in coffee prices between 1994 

and 1996 results in the random walk hypothesis being rejected for coffee (window 8). A severe frost 

in Brazil in 1994 resulted in coffee prices considerably increasing giving rise to this period of 

explosiveness. All other food commodities on the other hand were stable during the period and so the 

random walk hypothesis was not rejected during the period.  

If we interpret rejection of the hypothesis at the 5% level as providing stronger evidence for bubble 

like behaviour than rejection at the 10% level, we note that for periods which coincide with the 

highest prices, the null hypothesis is rejected at the 5% level while periods containing a build up to the 

bubble period are rejected at the 10% level. The first major episode of bubble like behaviour occurs 
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during the first oil price crisis. In the period between 1965 and 1977 (windows 3 and 4), the statistic 

detects explosiveness in Cocoa beans, Coffee, Lamb, Palm oil and Wheat.  

Bubbles are also detected for the Lamb series between 1982 and 1990 and for Wheat in the windows 

corresponding with the 1980s. During the financial crisis (Window 11 and 12: 1998-2011) we note a 

spur of activity in food commodities and explosive roots are detected in Barley, Coffee, Palm Oil and 

Sugar. Although the random walk hypothesis is not rejected in this particular window for the 

remaining commodities, the value of the statistic is fairly close to the rejection region which could 

indicate that the bubble like activity has had an impact. It also highlights the effect of the crash that 

followed the bubble. Since the price of a number of food commodities reduced considerably after the 

crises, the prices came close to their starting values in the sub-sample which reduces the value of the 

denominator, inflating the statistic.  

Metals and energy commodities follow a similar pattern. Bubbles are detected in a majority of metal 

and energy commodities during the oil crises as well as during the financial crisis. The strongest 

evidence for bubble behaviour is present during the 2nd oil price crisis between 1973 and 1982 

(corresponding to windows 3, 4 and 5), when metal prices soared above their historic values. 1982 

saw oil prices collapse and we see the value of the statistic reducing. An isolated incidence of 

exuberant behaviour is detected in Tin prices in the period between 1977 and 1986. This was the 

period when the Tin price was being controlled by the International Tin Council, a consortium of Tin 

producing countries. Their agreement collapsed in 1985 leading to the fall of tin prices from over 

£10,000 to around £3,500.  

The 1998-2007window sees the most significant evidence of bubble like behaviour. The null 

hypothesis is rejected for all metal commodities except Copper. Thus, at the height of the financial 

crisis when metals recorded their peak nominal values, the Bhargava statistic is able to correctly reject 

the hypothesis of efficiency or prices following a random walk. The subsequent windows show very 

limited activity, even though these sub-samples also contain the bubble. As discussed before, this 

indicates the sensitivity of the statistic to the sub-sample. The statistic is better able to detect bubbles 

when they are either in the formation stage or when they are close to their peaks.  

Evidence for energy commodities on the other hand is mixed. While the UK Brent series is seen to 

exhibit bubbles in both the oil crises as well as the financial crisis, the statistic cannot be rejected for 

Coal, Gasoline, nor West Texas oil during the financial crisis even though Coal, Gasoline and Natural 

Gas all peaked during the financial crisis. On the other hand, bubbles are detected during both the first 

and the second oil price shock in the Petrol series, with rejections at the 5% significance level. Energy 

prices have rebounded following the crash and oil has crossed the $100 a barrel threshold. The impact 

of this rebound is captured well by the Bhargava statistic and the statistic detects bubbles in West 

Texas petrol series between 2007 and 2014. 
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Raw material commodities have had more instances of commodity specific shocks. With the 

exception of the financial crisis in 2007, raw material commodities follow explosive paths in periods 

coinciding with supply or demand shocks for each commodity. It is possible that speculative activity 

during these instances drove up the price of raw materials above the value that would otherwise have 

been dictated by shocks to fundamentals. The statistic captures the Cotton price shock in the 80’s, but 

fails to detect the Jute price shock in the mid 1980’s. There is an additional bubble detected in cotton 

prices between 2002 and 2011. This is primarily indicative of the increase in cotton prices towards the 

end of this sub-sample when there was panic buying in the cotton futures market.   

Indices follow a similar pattern to the group they represent with food, energy and metals exhibiting 

bubble like behaviour during the oil crises and the financial crisis while raw materials and beverages 

do not show significant evidence of bubble like behaviour. 

This shows that the modified Bhargava statistic is very good at detecting explosive behaviour even 

with a high sub-sample size. A smaller sub-sample may be used by investors as a warning mechanism 

to highlight a potential bubble arising. We also note that detection of explosive behaviour is 

dependent on the period being considered. Using a case study approach for the detection of specific 

episodes of explosive behaviour may be more prudent and accurate for the concerned individual. As 

mentioned in Section 2.3.2, within a sub-sample Evans’ criticism will still hold. Thus, the ideal way to 

apply this test will be to divide the full series into regions of explosiveness and collapses, and then run 

the modified Bhargava algorithm we have suggested. Our analysis of commodities reveals that 

bubbles are more likely to be detected when the explosive period occurs towards the end of the sub-

sample.  

Using the same windows for all commodities also allows us to see the number of coincident bubbles 

in each period. As suspected, the incidence of bubbles is the highest during the two oil crises and the 

financial crisis. During the first oil crisis, which corresponds to the 1969-1977 window we observe 

that 13 out of 25 commodities were in a bubble. Similarly 11 out of 25 commodities are in an 

explosive state between 1973 and 1982, roughly the period around the second oil crisis. The financial 

crisis on the other hand had the highest incidence with 15 out of 25 commodities being in a bubble 

during both the 1998-2007 and 2002-2011 windows. The explosive behaviour had started emerging 

around 2005 which explains why we observe such a high number during the 1998-2007 window as 

well. Thus, what may have started as a shock to fundamentals in a particular commodity may have 

spilled over to other commodities resulting in bubbles in other commodities. A more thorough 

investigation would warrant a case study approach as we have stated before. The bar-chart below 

shows the number of commodity bubbles the modified Bhargava statistic detects in each window. 
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Thus, our modified Bhargava statistic can prove to be particularly useful for emerging bubbles which 

will concern policy makers and financial managers alike. Applying the Bhargava statistic only once 

on the whole sample would have led to the rejection of the bubble hypothesis due to the existence of 

multiple bubbles. Our methodology allows us to detect multiple bubbles and the rolling window has 

enabled us to understand how best to use the Bhargava statistic in applied work. For more research 

oriented work, this flexibility will also be able to act as a robustness check.  

For each commodity series we also performed the GSADF test to check if the GSADF value indicated 

the presence of bubbles in the series. Using the SADF sequence of values obtained from the procedure 

described in section 2.3.3, we time stamped the bubble episodes. The test statistic and date stamps for 

each commodity are contained in table 2.7 below. The columns indicate the dates for each bubble 

episode. Very few series had more than 3 bubble episodes so we have reduced the table to include 

only the 3 most significant bubbles, in chronological order. Bubbles are detected at the 1% level of 

significance for all commodity series with the exception of Poultry and Gasoline for which the 

random walk hypothesis is only rejected at the 5% level of significance. Our results were broadly in 

line with the modified Bhargava statistic and we note that bubbles detected for each commodity are in 

similar periods. 

2.7 Conclusion 

We set out by describing a new methodology for using the Bhargava statistic to detect explosive 

bubbles in asset prices. We have shown that by dividing a series into shorter sub-samples and using a 

rolling window, we are able to not only detect bubbles but can also identify periods in which they 
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occur. This addresses Evans’ criticism of detecting multiple collapsing bubbles in a price series. 

Within the context of multiple collapsing bubbles, the new test also has much higher power than the 

original Bhargava statistic. Additionally, we have also compared the test against the GSADF test 

devised by Philips, Shi and Yu. While the PSY statistic is able to date bubbles better, the power of 

both statistics is high. We have also shown that the modified Bhargava test procedure performs better 

and attains higher power when the sample size is smaller.  

In addition, the modified Bhargava statistic has the advantage of having an exact distribution instead 

of an asymptotic distribution. The modified Bhargava statistic does not require the computation of any 

parameter while the PSY statistic is based on the calculation of an auto-regressive parameter. For 

small samples, the modified Bhargava test will be more appropriate given its design as a local test; 

thus, the Bhargava statistic may be used even if the sample size is as low as 50 or 100 observations 

while the properties of the PSY statistic may not hold for smaller samples. The Bhargava test also 

takes less computational time than the PSY statistic.  

The modified Bhargava statistic offers a lot of flexibility as the size of the sub-sample and the 

overlapping window can be varied. For historical analysis we recommend using a larger sub-sample 

size; 50 or 100 with an overlapping window that is half the size of the sub-sample. To assess whether 

a particular asset is currently in a bubble, our recommendation will be to use more recent data and use 

a smaller sub-sample with the modified Bhargava statistic. The main advantage of using the PSY test 

is that it is able to date bubbles more accurately.   

Our second contribution is the empirical application of the modified Bhargava statistic and the PSY 

statistic to commodity price data. This helps us in two ways. Firstly, it helps us gain an understanding 

of explosive episodes in commodity prices and secondly, it allows us to compare the results obtained 

from both statistics. Critical values for both tests were evaluated using simulated data for price series 

that are 687 observations in length.  

Both PSY and modified Bhargava statistic were able to identify all well-known instances of 

explosiveness in commodity prices. Bubbles occurred in most of the commodity series under 

consideration and a number of them had multiple bubble episodes. The first oil price shock and the 

2007-08 financial crisis saw the most bubble instances. The 1990’s and the early 2000’s were 

relatively calmer periods with only sporadic bubble episodes. Using the modified Bhargava statistic, 

for the 25 commodities used, no bubbles were detected for Poultry, Rice, Tea, Coal and Gasoline at 

the 5% level of significance. For the remaining 20 commodities we detected 41 sub-samples where 

bubble behaviour is present at the 5% level. The PSY statistic on the other hand detected significant 

evidence of explosive behaviour in all commodities except Poultry.  
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We also note that the duration of most bubble episodes is short and often less than 1 year which 

implies that detecting bubbles with quarterly or yearly data can be more difficult as the data may not 

contain the variability required for accurate detection of bubble episodes. In yearly or quarterly data, 

bubbles would collapse within the span of 1 or 2 periods making detection more difficult. For food, 

metal and energy commodities, we also note that bubble episodes tend to cluster together and bubbles 

tend to occur for whole groups of commodities. In most instances the results from the Bhargava 

statistic tended to corroborate those of the PSY statistic.  

Our modification to the Bhargava statistic has provided a useful alternative to bubble detection in 

asset prices. While we have applied the test to commodities, we believe it will work just as well with 

other asset classes. This Chapter also motivates the use of switching regime regression to estimate 

asset prices. The period that we have referred to as a bubble can be thought of as a deviation from a 

random walk for a certain period of time; we can detect such periods using the tests outlined in this 

chapter. In fact the following two chapters will build upon the notion of treating explosiveness as one 

possible state of nature.     



41 
 

APPENDIX 2 – Tables and figures 

Table 2.1: Commodity price 
series 

   
Commodity Time Period Units 

Commodity 
Group 

Barley Jan 1975 - Mar 2014 $ per metric tonne Food 
Cocoa beans Jan 1957 - Mar 2014 $ per metric tonne Food 
Coffee Jan 1957 - Mar 2014 cents per pound Food 
Lamb Jan 1957 - Mar 2014 cents per pound Food 
Palm oil Jan 1957 - Mar 2014 $ per metric tonne Food 
Poultry Jan 1980 - Mar 2014 cents per pound Food 
Rice Jan 1957 - Mar 2014 $ per metric tonne Food 
Sugar Jan 1957 - Mar 2014 cents per pound Food 
Tea Jan 1957 - Mar 2014 cents per KG Food 
Wheat Jan 1957 - Mar 2014 $ per metric tonne Food 
  

  
  

Aluminum Jan 1957 - Mar 2014 $ per metric tonne Metals 
Copper Jan 1957 - Mar 2014 $ per metric tonne Metals 
Iron Ore Jan 1957 - Mar 2014 $ per metric tonne Metals 
Lead Jan 1957 - Mar 2014 $ per metric tonne Metals 
Nickel Jan 1957 - Mar 2014 $ per metric tonne Metals 
Tin Jan 1964 - Mar 2014 $ per metric tonne Metals 
Zinc Jan 1957 - Mar 2014 $ per metric tonne Metals 
        
Coal Jan 1979 - Mar 2014 $ per metric tonne Energy 
Gasoline Jan 1979 - Mar 2014 cents per gallon Energy 

Natural gas Jan 1985 - Mar 2014 
$(000s) per million 
BTU Energy 

Petroleum UK Brent Jan 1957 - Mar 2014 $ per barrel Energy 
Petroleum West Texas Jan 1959 - Mar 2014 $ per barrel Energy 
        
Cotton Jan 1957 - Mar 2014 cents per pound Raw Materials 
Jute Jan 1957 - Mar 2014 $ per metric tonne Raw Materials 
Rubber Jan 1957 - Mar 2014 cents per pound Raw Materials 
        
Gold Jan 1964 - Mar 2014 $ per Troy ounce Misc 
Silver Jan 1969 - Mar 2014 Unspecified units Misc 

Source: International Monetary Fund, International Financial Statistics (May 2014) 
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     Table 2.2 
 

   Test Power 
PSY (𝑟𝑤 = 100,𝑛 = 700) 97% 
Bhargava (sub-sample = 100, overlap = 50, n = 700) 39% 
Bhargava (sub-sample = 50, overlap = 25, n = 700) 86% 
Bhargava (sub-sample = 20, overlap = 10, n = 700) 99% 

 

 

 

 

 

  

Table 2.3 - Critical 
Values for PSY Test   
Confidence Interval Critical Value 

90% 1.812 
95% 2.082 
99% 2.547 

Table 2.4: Simulated Critical Values for the Bhargava Statistic  
  

 
Without Drift With Drift 

Critical Values 10% 5% 1% 10% 5% 1% 
Sample Size   
n = 20 0.041 0.032 0.021 0.149 0.113 0.078 
n = 30 0.029 0.021 0.013 0.101 0.078 0.05 
n = 50 0.017 0.012 0.008 0.057 0.043 0.028 
n = 75 0.011 0.008 0.005 0.038 0.029 0.019 
n = 100 0.008 0.006 0.004 0.029 0.022 0.014 
n = 200 0.004 0.003 0.002 0.015 0.011 0.007 
n = 700 0.001 0.001 0.000 0.004 0.003 0.002 

The critical values were obtained using 5000 replications. The data generating process is a random walk with 
and without drift 

𝑦𝑡 = 𝑑𝑇−𝜂 + 𝜃𝑦𝑡−1 + 𝜀𝑡, 

The critical values through simulation of the following 
data generating process:  

with d = 𝜂 = 𝜃 = 1 and 𝜀𝑡~𝑁(0,1). 5,000 replication were 
performed 
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Table 2.5 
 

  
Window Number Time Period Covered Overlap period with 

previous window 
1 Jan 1957 - May 1965 N/A 
2 Mar 1961 - Jul 1969 Mar 1961 - May 1965 
3 May 1965 - Sep 1973 May 1965 - Jul 1969 
4 Jul 1969 - Nov 1977 Jul 1969 - Sep 1973 
5 Sep 1973 - Jan 1982 Sep 1973 - Nov 1977 
6 Nov 1977 - Mar 1986 Nov 1977 - Jan 1982 
7 Jan 1982 - May 1990 Jan 1982 - Mar 1986 
8 Mar 1986 - Jul 1994 Mar 1986 - May 1990 
9 May 1990 - Sep 1998 May 1990 - Jul 1994 
10 Jul 1994 - Nov 2002 Jul 1994 - Sep 1998 
11 Sep 1998 - Jan 2007 Sep 1998 - Nov 2002 
12 Nov 2002 - Mar 2011 Nov 2002 - Jan 2007 
13 Jan 2007 - Mar 2014 Jan 2007 - Mar 2011 
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Table 2.7: GSADF Statistic  
  Commodity GSADF Statistic Bubble 1 Bubble 2 Bubble 3 

Barley 2.8716*** Feb 2008-May 2008 - - 
Cocoa beans 7.1647*** Oct 1973- Nov 1974 Mar 1976 - Jun 1977 - 
Coffee 13.3371*** Jan 1976 - Jun 1977 Feb 2011 - Jun 2011 - 
Lamb 2.9942*** Apr 1980 - Aug 1980 N/A - 
Palm oil 4.6608*** Jul 1973 - Mar 1974 Dec 2007 - May 2008 - 
Poultry 2.1067** - - - 
Rice 3.0433*** May 2008 - Jul 2008 - - 
Sugar 6.2118*** Oct 1974 - Feb 1975 Mar 2011 - May 2011 - 
Tea 5.3398*** Feb 1977 - May 1977 - - 
Wheat 5.8162*** Dec 1972 - Mar 1974 Aug 2007 - Apr 2008 - 
  

    Aluminum 7.0251*** Dec 1974 - Jun 1975 Jan 1977 - May 1980 Apr 2006 - Jun 2006 
Copper 8.5244*** Oct 2005 - Nov 2006 - - 
Iron Ore 12.5672*** Jun 2008 - Oct 2011 - - 

Lead 10.1832*** 
Nov 1973 - May 
1974 Feb 1979 - Nov 1979 Nov 2006 - Mar 2008 

Nickel 9.3304*** Aug 1974 - Jun 1977 Mar 1988 - Jul 1988 Jul 2006 - Jul 2007 
Tin 11.9976*** Oct 1973 - Oct 1974 Sep 1977 - Sep 1980 Feb 2007 - Sep 2008 
Zinc 16.8465*** Mar 1973 - Jun 1974 Jan 1989 - Apr 1989 Jan 2006 - Jan 2007 
          
Coal 9.1621*** Apr 2004 - Sep 2004 Oct 2007 - Oct 2008 - 
Gasoline 2.4618** Sep 2005 - Oct 2005 - - 
Natural gas 5.8602*** Nov 2005 - Jan 2007 Dec 2007 - Mar 2009 - 
Petroleum UK 
Brent 6.9214*** Jul 1973 - Mar 1974 Apr 1979 - Aug 1980 Nov 2007 - Sep 2008 
Petroleum West 
Texas 8.6355*** 

May 1979 - Nov 
1980 Nov 2007 - Sep 2008 - 

          
Cotton 17.0883*** Sep 1971 - Mar 1972 Mar 1973 - Apr 1974 Oct 2010 - May 2011 
Jute 5.9007*** Sep 1984 - May 1985 Dec 2009 - Jul 2010 - 

Rubber 6.6105*** Feb 1995 - May 1995 Feb 2006 - Aug 2006 
Nov 2010 - June 
2011 

          
Gold 11.4261*** May 1972 - Sep 1973 Jun 1979 - Apr 1980 Oct 2009 - Mar 2013 
Silver 10.1277*** Sep 1979 - Mar 1980 Feb 2008 - Jun 2008 Nov 2010 - Oct 2011 
All commodities 
index 6.9956*** Mar 2006 - Sep 2006 Oct 2007 - Sep 2008 N/A 
Agriculture 
index 11.9535*** Dec 1972 - Jun 1974 Feb 1979 - Mar 1980 Feb 2011 - May 2011 
Beverages index 17.1833*** Feb 1974 - Jul 1974 Apr 1976 - Nov 1977 - 
Energy Index 6.2130*** Nov 2007 - Sep 2008 - - 

Food Index 13.2790*** 
Nov 1972 - May 
1974 Dec 2007 - Sep 2008 - 

Metals Index 7.7511*** Jan 1974 - Jul 1974 May 1988 - Jul 1988 Dec 2005 - Dec 2007 

The table represents the values of the Philips, Shi and Yu statistic using the GSADF procedure outlined by PSY (2013)                              *-
null hypothesis rejected at the 10% level; ** - null hypothesis rejected at the 5% level; *** - null hypothesis rejected at the 1% level; N/A – 
No more bubbles in the sample. Column 2 is the sup GSADF statistic which indicates whether bubbles are present in the full sample. 
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Figure 2.1 – Commodity Price Series in Levels: Metals(others available upon request) 
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MATLAB code for simulating critical values of the modified Bhargava 
Statistic 
 
 
count = 1; 
simulations = 10000; %number of simulations to be performed 
stat = zeros(simulations,1); %this variable stores the statistic value for 
each simulation 
qe = [0.10 0.05 0.01]; %defined quantiles 
window = 700; %size of the full sample 
trend = 1; 
eta = 1; 
samplesize = 100; 
  
distribution = 0; 
  
while count < simulations + 1 
    if distribution == 0 %this variable determines whether the statistic is 
a Normal or t 
        e = randn(window,1); 
    elseif distribution == 1 
        e = trnd(2,window,1); 
    end 
     
y = zeros(window,1); 
T = window; 
for i = 1:size(y) %the following loop simulates a random walk series 
    if i == 1 
        y(i) = (trend*(T^(-eta))) + e(i); 
    else 
        y(i) = (trend*(T^(-eta)))+ y(i-1) + e(i); 
    end 
end 
    %the code below calculates the bhargava statistic as described in the 
    %chapter; the statistic calculation is called from a different MATLAB  
    %procedure. 
    stat(count,1) = min(borigsim2(y,samplesize,samplesize/5,1)); 
    count = count + 1; 
  
end 
    stat; 
    quantile(stat,qe) 
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CHAPTER 3: Understanding commodity markets using 

Markovian state-switching  

 

Chapter 3 presents a partial equilibrium model which gives us an estimable reduced form expression 

for commodities. The form thus obtained can be estimated using Markov Switching Auto-Regressions. 

We show that estimating this form naively leads to incoherent results. An alternative approach which 

uses the GSADF statistic to restrict the Markov-switching probabilities improves matters. The 

suggested methodology is applied to non-ferrous metals. A two-state regression is first used to 

distinguish between a mean reverting state and an explosive state. The results are extended to a three-

state framework which allows us to comment on how efficient commodity markets are. We show that 

estimating state probabilities directly through the GSADF test leads to better results. 

 

3.1 Introduction: 

Anyone familiar with asset pricing literature will be aware of the plethora of approaches that have 

been adapted to model and understand asset prices. Since Gustafson (1958) first introduced dynamic 

programming to the rational expectations literature, the field of asset pricing in general and 

commodity pricing in particular has seen an explosion in interest. Commodity markets add another 

layer of complexity to the picture. More recently, the behavioural school has taken a keen interest in 

asset pricing issues (e.g. Sherfin, 2010).  

A separate but related strand of literature considers bubbles in asset prices which we have discussed at 

length in chapter 2. This chapter elicits from the different approaches that have been used previously 

to come up with a simple yet intuitive form for the price process of a storable commodity. We build 

on Muth’s 1961 framework to formulate a partial equilibrium model for commodity prices. Our model 

gives a central role to inventories as the presence of inventories differentiates commodities from other 

asset classes. More specifically inventories can act as both a stabilizing and a destabilizing mechanism 

in our model which can lead to commodity prices behaving in an explosive manner. Though we start 

off with a partial equilibrium model, we obtain an intuitive reduced form expression. The reduced 

form thus obtained is similar to the reduced form employed in bubble literature. In chapter 5 we take a 

more structural approach but arrive at similar conclusions. 
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The second and main contribution made in this chapter is with respect to the estimation of the 

proposed reduced form. Hall et al (1999) suggest that a two-state Markov switching regression will be 

appropriate for an asset which has a random walk or efficient state and an explosive state. Our 

analysis contends that using hidden Markov switching regressions without using series specific 

information leads to estimates that do not help us classify the different states. Thus, we propose an 

alternative method to estimate Markov switching regressions which relies on estimating transition 

probabilities directly from unit root tests instead of estimating the transition probabilities from the 

Markov switching regression.  

The GSADF statistic proposed by Philips et al (2013), introduced in chapter 2, is used to date bubbles 

in commodities. Using the dates obtained from the GSADF test we estimate the state transition 

probabilities directly. Restricting the Markov switching regression to these transition probabilities 

leads to better and more intuitive results. The approach helps us clearly distinguish a stationary and a 

non-stationary state making the interpretation of smoothed probabilities more comprehensible. 

We contrast the results obtained through our methodology to results obtained from the unrestricted 

switching regression. The comparison relies on using smoothed Markov-state probabilities. We note 

that the unrestricted switching regression often overestimates the explosive or alternative state while 

the restricted regression assigns high probabilities to the explosive state only during periods when the 

commodity in question was actually going through an explosive period. To illustrate our procedure we 

use data on Copper from 1957 to 2014. This procedure is then extended to build a framework that will 

enable us to evaluate whether a particular asset market is efficient (where efficiency is to be 

understand as per the description in Chapter 1). We use a 3 state Markov switching regression in order 

to evaluate the efficiency of Copper and other non-ferrous metals.  

The three states we consider are a random walk or efficient state, an explosive or bubble state and a 

stationary or mean reverting state. Using the GSADF and the its implied counterpart a Generalized 

infimum Augmented Dickey Fuller Test for mean reversion, we are able to estimate steady state 

probabilities for each state. Our analysis shows that estimating the steady state probabilities using this 

method provides better and more reasonable estimates and smoothed-probabilities than if the steady 

state probabilities were estimated through an unrestricted Markov-switching regression. We find that 

the market for non-ferrous metals is mostly efficient although there are deviations from efficiency. 

The duration of these deviations from efficiency vary across the different metals under consideration. 

While Tin and Zinc stay efficient almost 90% of the time, metals like Nickel are only efficient around 

55% of the time; the discussion in section 3.7 expands upon the results. We believe that this approach 

will help improve our understanding of efficiency in commodity markets better. This can act as a 

metric for market efficiency. A different metric for market efficiency is developed in chapter 4 using 

threshold autoregressions. 
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In Section 3.2 we review the literature on the dynamics of commodity prices which lays the 

foundation of our commodity price partial equilibrium model in Section 3.3. Section 3.4 outlines the 

Markov-switching regression methodology and the GSADF test which is used to estimate transition 

probabilities. Section 3.5 presents a brief overview of Copper over the period under consideration. 

Section 3.6 discusses results for Copper in detail. Section 3.7 presents results for our efficient markets 

steady state probabilities and Section 3.8 concludes.  

3.2 Modelling the dynamics of commodity prices 

The current chapter derives from two different strands of literature, theoretical models of commodity 

prices and techniques to accurately estimate relationships that govern commodity prices. Each strand 

continues to be popular with economists. We outline relevant literature for modelling commodity 

prices. Econometric methods for estimating our model will be discussed in the research and 

methodology section. 

Commodities are fundamentally different from other assets as they can be stored. The market for 

storage is completely absent from conventional financial assets and this additional market necessitates 

the use of dynamic models in commodities as storage is primarily used to carry commodities across 

periods. One of the objectives of coming up with a simple model for commodities is to use the market 

for storage as an additional facet in explaining temporary explosive behaviour exhibited by 

commodity prices.  

Storage markets serve two primary functions; they can be used for precautionary measures and allow 

commodity owners the opportunity to meet any unforeseen demand for the commodity or an increase 

in uncertainty due to supply concerns. Secondly, they can be used as a speculative tool, particularly in 

the presence of excessive volatility in the financial asset market (not just the market for that particular 

commodity). Thus, a model incorporating the speculative motive will need to have a dynamic element 

which warrants the use of dynamic programming. Gustafson (1958) was the first to employ dynamic 

programming as a methodology to solve a model which assumed rational expectations.  Muth (1961) 

provided a framework for commodity pricing that incorporated rational expectations. Our partial 

equilibrium model is partly influenced by the approach that Muth introduced. Samuelson’s (1971) 

article is a seminal contribution as it considers uncertainty in output in the context of commodity 

markets.  

While the speculative function can be fulfilled by the derivatives market, the precautionary function is 

best served by the storage market as having inventory to hand allows storage providers to meet 

demand immediately should it be required. This additional benefit due to having the commodity to 

hand is referred to as the convenience yield once the cost of storage has been accounted for. While 

some authors have propagated the notion that convenience yields act the same way as dividends do 
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for equities, they do not play a large part in explaining the emergence of bubbles in commodity prices. 

Kaldor (1939) is credited with coining the term, convenience yield, and for being the first to explicitly 

use convenience yields in explaining commodity storage. A vast literature has developed over the 

years using elements from these seminal articles.  

Both structural and reduced form models are paramount in the commodity price literature. Structural 

models incorporate storage as an essential component. Storage acts as a market stabilizing mechanism 

and controls volatility in commodity markets Within storage models, the supply of the commodity can 

be inelastic as modelled by Williams et al, (1991) or it can be determined within the model by 

optimizing agents. Newberry & Stiglitz (1979) in particular have used both risk neutral and risk 

averse producers in their model. Demand on the other hand has conventionally been assumed in the 

model as a standard function (𝐷𝑡 = 𝑎 − 𝑏𝑃𝑡); this has primarily been assumed to facilitate analytical 

solutions as more complex demand functions do not aggregate well.  

While most structural models have used discrete time, there are some continuous time structural 

models as well (e.g. Ribeiro, 2004). Ribeiro provides a continuous time version of a model based on 

Williams et al’s earlier model and derives a numerical solution which emulates pricing behaviour for 

the commodities in her study. The main benefit of using continuous time models is the ease with 

which volatility can be incorporated within the model. With discrete time models, this has to be done 

indirectly through assuming risk averse agents, selecting particular utility functions and then using 

Taylor approximations. Using Taylor approximations does not provide a sufficient explanation for the 

presence of bubbles in the market since these bubbles cause a much larger deviation and the error due 

to a Taylor approximation in such instances would become too large. We look at William et al’s 

structural model in detail in chapter 5 and try to make it more empirically relevant. This chapter 

contends with models which allow for an analytical reduced form expression for commodity prices.  

Reduced form models on the other hand directly model the spot price process in continuous time. A 

majority of these models tend to be mean-reverting, which is a feature of commodity markets in 

particular. These are typically modelled as single factor or multi-factor models with the other factors 

being either the convenience yield or interest rates.  Ito calculus is typically employed to simplify 

these models although analytical results are rare. Ribeiro provides a good summary of reduced form 

models and also uses 2 factor and 3 factor models to explain commodity behaviour in the presence of 

storage. Other reduced form methodologies have explicitly modelled long run and short run dynamics 

of commodity prices (Wets and Rios, 2012). Another approach has seen continuous time volatility 

models (Brooks et al 2013, 2015) whereby the volatility process is specified as part of a system of 

continuous time differential equations with the volatility process evolving dynamically. This provides 

a good foundation on which to build a continuous time reduced form model for commodities that can 

incorporate bubbles.  
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Analytical results for both structural as well as reduced form models are few and far between and 

economists have primarily relied on numerical procedures. Testing for bubbles in commodities often 

relies on a reduced autoregressive form which does not necessarily follow from the models discussed 

above. Reduced form models, on the other hand, do not have sufficient theoretical underpinnings 

which allow us to explain how commodity prices behave when they are in a bubble state. Literature 

on bubble testing has used reduced form models in discrete time which are quite distinct from the 

continuous time models mentioned above.  

When testing for explosiveness in asset prices, either through Markov-switching regressions ala Hall 

et al (1999) or tests such as the GSADF test introduced in the previous chapter, researchers rely on the 

reduced autoregressive form. While the reduced Auto-regressive form can be derived for equity 

markets, e.g. see Blanchard et al (1982), it is not clear why the same model can be used for testing 

explosiveness in commodities. As outlined above, commodities are fundamentally different from 

other assets due to the presence of a storage market. Investor behaviour tends to drive inventory levels 

which in turn influences price. For instance, speculation in commodity markets can lead to very high 

inventory levels, leading to a shortage for consumers and resulting in high prices.   

Our simple model bridges the gap between structural and reduced form models of commodities while 

also attempting to explain the role of bubbles in commodity pricing in the presence of storage. We are 

able to obtain an autoregressive form for commodities which thereby allows the use of existing 

procedures for testing explosiveness. At the same time it also highlights the limitations and 

restrictions that have to be placed in order to test explosiveness in commodities using procedures that 

are conducted on the autoregressive form. The model also lays the foundation of multi-state analysis 

which we later use to test commodity market efficiency.  

3.3 A Partial Equilibrium Model of commodity prices 

The foundations of our partial equilibrium model are based on Muth’s (1961) model. As alluded to 

above, our model aims to arrive at a reduced form for commodity prices that is readily employed in 

bubble testing. A number of microeconomic studies have attempted to explain rational bubbles (e.g. 

Blanchard 1979, Abreu et al 2003) which make a distinction between fundamentals and bubbles.  

As pointed out by West (1987, 1988) such a distinction is arbitrary and depends on how one models 

fundamentals. If we restrict our definition of fundamentals then we are sure to find evidence of 

bubbles. A broader definition of fundamentals on the other hand that takes into account individual 

decisions incorporating trade volumes and beliefs making it difficult to define what a bubble is; is it a 

deviation from each individual’s decision rule or has some fundamental element that is part of 

individual decision making been neglected.  
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We restrict our attention (initially) to two states of nature; a mean reverting state and a non-stationary 

state. As we point out in the appendix, if the two states of nature were assumed to be a random walk 

and an explosive state, the process will not have a steady state distribution; thus, for the process to 

have a stationary distribution, the price needs to be mean reverting for some length of time (albeit 

small). The mean reverting state nests the efficient state and is the default state for a commodity; 

market agents make use of all available information to make decisions which is already reflected in 

the price (although at times the process may become mean reverting).  No other systematic gains can 

be made. Inventory owners act to stabilize markets i.e. they sell inventory when prices are expected to 

be high and build up inventory when prices are expected to be lower in the future. Our model in 

Chapter 5 primarily models this state.  

The second state on the other hand is the bubble state; this may be triggered due to a variety of 

reasons including low inventories, a large productivity shock or through increasing uncertainty (due to 

a financial crisis for instance). The storage market plays a destabilising role in this case; we observe 

hoarding behaviour from investors. In the bubble state, the investors change behaviour markedly. 

They build up inventories when they expect future prices to compensate them for storage and current 

period price. Plausible reasons for this include anticipation of further increases in future periods as 

well as inventory managers being extra cautious in reaction to uncertainty. Re-building sufficient 

inventory for future periods (where prices are expected to stay high) is another plausible motive for 

this behaviour. We describe our partial equilibrium model below. All variables are market aggregates.  

3.3.1 Demand, Supply and Storage: 

We use a linear aggregate demand function as is conventional in the commodity literature.  

𝐷𝑡 = −𝛽𝑃𝑡   𝛽 > 0   (3.1) 

The exclusion of the intercept term does not substantially change the analysis that follows1. We 

consider the impact of the intercept term (including a switching intercept term) in chapter 4. For this 

analysis we can assume that the demand is a deviation from a maximum level of demand.  

The supply function is also assumed to be a linear function of price. This is different from the storage 

model used in chapter 5 where it is assumed that supply is a stochastic process dependant on weather. 

Farmers/miners react to higher prices by supplying more of the commodity. Using aggregate 

relationships allows us to assume away any individual capacity or productivity constraints. 

Productivity constraints can be incorporated in the model but we have not included them to keep the 

focus on storage driven dynamics. Supply behaves like a flow where new production comes in 

                                                           
1 Inclusion of a constant requires a switching constant term in the reduced form. The switching constant does not 
alter our results or our analysis so for simplicity the analysis is presented without a constant term.  



55 
 

response to changes in price. No supply shocks are considered for this model; these are dealt with in 

Chapter 5.  

𝑆𝑡 = 𝛾𝑃𝑡  𝛾 > 0   (3.2) 

We simplify the storage market by reducing the decision from a stock decision to a flow decision. 

Instead of deciding how much to sell and how much to store, the decision investors make over time is 

how much inventory to carry relative to previous periods. In essence, we are modelling the investment 

decision faced by storage owners. Between two periods, they can increase inventory or decrease 

inventory. This decision is taken keeping in mind the future prospects of the market i.e. expected 

future price. We are implicitly assuming that storage costs stay fixed (as they do not feature in the 

decision) and that there are no aggregate capacity constraints.  

While assuming no capacity constraints may have been a restrictive assumption if we considered 

individual investors, it is not restrictive when aggregate storage demand is considered. If a particular 

set of commodities is facing a boom it is likely that the market will dedicate more storage space to 

storing that commodity as opposed to commodities with lower margins.  

𝐼𝑡+1 − 𝐼𝑡 = 𝛼𝑡(𝑃𝑡+1𝑒 − 𝑃𝑡)   (3.3)  

where 𝑃𝑡+1𝑒 = 𝐸𝑡(𝑃𝑡+1). 𝐼𝑡 represents stock levels in period t and 𝐼𝑡+1 is storage carried over to next 

period. 𝛼𝑡  represents the responsiveness of investors to changes in price. The parameter 𝛼𝑡  switches 

values across states and determines what state the market is in. It measures the impact of a change in 

expected price on inventory investment. Our assumptions on expectations coupled with restrictions 

placed on 𝛼𝑡  determine the state that the commodity market is in at a particular point in time. As seen 

in equation (3.3), the storage decision is taken based on the expectation of future price and how it 

compares to the prevailing price. We specify the values 𝛼𝑡  can take in the following sub-section and 

analyse the information it could contain.  

3.3.2 Market Equilibrium 

Market equilibrium requires that the quantity supplied and the storage carried over from previous 

periods be equal to the demand in the current period and any additional storage demand. Thus, 

equilibrium in this commodity market may be characterized as follows: 

𝐷𝑡 + 𝐼𝑡+1 = 𝑆𝑡 + 𝐼𝑡    (3.4) 

Expectations play a critical role in equilibrium as expectation formation influences the storage 

decision. We assume rational expectations in our model i.e. investors take all available information 
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into account in making their storage decision. Every period the price expected by investors deviates 

from actual price by a random term.  

𝑃𝑡+1𝑒 = 𝑃𝑡+1 + 𝜖𝑡+1    (3.5) 

We assume that the error in expectations is 𝜖𝑡+1which has a normal distribution with a mean 0 and 

variance 𝜎2. This implies that on average the investors get the price right but period on period they err 

in their forecast.  

Substituting (3.1) (3.2) (3.3) and (3.5) into (3.4) we get: 

 −𝛽𝑃𝑡 + 𝛼𝑡(𝑃𝑡+1 + 𝜖𝑡+1 − 𝑃𝑡) = 𝛾𝑃𝑡 

This relationship simplifies to the following expression: 

 𝑃𝑡+1 = 𝛼𝑡+𝛽+𝛾
𝛼𝑡

𝑃𝑡 + 𝜂𝑡+1   (3.6a)  or more succinctly 

 𝑃𝑡+1 = 𝜙𝑡𝑃𝑡 + 𝜂𝑡+1    (3.6b)2 

A two state model (in logs or levels) can thus be represents as follows: 

            ∆𝑃𝑡+1 = [𝜙0(1 − 𝑠𝑡) + 𝜙1𝑠𝑡]𝑃𝑡 + 𝜂𝑡+1          (3.6c)     

where 𝜖𝑡+1 = −𝜂𝑡+1 (we do not lose any generality but the representation with a positive error term is 

more conventional); 𝑠𝑡 represents the state variable and takes a value of 0 in the mean reverting state 

and 1 in the explosive state. We assume that the state variable is an unobserved Markov process 

(Chapter 4 considers exogenously triggered states). Section 3.4 elaborates on Markov processes, the 

model and model estimation. Appendix 3A lays out the conditions required for the price process in 

3.6 to have a steady-state distribution.  

In equilibrium, the sensitivity of investors to expected changes in prices is what determines how 

prices behave i.e. the value of 𝛼𝑡. It also depends on the direction in which prices are expected to go. 

𝛼𝑡  may be dependent on a number of factors that could cause a change in investor behaviour even 

though expectations continue to be rational. These factors may be purely behavioural; we can think of 

these behavioural changes as the fads that Shiller refers to (2000). Alternatively, we could think of 

𝛼𝑡  as containing additional informational content on the dynamics of the market. For example, we 

may posit that 𝛼𝑡  is dependent upon investment horizon i.e. investors’ expectations on how long an 

                                                           
2 The reduced form, had a constant term been included, would have been: 𝑃𝑡+1 = 𝜙𝑡𝑃𝑡 + 𝜓𝑡 + 𝜂𝑡+1, where 𝜔𝑡is 
a switching constant term and depends on the value taken by 𝛼𝑡. Given the range of values for 𝛼𝑡discussed 
above, the constant term is zero if 𝛼𝑡is large or the process is in a random walk state; it takes a positive value in 
the explosive state when 𝛼𝑡is a positive constant. Refer to chapter 4 for further comments when a drift is 
present. 
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increase or decrease in price will continue. When investment horizon is short, i.e. the price change is 

expected to last only one period, investors react immediately. If 𝑃𝑡+1𝑒 > 𝑃𝑡, the price increase is 

expected to last only one period. Thus, in order to maximize profits, investors divest and run down 

their inventories. Since all pricing information is already reflected in the price in this setting, we can 

think of this state as the efficient or mean reverting state. In this situation, 𝛼𝑡 < 0, any new 

information regarding the price, will immediately be reflected in the price through the movement of 

inventories.  

On the other hand, if investment horizon is long as price changes are expected to last beyond one 

period, investors’ behave differently. If 𝑃𝑡+1𝑒 > 𝑃𝑡 and the directional change is expected to last 

beyond one period, investors’ realize that price is on an upward path. Thus, they can continually 

increase their profits by building up their inventory and selling off some of it in the following period. 

This implies that 𝛼𝑡 > 0. Blanchard et al (1982) provide a similar explanation for the rise of a bubble. 

Investors continue to buy inventory at ever higher prices because they expect this rise to continue 

even though they are aware that each period there is a probability that the ‘bubble’ may collapse. 

Thus, 𝛼𝑡 > 0 corresponds to the explosive state. Below, we discuss how these different behavioural 

patterns affect the reduced form parameter, 𝜙𝑡. Note, that we have only provided one possible 

explanation for the informational content of 𝛼𝑡. Other possible explanations may be favoured by 

behavioural or experimental economics. We wish to keep the interpretation of 𝛼𝑡  open for future 

research on the subject.  

We posit values for 𝛼𝑡  for which the market behaves like a mean reverting state or a bubble state, 

respectively. Let 𝛼𝑡 = 𝑏𝑡 − 𝛼�, where 𝑏𝑡 takes two values which determine the state of the market and 

𝛼� > 0 such that when bt = 0, 𝛼𝑡+𝛽+𝛾
𝛼𝑡

≤ 1 i.e. 𝛼𝑡  is large and negative relative to 𝛽 and 𝛾 i.e. 𝛼𝑡 + 𝛽 +

𝛾 < 0 Under these conditions, the reduced form becomes a random walk or a stationary process 

depending on the magnitude of 𝛼𝑡 , as explained above. The behaviour of the asset price in this state is 

akin to the behaviour we observe in our model in Chapter 5.  

In the bubble state 𝑏𝑡 takes on a value greater than 𝛼� which implies 𝛼𝑡+𝛽+𝛾
𝛼𝑡

> 1 as all parameters are 

positive. This represents a two-state switching form for the commodity price in equilibrium. A data-

generating process for 𝑏𝑡could also be stated, making the parameter a continuous variable; however, 

restricting the parameter to a finite number of values, such as the case of a Bernoulli random variable 

or a Markov process, keeps the analysis tractable and simpler to comprehend. Importantly, it also 

allows us to talk about the efficient market hypothesis in this context. As per the results in Appendix 

3, we will consider a mean reverting and an explosive state. If we have a random walk state instead of 

a mean reverting state, the two-state processes will not have a steady-state distribution (although that 

is not an entirely implausible situation). 
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While this simple model is able to capture behavioural aspects, it does not capture fundamental supply 

and demand shocks; the impact of supply shocks is analysed in Chapter 5. Investors react when they 

foresee uncertainty in their expectations. In the mean reverting or efficient state (i.e. when 𝜙𝑡 ≤ 1), 

investors have very limited additional inventory demand and sell all their excess inventory which 

causes the process to follow a mean reverting form (i.e. a large and negative 𝛼𝑡). However, this may 

eventually lead to a shortage of the commodity if the demand for the commodity stays strong and 

could cause a switch from the random walk state to the bubble state (after a few periods). This would 

explain why in the run up to peak prices, inventories reach historic lows. 

In the bubble state, inventories are already low and the price is expected to stay high for the 

foreseeable future. Expectations of high prices in the future coupled with already low inventories 

encourage investors to start rebuilding their inventories leading to an increase in inventory demand. 

As investors re-build their inventories, this adds further pressure on the price to grow as they crowd 

out private consumption, until inventories reach a point where the market corrects its expectations and 

jumps back to the mean reverting or efficient state. This explanation is in line with proponents of the 

rational expectations theory of the bubble (e.g. Blanchard, 1979). Thus, the investors hoard inventory, 

anticipating even higher returns in the future.  

The build-up of inventories can eventually lead to a collapse of the bubble state, which could 

alternatively also be triggered by a slowing economy (which decreases the demand of the commodity 

leading to a glut). The market realizes that sufficient inventory has been built and the high price is no 

longer warranted. In reality, the transition to or from a random walk is more smooth. This would 

require a specification of 𝑏𝑡, such that 3.6 becomes a smooth transition autoregressive model (STAR). 

We do not consider this class of models in this dissertation but it is worth considering for future 

research. 

The above analysis is particularly relevant for mining commodities. While the inventories for 

agricultural commodities can be built up or sold within a year, building capacity for mining 

commodities takes substantially longer. An increase in price needs to sustain for a period of time in 

order for suppliers to build additional capacity or to make existing capacity operational. Similarly 

when additional capacity has been brought on board it is difficult to take it offline within a few 

months. This explains why commodity prices keep rising or falling even though demand may adjust. 

When a price collapses initially, producers are often unable to take capacity offline immediately as 

they have to fulfil existing contracts. Since production does not reduce, the price continues to fall 

down until production levels adjust.   

The fad theory of bubbles accredited to Shiller (1981) can also be justified by thinking of the 

stochastic bubble parameter 𝑏𝑡 as a measure of uncertainty or paradoxically an expectation of very 
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high prices by investors. When uncertainty is high and 𝑏𝑡 is high and greater than 0 investors become 

more cautious. The fad explanation would not require an explicit data generating process for 𝑏𝑡 which 

could be representative of what Shiller terms animal spirits or irrational exuberance. Thus, our 

framework accommodates both rational expectations and fads narratives based on how an economic 

theorist looks at the informational content of 𝑏𝑡. 

The final form of our model has dynamic and stochastic features which can capture changing 

volatility or a stochastic parameter. As mentioned before, this model is restrictive and only captures 

shocks to investor sentiments; Chapter 5 looks at the impact of Supply shocks. We treat this reduced 

form as a hidden Markov process and proceed to estimate equation (3.6) using Markov-switching 

methodologies. In chapter 4 we use the same specification but estimate the model using threshold 

autoregressions with an exogenous trigger.  

3.4 Estimation Methodology 

Equation (3.6) is in the form of a switching auto-regression with the parameter 𝜙𝑡  being the switching 

parameter. The switching regression methodology has developed in leaps and bounds since the 

seminal articles on the subject by Goldfelt and Quant (1973) and Quant (1972). Hamilton (1989) 

introduced dynamics within the Markov Switching framework by applying Markov Switching to GNP 

data, where GNP grows at different rates during booms and recessions. Other authors who have 

attempted similar approaches for bubble detection include Van Norden et al (2002), Enders et al 

(2001) who use a generalized Momentum Threshold Auto Regression (MTAR) and Bohl (2003).  

Hidden Markov switching models lend themselves readily to estimation through the application of 

Kalman Filtering techniques introduced in econometrics by Harvey (1981). Models with switching 

parameters can be expressed in a State-Space setting which allows the application of the Kalman filter 

thereby enabling the estimation of time varying parameters as well as providing the approximate 

maximum likelihood function for the data generating process under question.  

Kim (1993a, 1993b, 1994) has used state-space algorithms for estimating Markov switching Auto 

Regressions also allowing for varying transition probabilities. His series of articles is also accredited 

with introducing heteroscedastic disturbances in the Markov-switching regression setting. It is 

important to consider heteroscadasticity in this context as it may be plausible to suggest that being in 

an explosive state causes exuberance among investors and they may react more to shocks in the 

bubble regime than in the random walk or stationary regime, leading to heteroscedastic disturbances. 

Indeed we do note evidence of heteroscedasticity in our estimates below.  

Alternative methods for estimating switching regressions have also been developed in the Bayesian 

setting. Chib et al (1993) introduced switching regression using Gibbs Sampling in a Bayesian setting. 
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Kim and Nelson (1998, 1999) have further developed this methodology through an algorithm that 

uses a Bayesian Gibbs Sampling approach in a State Space setting to estimate a Markov Switching 

model. More recently Kim et al (2012) have employed a Bayesian Markov Chain Monte Carlo 

(MCMC) methodology to estimate evolving regime-specific parameters i.e. the parameters act like 

random variables instead of taking on fixed values. Thus, a variety of methodologies are available to 

us to estimate equation (3.6). 

Our contribution to this literature is to use information from recursive unit root or bubble tests in order 

to find better estimates of smoothed regime probabilities. Other switching-regression methodologies 

such as those proposed by Bohl are not feasible for commodities as data on a fundamental process is 

often not available at the same frequency as pricing data. Inventory or production data is usually 

annual and may not be as reliable as pricing data as it is based upon estimates.  

We use the test developed by Philips et al (2013), which was introduced in Chapter 2, in order to date 

bubbles in commodities3. The detected bubble dates are then used to estimate Markov-state transition 

probabilities. A relatively simple approach is to run an auto-regression using the bubble dates as a 

separate dummy variable. This will provide an estimate of the auto-regressive parameter for the two 

states. However, the underlying assumption for using this approach is that bubbles are known for 

certain and we know when they arise. Forecasting on the basis of such a regression will require a 

conjecture on the state the commodity price is currently in. Nevertheless we do carry out the dummy 

variable auto-regression in order to compare the forecasting results with those obtained from the 

Markov-switching approach. The GSADF test has gained significant traction since it was first 

introduced in 2013.  

Within the Markov-switching regression framework, we use bubble dates to arrive at an estimate for 

the expected duration of the two regimes. Estimates of expected duration then allow us to derive the 

matrix of transition probabilities. The sub-section below explains what we mean by transition 

probabilities. The transition probabilities thus obtained can be used in different ways. An obvious way 

to use these probabilities is to constrain the Markov-switching algorithm such that the two-states 

occur with the same transition probabilities.  

A second methodology is to use these as initial probabilities and to compare them to the probabilities 

once the switching-parameters have been estimated. Another alternative is to use these transition 

probabilities as initial values while allowing the transition probabilities to be random variables. This 

will be the most prudent approach given that bubbles tend not to occur at specific intervals and the 

duration of each bubble state tends to vary. A caveat that needs to be kept in mind is that using 

                                                           
3 While the modified Bhargava statistic introduced in Chapter 2 does an adequate job of detecting explosiveness 
in price series, it is less precise with dating periods of explosiveness; hence, we use the GSADF statistic since it 
allows us to date periods of explosiveness and thereby estimate a transition matrix as noted in this section 
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transition probabilities derived from Philips et al’s test does not guarantee that the algorithm will 

match the bubble dates exactly. The two states detected may be markedly different from the bubble 

dates suggested by the Philips et al test.  

In what follows we begin by briefly describing the Markov-switching maximum likelihood approach 

that we employ. We use the MATLAB toolbox developed by Perlin (2014) to estimate these models 

which employs the maximum likelihood methodology instead of the Bayesian approach as mentioned 

above. The second sub-section describes our use of the GSADF test.  

3.4.1 Markov-Switching regimes: 

The following section is based on Hall et al (1999) as it matches the aims and objectives of this 

chapter. For a general treatment of Markov-Switching methods using State-space methods and/or 

Bayesian Methods the interested user is referred to Kim and Nelson (1999). If our objective was to 

carry out a right-sided unit root test (a crude test for explosive behaviour), we could express equation 

(3.6) in the following Augmented-Dickey Fuller form: 

∆𝑃𝑡+1 = 𝜙𝑡𝑃𝑡 + ∑ 𝜓𝑖∆𝑃𝑡−𝑖 + 𝜐𝑡𝑘
𝑖=0    (3.7) 

where ∆ is the first-difference operator and 𝜐𝑡 is a white-noise disturbance term. In a single regime-

framework we could estimate the auto-regressive parameter 𝜙𝑡 and test its significance to classify if 

the series has a unit root. However, with regime-switching we need to take the switching parameter 

into account. As stated above, we assume that there are two states of nature, a mean reverting/random 

walk state, 𝑠𝑡 = 0 and a bubble state 𝑠𝑡 = 1. Thus, equation (3.7) becomes: 

∆𝑃𝑡+1 = [𝜙0(1 − 𝑠𝑡) + 𝜙1(𝑠𝑡)]𝑃𝑡 + ∑ [𝜓0𝑖(1 − 𝑠𝑡) + 𝜓1𝑖(𝑠𝑡)]∆𝑃𝑡−𝑖 + 𝜎𝑒𝑒𝑡𝑘
𝑖=1   (3.8) 

here 𝑒𝑡 is an i.i.d random variable with zero mean and unit variance. The state, 𝑠𝑡, is selected by 

nature at each time t. However, the probability of the states occurring is not independent; they are 

Markovian i.e. the probability that state j occurs tomorrow depends on what state the process is in 

today. In essence this is the main benefit of using Markovian state switching to estimate state-specific 

parameters. The process {𝑠𝑡} forms a Markov Chain on the space {0,1} with the following transition 

matrix: 

A= � 𝑝 1 − 𝑝
1 − 𝑞 𝑞 �   (3.9) 

0 < 𝑝 < 1                                         

0 < 𝑞 < 1 
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where the elements 𝑎𝑖𝑗 of the matrix A represent 𝑃𝑟(𝑠𝑡 = 𝑖|𝑠𝑡−1 = 𝑗). Thus, the first element in the 

matrix is the probability that we stay in state 0 tomorrow given that we are in state 0 today or if we 

refer to the states in our model, it is the probability that we will be in the stationary state tomorrow 

given that we are in the stationary state today. Independence of the disturbance term from the state 

variables at all time periods and across all states is also required although state-specific disturbance 

terms can be accommodated as discussed in Kim et al (1999).  

To estimate the parameters of the model as well the probabilities we need to use the maximum 

likelihood of the price process. The following is based on Kim et al (1999). Let the log-likelihood 

function of the price process be 𝑓(𝑃𝑡|𝐼𝑡−1, 𝑠𝑡, 𝑠𝑡−1) where It-1 is the information set up to time period 

𝑡 − 1 i.e. it contains the information on both states up to time period (t-1). st is the state of nature in 

period t and st-1 is the state of nature in period t-1. If we know st apriori, the problem simplifies greatly 

and becomes a dummy variable problem. The objective then is to simply maximize the following log-

likelihood function: 

ln 𝐿 = ∑ ln (𝑓(𝑃𝑡|𝐼𝑡−1, 𝑠𝑡, 𝑠𝑡−1)𝑇
𝑡=1     (3.10) 

For an AR(1) with a Markov-switching parameter as in 3.6, the probability density function, for the 

two state case, is given by: 

𝑓(𝑃𝑡|𝐼𝑡−1, 𝑠𝑡, 𝑠𝑡−1) =
1

�2𝜋𝜎𝑆𝑡
2

exp (−
{(𝑃𝑡 − [𝜙0(1 − 𝑠𝑡) + 𝜙1𝑠𝑡]𝑃𝑡−1}2

2𝜎𝑆𝑡
2  

where the states are known with certainty.   

With unobserved states however, the problem becomes sufficiently more involved and complicated. 

With unobserved states, instead of deriving the likelihood of the price process, we will need the joint 

likelihood of the prices process, the state in the current period and the state in the previous period 

conditional on the information up to the previous period; i.e.  

𝑓(𝑃𝑡, 𝑠𝑡, 𝑠𝑡−1|𝐼𝑡−1) = 𝑓(𝑃𝑡|𝑠𝑡, 𝑠𝑡−1, 𝐼𝑡−1)𝑃𝑟[𝑠𝑡, 𝑠𝑡−1|𝐼𝑡−1]  (3.11) 

where 𝑓(𝑃𝑡|𝑠𝑡, 𝑠𝑡−1, 𝐼𝑡−1) is given in the specification above. In order to get 𝑓(𝑃𝑡|𝐼𝑡−1)or the marginal 

density of the price process, we need to integrate out the states, st and st-1 out of the joint density 

function (3.11). Thus for the two state case, we have, 

𝑓(𝑃𝑡|𝐼𝑡−1) = � � 𝑓(𝑃𝑡 , 𝑠𝑡, 𝑠𝑡−1|𝐼𝑡−1)
1

𝑠𝑡−1=0

1

𝑠𝑡=0
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                                                   =  � � 𝑓(𝑃𝑡|𝑠𝑡, 𝑠𝑡−1, 𝐼𝑡−1)𝑃𝑟(𝑠𝑡, 𝑠𝑡−1|𝐼𝑡−1)
1

𝑠𝑡−1=0

1

𝑠𝑡=0

 

In our example the marginal density is a weighted average of 22=4 weights. With ‘M’ states this 

becomes an M2 dimensional problem at each time period. The weights are given by the conditional 

state probabilities. Thus, in order to estimate switching parameters with unobserved states we need to 

maximize the following likelihood function: 

ln 𝐿 =  � ln 
𝑇

𝑡=1

�� � 𝑓(𝑃𝑡|𝑠𝑡 , 𝑠𝑡−1, 𝐼𝑡−1)𝑃𝑟(𝑠𝑡 , 𝑠𝑡−1|𝐼𝑡−1)
1

𝑠𝑡−1=0

1

𝑠𝑡=0

�        (3.12) 

In order to maximize the above likelihood we still need to find the weights. We refer to Kim et al 

(1999) which explains a recursive procedure for estimating the probability weights and also provides 

an algorithm for reducing the dimensionality of the problem. The recursive procedure requires stating 

initial values for the transition probabilities. The main difference between our approach and other 

approaches is that we do not use a naïve or un-informative state probability. We use information from 

the GSADF statistic to come up with an estimate of the transition probabilities. Once we fix the 

values of the transition probabilities, the marginal density of 𝑃𝑡 can be easily obtained and the 

likelihood function maximized as we can use the transition probabilities as weights.  

Since we estimate Pr(𝑠𝑡, 𝑠𝑡−1|𝐼𝑡−1)directly from unit root tests, (3.12) can be maximized easily. 

Assuming a probability distribution for 𝑃𝑡 , the only element in (3.12) that needs to be maximized is 

𝑓(𝑃𝑡|𝑠𝑡, 𝑠𝑡−1, 𝐼𝑡−1) with respect to the state parameters 𝜙𝑡  and 𝜎𝑆𝑡
2 . In most cases, 3.12 cannot be 

estimated analytically and thus a numerical procedure is required. The likelihood can easily 

incorporate the case for heteroscedastic disturbances as well (See Kim et al, p. 146) 

To find Pr(𝑠𝑡, 𝑠𝑡−1|𝐼𝑡−1), we rely on the expected duration, D, of each state. The expected duration D 

of each of the two states is given by: 

𝐸(𝐷) =  �𝑗𝑃𝑟[𝐷 = 𝑗]
∞

𝑗=0

= 1𝑃𝑟[𝑠𝑡+1 ≠ 𝑗|𝑠𝑡 = 𝑗] + 2𝑃𝑟[𝑠𝑡+1 = 𝑗, 𝑠𝑡+2 ≠ 𝑗|𝑠𝑡 = 𝑗]

+ 3𝑃𝑟[𝑠𝑡+1 = 𝑗, 𝑠𝑡+2 = 𝑗, 𝑠𝑡+3 ≠ 𝑗|𝑠𝑡 = 𝑗] + ⋯ 

Given transition probabilities for each state, pjj the duration equation becomes: 

𝐸(𝐷) = 1 ×  �1 − 𝑝𝑗𝑗� + 2 × 𝑝𝑗𝑗�1 − 𝑝𝑗𝑗� + 3 × 𝑝𝑗𝑗2 �1 − 𝑝𝑗𝑗� + ⋯ = 1
1−𝑝𝑗𝑗

         (3.13) 
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Thus, once we have the expected duration of each state using this method of moments, the transition 

probabilities follow from equation (3.13). In section 3.6 we consider results from this regression with 

the two states being an explosive state and a mean reverting state respectively.  

Once the model has been estimated and parameter estimates found, we can find smoothed state 

probabilities based on Kim et al’s methodology (1999, p. 68-69): 

Pr[𝑠𝑡 = 𝑗|𝐼𝑇] = � Pr[𝑠𝑡 = 𝑗, 𝑠𝑡+1 = 𝑘|𝐼𝑇]
1

𝑘=0

 

where 𝐼𝑇 represents all information in the sample (T denotes the whole sample as opposed to ‘t’ which 

denotes the current time period).   

Note that the analysis and discussion that follow primarily talk about smoothed probabilities of 

different states rather than the magnitude of the parameter. Thus, the procedure outlined in this 

chapter is best seen as a metric for market efficiency. The following chapter provides a more robust 

methodology for estimating parameters as well as measuring efficiency.  

3.4.2 Estimating transition probabilities 

We briefly revisit the GSADF statistic which we discussed in detail in Chapter 2. Given the model in 

(3.7), an initial window r0 is stipulated. Given this window, the empirical regression in (3.7) is 

estimated and the GSADF statistic calculated. Caspi (2014) has coded the GSADF statistic within E-

views which allows a user to calculate not only the GSADF statistic and the ADF sequence but also 

allows the generation of the critical value sequence. We have used Caspi’s Eviews program to date 

bubbles in commodities in this chapter. 

Once the test has been run and a price series dated for explosiveness, we can estimate the expected 

duration of the explosive state by dividing the number of periods for which the price was in the 

bubble state by the total number of observations. Using (3.13) we can then estimate the transition 

probability for the explosive as well the non-explosive state respectively. The underlying assumption 

is that our measure is an unbiased estimator of expected duration. Thus,  

𝐸(𝐷) = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒,𝑠𝑡
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑤𝑖𝑡𝑐ℎ𝑒𝑠

. Using the transition probabilities we estimate parameters from 

(3.12) by applying Perlin’s (2014) algorithm. 
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3.5 Copper: A Brief Overview 

Copper is among the most widely traded and consumed metals in the world. With estimated reserves 

of over 7,000 Million Tonnes (MT) (ICSG, 2014), it is also available in great quantity although not all 

of it is currently economically viable. It is a malleable and ductile metal and is used in a variety of 

industrial equipment, construction, power generation and transmission, transportation and consumer 

goods, particularly electrical goods and wiring. It is essential in information and communication 

technology. In terms of usage, the world refined copper demand stood at 21.2 MT in 2013 with Asia 

accounting for nearly 13.8 MT of that demand. The demand for copper products has been growing at 

a steady rate though supply has usually kept pace with this demand. There have been periods when 

demand has outstripped supply which has resulted in shrinking inventories and rapid price increases 

as we discuss below. 

While no metals are available in infinite quantity, it is unlikely that the world will face a shortage of 

copper in the near future. In addition to mining, copper is also widely recycled and the recycled usage 

has been growing year on year. According to the International Copper Study Group, mining 

production up till 2014 had reached 18.7 MT per year with Chile being responsible for nearly one-

third of that production (5.8 MT). Recycling accounts for around one-third of copper production every 

year. Refined Copper production on the other hand has been increasingly concentrated in Asia with 

China producing more than a third of refined copper at (6.5 MT) (USGS, 2015). Despite being the 

largest producer of refined Copper, China remains the top importer of both Copper ores and refined 

Copper. This may change in the near future as the Chinese economy moves from an investment based 

economy to a consumption based economy and other emerging economies see a jump in Copper 

demand. 

The risk of disruption to copper supply is considered relatively low as copper production is dispersed 

worldwide and the metal is distributed in regions throughout the world. Though the world may not run 

out of copper any time soon there are a number of other risks that can impact the supply of copper. As 

copper extraction from a particular mine increases, the quality of ore from that mine starts to decline. 

This has been particularly true for some mines in Chile and the USA (Papp et al, 2014).  

Like other metals, the production of copper requires a large capital investment over a substantial 

period of time. Episodes such as the financial crisis make it difficult for large copper producers to 

raise financial capital. Similarly, volatility of copper prices can potentially make production in some 

mines infeasible as we saw in 2015-16 with the plunge in metal prices driven by low oil prices.  

Another major risk to copper production is posed by climate change. With environmental agencies 

increasingly scrutinizing risks posed to the atmosphere by industrial processes such as the extraction 

of copper, the regulation on such production is likely to increase in the coming years. As copper 
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production primarily uses coal as the main source of power in copper mines, it is likely that the cost of 

copper production will increase if companies are required to switch to other sources. In addition, there 

are also recurrent risks of labour strikes which can often be prolonged and can halt production from 

major mines.  

Copper contracts are exchanged on three major commodity exchanges; the London Metal Exchange 

(LME), the New York Mercantile Exchange (NYMEX) and the Shanghai Futures Exchange (SHFE) 

with the latter of the three increasingly gaining a larger share of the commodity market in general and 

the copper market in particular. In addition to offering a facility for buying and selling copper 

contracts (including futures and options), the exchanges also provide storage facilities which enable 

physical exchange of copper (ICSG) and settlement of contracts. While producers of copper maintain 

the largest inventories of copper, exchanges also store a substantial amount of copper.  

Our monthly data extends from 1957 through to 2014 – Figure 3.1 in the appendix shows a time series 

plot of the Copper price series over the period. There have been a number of events during this time 

period during which the price of copper has been volatile. As mentioned in the previous sections, 

these events may have acted as the trigger for the switch from the random walk state to the bubble 

state.  

The first of these events occurred during the mid-1960’s. The start of the Vietnam War coupled with 

strong growth and some of the longest strikes in copper mines in the US led to the increase in price of 

copper through to the end of the 1960’s. The next major jumps are seen during the oil price crises 

from 1972-74 and 1979-80. These jumps are primarily triggered by an increasing cost of production 

which made metal production as a whole an expensive activity. The 1979-80 prices were also marked 

by a record jump in copper consumption and lower inventory levels (Edelstein, 1999).  

We see another peak in the late 1980’s which was caused by growing world consumption and 

historically low inventories of copper. This particular price jump was specific to the copper market as 

opposed to the oil price shock which impacted virtually all commodities. The boom in East Asia also 

caused a jump in copper prices until the market cooled down after the financial crisis hit East Asia. In 

2005, we observe the steepest rise in copper prices with prices as high as $3000 per Metric Tonne. 

The price jumped to almost $9000 per Metric Tonne during the financial crisis before plummeting 

back to $3000. This marks the most volatile period in the data we consider.  

While the initial price increase was caused by exponential production growth in the Chinese market, 

the jump to $9000 in mid-late 2008 was the result of investment flowing from the crumbling sub-

prime mortgage crises into the non-ferrous metals market as investors sought relatively safe returns. 

Metal prices in general and Copper in particular saw another sharp increase in 2011 mainly due to 

economic recovery in the developed world and strong economic performance from emerging 
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economies such as China and India. The situation was exacerbated by low stockpiles which further 

provided an impetus for a stronger copper price. In the sections below we focus primarily on the 

copper market but do report results for other non-ferrous metals when we introduce our methodology 

for estimating market efficiency.  

3.6 MSAR Results with two regimes: 

For the results in the current and subsequent sections we used the International Monetary Fund’s 

International Financial statistics database to access monthly data on commodity prices for 6 non-

ferrous metals (Aluminium, Copper, Lead, Nickel, Tin and Zinc). We use an initial window size of 36 

for the GSADF test on Copper. Log prices are used and the dependant variable is the growth rate in 

price; thus, a parameter value greater than 0 represents an explosive state and a value close to 0 

represents the random walk or efficient state. We use a 5 percent critical sequence for our analysis.  

As outlined in the section 3.4.1, we try to improve the MSAR algorithm by estimating the Markov 

state probabilities directly from our GSADF test. This requires datestamping bubbles using the 

GSADF test developed by Philips et al (2013). We carried out the GSADF test using the Eviews 

package developed by Caspi (2014). The results for the test are shown in Figure 3.1 (the blue line is 

the GSADF stastic sequence and the red line is the critical sequence). As seen in the graph there are 5 

instances that qualify for the bubble state according to the criteria put forth by Philips et al (recall that 

when the GSADF sequence for the copper series is above the critical value sequence in red, the series 

is said to be in a bubble state). These instances run from July 1964 to January 1965 (7 months), July 

1973 to October 1973 (4 months), October 1987 to January 1988 (4 months), December 2003 to April 

2004 (5 months) and December 2005 to October 2006 (11 months).  

Based on these dates the average duration of the bubble state is 6.2 months with a standard deviation 

of 2.95 months. Given the length of the data, we do not have sufficient information to reliably 

estimate the full distribution of bubble states so we primarily rely on the expected duration of the 

bubble state. Using E(duration of bubble state) = 6.2 months, our estimated Markov-state probability 

for the commodity price to stay in a bubble state given that it was in a bubble state in the previous 

period (𝑝22) is 0.8387 and the probability that the commodity price will behave like a mean reverting 

process given that it was mean reverting in the previous period (𝑝11) is 0.9910.  

The calculation of the transition probabilities from the expected duration data is based on the method 

outlined in Section 3.4.2. The transition probabilities are in line with the literature on bubbles in 

commodity markets; long periods of stable prices are followed by some short periods of a bubble state 

during which the price of a commodity can behave in a volatile manner until inventories and supply 

adjust. As seen above, the longest such period was in the run up to the financial crisis.  
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We begin our analysis by running a basic regression and using the date stamps to generate a dummy 

variable (BubbleCopp in Table 3.1). The dummy takes a value of 1 whenever the GSADF statistic for 

copper is above the critical GSADF sequence of values. The regression is essentially a random walk 

including the bubble dummy. As seen in table 3.1, we fail to reject the null hypothesis for no unit root 

and the bubble dummy is significant and positive. Since the regression is in levels rather than logs, the 

coefficient (209.86) is a dollar value. Inclusion of a time trend does not make the coefficient 

insignificant although the coefficient reduces in magnitude. One may consider this regression a very 

simple form of a Markov Switching Auto-Regression where the states are known with certainty. 

Although the regression itself is very simple, its implications are important  as it  indicates the 

existence of a bubble state separate from a random walk during which the price process is likely to 

follow an explosive path.  

The second stage of our analysis relies on unrestricted Markov State Auto Regressions. For the 

MSAR regressions we estimate equation 3.6c using monthly returns. Including a trend or more lags 

does not substantially alter our results so the analysis presented below uses the model as outlined in 

section 3.3. We use the MSAR code developed by Perlin (2014) for this part of the analysis. As a first 

step we estimate a Markov Switching Auto Regression without placing any restrictions on the 

coefficients. The transition matrix thus obtained for Copper is: 

�0.97 0.03
0.08 0.92� 

The Smoothed Markov-State probabilities are shown in Figure 3.2 below. As seen from the results, 

the regime probabilities predict a much longer second state probability than generally believed. This 

procedure is unable to correctly identify an explosive state. In the run up to the financial crisis, the 

copper price appears to follow a steep trend, which influences the algorithm a great deal. The 

unrestricted model predicts an expected duration for the second bubble of almost 16 months which is 

much longer than what we observe in the data.  

Figure 3.2 shows dates during which the smoothed probability of being in the second state is high. 

High probabilities for the second state occur in periods during the 1960’s; in 1973, between 1988-

1990 and from 2005 onwards. While the unrestricted model does admirably before 2005, it 

overestimates the probability of being in a bubble state after 2005. The results suggest that the copper 

price series has fundamentally changed after 2005 and has moved to the bubble state. It only reverts 

back to stationarity around 2012. 

Another reason why these results may have been impacted is the behaviour of the copper price series 

towards the end of the sample. At the end of the sample, the series is very volatile, and deviates 

significantly from the earlier period. It is likely that the unrestricted MSAR detected a high variance 
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and a low variance state. The steady state probabilities suggest that the series stays in state 1 for 69% 

of the time and in state 2 for 31% of the time. This is clearly an overstatement as empirical as well as 

theoretical analysis suggest a much shorter duration for the explosive state.  

The final regression in this section restricts the transition state probabilities to values obtained from 

the GSADF test. While this does influence the estimates and the smoothed state probabilities, it is not 

intended to exactly replicate the GSADF test (which the first regression with the dummy variable 

does). Instead, we use an element from the distribution of the bubble state and incorporate that  

information in our MSAR. The ideal scenario would require a distributional restriction on the MSAR 

algorithm. The restricted transition matrix for Copper based on the bubble and stationary state date 

stamps from the GSADF test is: 

�0.99 0.01
0.16 0.84� 

This suggests a steady state probability of 95% for the stationary and 5% for the bubble state which is 

in line with theory and empirical observation. Figure 3.3 plots smoothed probabilities from the 

restricted regression. The restricted model detects shorter bubbles which often coincide with dates 

during which copper prices were on an increasing path. We also note a bubble from 2005 onwards; 

however, as opposed to the unrestricted case the mean reverting state resumes from 2010 instead of 

2012. The periods during which the bubble probability is relatively high (i.e. >0.3) tend to coincide 

with important events in the copper market.  

The first instance in which we observe a high bubble state probability is 1967-1968 which (as stated 

in section 3.5) corresponds to periods of long strikes in copper mines which saw copper prices jump 

significantly. This is followed by the 1973-1974 period during the oil price crisis when prices 

increased in wake of the oil embargo by OPEC. The situation was exacerbated by low stockpiles 

which further provided an impetus for a stronger copper price. The next high sequence of bubble state 

probabilities is seen towards the end of 1979 and the beginning of 1980, a period of low stocks and 

high demand for copper which led to copper prices rising. 

During much of the 1980’s prices stay stable and our results indicate as such (high probability of state 

1). Towards the end of the 1980’s and the beginning of the 1990’s we see the probability of the 

bubble state rising again. This was a period of historically low inventories and high demand which led 

to substantial increases in copper price including historical peaks being achieved. While both the 

unrestricted and the restricted model show high probabilities for the explosive state here, the restricted 

model does caution us as there is a significant fall in the bubble state probability in 1990 when prices 

had begun to stabilize. The unrestricted model continues to maintain a high bubble state probability 

during this time period.  
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State 1 probability stays high for most of the 1990’s and the early 2000’s with a short shift to state 2 

during the East Asian financial crisis. From July 2007, both the unrestricted as well as the restricted 

model have a high probability for state 2. This period coincides with the financial crisis and its 

aftermath during which copper prices have stayed much higher and more volatile than historical 

averages. As stated before, the unrestricted model suggest a high bubble state probability up to 2012 

while the restricted model suggest a return to a random walk state in 2010.  

While both models capture important state shifts in the copper price series and give indications of 

when copper may be in a bubble state, our evidence suggests that the restricted model does better and 

it is better able to capture the bubble state. Particularly towards the end of the sample, the restricted 

model indicates that copper may have switched back to the stationary state which the unrestricted 

model does not. The unrestricted model substantially overstates the duration of the explosive state. 

Thus, without placing any restrictions on parameters we are able to obtain relatively accurate 

smoothed probabilities for each of the two states with our proposed methodology.   

One criticism that can be levelled against our approach is with regard to our selection of critical 

sequences. As opposed to the unrestricted transition probabilities, the transition probabilities obtained 

from the GSADF test depend on the critical value chosen and may vary. Had we used a 10% critical 

sequence our transition probabilities and hence, the steady state probabilities will have been different. 

If we re-estimate the restricted model using a 10% right-sided GSADF critical sequence we obtain a 

steady-state probability of 8% for the explosive state. Thus, the steady-state probabilities tend to 

change as the critical sequence is changed. One’s choice of the critical sequence depends on the type I 

error one is willing to accept for this analysis and how one chooses to define a bubble.  

Results from sensitivity analysis at the 5% and 10% levels did not lead to significant changes in 

steady state probabilities. Steady state probabilities for the explosive state increased when a 10% 

critical sequence was used; however, the increase was in the 2-5% range. To justify our choice of a 

5% right-sided critical sequence we carried out further analysis on the matter. Using grid search we 

tried to match the steady-state probabilities obtained from the unrestricted model in order to find the 

critical sequence and hence, the type I error probability that would give us the same results as the 

unrestricted model. 

For copper we found that a right-sided critical sequence of 73% would be required to replicate the 

unrestricted estimation results. Thus, replicating the unrestricted Markov-estimation results for 

Copper will have required an unacceptable level of Type I error probability. Our analysis on the 3-

state results (Section 3.7) requires similarly unrealistic Type I probabilities to obtain the unrestricted 

results. Therefore, we contend that conventional critical sequences (1%, 5%, and 10%) suffice for the 

restricted estimation and the results are not very sensitive at these levels. We did carry out 2-state 
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analysis for 5 other non-ferrous metals; however, for brevity we only visit these results briefly but 

relevant figures and analysis are available upon request.  

Table 3.2 reports the switching parameter estimates from the restricted and unrestricted regressions 

while Table 3.3 reports the transition matrices and corresponding steady state probabilities under the 

unrestricted and restricted transition probabilities for the metals in our sample. The general pattern 

appears to be reasonably accurate; we observe both mean reverting (𝜙𝑡 < 0 )and explosive (𝜙𝑡 >

0) states in the unrestricted as well as the restricted regressions. The smoothed probabilities on the 

other hand differ greatly and it is here that our methodology proves most useful. We next move on to 

an interesting application of our methodology and discuss results for all metals in greater detail.  

 

3.7 Testing the efficient market hypothesis 

The framework presented in the previous sections can be extended to test the efficient market 

hypothesis. To test market efficiency we consider 3 states instead of 2; the market can be in the 

efficient state (i.e. prices behave like a random walk), the explosive or bubble state as considered 

before or in a stationary state where the market corrects itself or in the case of commodities there is 

excess inventory or oversupply. We can continue using equation 3.6 for our analysis and use the 

switching regression estimation methodology. For the 3-state scenario we maximize the following 

likelihood function: 

ln 𝐿 =  ∑ ln {𝑇
𝑡=1 ∑ ∑ 𝑓�𝑃𝑡�𝑠𝑗,𝑡, 𝑠𝑗,𝑡−1, 𝐼𝑡−1�𝑃𝑟�𝑠𝑗,𝑡, 𝑠𝑗,𝑡−1�𝐼𝑡−1�2

𝑗=0
2
𝑗=0 }              (3.14)   

where 𝑓�𝑃𝑡�𝑠𝑗,𝑡, 𝑠𝑗,𝑡−1, 𝐼𝑡−1� is the same as given before and Pr (𝑠𝑗,𝑡 , 𝑠𝑗,𝑡−1|𝐼𝑡−1) can be found using 

GSADF tests. The model continues to be the Markov Switching Auto Regressive model of order 1 as 

in equation 3.8 above although this time we have 3 possible values for the auto-regressive parameter 

instead of 2. Thus, the estimated model is: 

 ∆𝑃𝑡+1 = [𝜓0𝑠0,𝑡 + 𝜓1𝑠1,𝑡 + 𝜓2𝑠2,𝑡] +  �𝜙0𝑠0,𝑡 + 𝜙1𝑠1,𝑡 + 𝜙2𝑠2,𝑡�𝑃𝑡 + 𝜎𝑒𝑒𝑡         (3.15) 

where 𝑠𝑗,𝑡 = 1 when the process is in state j at time period t and is 0 otherwise.  

In order to detect the periods during which the commodity series is stationary or mean reverting i.e. 

𝜙𝑗 < 1, we again rely on the GSADF test; however, instead of just considering a right-sided Dickey 

Fuller test we also use the original unit root test which is a left-sided test. The main difference 

between this procedure and the normal augmented Dickey Fuller test is that instead of relying on a 

singular value we work with a sequence of left-sided Dickey Fuller statistics similar in line to the 
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right-sided Dickey Fuller sequence which was used to date explosive regimes. Thus, we date the 

explosive regime by considering the 95% critical sequence and the mean reverting regime by 

considering the 5% critical sequence.  

Simulations are used as they were for the 2-state case, but instead of the 95% confidence interval we 

also use the 5% confidence interval. Thus, any time the GSADF sequence for the commodity under 

question is below the 5% confidence interval the series is mean reverting. The efficient market 

hypothesis would require the price process to act like a random walk; therefore, any statistically 

significant break from the random walk i.e. stationarity or explosiveness will indicate a deviation 

from the efficient markets hypothesis. We consider the case of copper in more detail but also present 

results for other commodities. Figures are only provided for copper although these are available for 

other metals upon request. Table 3.4 reports transition probabilities and steady state probabilities for 

all metals.  

Figure 3.4 shows regions where the market for copper is efficient, mean reverting and explosive (the 

green line represents the mean reverting sequence). Using this procedure we can divide the copper 

series into 3 different states. In the context of our efficient markets test we primarily rely on the 

transition matrix and the corresponding steady state probabilities but also report the smoothed state 

probabilities. The steady state probabilities vector will indicate how much time the series spends in 

each state thereby helping us understand how often the market deviates from the random walk or 

efficient state.  

Stationary periods tend to occur during periods of oversupply or when inventories are high. These are 

periods during which the market is correcting itself and thus becomes somewhat predictable. It should 

be noted that just like the bubble literature, there is a probability that the series will go from being 

stationary to being a random walk and this may influence investor behaviour. For Copper, we find 

that there are substantially more switches to the stationary state than there are to the bubble state. 

Another thing we note in our results is that there are no switches from the bubble state to the 

stationary state or vice versa.  

The longest periods during which copper prices stayed mean reverting occur during 1976-1979, 1984-

1987 and 2009-2011. These periods are marked by falling copper prices and are usually separated 

from an explosive episode by at least a year. For copper specifically, these were periods when copper 

production increased and there was some evidence of oversupply. While the GSADF procedure in 

itself provides a good test for the efficient market hypothesis, we go a step further and estimate 

transition probabilities and steady state vectors for the 3 states. The steady state probabilities can also 

serve as a metric for market efficiency and can indicate the probability of a particular asset market 

being in an efficient state.  
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We will compare the transition matrix and the steady state probabilities vector across the restricted 

model (which we estimate from the GSADF test) and the unrestricted model (where we obtain the 

transition probabilities through directly estimating a 3-state Markov-switching auto-regression). Note 

that the unrestricted model is not confined in any way; thus, the random walk state may not be the 

first state. In fact we could have two stationary or two explosive states. Thus, we need an assumption 

in order to facilitate the comparison. For copper, we use the sign and magnitude of the parameter 

estimates as well as the magnitude of the steady state probability to identify the random walk state.  

The random walk state should have a parameter estimate close to zero and under the null (the market 

is efficient) it should also have the highest steady state probability (if the market is mostly efficienct). 

The explosive state on the other hand should have a parameter estimate greater than zero and the 

stationary state should have a parameter estimate below 0 and significant. This identification strategy 

will allow us to compare the transition matrix and steady state probabilities estimated through the 

Markov-State regression to the transition matrix and steady state probabilities estimated from the 

GSADF test.  

The 3-state Markov switching parameter results for Copper obtained through direct estimation of the 

model are contained in the table below: 

 

Three State Markov Switching Regression. Parameter estimates for Copper 

Parameter Parameter Estimate p Value 

𝜙0 -0.0005 0.00 

𝜙1 0.0056 0.00 

𝜙2 -0.0103 0.00 

 

Using the identification strategy outlined above we note that state 1 is the random walk state; state 2, 

the explosive state and state 3 is the stationary state as it has a negative coefficient and a higher 

magnitude than state 1. The smoothed-state probabilities are shown in Figure 3.5. The series oscillates 

between stationary and explosive states with some interspersed episodes of stationarity. The random 

walk state dominates for most of the period although there are a number of switches to the explosive 

state particularly during the 60’s, 70’s and the 2000’s. It is relatively easier to distinguish these three 

states despite the fact that we did not impose any restrictions on the transition probabilities. Note, 

however, that this result is an exception rather than the norm as results for other metals are different. 

In general, we are unable to distinguish the explosive and stationary states. The unrestricted transition 

matrix for copper is given below:  
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Unrestricted Transition matrix for Copper =     

�
0.95 0.04 0.01
0.04 0.84 0.12
0.14 0.26 0.60

� 

 

The transition matrix suggests an expected duration of 21.34 months for the random walk state, 6.39 

months for the explosive state and 2.49 months for the stationary state. Thus, the random walk state 

appears to be much shorter than the previous case (i.e. in the 2 state case). Another thing to note is 

that the results suggest a switch from the explosive state to the stationary state (transition probability 

of 0.12). We do not observe such switches in the data as seen from Figure 3.4. In fact we only observe 

a switch from the explosive to the stationary state in 1 out of the 6 metals we test (the exception being 

Zinc). The transition matrix also suggests switches from the stationary to the explosive state which is 

not present in the transition matrices estimated from the GSADF test. Overall these results suggest 

that copper prices deviate from the efficient market hypothesis for a substantial duration.  

The steady state probabilities for Copper implied by the unrestricted regression are: 

�
0.57
0.32
0.11

� 

Thus, the market is expected to be efficient 57% of the time, explosive 32% of the time and stationary 

11% of the time according to the unrestricted model. The duration for the explosive regime has been 

significantly overestimated. It appears that a proportion of the random walk state as per the GSADF 

test has been identified as an explosive state by the algorithm.  

Next, we estimate the transition matrix and the steady state probabilities for Copper from the GSADF 

test using Figure 3.4. When the GSADF sequence for Copper exceeds the 95% GSADF sequence the 

series is said to be in the explosive regime and when the GSADF Sequence for Copper is below the 

5% GSADF sequence the series is considered stationary. Transition probabilities can then be 

calculated using estimated expected durations as specified in equation (3.13). This leads to the 

following transition matrix for Copper: 

�
0.96 0.01 0.03
0.16 0.84 0
0.07 0 0.93

� 

Here again, the first state is the random walk state, the second state is the explosive state and the third 

state is the mean reverting state. Transition probabilities for state 1 to state 2 and state 1 to state 3 

were based on the ratio of number of switches to each state from state 1. We noted a total of 19 

switches from the random walk or efficient state. Of these 19, 5 were to the explosive state and 14 to 
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the stationary state. The expected duration is 24.2 periods for the random walk state which leads to a 

probability of 0.96. The remaining probability is apportioned between the explosive and stationary 

states respectively based on the number of switches from the random walk state. While the procedure 

we have outlined does not require re-estimation of the 3-state Markov autoregressive model, we 

perform this step for completeness. Figure 3.6 below shows the smoothed state probabilities based on 

a restricted 3-state Markov-Switching model where the transition matrix was restricted to the one 

estimated from the GSADF test.  

The only common feature between the restricted and unrestricted models is that the random walk state 

is the dominant state. In stark contrast to the previous result, the stationary state is the second most 

frequent state with most switches being from the random walk to the stationary state rather than the 

explosive state. There are interspersed periods of explosiveness but these are short and tend to 

correspond with dates that were obtained from the GSADF test. In particular we note high 

probabilities for the explosive state in 1978-79 and in the run up to the great recession. The steady 

state probabilities for Copper are shown below: 

�
0.67
0.04
0.29

� 

The steady state probability vector is very different from the unrestricted vector as we note that the 

stationary state occurs much more often than suggested by the unrestricted model. We also note 

shorter explosive states and a higher probability of the efficient state. Thus, our comparison provides a 

more convincing case for the efficient markets hypothesis for Copper than the unrestricted 3-state 

regression. It is also more in line with the results in chapter 4. Price tends to be mean reverting when 

inventories are high or when the global economy is recovering from a recession as outlined in Section 

3.5 above (Edelstein, 1999). The random walk or efficient state tends to prevail for a majority of the 

length of the series. 

The analysis is extended to include other metals. Table 3.4 in the appendix shows the transition 

matrices and the corresponding steady state probability vectors for both estimation techniques (3-state 

Markov regressions versus direct estimation from the GSADF test). The results provide further 

evidence in favour of the GSADF steady state probabilities. An analysis of the unrestricted transition 

matrices and steady state probabilities reveals that the probability of the random walk or efficient state 

is greatly underestimated and would suggest significant deviation from the efficient market 

hypothesis. In fact, the highest efficient markets duration under the unrestricted regressions is for 

copper where the efficient market operates for 57% of the time period covered by the copper price 

series. Thus, naïve estimation often makes identification of states difficult.  
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In contrast the Tin market is efficient only 39% of the time under the unrestricted regression. There 

are also frequent switches from the stationary state to the explosive state which is implausible (though 

not impossible). It is difficult to differentiate across the remaining two states. The transition or steady 

state probabilities are not suggestive; the parameter estimates and the smoothed state probability 

graphs (not provided but available upon request) do not help either so it becomes difficult to 

distinguish between the explosive and the random walk states for other metals.  

This is in contrast to what we would have expected in the Tin market. Up until 1985, the International 

Tin Council, a consortium of 22 tin producing countries, played a stabilizing role in the market 

(Mallory, 1990). When the International Tin Agreement collapsed in 1985, there was some 

uncertainty in the commodity markets but this did not last long enough to warrant a high incidence of 

inefficiency. For Nickel and Aluminium the estimated model suggested two explosive states and a 

random walk state; there is no mean reverting state. Thus, the 3-state Markov state auto-regression 

with no restrictions does not allow us to distinguish different states and comment on market 

efficiency. 

The results from our restricted regression (where we impose a transition probability matrix) on the 

other hand provide a more consistent and intuitive picture. Steady state probabilities for the efficient 

state are higher relative to their unrestricted counterpart, bubble state durations are low while the 

stationary/mean-reverting state durations tend to vary across different metals. Some metals are more 

efficient than others with the efficient state operating over 75% of the time. These include Lead 

(89%), Tin (90%) and Zinc (79%). For these relatively more efficient markets, the stationary state 

occurs less often.  

The least efficient commodity is Nickel according to this analysis where the efficient state prevails for 

only 59% of the time (although this is still higher than the unrestricted estimate – 52%). Incidences of 

explosiveness are high in only 2 of the 6 metals under consideration: Aluminium (14%) and Nickel 

(15%). These probabilities are much lower than the unrestricted estimates. At the same time, these 

two metals also show a high incidence of mean reversion, 18% and 26% respectively. This suggests 

that explosive states are counteracted by long stationary periods. Looking at the descriptive statistics 

of the series, the high kurtosis for the two series (8.57 for Aluminium and 13.86 for Nickel) are 

indicative of the extremes the series reach and are reflected in our results.  

Overall we obtain intuitive results using the restricted regression compared to the unrestricted 

regression. Thus, our methodology offers better intuition and a deeper insight into the efficiency of 

these markets as compared to estimates obtained from unrestricted three state Markov regressions.  
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3.8 Conclusion 

Using a simple partial equilibrium framework, we have provided a motivation for using Markov 

switching regression to estimate commodity prices. The model emphasizes the role of inventory 

which behaves differently in different states. The two states we are particularly interested are a mean 

reverting state and an explosive or bubble state. In chapter 5 we provide a more structural model that 

also arrives at similar conclusions. 

While the framework suggests the use of a Markov-state regression, we find that using naïve Markov-

state regressions without using prior information on switches does not lead to particularly accurate 

results. For the case of Copper and other non-ferrous metals we find that the unrestricted Markov-

state regressions often suggest high smoothed probabilities for the explosive state when no 

explosiveness is found in the actual series. In contrast, when the transition matrix is estimated directly 

using recursive Augmented Dickey Fuller tests, the smoothed state probabilities tend to agree with 

what we observe in the price series i.e. the probability for the explosive state is high when the GSADF 

test detects a bubble. This also provides us with a metric for market efficiency. 

The analysis was further extended to assess the efficiency of the non-ferrous metals market. This 

requires estimation of a three state regression with the additional state being a mean reverting or 

stationary state. In order to date the mean reverting state we again relied on the GSADF test and used 

the left sided Dickey Fuller critical values. The results from our 3 state analysis indicated that with the 

exception of Nickel and Aluminium, non-ferrous metal markets behaved largely efficiently with some 

periods of explosiveness and mean reversion. While Nickel and Aluminium also stay in the random 

walk state more than 50% of the time, there are large periods of deviation from the efficient state 

which is due to high volatility in these markets. We also found that unrestricted estimation of 

transition probabilities can often lead to erroneous conclusion and lead one to believe that metal 

markets are inefficient.  

Thus, the framework we have provided can be used to estimate commodity prices or can be employed 

to understand market efficiency. Furthermore, the smoothed Markov-state probabilities indicate when 

these states may have occurred. Further research may be carried out on the efficient markets scenario. 

The framework we have provided can help us understand why econometric methods are unable to 

detect instances of explosiveness or mean reversion in a market which displays all three states 

highlights above. However, the technique does have its limitations.  

While we can introduce additional states in the model and measure transition probabilities, it will be 

difficult to identify more than 3 states using econometric tests such as the ones we have employed 

here. While using a 95% sequence to identify explosiveness and a 5% sequence to identify mean 

reversion is intuitively appealing, additional states may be more difficult to explain. Secondly, we 



78 
 

have also limited the form of the auto-regressive parameters and have employed the use of a 

switching drift term. In the following chapter, we introduce a different metric for market efficiency 

which also allows us to specify models differently.  
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APPENDIX 3A: Conditions for a steady-state distribution for a switching 

AR-1 Process 

In this section we outline the conditions that need to be satisfied by the commodity price in order to 

have a steady-state distribution. We do not calculate the moments. The interested reader is referred to 

Chapter 4 for an analysis of moments. The following analysis follows Knight et al’s (2011) 

terminology closely. The reduced form of the commodity price process is: 

                           𝑃𝑡 =  𝜙𝑡−1𝑃𝑡−1 + 𝜂𝑡 where 𝜂𝑡~𝑁(0,𝜎𝜂𝑡
2 )    (3.A1) 

Through repeated substition, the solution of the above process becomes: 

𝑃𝑡 = ∑ 𝑆𝑛(𝑡)𝜂𝑡−𝑛∞
𝑛=1 + 𝜂𝑡, where 𝑆𝑛(𝑡) = ∏ 𝜙𝑡−𝑚𝑛

𝑚=1  

It follows that as 𝑛 →  ∞: 

lim𝑛→∞
1
𝑛

ln|𝑆𝑛(𝑡)| = 𝐸[ln|𝜙𝑡−𝑚|]      (3.A2) 

From Knight et al, we know that (3.A1) has a stationary solution if 

𝐸(ln|𝜙𝑡−𝑚|) < 0 or 𝐸 �ln �1 + 𝛽+𝛾
𝛼𝑡
�� < 0     (3.A3) 

We first consider the two-state scenario. For the above condition to be satisfied, if we have one 

explosive state i.e. 𝜙𝑡 > 1 which implies that 𝛼𝑡 > 0, this necessarily requires that in the second state 

𝜙𝑡 < 1 so that we can have a situation where 𝐸(ln|𝜙𝑡−𝑚|) < 0. It follows from 3.A3 that this will 

require: −1 < 𝛽+𝛾
𝛼𝑡

< 0. If we label the switching parameter in state 1, 𝛼1, and the switching 

parameter in state 2, 𝛼2, we have the following bounds for the two paramaters: 

𝛼1 > 0  

𝛼2 + 𝛽 + 𝛾 < 0  

If the steady state probability of state 1 is 𝜋1and the steady state probability for state 2 is 𝜋2 and 

𝜋1 + 𝜋2 = 1, the following condition needs to be satisfied for 𝑃𝑡 to have a steady state distribution: 

𝜋1 ln �1 + 𝛽+𝛾
𝛼1
� + 𝜋2 ln �1 + 𝛽+𝛾

𝛼2
� < 0    (3.A4) 

If we now consider a 3rd state, i.e. a random walk or efficient state, the results can be extended further. 

For the commodity price process to behave like a random walk we require that 𝛼3 is large and 
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negative so that �1 + 𝛽+𝛾
𝛼3
� ≈ 1 or ln �1 + 𝛽+𝛾

𝛼3
� ≈ 0. If 𝜋3′  represents the probability of state 3 and 

𝜋1′ + 𝜋2′ + 𝜋3′ = 1 (𝜋1′ ≠ 𝜋1 and 𝜋2′ ≠ 𝜋2) condition A4 becomes: 

𝜋1′ ln �1 + 𝛽+𝛾
𝛼1
� + 𝜋2′ ln �1 + 𝛽+𝛾

𝛼2
�+ 𝜋3′ ln �1 + 𝛽+𝛾

𝛼3
� < 0  (3.A5) 

However, since ln �1 + 𝛽+𝛾
𝛼3
� ≈ 0, the above condition simplifies to: 

𝜋1′ ln �1 + 𝛽+𝛾
𝛼1
� + 𝜋2′ ln �1 + 𝛽+𝛾

𝛼2
� < 0    (3.A6) 

Thus, in order to have a steady state distribution we required the commodity price to exhibit stationary 

behaviour for a certain amount of time. If we just consider an explosive and a random walk state, we 

will not obtain a steady-state distribution.  
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APPENDIX 3B – Tables and Figures 

Table 3.1 – AR(1) with a Dummy for the bubble state - Copper 

 
Dependent Variable: COPPERDIFF  
Method: Least Squares   
Date: 05/19/15   Time: 11:59   
Sample (adjusted): 1959M12 2014M03  
Included observations: 652 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     COPPER(-1) -0.002376 0.002872 -0.827271 0.4084 

BUBBLECOPP 209.8690 45.15446 4.647803 0.0000 
     
     R-squared 0.030805     Mean dependent var 9.141089 

Adjusted R-squared 0.029314     S.D. dependent var 241.4073 
S.E. of regression 237.8427     Akaike info criterion 13.78416 
Sum squared resid 36769959     Schwarz criterion 13.79790 
Log likelihood -4491.636     Hannan-Quinn criter. 13.78949 
Durbin-Watson stat 1.328374    

     
 
 

      

 

 

Table 3.2 – Markov-Switching Parameter Estimates for 𝝓𝒕  

Commodity  State 1 – 
Unrestricted 

State 2- 
Unrestricted 

State 1 – 
Restricted 

State 2 – 
Restricted 

Copper 0.0001 
(0.00) 

0.0011 
(0.00) 

0.0002 
(0.00) 

0.0011 
(0.00) 

Aluminium 0.0000 
(0.00) 

0.002913 
(0.00) 

-0.0002 
(0.00) 

0.0012 
(0.00) 

Lead -0.0007 
(0.00) 

0.0015 
(0.00) 

-0.0007 
         (0.00) 

0.0017 
(0.00) 

Nickel -0.0010 
(0.00) 

0.0057 
(0.00) 

0.0000 
(0.00) 

0.0005 
(0.00) 

Tin -0.0001 
(0.00) 

0.0007 
(0.00) 

0.0000 
(0.00) 

0.0009 
(0.00) 

Zinc -0.0001 
(0.00) 

0.0007 
(0.00) 

0.0002 
(0.00) 

0.0011 
(0.00) 

The empirical model we estimate is: ∆𝑃𝑡 = 𝛼𝑡 + 𝜙𝑡𝑃𝑡−1 + 𝜂𝑡, where 𝑃𝑡  is in logs; thus, we estimate a return regression.  
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Table 3.3 – Restricted and unrestricted transition probability matrices 

Commodity Unrestricted 
transition matrix 

Unrestricted 
steady state 
probabilities 

Restricted 
transition matrix 

Restricted 
steady state 
probabilities 

 
Copper 

 
�0.9637 0.0363

0.0754 0.9246� 
 

 
�0.6849

0.3151� 
 
�0.9910 0.0090

0.1613 0.8387� 
 

 
�0.9472

0.0528� 

 
Aluminium 

 
�0.8679 0.1321

0.0426 0.9574� 
 

 
�0.2438

0.7562� 
 
�0.9906 0.0094

0.2174 0.7826� 
 

 
�0.9586

0.0414� 

 
Lead 

 
�0.9438 0.0562

0.0637 0.9363� 
 

�0.5314
0.4686� 

 
�0.9844 0.0156

0.1159 0.8841� 
 

 
�0.8814

0.1186� 

 
Nickel 

 
�0.8941 0.1059

0.0566 0.9434� 
 

 
�0.3483

0.6517� 
 
�0.9869 0.0131

0.0492 0.9508� 
 

�0.7897
0.2103� 

 
Tin 

 
�0.9417 0.0583

0.0502 0.9498� 
 

�0.4626
0.5374� 

 
�0.9920 0.0080

0.2000 0.8000� 
 

 
�0.9615

0.0385� 

 
Zinc 

 
�0.9728 0.0272

0.0466 0.9534� 
 

�0.6315
0.3685� 

 
�0.9903 0.0097

0.2000 0.8000� 
 

 
�0.9537

0.0463� 

State 1 represents the case where 𝜙𝑡 ≤ 1 whereas state 2 represents the case where 𝜙𝑡 > 1. The restricted transition matrix 
was estimated through the GSADF test while the unrestricted transition matrix was estimated directly from the MSAR 
algorithm. 
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Table 3.4 – Efficient markets test using a 3 state estimation 

Commodity Unrestricted transition 
probabilities – 3-state 
estimation 

Unrestricted 
- Steady 
state 
probabilities 

Restricted transition 
probabilities using 
GSADF sequences 

Restricted  – 
Steady state 
probabilities 

 
Copper 

 

�
0.9531 0.0391 0.0078
0.0345 0.8436 0.1220
0.1436 0.2575 0.5989

� 

 

 

�
0.5697
0.3215
0.1088

� 

 

 

�
0.9586 0.0109 0.0305
0.1613 0.8387 0
0.0741 0 0.9259

� 

 

 

�
0.6760
0.0457
0.2783

� 

 
 

Aluminium 
 

�
0.8873 0.1127 0
0.0474 0.9214 0.0312

0 0.0869 0.9131
� 

 

 

�
0.2365
0.5619
0.2016

� 

 

 

�
0.9742 0.0172 0.0086
0.0808 0.9192 0
0.0325 0 0.9675

� 

 

 

�
0.6768
0.1441
0.1791

� 

 
 

Lead 
 

�
0.9338 0.0453 0.0209
0.0315 0.8413 0.1272
0.2554 0.2907 0.4540

� 

 

 

�
0.5547
0.3440
0.1013

� 

 

 

�
0.9855 0.0097 0.0048
0.1316 0.8684 0
0.1034 0 0.8966

� 

 

 

�
0.8927
0.0656
0.0417

� 

 
 

Nickel 
 

�
0.9016 0 0.0984

0.00 0.9890 0.0110
0.1678 0.0320 0.8002

� 

 

 

�
0.3036
0.5183
0.1781

� 

 

 

�
0.9688 0.0173 0.0134
0.0690 0.9310 0
0.0306 0 0.9694

� 

 

 

�
0.5897
0.1521
0.2582

� 

 
 

Tin 
 

�
0.8782 0.1154 0.0064
0.0829 0.8550 0.0621

0 0.0731 0.9269
� 

 

 

�
0.2627
0.3860
0.3513

� 

 

 

�
0.9856 0.0126 0.0018
0.1750 0.8250 0
0.0500 0 0.9500

� 

 

 

�
0.9025
0.0650
0.0325

� 

 
 

Zinc 
 

�
0.9521 0 00479
0.1297 0.7307 0.1396

0 0.1942 0.8050
� 

 

 

�
0.5317
0.1962
0.2727

� 

 

 

�
0.9796 0.0111 0.0093
0.1220 0.8537 0.0243
0.0583 0 0.9417

� 

 

 

�
0.7893
0.0599
0.1509

� 

 
State 1 represents the case where 𝜙𝑡 = 1, state 2 represents the case where 𝜙𝑡 > 1, whereas state 2 represents the case 
where 𝜙𝑡 < 1. The restricted transition matrix was estimated through the GSADF test while the unrestricted transition 
matrix was estimate directly from the MSAR algorithm. 
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Figure 3.1 Copper GSADF Test 
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Figure 3.2 Copper MSAR (Unrestricted Markov State Probabilities) - 2 states  

 

Figure 3.3 – Copper MSAR (Restricted Markov-State Probabilities) – 2 states 
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Figure 3.4 

-8

-4

0

4

8
0

2,000

4,000

6,000

8,000

10,000

60 65 70 75 80 85 90 95 00 05 10

GSADF sequence for Copper
GSADF Critical Sequence at 95%
GSADF Critical Sequence at 5%
COPPER  (Units: US Dollars per Metric Ton)

 

  



87 
 

Figure 3.5 

 

Figure 3.6 
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CHAPTER 4: What Proportion of Time is a particular 

Market inefficient?...A Method for analysing the frequency 

of market efficiency when equity prices follow Threshold 

Autoregressions. 

 

In this chapter we generalize existing results for threshold autoregressive models, first presented in 

Knight and Satchell (2011) for the existence of a stationary process and the conditions necessary for 

the existence of a mean and a variance; we also present formulae for these moments. Using a 

simulation study we explore what these results entail with respect to the impact they can have on tests 

for detecting bubbles or market efficiency. We find that bubbles are easier to detect in processes 

where a steady state stationary distribution does not exist. Furthermore, by assuming that asset 

returns follow threshold autoregressive forms, we explore how these models may enable us to identify 

how often asset markets are inefficient. We find, unsurprisingly, that the fraction of time spent in an 

efficient state depends upon the full specification of the model; the notion of how efficient a market is, 

in this context at least, a model-dependent concept. However, our methodology allows us to compare 

efficiency across different asset markets. In doing so we provide a metric for market efficiency that 

allows for a more general model specification than the metric in chapter 3.  

 

4.1 Introduction 

The tendency of asset prices to go through locally explosive and mean reverting states is well 

documented and has intrigued both theoretical and empirical economists. Regime switching models, 

such as the ones introduced by Goldfeld and Quandt (1973), Tong (1978) and Hamilton (1989) have 

often been employed to empirically estimate asset prices with regime changes. These models include 

hidden Markov-state models as well as Threshold autoregressive models. Hansen (2011) provides an 

important review of applications of threshold autoregressive models in economics.  

Knight and Satchell (2011) study the steady state properties of asset prices that are estimated using 

threshold auto-regressive models. Their article formalises necessary and sufficient conditions for the 

existence of a stationary distribution for regime-switching threshold models with 2 states. Analytical 

expressions for the mean, variance, co-variance and the distribution are also derived for the 2 states 

case. While Knight et al carry out most of their analysis under the assumption of an independent and 
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identically distributed trigger variable they also consider the case of a threshold auto-regressive model 

(TAR henceforth) with a Markov trigger.  

The current chapter builds on their results and generalizes the conditions required for a TAR (1) 

model. We only consider the case where the TAR model is driven by an independent and identically 

distributed (i.i.d) exogenous variable that triggers regime-switches. We derive analytical expressions 

for the mean and variance of these models, noting the conditions that need to be satisfied for their 

existence. The two moments are derived with a switching drift, with a constant drift and with no drift. 

Instead of calling a market universally efficient or inefficient, using TAR models we can treat market 

efficiency as a state. By considering efficiency as one of several states, we make several contributions 

to the literature on market efficiency. We contribute to the bubble testing literature by carrying out a 

simulation study which compares the power of bubble detection tests in situations where the 

stationary distribution conditions are satisfied against situations where they are not satisfied. Here, the 

explosive or bubble state is one state of a multi-state price process.  

Evans (1991) pointed out in his seminal study that bubble detection tests are less useful when an 

observed series contains multiple instances of collapsing bubbles. His study showed that such tests 

lose power when the number of bubbles and collapses in a series increases. A number of studies have 

attempted to address this criticism through alternative methodologies. The most notable ones among 

them are Hall et al (1999) and Phillips et al (2013). Hall et al used a Markov-state regime switching 

model to estimate the probability of an asset being in an explosive state. Phillips et al on the other 

hand have devised a recursive procedure using the Augmented Dickey Fuller test which allows them 

to not only test for explosiveness but also date these bubbles. The GSADF test as it is now called has 

proven to be popular with macroeconomists and financial economists. Our simulations show that 

while this test is statistically powerful, in empirical application it has its limitations.  

Using both i.i.d and Markov-switching triggers, we show that when a time series resembling an asset 

price fails to satisfy the conditions for a stationary distribution, the GSADF test has high power. On 

the other hand, the power of the GSADF test falls considerably when the process has a stationary 

distribution even though locally explosive regimes continue to be present. Thus, our simulation study 

builds on our theoretical results and further elaborates on observations made in Knight et al (2014), 

who outline reasons for the failure of bubble detection tests when a series has a stationary distribution.  

Our analysis provides a limiting feature of the GSADF test as the test is premised on a process not 

having a mean reverting state. Phillips et al show that the GSADF test has higher power than other 

alternative bubble detection test; thus, we contend that these results should have external validity for 

other bubble tests. Furthermore, we note that the power of the GSADF test increases the farther the 
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explosive regime parameter is from unity. This observation is also supported by the formulae we 

derive in our workings and is discussed in the relevant section.  

Finally and perhaps most importantly, we make a further contribution to the market efficiency 

literature by providing a methodology that may be used to estimate how often an asset market is 

efficient and also allows us to compare efficiency across different markets (and thereby gives the 

chapter its name). As we discussed in Chapter 1, the efficient market hypothesis is perhaps the most 

well-known as well as the most divisive hypothesis in economics. While economists were aware of 

market efficiency for a very long time before him, Fama (1965) was the first to conceptualize market 

efficiency in his seminal article on stock prices where he concluded that stock market prices followed 

a random walk.  

Since then a large number of economists have contributed to this literature with both proponents and 

opponents of the hypothesis contributing. Seminal contributions have been made to this literature by 

Samuelson (1965), De Bondt and Thaler (1985), Marsh and Merton (1986), Shiller (2000) among 

others (see Chapter 1 for further details). The literature around the efficient market hypothesis is vast 

enough to cover several volumes; thus, we refer the interested reader to Sewell’s (2011) article which 

provides a brief but useful chronological history of the hypothesis and its evolution. The hypothesis 

itself states that for a given information set 𝐼𝑡, systematic gains cannot be made by trading on the 

information set alone. In fact, it may be argued that the threshold auto-regressive model literature and 

the bubble testing literature is a subset of the efficient markets literature as the techniques developed 

to estimate asset prices have often been discussed in the context of efficient markets.  

Note that in this chapter whenever we mention market efficiency we are referring to the weak form of 

market efficiency which states that returns cannot be predicted based on prior information i.e. the 

impact of prior prices is already reflected in the current price. In econometric terms this suggests that 

asset price follow a random walk with (or without) drift i.e. 𝑃𝑡 = 𝛼 + 𝑃𝑡−1 + 𝜖𝑡. In the context of this 

research, thus, a deviation from efficiency should be understood as a deviation from the random walk 

process or any deviation from the specification above. Instead of arguing for or against the efficient 

market hypothesis we recognize that although markets may be mostly weak form efficient, they can 

deviate from efficiency for significant periods of time. Semi-strong or strong form efficiency may not 

be easy to analyse with our methodology. Thus, we introduce a new notion of market efficiency; an 

asset market may be efficient sometimes and not efficient at other times. Classifying asset markets as 

either efficient or inefficient would be tantamount to oversimplifying a rather complex set of markets.  

Given the setting above, we provide an estimation methodology for asset markets where market 

efficiency is one of several states. Our estimation methodology aims at identifying how long periods 

of efficiency and inefficiency last. To the best of our knowledge this research would be the first to 
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provide a metric for market efficiency using threshold auto-regressions. Historically, research has 

taken a binary view towards market efficiency and has been based around the presence or absence of 

market efficiency taken on average over a sample period; our metric provides a more detailed view. 

We believe that markets can undergo efficient as well as inefficient states and our methodology helps 

us determine and estimate how long such states last. 

We provide an illustrative empirical application of our methodology through estimating a TAR(1) 

model for the S&P500 and FTSE 100 stock market indices where the parameter switches due to an 

exogenous trigger variable. We estimate the TAR(1) using a constant drift, a regime-switching drift 

and no drift. Our results indicate that the inclusion of a drift term, particularly a regime-switching drift 

term, reduces the impact of the regime-switching slope parameter. A switching drift term is able to 

explain changes in the return process and thus, the high variance observed during explosive periods. 

With a switching drift term, markets appear to be more efficient than with no drift as we are unable to 

reject the random walk hypothesis for a number of coefficients. This observation indicates that in the 

context of regime-switching models, our metric for determining market efficiency depends on model 

specification. However, our methodology does allow us to compare efficiency across different 

markets for the same model specification.  

Other measures of efficiency based on trading volumes or number of informed traders may be used to 

gain estimates of market efficiency. This would require estimating a trading model for the former and 

a heterogeneous agent model for the latter. We argue that our estimation methodology is much 

simpler and the data required for estimation (i.e. prices or returns) are much easily available compared 

to trading volumes and private information of traders. The methodology may be used for forecasting 

purposes; however, no data testing on forecasting is carried out as it is goes beyond the scope of our 

research which primarily aims at specifying a metric for market efficiency. 

In summary, our main contributions to the literature are a generalization of conditions required for a 

threshold auto-regressive model to have a mean and variance when a steady state distribution exists, a 

simulation study of how bubble tests behave when processes do or do not have steady state 

distributions and an empirical methodology for analysing market efficiency through threshold 

autoregressive models driven by an exogenous trigger variable. Section 4.2 generalizes the results in 

Knight et al (2011) to a finite number of regimes and presents results on the mean and variance of 

TAR(1) models. Section 4.3 explains the results of the simulation study using both i.i.d and Markov 

chain exogenous triggers. Section 4.4 illustrates how the model in section 4.2 may be estimated in 

practice and how it can be used to construct efficiency measures. Section 4.5 concludes. 
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 4.2 Conditions for the existence of a mean and variance: 

Let 𝑝𝑡 be the price (or log price) of an asset. We assume that: 

𝑝𝑡 = 𝜓𝑡−1 +  𝜙𝑡−1𝑝𝑡−1 + 𝜂𝑡 where 𝜂𝑡~𝑁�0,𝜎𝜂2�           (4.1) 

For illustrative purposes we consider the 3 state case although the results will be applicable to a finite 

number of ‘k’ states. For k = 3 we specify values of the trigger or driving variable 𝑍𝑡 for which the 

parameters switch between values. Knight and Satchell (2011), only consider two states and a 

constant drift term. 

Thus, for a 3-state case we have: 

 𝜓𝑡−1 = 𝛼1,𝜙𝑡−1 = 𝛽1 𝑖𝑓 − ∞ < 𝑍𝑡−1 < 𝑐1 

𝜓𝑡−1 = 𝛼2,𝜙𝑡−1 =  𝛽2 𝑖𝑓 𝑐1 ≤  𝑍𝑡−1 < 𝑐2 

𝜓𝑡−1 = 𝛼3,𝜙𝑡−1 = 𝛽3 𝑖𝑓 𝑐2 ≤ 𝑍𝑡−1 < ∞ 

𝑐1and 𝑐2 are threshold levels which trigger the switch between states. The above framework can be 

generalized to k intervals and k+1 constants where 𝑐0 =  −∞ and 𝑐𝑘 =  ∞. 

We need 𝑍𝑡−1to be i.i.d to derive our results. The probability that 𝑍𝑡−1 will take a value between any 

two constants is assumed to be 𝜋𝑗+1 i.e. 𝑃(𝑐𝑗 ≤ 𝑍𝑡−1 < 𝑐𝑗+1) = 𝜋𝑗+1 and  

�𝜋𝑗

𝑘

𝑗=1

= 1 

As a result there will be ‘2k’ different parameters. We denote the regime specific parameter by 𝛼𝑗,𝛽𝑗. 

We note that conditions for the existence of a stationary distribution will be similar if 𝑍𝑡 followed a 

Markov process but the moments will be different. (Knight et al 2011 Theorem 2).  

If 𝐸(ln|𝜙𝑡−𝑚|) =  ∑ 𝜋𝑗ln |𝛽𝑗|𝑘
𝑗=1  < 0 and 𝜓𝑡−1 = 𝛼(Knight et all 2011) then the TAR model given 

by (4.1) has the solution   

          𝑝𝑡 = 𝛼(∑ 𝑆𝑛(𝑡)) +∞
𝑛=0 ∑ 𝑆𝑛(𝑡)𝜂𝑡−𝑛∞

𝑛=0 , where 𝑆𝑛(𝑡) = ∏ 𝜙𝑡−𝑚𝑛
𝑚=1   (4.2) 

and 𝑆0(𝑡) = 1, (Quinn,1982). 

When 𝜓𝑡−1 = 𝛼𝑖 for i = 1, 2….k 
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𝑝𝑡 = 𝜓𝑡−1 + 𝜙𝑡−1𝑃𝑡−1 + 𝜂𝑡                                                   

          =  𝜓𝑡−1 + 𝜙𝑡−1(𝜓𝑡−2 + 𝜙𝑡−2𝑃𝑡−2 + 𝜂𝑡−1) + 𝜂𝑡 

                                      = (𝜓𝑡−1 + 𝜙𝑡−1𝜓𝑡−2 + 𝜙𝑡−1𝜙𝑡−2𝜓𝑡−3 + ⋯ . ) + �𝑆𝑛(𝑡)𝜂𝑡−𝑛

∞

𝑛=0

 

                              𝑝𝑡 = �𝜓𝑡−1−𝑛𝑆𝑛(𝑡)
∞

𝑛=0

+ �𝑆𝑛(𝑡)𝜂𝑡−𝑛                                         (𝟒.𝟑) 
∞

𝑛=0

 

It follows that as 𝑛 →  ∞:  

lim𝑛→∞
1
𝑛

ln|𝑆𝑛(𝑡)| = 𝐸[ln|𝜙𝑡−𝑚|]                         (𝟒.𝟒) 

We note that the finiteness of the first term in (4.3) is governed by the behaviour of 𝑆𝑛(𝑡) but that 

equation (4.4) being satisfied is enough to ensure the existence of (4.3). We further  note that 

existence of the process does not imply existence of the mean so the first term may not converge to a 

finite limit in expectation. 

In the following sub-sections we derive the mean and variance for the general case 𝜓𝑡−1 =  𝛼𝑖 and 

discuss special cases i.e. 𝜓𝑡−1 = 𝛼 and 𝜓𝑡−1 = 0.  

Mean: 

𝐸(𝑝𝑡) = 𝐸(𝜓𝑡−1) + 𝐸(𝜙𝑡−1𝑝𝑡−1)            (𝟒.𝟓) 

 = 𝐸(𝜓𝑡−1) + 𝐸(𝜙𝑡−1)𝐸(𝑝𝑡−1) 

As the 𝜓′𝑠 𝑎𝑛𝑑 𝜙′𝑠 switch independently (due to 𝑍𝑡−1 being i.i.d), we have: 

𝐸(𝜙𝑡−1) = ∑ 𝜋𝑗𝛽𝑗𝑘
𝑗=1                (𝟒.𝟔) 

𝐸(𝜓𝑡−1) = �𝜋𝑗𝛼𝑗

𝑘

𝑗=1 

                                                        (𝟒.𝟕) 

It follows from (4.6) and (4.7)  

     

                                                𝐸(𝑝𝑡) =
∑ 𝜋𝑗𝛼𝑗𝑘
𝑗=1

1 − ∑ 𝜋𝑗𝛽𝑗𝑘
𝑗=1

                                                              (𝟒.𝟖)    
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Thus, the mean will exist if ∑ 𝜋𝑗𝛽𝑗 < 1𝑘
𝑗=1  

If 𝜓𝑡−1 = 𝛼,   

                                              𝐸(𝑝𝑡) =
𝛼

1 − ∑ 𝜋𝑗𝛽𝑗𝑘
𝑗=1

                                                             (𝟒.𝟗)  

The mean is zero if there is no drift term.  

Variance: 

For 𝜓𝑡−1 = 𝛼𝑖 

Under independence of 𝜂𝑡 and 𝑍𝑡−1 it follows from (4.1) that: 

𝑉𝑎𝑟(𝑝𝑡) = 𝑉𝑎𝑟(𝜓𝑡−1) + 𝑉𝑎𝑟(𝜂𝑡) + 𝑉𝑎𝑟(𝜙𝑡−1𝑝𝑡−1) + 𝐶𝑜𝑣(𝜓𝑡−1,𝜙𝑡−1𝑝𝑡−1)     (𝟒.𝟏𝟎) 

We evaluate each term in (4.10) separately 

 𝑣𝑎𝑟(𝜓𝑡−1) = 𝐸(𝜓𝑡−12 )− [𝐸(𝜓𝑡−1)]2                          

                                                         =  �𝜋𝑗𝛼𝑗2
𝑘

𝑗=1

− ��𝜋𝑗𝛼𝑗

𝑘

𝑗=1

�

2

                                        (𝟒.𝟏𝟏)   

                                         𝑉𝑎𝑟(𝜂𝑡) = 𝜎𝜂2                                                                                  (𝟒.𝟏𝟐)    

𝑉𝑎𝑟(𝜙𝑡−1𝑝𝑡−1) = 𝐸(𝜙𝑡−12 )𝐸(𝑝𝑡−12 )− [𝐸(𝜙𝑡−1)𝐸(𝑝𝑡−1)]2 

                                                               = 𝐸(𝜙𝑡−12 )[𝑉𝑎𝑟(𝑝𝑡−1) + [𝐸(𝑝𝑡−1)]2] − [𝐸(𝜙𝑡−1)𝐸(𝑝𝑡−1)]2 

                                                                = 𝑣𝑎𝑟(𝜙𝑡−1)[𝐸(𝑝𝑡−1)]2 + 𝐸(𝜙𝑡−12 )𝑉𝑎𝑟(𝑝𝑡−1)       (𝟒.𝟏𝟑)      

 (4.13) again makes use of the fact that 𝑍𝑡−1 is an i.i.d process which implies independence between 

𝜙𝑡−1 and 𝑝𝑡−1. 

Using the definition of variance we know that: 

                                    𝑣𝑎𝑟(𝜙𝑡−1) = 𝐸(𝜙𝑡−12 ) − [𝐸(𝜙𝑡−1)]2                                                       

                                                         =  �𝜋𝑗𝛽𝑗2
𝑘

𝑗=1

− ��𝜋𝑗𝛽𝑗

𝑘

𝑗=1

�

2

                                        (𝟒.𝟏𝟒)   
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Finally, we evaluate 𝐶𝑜𝑣(𝜓𝑡−1,𝜙𝑡−1𝑝𝑡−1) 

    𝐶𝑜𝑣(𝜓𝑡−1,𝜙𝑡−1𝑝𝑡−1) = 𝐸(𝜓𝑡−1𝜙𝑡−1𝑝𝑡−1)− 𝐸(𝜓𝑡−1)𝐸(𝜙𝑡−1)𝐸(𝑝𝑡−1) 

                                                            = 𝐸(𝜓𝑡−1𝜙𝑡−1)𝐸(𝑝𝑡−1)− 𝐸(𝜓𝑡−1)𝐸(𝜙𝑡−1)𝐸(𝑝𝑡−1)            

                                                               = 𝐶𝑜𝑣(𝜓𝑡−1,𝜙𝑡−1)𝐸(𝑝𝑡−1)                                          (𝟒.𝟏𝟓)      

(4.15) relies on the independence of 𝜓𝑡−1 and 𝜙𝑡−1 from 𝑝𝑡−1. 

Thus, (4.11)-(4.15) allow us to calculate 𝑉𝑎𝑟(𝑝𝑡) 

              𝑉𝑎𝑟(𝑝𝑡) = [𝑉𝑎𝑟(𝜓𝑡−1) + 𝜎𝜂2 + 𝑉𝑎𝑟(𝜙𝑡−1)[𝐸(𝑝𝑡−1)]2 + 𝐸(𝜙𝑡−12 )𝑉𝑎𝑟(𝑝𝑡−1)

+ 𝐶𝑜𝑣 (𝜓𝑡−1,𝜙𝑡−1)𝐸(𝑝𝑡)                                                                       (𝟒.𝟏𝟔)     

Rearranging (4.16) and recognizing that if 𝑝𝑡 has a stationary distribution 𝑉𝑎𝑟(𝑝𝑡−1) = 𝑉𝑎𝑟(𝑝𝑡) and 

𝐸(𝑝𝑡−1) = 𝐸(𝑝𝑡) 

𝑉𝑎𝑟(𝑝𝑡) �1 − 𝐸(𝜙𝑡−12 )� = 𝑉𝑎𝑟(𝜓𝑡−1) + 𝜎𝜂2 + 𝑉𝑎𝑟(𝜙𝑡−1)[𝐸(𝑝𝑡)]2 + 𝐶𝑜𝑣(𝜓𝑡−1,𝜙𝑡−1)𝐸(𝑝𝑡) 

Thus, 

𝑉𝑎𝑟(𝑝𝑡) =
� 𝑉𝑎𝑟(𝜓𝑡−1) + 𝜎𝜂2 + 𝑉𝑎𝑟(𝜙𝑡−1)[𝐸(𝑝𝑡)]2 + 𝐶𝑜𝑣(𝜓𝑡−1,𝜙𝑡−1)𝐸(𝑝𝑡)�

1 − 𝐸(𝜙𝑡−12 )
4         (𝟒.𝟏𝟕)               

The condition for the existence of a finite variance with switching regimes is thus,  

                                               𝐸(𝜙𝑡−12 ) = �𝜋𝑗𝛽𝑗2 < 1
𝑘

𝑗=1

                                                       (𝟒.𝟏𝟖)  

The expression in (4.17) suggests that the variance of the price series is increasing in the variance of 

the drift parameter 𝜓𝑡−1, the variance of the error term 𝜎𝜂2, the variance of the coefficients 𝜙𝑡−1, the 

expected value of 𝑝𝑡 (which includes the absolute value of the drift) and the Covariance between the 

drift and coefficient parameters. The latter will be positive since we assume that the same exogenous 

parameter causes a regime switch in both the drift and the coefficient parameter. If we have regimes 

with slope coefficients deviating far from unity (a case we will be interested in when considering the 

efficient market hypothesis), we will get a much higher variance for the price series. Similarly, if there 

is a large drift term, it can lead to the variance of price being high. This also gives us an early 

indication that model specification may be an important determinant in analysing asset price series. 

                                                           
4 𝑉𝑎𝑟(𝜓𝑡−1),𝑉𝑎𝑟(𝜙𝑡−1)𝑎𝑛𝑑 𝐸(𝜙𝑡−12 ) are as before. 
𝐶𝑜𝑣(𝜓𝑡−1,𝜙𝑡−1) = ∑ 𝜋𝑗𝛼𝑗𝛽𝑗𝑘

𝑗=1 − (∑ 𝜋𝑗𝛼𝑗𝑘
𝑗=1 )(∑ 𝜋𝑗𝛽𝑗𝑘

𝑗=1 ) 
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Given the amount of variation in an observed set of series, different specifications will lead to the 

variation being captured by different parameters. Indeed, this is what we observe in Section 4.4.   

Now we consider the case where the drift is constant i.e. 𝜓𝑡−1 = 𝛼. 

A constant drift implies 𝑉𝑎𝑟(𝜓𝑡−1) = 0 and 𝐶𝑜𝑣(𝜓𝑡−1,𝜙𝑡−1) = 0. Therefore, the expression for the 

variance of the asset price with a constant drift term reduces to: 

                         𝑉𝑎𝑟(𝑝𝑡) =
[𝜎2 + 𝑉𝑎𝑟(𝜙𝑡−1)[𝐸(𝑝𝑡−1)]2]

1 − 𝐸(𝜙𝑡−12 )
                                                 (𝟒.𝟏𝟗) 

With a constant drift term the variance of the process relies on the variance of the error term, the 

variance of the coefficient parameter and the absolute value of the expected price which itself is a 

function of the drift term; thus, the variance of price is dependent on the absolute value of the drift 

term.  

Finally, we consider the case where 𝜓𝑡−1 = 0. With no drift term, (4.9) implies that 𝐸(𝑝𝑡−1) = 0. 

Thus, 

                           𝑉𝑎𝑟(𝑝𝑡) =
𝜎2

1 − 𝐸(𝜙𝑡−12 )
                                                                               (𝟒.𝟐𝟎) 

In the vicinity of a unit root, 𝐸(𝜙𝑡−12 ) is likely to be close to 1, which will lead to a very large 

variance for the process. Nevertheless, the variance will be finite and will exist as long as the 

condition in (4.18) is satisfied. Sections 4.3 and 4.4 analyse the implications of the formulae derived 

above. Section 4.3 considers a series of simulations to show how violations of the criterion for a 

stationary steady state distribution specified above and the variance of the parameter coefficient 

impact the ability of statistical tests to detect explosive roots or bubbles. Section 4.4 uses an 

illustrative empirical study to show how specifications such as (4.1) may be used to analyse the 

efficiency of asset markets.   

4.3 Simulation Results 

Our theoretical analysis has multiple applications, of which we discuss two in this Chapter. First, we 

carry out a simulation study to understand how tests for detecting explosiveness perform when a 

series is steady state stationary and when a series is not stationary. As we mentioned in the 

introduction to this chapter, Evans (1991) in his seminal article argued that tests for detecting 

explosiveness in a series had less power if there were multiple episodes of collapsing bubbles. Philips 

et al (2013) devised the GSADF statistic to address that criticism and showed that they could detect 

explosiveness even in the presence of multiple collapses. We show that while their test continues to 

have high power when a series does not have a steady state distribution, the power decreases 
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considerably when the series does satisfy the conditions for a steady state distribution. In particular, 

the presence of a mean reverting state in addition to explosive and efficient or random walk states, 

makes bubble detection difficult using the GSADF statistic.   

We simulate series with a switching autoregressive parameter and a standard normal error term. We 

do not consider a switching drift term for our simulations as a constant drift adequately addresses the 

issue we wish to highlight. The simulated series takes the following form: 

𝑦𝑡 = 𝛼 + 𝜙𝑡−1𝑦𝑡−1 + 𝜖𝑡   where   𝜖𝑡~𝑁(0,1)           (𝟒.𝟐𝟏) 

In this context 𝑦𝑡 can be thought of as the logarithm of a price variable so that if 𝜙𝑡−1 =

1, the return is 𝑦𝑡 − 𝑦𝑡−1 =  𝛼 + 𝜖𝑡. In the simulations below we consider the case when 

𝛼 = 0,𝛼 = 0.01 and 𝛼 = 0.025. 

Our simulation study considers the 3-state case for computational ease, although the results will also 

hold for a finite number of k-states. The switching parameter depends on the pseudo sentiment 

variable, 𝑍𝑡−1 which in our simulations is either a multinomial vector or a Markov chain variable. For 

the multinomial vector case, we select the probability with which each state occurs. Thus, 𝑍𝑡−1 is 

�
1
0
0
�when in state 1, �

0
1
0
� when in state 2 and �

0
0
1
� when in state 3 with probabilities 𝜋1,𝜋2 and 𝜋3 

respectively. The value taken by 𝜙𝑡−1 in a particular period depends on the parameter vector 

specified.  

On the other hand if 𝑍𝑡−1 is a Markov chain variable, it takes on the values 1, 2 or 3 depending on 

which state the series is in. For the Markov chain simulations we need to specify a transition matrix 

instead of a probability vector. A Markov chain is more intuitive for the type of series we are 

concerned with as states tend to be more persistent in this case. It is also more comparable to the kind 

of simulations used in the literature related to tests for explosiveness or bubbles. Evans and Philips et 

al consider similar series in their respective articles. In addition to the process followed by the switch 

inducing variable 𝑍𝑡−1, we also need to specify values for the switching parameters. Together, the 

switching parameter and the probability of 𝑍𝑡−1 enable us to verify if the criterion for a steady state 

distribution, set forth in the previous section, is satisfied. 

In order to illustrate what happens when the criterion is satisfied and when it is not we carry out the 

GSADF test, developed by Philips, Shi and Yu (PSY henceforth), on each simulated series to check if 

the test is able to detect explosiveness in the series. This takes the form of a power test. Each 

simulated series contains periods of explosiveness, taking the series away from stationarity. Each 

series also has a mean reverting state which tends to make the whole series more stationary.  
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The GSADF statistic is being used in different areas of economics and PSY have shown it to have 

high power in detecting explosiveness or bubbles. The test involves estimating recursive regressions 

of the following form: 

∆𝑦𝑡 = 𝛼 + 𝜙𝑦𝑡−1 + �𝜓𝑖∆𝑦𝑡−𝑖

𝑘

𝑖=1

+ 𝜖𝑡 

In the above regression the parameter of interest is 𝜙 which is estimated through expanding, rolling 

windows with a minimum window size specified by the researcher. We have considered the test in 

chapter 2 and 3, so we comment on it briefly. For each regression a right-sided unit root statistic is 

calculated. The supremum(sup) of all right-sided unit root statistics thus calculated is the GSADF 

statistic. The sup value can be compared to simulated critical values, allowing the user to comment on 

whether a bubble may be present in the series under consideration. We refer the interested reader to 

Phillips et al, 2013 for further details on the test procedure and asymptotic properties of the statistic. 

4.3.1 Multinomial trigger variable: 

For clarity, we indicate the specific form taken by our simulated series. When 𝑍𝑡−1 is a multinomial 

vector taking values 𝑍𝑡−1,𝑗, it takes the following form: 𝑦𝑡 = 𝛼 + (∑ 𝛽𝑗𝑍𝑡−1,𝑗)𝑦𝑡−1 + 𝜖𝑡3
𝑗=1  

 

𝑦𝑡 = 𝛼 + 𝛽1𝑦𝑡−1 + 𝜖𝑡 𝑤ℎ𝑒𝑛 𝑍𝑡−1,1 =  
1
0
0

 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜋1 

𝑦𝑡 = 𝛼 + 𝛽2𝑦𝑡−1 + 𝜖𝑡𝑤ℎ𝑒𝑛 𝑍𝑡−1,2 =  
0
1
0

 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜋2 

             𝑦𝑡 =  𝛼 + 𝛽3𝑦𝑡−1 + 𝜖𝑡𝑤ℎ𝑒𝑛 𝑍𝑡−1,3 =  
0
0
1

 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝜋3 =  1 − 𝜋1 − 𝜋2) 

 

Section 4.2 considers a similar exogenous trigger. To aid understanding, the first element of the 𝑍𝑡−1 

vector indicates the mean reverting state, the second element indicates the random walk or efficient 

state and the third element indicates the explosive or bubble state. For each set of parameter and 

probability values we generated 500 simulated series and the GSADF test was conducted on each 

series. We simulate the state variable 𝑍𝑡−1 by randomly drawing from the vector of probabilities; this 

then enables us to simulate the process 𝑦𝑡 . Each series is 1000 observations long and the minimum 
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window size for the GSADF test was stipulated to be 10% of the series or 100 observations. Critical 

values were generated separately using the MATLAB code provided by PSY. The GSADF test was 

conducted at the 5% level (critical values for the GSADF test at the 5% level for series of length 1000 

with initial window size of 100 is 2.16 for series without drift and 2.233 with drift). Since we assume 

that each simulated series is explosive 10% of the time, each series exhibits the type of explosive 

behaviour that the GSADF test seeks to detect. The power is simply calculated by dividing the 

number of bubbles detected by 500 for each set of 500 simulations.  

Table 4.1 (see APPENDIX) shows the results of our simulations along with the parameter values and 

the probability vector. Column 3 shows the value of the criterion for a steady state distribution. The 

criterion is said to be satisfied whenever ∑ 𝜋𝑗ln |𝛽𝑗|
3
𝑗=1  < 0. We ensured that we chose a range of 

values so that for some values the criterion was satisfied and for other values it was not. For the 

multinomial vector case, we note that the power of the GSADF test is much higher when the criterion 

is not satisfied. We illustrate our results by considering some sets of parameter and probability values. 

For parameter values [0.96 1 1.05] and a probability vector [0.10 0.80 0.10] we obtain a criterion 

value of 0.00080 and as per our theoretical results the series should not have a stationary distribution. 

We see that when the criterion threshold is breached, we get a power of 17.6% from the GSADF test. 

Note that the existence of a stationary distribution does not guarantee the existence of moments. With 

two exceptions (parameter vector = [0.98 1.02 1.05] and [0.96 1 1.03]), all other sets of values do not 

have a mean or variance even though the distribution may exist (when the criterion is satisfied).  

Contrast this with cases when the criterion is satisfied e.g. when the parameter vector is [0.95 1 1.05] 

and the probability vector is [0.10 0.80 0.10]. The intensity of the bubble or explosive behaviour stays 

the same; i.e. the bubble increases the value of the series by 10% each period and the explosive state 

occurs 10% of the time in the long run. We note that even with no change in the bubble state 

parameter value the power of the GSADF test reduces markedly down to 9.0%. This supports our 

theoretical results and shows that if bubbles occur in assets which may have a long run steady state 

distribution, they may be harder to detect.  

In their article PSY do not use a mean reverting state. Their analysis is based on a random walk and a 

mildly explosive regime which will not satisfy the criterion and is thus, likely to result in a higher 

power for their test based on what we observe in our simulations. While the test has undoubtedly been 

useful in many applications, it is important to keep its limitations in mind particularly when it is 

unable to detect bubbles in an asset which may otherwise be thought to have gone through periods of 

explosiveness. The types of series considered by PSY are closer to the Markov-chain simulations in 

the following sub-section so some of the low power detected in this sub-section may be attributed to 

the choice of our i.i.d exogenous trigger.  
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We also note that the power of the test increases the farther apart from unity the explosive state is i.e. 

𝑣𝑎𝑟(𝜙𝑡−1). For instance, when we reduce 𝑣𝑎𝑟(𝜙𝑡−1) and consider the parameter vector [0.98 1 1.02] 

with the same probability vector as before, the power reduces to 5.6% even though the criterion is 

smaller than before. We also consider the case with 1 mean reverting and two explosive states with 

the mean reverting state occurring 80% of the time. With the same probability vector, this set of 

values attained a power of only 1.2%. This is the only set of values for which both a mean and a 

variance exists.  

Tables 4.2a and 4.2b on the other hand report results for simulations which include a constant drift 

term. Table 4.2a contains results for a drift of 0.01. Table 2b contains results for a drift of 0.025. The 

higher drift value is chosen in order to illustrate how the power of the test depends on the drift term. 

Note that as per the results in section 4.2, the size of the drift plays a role in determining the variance 

and is likely to impact the results. Recall that the variance of a series with switching-regimes and a 

constant drift is    �𝜎
2+𝑉𝑎𝑟(𝜙𝑡−1)[𝐸(𝑦𝑡−1)]2�

1−𝐸�𝜙𝑡−12 �
 where [𝐸(𝑦𝑡−1)]2 = � 𝛼

1−∑ 𝜋𝑗𝛽𝑗𝑘
𝑗=1

�
2
and is thus, dependant on 

𝛼. 

When a constant drift term is included the power of the GSADF test goes up for all sets of values 

compared to the case with no drift and our main results continue to hold i.e. the power is lower if the 

criterion for a steady state distribution is satisfied and the variance of the parameter vector is low 

despite the fact that the mean and variance for the set of values chosen do not exist. As per the 

expressions in Section 4.2 for the mean and variance of the simulated series, a higher alpha implies 

not just a higher mean but also a higher variance. While it is not clear from our results whether a 

higher 𝛼 necessarily leads to a higher power for the GSADF test, the powers attained are higher than 

the no drift case. We do note, however, that for the case where both a mean and a variance exist a 

higher 𝛼 leads to a higher power. The relationship between the power of the GSADF test and 𝛼 stems 

from the impact the drift term has on the variance. A higher 𝛼 results in higher variance and thus more 

extreme values which may make bubble detection easier.  

4.3.2 Markov Chain trigger variable: 

In this sub-section we consider a Markov-chain trigger variable instead of an exogenous trigger 

variable. Instead of a 3-dimensional multinomial vector, 𝑍𝑡−1 is now a Markov-chain variable 

dependant on a transition matrix; thus, we specify a transition matrix instead of a probability vector, 

which determines the value of 𝑍𝑡−1, the state variable. Thus, the process becomes: 
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𝑦𝑡 = 𝛼 + 𝛽1𝑦𝑡−1 + 𝜖𝑡 𝑤ℎ𝑒𝑛 𝑍𝑡−1 =  1 

𝑦𝑡 = 𝛼 + 𝛽2𝑦𝑡−1 + 𝜖𝑡𝑤ℎ𝑒𝑛 𝑍𝑡−1 =  2 

𝑦𝑡 =  𝛼 + 𝛽3𝑦𝑡−1 + 𝜖𝑡𝑤ℎ𝑒𝑛 𝑍𝑡−1 = 3 

with the transition matrix 

�
𝑝11 𝑝12 𝑝13
𝑝21 𝑝22 𝑝23
𝑝31 𝑝32 𝑝33

� 

The probability that 𝑍𝑡−1 takes a value of 1 given that it was 1 in the previous period is 𝑝11; the 

probability that 𝑍𝑡−1 takes a value of 2 given that it took a value of 1 in the previous period is 𝑝12 and 

so on. Thus 𝑍𝑡−1 is a one period Markov-chain variable. Simulating the series in this way has the 

desirable property that states tend to be more persistent compared to the multinomial case. While over 

the long term the duration of each state is similar to the multinomial case, as evident from the steady 

state probability vector, each state tends to last longer. Thus, it can be argued that series generated in 

this way share more properties of actual asset price series.  

As in the previous section, we carry out 500 simulations for each set of values and each series consists 

of 1000 observations. The first step in the simulations as before is to generate the state variable 𝑍𝑡−1, 

but instead of using a probability vector we generate the state variable using the transition matrix. In 

order to aid comparison we ensure that the transition matrix was such that the steady state 

probabilities of states were similar to those used in the multinomial series. One simplification made in 

selecting values for the transition matrix is that there are no switches from the explosive state to the 

mean reverting state and vice versa. Thus, whenever there is a switch from either the explosive or the 

mean reverting state, it is to the random walk state in the first instance. This is in line with our 

findings in chapter 3, where we estimated the transition matrices by estimating real commodity series 

using Markov-switching regresisons.   

Simulating and testing Markov-chain series further strengthens the results obtained from the previous 

sub-section. Using Markov-chains instead of multinomial vectors, the simulated series exhibit more 

asset price like properties and due to state persistence we obtain higher powers for each set of values 

compared to the multinomial vector counterpart. Table 4.3 reports results for Markov-chain 

simulations below. When the criterion is set to -0.00004 the multinomial vector series have a power of 

5.6% compared to 26.8% for the corresponding Markov-chain simulations. A similar pattern is 

observed for the remaining values. This observation may be attributed to state persistence introduced 

by the Markov-chain which enables detection via the GSADF test. 
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As noted previously, 𝑣𝑎𝑟(𝜙𝑡−1)  influences the results. When the criterion is not satisfied and the 

non-efficient states significantly deviate from 1, we get very high power. For example, when the 

parameter vector is �
0.98

1
1.02

�  with a transition matrix so chosen to give a steady state probability vector 

�
0.10
0.80
0.10

� we find a power of 26.8% (criterion value -0.00004). Keeping the explosive state at 1.02, if 

the mean reverting state is made more persistent (0.99 from 0.98), the criterion is violated (0.00098) 

and we get a higher power for the GSADF test at 38.2%. If we increase the deviations from the 

random-walk state while maintaining the same steady state probabilities, the power increases further 

even though the value of the criterion itself does not change significantly. For example, if the 

parameter vector is �
0.96

1
1.05

� with the same steady state probabilities and a criterion value of 0.0008, 

the power increases to 73.8%.  

We also consider the case when we have multiple explosive states and a mean reverting state (in this 

case the mean and variance of the process exist according to the criteria set in Section 4.2. Among the 

2 explosive states one is more explosive than the other but both explosive states have the same steady 

state probability. The parameter vector is  �
0.98
1.02
1.05

� with steady state probabilities �
0.80
0.10
0.10

� yielding a 

criterion value of -0.0093. Corresponding to these values we get a power of 25.8% for the GSADF 

statistic. With the multinomial regime-switching variable we observed a power of only 1.2% for the 

same set of values. Thus, even with two explosive states we note that if the steady state distribution 

criterion is satisfied, explosive behaviour may not be discernible using conventional right-sided unit 

root tests such as the GSADF test.  

We also report results for simulations which include drift terms ,𝛼 = 0.01 𝑎𝑛𝑑 0.025). Results are 

reported in Table 4.4a and Table 4.4b. In the Markov-switching case we note that the size of the drift 

term matters significantly. With a small drift term we do not note a significant change in power 

compared to the case with no drift (note that the critical values for the two tests are different). For the 

Markov chain simulations we also note that the power of the test increases as the drift term is 

increased from 0.01 to 0.025 for all sets of values except one. PSY carried out the test for small 

deviations from random walk while our simulations include much larger deviations which explains 

why we observe much higher power despite including a mean reverting term. Nevertheless the results 

are consistent with the previous set of simulations and the same set of factors namely the value of the 

criterion, the existence of a drift term and the variance of the parameter vector tend to determine the 

power of the GSADF test.  
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Thus, the Power of bubble detection tests will be higher if the estimated parameters and state 

probabilities are such that the criterion for a stationary distribution is not satisfied. We also note that 

the power of such tests is higher when 𝑣𝑎𝑟(𝜙𝑡−1) is high. 

4.4. A metric for market efficiency: 

We use the results in section 4.2 and 4.3 to outline a methodology that may be employed as a measure 

for market efficiency. Estimating different states in a process will enable us to understand the 

stationarity properties of an asset price series and whether the process has a steady state stationary 

distribution. It will also allow us to evaluate how much of the time the process spends in each of the 

states. While we use time as a metric for market efficiency, other potential metrics may also be 

employed (these could include but not be limited to metrics using trading volumes or market 

liquidity); however, we argue that our metric is the simplest to estimate and understand. We outline 

our strategy for estimating market efficiency below. 

4.4.1 Methodology: 

Consider equation (4.22): 

∆𝑝𝑡 = 𝜓𝑡−1 + (𝜙𝑡−1 − 1)𝑝𝑡−1 + 𝜂𝑡 where 𝜂𝑡~𝑁�0,𝜎𝜂2�                (𝟒.𝟐𝟐) 

where, 

 𝜓𝑡−1 = 𝛼1,𝜙𝑡−1 = 𝛽1 𝑖𝑓 − ∞ < 𝑍𝑡−1 < 𝑐1 

𝜓𝑡−1 = 𝛼2,𝜙𝑡−1 = 0 𝑖𝑓 𝑐1 ≤  𝑍𝑡−1 < 𝑐2 

𝜓𝑡−1 = 𝛼3,𝜙𝑡−1 = 𝛽3 𝑖𝑓 𝑐2 ≤ 𝑍𝑡−1 < ∞ 

 

We define an n-point grid over the extreme values taken by the trigger variable, 𝑍𝑡−1. Thus, our grid 

takes values {𝑚1,𝑚2 …𝑚𝑛}. Our recursive procedure starts by considering an initial pair of values for 

𝑐1 and 𝑐2 (𝑚1 and 𝑚2 respectively). Using the values of 𝑐1 and 𝑐2, the sample is divided into 3 sub-

samples i.e. the first sub-sample contains all values of the asset price that occur when the trigger 

variable is less than 𝑐1, the second sub-sample contains all values of the asset price when the trigger 

variable is between 𝑐1 and 𝑐2 and the third contains all values of the asset price when the trigger 

variable is greater than or equal to 𝑐2. Under most circumstances we would start with 𝑐1 = 𝑐2, with no 

efficient state considered.  
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The number of grid points is chosen so that we always have more than 2 observations between two 

consecutive grid points. Following similar terminology to sections 4.2 and 4.3, 𝛽2 is restricted to a 

value of 0 in order to ensure that the second sub-sample is consistent with an efficient market (if we 

run the regression in levels/logs instead of returns, 𝛽2 would equal 1). Thus, the market is efficient 

between the thresholds 𝑐1 and 𝑐2. If 𝑐1 = 𝑐2 then the market is not efficient for any amount of time. 

We estimate parameters 𝛽1and 𝛽3 for the other two sub-samples using least squares. 𝛽1 is estimated 

using all values of 𝑝𝑡 that correspond to 𝑍𝑡−1 < 𝑐1 and 𝛽3 is estimated using all values of 𝑝𝑡 that 

correspond to 𝑍𝑡−1 > 𝑐2. 

We calculate the total sum of squared residuals, ∑ 𝜖𝑡2𝑇
𝑡=2 = ∑ (∆𝑝𝑡 − 𝜓𝑡−1 − (𝜙𝑡−1 − 1)𝑝𝑡−1)2𝑇

𝑡=2  for 

the full sample. In the next iteration of the algorithm we keep 𝑐1fixed at 𝑚1and change the value of 

𝑐2 to 𝑚3. The above process is repeated and a new set of parameter estimates for 𝛽1and 𝛽3are 

obtained. The procedure is repeated until 𝑐2 = 𝑚𝑛, the last point on the grid. Following this first 

recursion, the recursive procedure is re-started by altering the value taken by 𝑐1 to 𝑚2 and 𝑐2𝑡𝑜 𝑚3. 

The above double recursion is repeated until 𝑐1 = 𝑚𝑛−1 and 𝑐2 = 𝑚𝑛, which give us our final 

parameter estimates. The values of 𝑐1 and 𝑐2 and the corresponding 𝛽1and 𝛽3 that minimize the total 

sum of squared residuals for the full sample are selected and parameters estimated along with their 

asymptotic standard errors.  

Once we have found the switching parameters and found the thresholds for the trigger variable we can 

use a time metric to measure market efficiency. Using the thresholds, we can divide the data into 

efficient periods (corresponding to periods when 𝛽𝑗 = 0) and inefficient periods (corresponding to 

periods when statistically 𝛽𝑗 ≠ 0). If we have a total sample size 𝑛 with 𝑛1 efficient and 𝑛2 inefficient 

periods, we can argue that the proportion of time the asset market is efficient is 𝑛1
𝑛

 and the proportion 

of time it is inefficient is 𝑛2
𝑛

.  

Note, that if the 𝑐1 and 𝑐2 that minimize the sum of squared residuals are close, it implies that markets 

are rarely fully efficient (provided that the auto-regressive parameters for the sub-samples are 

significantly different from 0). Following convention from Section 4.2, 𝛼1,𝛽1 indicate the first state, 

𝛼2,𝛽2 the second state and so on. If the series contains one mean reverting, one efficient and one 

explosive state we should find that 𝛽1 < 0, 𝛽2 = 0 and 𝛽3 > 0 or that 𝛽1 > 0 and 𝛽3 < 0 given how 

the recursive procedure and the thresholds operate (it also depends on the relationship 

between 𝑍𝑡  and 𝑝𝑡).  

Note, that unlike chapter 3, we neither need to restrict the number of states nor the values that the 

parameter 𝛽𝑗 will take (except the 𝛽𝑗 corresponding to the efficient state). Thus, we may observe 

multiple mean reverting or explosive states. We restrict our empirical application to the 3 state case 
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for tractability. Increasing the number of states beyond 3 will increase computational time 

substantially. Next, we provide an illustrative example using stock-market indices.  

We would like to note that the example is illustrative in nature and is primarily aimed at showing how 

the methodology should be used in empirical work. To be more rigorous any empirical application 

aiming to derive firm and robust conclusions on market efficiency will need to justify the use of a 

trigger and also be specific with model selection (i.e. whether to use a specification with or without a 

switching or constant drift term). Since our example is illustrative, we provide results for all model 

specifications and comment on how model specification changes the efficiency metric. 

4.4.2 Empirical application: 

For our empirical study we use monthly returns for the S&P 500 and FTSE 100 indices. Data for the 

two indices were obtained from Google Finance. The setting in section 4.2 suggests that the states are 

triggered by an exogenous i.i.d variable. We use the University of Michigan’s Index of Consumer 

Sentiment as our exogenous trigger (MCSI henceforth). The lower bound on the MCSI is 51 and the 

upper bound is set at 112 so that the regression in (4.22) can be estimated. We use a 200 point grid on 

the MCSI. 

The MCSI is a monthly survey collected by the University of Michigan. It asks questions on personal 

finance and economic trends of individuals and households through telephonic interviews. Survey 

respondents are representative of the American population and each month more than 500 interviews 

are conducted. More information on the Survey and sample design is available on the MCSI website. 

Other candidates such as the VIX were considered and testing was carried out; it is available upon 

request. We reported results for the MCSI instead of the VIX because the data for MCSI includes 

periods from the oil price crisis; the VIX on the other hand starts from the 1990s and misses some 

important periods. Data for the S&P500 index and the MCSI were obtained from January 1978 to 

June 2015. The underlying assumption required for the MCSI to be a valid trigger variable in this 

setting is that contemporaneous and one-period lagged values of the two indices do not impact the 

MCSI.  

While data for the MCSI are available from 1964, the survey was initially collected twice a year and 

the index only becomes a monthly index in 1978. The FTSE 100 index on the other hand is used from 

its inception in 1984. All data are monthly. The use of MCSI as a trigger variable for FTSE 100 is 

justified by the strong correlation between the S&P 500 and FTSE 100 indices (when considering the 

monthly series in levels). For the data in question the series have an auto-correlation of 0.967 (from 

January 1984 to June 2015). The MCSI does not appear to be independent (first order autocorrelation 

> 0.9); thus, it is closer to being a Markovian trigger variable.  
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Although we have not explicitly calculated moments for the case when the trigger variable is 

Markovian, we refer the interested reader to Knight and Satchell (2011), which discusses these results 

for the two states case with a constant drift. Since our example is illustrative in nature, the MCSI will 

suffice. Selecting a Markovian variable does not impact our estimators or our estimation strategy; 

however, we will not be able to use the formulae derived in section 4.2 to calculate the mean and 

variance of our assets.  

High consumer sentiment i.e. a positive outlook towards personal finance and general business 

environment in the country is reflected through a high value of the index. On the other hand low 

consumer sentiment is reflected as a lower value. We posit that high consumer sentiment that persists 

for long periods is indicative of explosiveness or bubbles i.e. if consumers have a very positive 

outlook they are likely to invest in assets and if a large number of consumers enter asset markets or in 

this case the stock market the increase in demand could lead to a switch from a random walk state to 

an explosive state.  

Similarly when lower values persist we posit that the market is correcting itself and we get mean 

reverting behaviour. Figure 4.1 shows the MCSI and the log of the S&P500 index indicating how the 

MCSI varies with the log of S&P500 index. We see a spike in consumer sentiment in the run up to the 

dot com bubble. A similar increase is seen near the 2008-09 financial crisis. Mean reverting behaviour 

is observed after the 1979 oil crisis as well as in the aftermath of the financial crisis. While the MCSI 

may not always respond contemporaneously to movements in the S&P500 index, it nevertheless acts 

as a valuable trigger variable for our illustrative example.  

We estimate the autoregressive and drift parameters in (4.22) using 3 states for the log of S&P500 and 

FTSE 100 indices respectively. The dependant variable in the regression is asset returns instead of log 

prices in order to ensure consistency of standard errors. We could have used log levels instead of 

returns but returns are more intuitive; secondly, using levels we would find some non-stationary 

states. Using the return formulation also ensures that the criterion for the existence of a stationary 

distribution, specified in Section 4.2, is always satisfied.  

We estimate the model with and without the switching drift term 𝜓𝑡−1. When we do use a drift term, 

we report results with both a switching drift term i.e. the drift changes in each state and a constant 

drift term i.e. the drift does not change across states. The most commonly employed specification in 

related literature is that with a constant drift. Our aim is to find thresholds 𝑐1and 𝑐2 for the MCSI that 

minimize the residual sum of squares for the threshold auto-regression which in turn also yield the 

parameter estimates for the 2 inefficient states.  

Note, that we do not impose any restrictions on the parameters of the other two states; both states may 

be mean reverting or explosive. The only restriction imposed is 𝑐1 > 𝑐2. We use the procedure 
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outlined above to estimate the thresholds, 𝑐1 and 𝑐2. For our assets these values are reported in Table 

4.5 in the appendix and include results for both stock market indices with and without a 

(switching/constant) drift term. The table also notes the time the stock-market index is in each of the 

3-states; this will allow us to comment on the proportion of time each of the stock-market indices is 

efficient or inefficient.  

We postulate that 𝛽1 < 0 if MCSI is low and 𝛽3 > 0 when MCSI is high; the postulated relationship 

will vary based on our choice of trigger variables). Alternatively, the explosive behaviour could result 

due to a large drift term. Columns (8) and (9) in table 4.5 report the thresholds corresponding to the 

minimum sum of squared residuals. Since we use different model specifications for this example it is 

no surprise that the results in table 4.5 present a mixed picture. When we consider the case of a 

switching drift term in addition to a switching slope coefficient, a lot of the variance in the series is 

captured by the drift terms. Inclusion of a switching drift substantially reduces the impact of the 

switching slope terms and we find no more than 32 observations in non-efficient regimes (20 for 

S&P500 and 32 for FTSE100). We also find little evidence of explosive behaviour due to the slopes.  

Thus, explosive and mean reverting episodes under a model with a moving drift are primarily caused 

by the change in drift. Note that the drift terms are larger in magnitude and appear farther apart which 

implies that they have a higher variance. As per our formulae in Section 4.2, a higher variance of the 

drift parameter leads to a higher variance of the series. We find that the drift term corresponding to 

periods of very high price increases is statistically significant and greater in magnitude than the drift 

term in other regimes. Econometricians and financial experts modelling asset prices with this 

specification will thus argue that asset markets are mostly efficient. Any deviations from market 

efficiency are in fact caused by investors’ expectation of a higher return for some period of time and 

not by a change in slope.  

For models with a switching drift, the criterion for a steady state stationary distribution is trivially 

satisfied as for both FTSE100 and S&P500 we do not find an explosive slope coefficient. Figure 4.2 

shows the areas that fall under the different states under this specification for log prices based on the 

thresholds estimated by the procedure outlined above.  

We note that the first state corresponds to periods of relative slow down i.e. in the aftermath of the 2nd 

oil price crisis, in the immediate aftermath of the financial crisis and in late 2011 when fears of a 

double dip recession abounded. The other non-efficient state occurs in the run up to the East Asian 

financial crisis and the dot-com bubble when consumer sentiment was at an all-time high. Our grid-

search results do not indicate a deviation from a random walk during the financial crisis. The area 

under the non-random walk states has been shaded (blue for mean-reverting and red for explosive). 

Figure 4.3 shows similar results for the FTSE100 index. Note that apart from the dot-com bubble 
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period in early 2000, 1998 is identified as a period of explosiveness for both indices. Both indices 

attained historical highs in the 1998 which is reflected in consumer sentiment. 

One way to systematically beat the market in such a situation will be through predicting when the 

switches will occur provided that investors are aware of what state they are in as soon as the switch 

has occurred (and thereby becomes a part of the information set). Thus, we are referring to efficiency 

in a broader sense. In the conventional auto-regressive sense, a market is said to be efficient if the 

auto-regressive parameter is 1 i.e. the process is a random walk or more precisely, a martingale, so 

that the only change in asset returns is due to unpredictable factors and no gains can be made based on 

the existing information set. In the threshold auto-regressive case, in addition to the restriction on the 

auto-regressive parameter we would also require the state switches to be unpredictable; although once 

the switch occurs everyone becomes aware of it. Thus, the information set will also include 

information about the exogenous trigger or the state of the asset market. If markets are weak form 

efficient all rational investors will find out about the switch at the same time although they may not 

know when the switch may occur. 

For the specification without a drift the results are closer to the behaviour observed in the simulations 

i.e. we observe 3 states although the deviation from efficiency is very small. When 𝛽3 > 0 i.e. we are 

in the explosive or bubble regime, we observe additional annualized gains of only 1.5% in the 

S&P500 index and 1.1% in the FTSE100 index. It may be argued that the additional annualized gains 

being captured by the parameter are in fact accounting for the missing drift term.  

By regressing log prices on their lags instead of returns (i.e. add 1 to each coefficient estimated in 

table 4.5), we can calculate the value of the criterion function specified in Section 4.2 which allows us 

to comment on whether the series has a stationary distribution. For the case without drift the value of 

the criterion for the S&P500 and FTSE100 is 0.0010 and 0.0005 respectively (the criterion in this case 

is calculated as ∑ 𝜋�𝑗(𝛽̂𝑗3
𝑖=1 +1). Neither of the two indices satisfies the criterion for a steady state 

stationary distribution under specifications without a drift. This indicates that any test for 

explosiveness that either assumes a constant drift term without shifting slope coefficients (not 

reported) or that drop the drift term are more likely to find the criterion violated for the S&P500 and 

FTSE100 indices. 

As mentioned before, if MCSI was an independent and identically distributed variable we would be 

able to use our formulae from Section 4.2 and be able to calculate the mean and variance for both the 

S&P500 and the FTSE100 series when they are estimated using a threshold auto-regression. This will 

have allowed us to compute metrics such as Sharpe ratios enabling us to comment further on market 

efficiency and investor behaviour. Since MCSI is closer to a Markovian variable we are unable to use 

the formulae derived earlier. However, our results do allow us to compare efficiency across the two 
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markets. In the following discussion when we talk about inefficient states we are referring to the 

number of periods spent by each index in a state that is statistically significantly different from the 

random-walk.  

When specifications with a drift are considered, the FTSE100 index appears more inefficient than the 

S&P500 index. The S&P500 index is inefficient for 2% of the time with the switching drift 

specification and 86% of the time with a constant drift. In contrast the FTSE 100 index is inefficient 

for 6.7% of the time under the switching drift specification and 93% of the time under the constant 

drift specification. On the other when no drift is included, the S&P500 appears mostly inefficient 

(95.5%) compared to the FTSE 100 (68.7%). If we compare similar periods i.e. from 1981 onwards, 

the results remain robust. The mixed results do not offer a clear answer as to which market appears 

more inefficient; nevertheless the methodology is applicable to other assets. If an asset appears to 

spend more time in inefficient states under all specifications compared to another we will be able to 

conclude that the market for that particular asset is inefficient more often. We consider further 

specifications and other assets in the following sub-section.  

Our empirical results supplement our findings in Sections 4.2 and 4.3. Explosiveness is more likely to 

be detected in asset price series where the criterion function is violated and the variance of the 

switching slope parameters is large (i.e. there are many regimes or the regimes are much farther 

apart). Inclusion of a switching drift term may explain most of the explosiveness and may make the 

price series appear efficient. Another way of analysing results could be through comparing the 

different series.  

The set of results reported above also depends on the selection of the trigger variable. Finding an 

appropriate trigger variable that may indicate switches in regimes is non-trivial in practice and will 

require a rigorous theoretical, empirical or experimental basis so that regime identification criteria can 

be appropriately set. Secondly, while we use contemporaneous values of the MCSI to identify state 

switches it may be argued that the MCSI is a leading indicator of switches. This again requires 

judgement on the part of the researcher, the specific asset price being considered and the relationship 

between the asset price and the trigger variable. Additionally, the researcher also needs to consider the 

number of states to be used. A price series could exhibit multiple explosive or mean reverting states.  

Our methodology can thus work in practice for different asset markets. We have shown with our 

example that the methodology may be used to identify the incidence of market efficiency for different 

assets while also highlighting the importance of model-specification when testing for market 

efficiency. Model specification is not important just in terms of estimation but completely changes the 

theoretical meaning of the results. Once a researcher has identified an appropriate specification for an 

asset price or return based on either technical analysis or through solving a structural model, our 

methodology will allow her to comment on market efficiency for that asset, given an information set. 
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However, irrespective of the specification, the results may still be used to compare different markets 

and identify which markets are more efficient for the given information set.  

4.4.3 Additional Examples: 

In this sub-section we present some additional examples. Table 4.6 reports results for the S&P 500 

and FTSE 100 indices under the assumption that consumer sentiment is a leading indicator of 

investment behaviour. Specifically, a 6 period lag is used for the MCSI i.e. if consumer sentiment is 

very high; the actual switch in investor behaviour and in the parameter estimates takes 6 months. In 

addition, we also report results for two commodities, West Texas Intermediate Petroleum and Copper. 

2 and 3 period lags yield results very similar to results without lags.  

With a switching drift, we note that when a 6 month lag is included the S&P500 results do not change 

significantly as the index is mostly efficient and earns an average monthly return of 0.7%. Instead of 

being in the non-efficient state, the S&P500 is in the efficient state most of the time when a constant 

drift specification is used. When no drift is included, the S&P500 appears to be slightly explosive as 

before. On the other hand we do note one significant change for the FTSE 100 index. When a 

switching drift is included for the FTSE 100, instead of being primarily efficient, the series is mostly 

in an inefficient state. The other two states see a negligible impact.  

This shows how changing the lag structure may influence the results we derive, further driving home 

the point we made earlier. Since the exogenous trigger variable is a US based consumer sentiment 

index it may be argued that the MCSI influences FTSE 100 with a lag through its impact on the US 

financial market which takes some months to permeate through the global financial system. If we 

compare the two markets in terms of efficiency we will reach the same conclusion as before i.e. with a 

drift (switching or constant) the S&P500 appears to be more efficient whereas without a drift the 

FTSE100 appears more efficient. Therefore, the efficiency results appear to be robust to the inclusion 

of lags. Inclusion of lags further highlights the sensitivity of the results to model specification. We 

tried different lag lengths for the MCSI but they were closer to one of the two results that are reported 

in this chapter.  

We also consider results for WTI oil and copper. In contrast to the indices, the two commodities do 

display significant deviations from efficiency under all specifications. Regardless of the specification 

and lag structure employed, both WTI oil and copper are in inefficient states for at least 9% of the 

duration of the series although the departures from the random walk are not always statistically 

significant. When we use the switching drift specification, we note evidence of a statistically 

significant mean switch even though the coefficient on lagged prices does not appear to be 

significantly different from zero. The switching drift specification is unable to distinguish the Copper 
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return series from a random walk; for the WTI series on the other hand there is evidence of a 

switching drift term without a switch in the coefficient. 

Specifying a constant drift leads to the most statistically significant results for both Copper and WTI 

respectively. Irrespective of lag structure we note significant deviation from efficiency based on the 

time spent by both series in non-random walk states. While the efficiency results for Copper stay 

robust to lag structure, we do note a difference for oil. WTI oil appears less inefficient when 

contemporaneous values of MCSI are used to estimate the thresholds. Thus, our results for WTI oil 

are not robust to lag structure. When we compare the two assets, we note that in all specifications 

used, the Copper price series is inefficient more often than the WTI series. One caveat to note about 

the results for Copper and WTI is that the MCSI may not be the most relevant trigger variable for 

commodities and alternatives such as a measure of global industrial production should be used.  

In fact, one may argue that there may be an element of endogeneity present in the trigger variable so 

in this case it could be argued that consumer sentiment reacts to market conditions rather than the 

other way round. In such a situation, the correct first step would be to obtain the exogenous variation 

in the trigger variable by using an instrumental variable regression. The exogenous variation in the 

trigger variable may then be employed for our metric.   
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4.5 Conclusion: 

In this chapter we have extended existing general conditions that need to be satisfied by threshold 

autoregressive models in order to have a steady state distribution and for a mean and variance to exist 

and have provided formulae for them. The results have been extended to include the case where a 

switching drift is included in addition to a switching coefficient parameter. We have also considered 

the case of models with and without drift, specifically considering an i.i.d variable as an exogenous 

regime switching trigger.  

We believe that the results can be extended to other types of trigger variables, such as Markovian 

trigger variables, although we do not evaluate analytical expressions for such cases. We have shown 

that when a steady state distribution does exist for a TAR(1) model with a switching drift term, the 

variance depends on the variance of the error term, the variance of the drift parameters, the variance 

of the coefficient parameters as well as the covariance between the drift and coefficient parameters.  

A simulation study is carried out to evaluate the power of the GSADF bubble detection test under 

conditions where a steady state distribution may not exist. Our simulation study has shown that if a 

series has a steady state distribution, bubbles may be more difficult to detect. We further note that the 

power of such tests increases with the variance of the regime parameters i.e. the farther apart the 

parameters are from unity, the higher is the power. These results enable us to understand why bubble 

tests may fail to detect explosiveness even though it may be locally present in a series.  

Our most substantial contribution in this chapter is a methodology for estimating the proportion of 

time an asset market may be efficient which use threshold autoregressive models with both exogenous 

and Markov-chain trigger variables. The methodology is an improvement upon the one introduced in 

chapter 3 as it is less restrictive and allows the user to estimate any number of finite states. In order to 

show how the methodology may be used in practice we also provide an illustrative example using 

stock market indices. It also further enhances upon the over-arching theme of this thesis i.e. that 

efficiency is one state of nature and deviations from this state are a norm rather than an exception. The 

methodology outlined in this chapter provides an objective way of identifying efficient and non-

efficient states.  

Our empirical results indicate that model specification is critical when analysing weak form market 

efficiency using price series. Series that may appear to exhibit inefficiency when a financial analyst 

assumes no drift will appear efficient when a regime-switching drift term is used which highlights the 

need for carefully considering model specification prior to estimation. Thus, before this methodology 

is employed to carry out empirical or policy driver work, it is important to provide a theoretical 

backing for the specified model. In the previous chapter we noted how a reduced form for 4.2 may be 
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obtained. In the following chapter we use a commodity storage model which highlights the conditions 

under which different states may occur.   

Our empirical results vindicate our theoretical findings i.e. the variance of a price process depends not 

only on the regime-switching coefficients but also on the regime-switching drift term. Additionally 

we also extend the notion of efficiency to include the predictability of state switching i.e. a market is 

more efficient if state switching is unpredictable. We believe this methodology is applicable to a 

variety of different markets including commodity and foreign exchange markets. The methodology 

also allows us to compare different asset markets and comment on their efficiency relative to one 

another for a given model specification.  

Multiple avenues of further research open up as a result the contributions made in this chapter. The 

theoretical results may be further expanded to include a Markovian process as the regime switching 

variable or consider results for TAR (p) models. Indeed, this is something that I have currently been 

working on in collaboration with my supervisor.  

Our simulation results highlight one limitation of the GSADF test and also the need for having bubble 

tests that may be applied locally or on sub-samples as considering the full price process may make 

detection difficult. This may justify the use of tests such as the one devised in Chapter 2.  

The methodology we have introduced opens up a vast array of possibilities for financial analysts and 

econometricians alike who may be interested in understanding market efficiency in different markets. 

In particular, trend-following commodity trading analysts could use such procedures to determine 

which markets are efficient most of the time and avoid trading dynamically in them unless their mean-

variance properties make them intrinsically appealing. This chapter also raises the question of what 

exogenous trigger variables may be most appropriate for a particular asset market. Finally, 

identification of a suitable trigger may have policy implications i.e. the government may try to 

influence expectations about these variables in order to move asset markets towards efficiency 

although we do caution against using tenuous relationships to draw policy conclusions.     
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APPENDIX 4 – Tables and Figures 

TABLE 4.1: Power test for the GSADF statistic using a multinomial vector (𝜶 = 𝟎) 

Parameter 
Vector 

Multinomial 
probability 

vector 

Criterion 

�𝝅𝒋𝐥𝐧 |𝑩𝒋|
𝒌

𝒋=𝟏

 <  𝟎 Power 

[0.98 1 1.02] [0.10 0.80 0.10] -0.00004 5.6% 

[0.99 1 1.02] [0.10 0.80 0.10] 0.00098 12.6% 
[0.96 1 1.03] [0.10 0.80 0.10]   -0.0011 3.6% 

[0.97 1 1.03] [0.10 0.80 0.10] -0.00009 5.8% 

[0.98 1 1.03] [0.10 0.80 0.10] 0.00094 11.0% 

[0.97 1 1.04] [0.10 0.80 0.10] 0.0009 15.8% 

[0.95 1 1.05] [0.10 0.80 0.10] -0.00025 9.0% 

[0.96 1 1.05] [0.10 0.80 0.10] 0.00080 17.6% 

[0.98 1.02 1.05] [0.80 0.10 0.10] -0.0093 1.2% 

[0.90 1 1.10] [0.10 0.80 0.10] -0.0010 23.4% 

 

TABLE 4.2a: Power test for the GSADF statistic using a multinomial vector with drift 
(𝜶 = 𝟎.𝟎𝟏) 

Parameter 
Vector 

Multinomial 
probability 

vector 

Criterion 

�𝝅𝒋𝐥𝐧 |𝜷𝒋|
𝒌

𝒋=𝟏

 <  𝟎 Power 

[0.98 1 1.02] [0.10 0.80 0.10] -0.00004 8.4% 

[0.99 1 1.02] [0.10 0.80 0.10] 0.00098 13% 

[0.96 1 1.03] [0.10 0.80 0.10] -0.0011 4.2% 

[0.97 1 1.03] [0.10 0.80 0.10] -0.00009 8% 

[0.98 1 1.03] [0.10 0.80 0.10] 0.00094 16.6% 

[0.97 1 1.04] [0.10 0.80 0.10] 0.0009 20.2% 

[0.95 1 1.05] [0.10 0.80 0.10] -0.00025 11.2% 

[0.96 1 1.05] [0.10 0.80 0.10] 0.00080 20.4% 

[0.98 1.02 1.05] [0.80 0.10 0.10] -0.0093 1.3% 

[0.90 1 1.10] [0.10 0.80 0.10] -0.0010 29.6% 
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TABLE 4.2b: Power test for the GSADF statistic using a multinomial vector with drift 
(𝜶 = 𝟎.𝟎𝟐𝟓) 

Parameter 
Vector 

Multinomial 
probability 

vector 

Criterion 

�𝝅𝒋𝐥𝐧 |𝜷𝒋|
𝒌

𝒋=𝟏

 <  𝟎 Power 

[0.98 1 1.02] [0.10 0.80 0.10] -0.00004 6.6% 

[0.99 1 1.02] [0.10 0.80 0.10] 0.00098 12.2% 

[0.96 1 1.03] [0.10 0.80 0.10] -0.0011 4.6% 

[0.97 1 1.03] [0.10 0.80 0.10] -0.00009 8% 

[0.98 1 1.03] [0.10 0.80 0.10] 0.00094 18.8% 

[0.97 1 1.04] [0.10 0.80 0.10] 0.0009 18.6% 

[0.95 1 1.05] [0.10 0.80 0.10] -0.00025 15% 

[0.96 1 1.05] [0.10 0.80 0.10] 0.00080 20.8% 

[0.98 1.02 1.05] [0.80 0.10 0.10] -0.0093 1.4% 

[0.90 1 1.10] [0.10 0.80 0.10] -0.0010 31.6% 
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TABLE 4.3: Power Test for the GSADF statistic using a Markov-Chain trigger (𝜶 = 𝟎) 

Parameters Transition matrix Criteria Steady State 
probabilities 

Power 

[0.98 1 1.02] 
�

. 80 . 20 0
. 025 . 95 . 025

0 0.20 . 80
� 

-0.00004 [0.10 0.80 0.10] 26.8% 

[0.99 1 1.02] 
�

. 80 . 20 0
. 025 . 95 . 025

0 0.20 . 80
� 

0.00098 [0.10 0.80 0.10] 38.2% 

[0.96 1 1.03] 
�

. 80 . 20 0
. 025 . 95 . 025

0 0.20 . 80
� 

-0.0011 [0.10 0.80 0.10] 41% 

[0.97 1 1.03] 
�

. 80 . 20 0
. 025 . 95 . 025

0 0.20 . 80
� 

-0.00009 [0.10 0.80 0.10] 45.4% 

[0.98 1 1.03] 
�

. 80 . 20 0
. 025 . 95 . 025

0 0.20 . 80
� 

0.00094 [0.10 0.80 0.10] 52.6% 

[0.97 1 1.04] 
�

. 80 . 20 0
. 025 . 95 . 025

0 0.20 . 80
� 

0.0009 [0.10 0.80 0.10] 68.4% 

[0.95 1 1.05] 
�

. 80 . 20 0
. 025 . 95 . 025

0 0.20 . 80
� 

-0.00025 [0.10 0.80 0.10] 68.2% 

[0.96 1 1.05] 
�

. 80 . 20 0
. 025 . 95 . 025

0 0.20 . 80
� 

0.0008 [0.10 0.80 0.10] 73.8% 

[0.98 1.02 1.05] 
�

. 025 . 95 0.025
0.20 . 80 0
0.20 0 . 80

� 
-0.0093 [0.80 0.10 0.10] 25.8% 

[0.90 1.00 1.10] 
�

. 80 . 20 0
. 025 . 95 . 025

0 0.20 . 80
� 

-0.0010 [0.80 0.10 0.10] 91.4% 
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TABLE 4.4a: Power Test for the GSADF statistic using a Markov-Chain trigger (𝜶 = 
0.01) 

Parameters Transition matrix Criteria Steady State 
probabilities 

Power 

[0.98 1 1.02] 
�

. 80 . 20 0
. 025 . 95 . 025

0 0.20 . 80
� 

-0.00004 [0.10 0.80 0.10] 29% 

[0.99 1 1.02] 
�

. 80 . 20 0
. 025 . 95 . 025

0 0.20 . 80
� 

0.00098 [0.10 0.80 0.10] 38.8% 

[0.96 1 1.03] 
�

. 80 . 20 0
. 025 . 95 . 025

0 0.20 . 80
� 

-0.0011 [0.10 0.80 0.10] 42.2% 

[0.97 1 1.03] 
�

. 80 . 20 0
. 025 . 95 . 025

0 0.20 . 80
� 

-0.00009 [0.10 0.80 0.10] 47.8% 

[0.98 1 1.03] 
�

. 80 . 20 0
. 025 . 95 . 025

0 0.20 . 80
� 

0.00094 [0.10 0.80 0.10] 54.8% 

[0.97 1 1.04] 
�

. 80 . 20 0
. 025 . 95 . 025

0 0.20 . 80
� 

0.0009 [0.10 0.80 0.10] 70.8% 

[0.95 1 1.05] 
�

. 80 . 20 0
. 025 . 95 . 025

0 0.20 . 80
� 

-0.00025 [0.10 0.80 0.10] 71.6% 

[0.96 1 1.05] 
�

. 80 . 20 0
. 025 . 95 . 025

0 0.20 . 80
� 

0.0008 [0.10 0.80 0.10] 75.6% 

[0.98 1.02 1.05] 
�

. 025 . 95 0.025
0.20 . 80 0
0.20 0 . 80

� 
-0.0093 [0.80 0.10 0.10] 26% 

[0.90 1.00 1.10] 
�

. 80 . 20 0
. 025 . 95 . 025

0 0.20 . 80
� 

-0.0010 [0.80 0.10 0.10] 92.4% 
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TABLE 4.4b: Power Test for the GSADF statistic using a Markov-Chain trigger  

(𝜶 = 0.025) 

Parameters Transition matrix Criteria Steady State 
probabilities 

Power 

[0.98 1 1.02] 
�

. 80 . 20 0
. 025 . 95 . 025

0 0.20 . 80
� 

-0.00004 [0.10 0.80 0.10] 32% 

[0.99 1 1.02] 
�

. 80 . 20 0
. 025 . 95 . 025

0 0.20 . 80
� 

0.00098 [0.10 0.80 0.10] 41.2% 

[0.96 1 1.03] 
�

. 80 . 20 0
. 025 . 95 . 025

0 0.20 . 80
� 

-0.0011 [0.10 0.80 0.10] 44.2% 

[0.97 1 1.03] 
�

. 80 . 20 0
. 025 . 95 . 025

0 0.20 . 80
� 

-0.00009 [0.10 0.80 0.10] 50.4% 

[0.98 1 1.03] 
�

. 80 . 20 0
. 025 . 95 . 025

0 0.20 . 80
� 

0.00094 [0.10 0.80 0.10] 61.6% 

[0.97 1 1.04] 
�

. 80 . 20 0
. 025 . 95 . 025

0 0.20 . 80
� 

0.0009 [0.10 0.80 0.10] 69.6% 

[0.95 1 1.05] 
�

. 80 . 20 0
. 025 . 95 . 025

0 0.20 . 80
� 

-0.00025 [0.10 0.80 0.10] 74.8% 

[0.96 1 1.05] 
�

. 80 . 20 0
. 025 . 95 . 025

0 0.20 . 80
� 

0.0008 [0.10 0.80 0.10] 75.8% 

[0.98 1.02 1.05] 
�

. 025 . 95 0.025
0.20 . 80 0
0.20 0 . 80

� 
-0.0093 [0.80 0.10 0.10] 27.4% 

[0.90 1.00 1.10] 
�

. 80 . 20 0
. 025 . 95 . 025

0 0.20 . 80
� 

-0.0010 [0.80 0.10 0.10] 94.4% 

  

Table 4.5: Non-linear least squares regression results (with standard errors) 

Index 𝜶𝟏 
(s.e) 

𝜷𝟏 (𝒏𝟏) 
(s.e) 

𝜶𝟐 
(s.e) 

𝜷𝟐 (𝒏𝟐) 
(s.e) 

𝜶𝟑 
(s.e) 

𝜷𝟑(𝒏𝟑) 
(s.e) 

𝒄𝟏 𝒄𝟐 

S&P500 
w/mving drift 

0.1809 
(0.127) 

-0.037(11) 
(0.0203) 

0.0089 
(0.002) 

0(429) 
N/A 

1.6368 
(0.4359) 

-0.2304(9) 
(0.0606) 

59.7 107.5 

S&P500 
w/const. drift 

0.0212 
(0.0055) 

-0.012(11) 
(0.0022) 

0 
N/A 

0(51) 
N/A 

0 
N/A 

-0.002(387) 
(0.0009) 

59.6 68.7 

S&P500 w’out 
drift 

0 
N/A 

-0.009(11) 
(0.0038) 

0 
N/A 

0(9) 
N/A 

0 
N/A 

0.0013(429) 
(0.0003) 

59.7 62.2 

FTSE100 w/ 
mving drift 

1.157 
(0.820) 

-0.143(7) 
(0.0966) 

0.0061 
(0.0024) 

0(345) 
N/A 

2.406 
(0.575) 

-0.276(25) 
(0.0661) 

59.6 105.7 

FTSE100 w/ 
const. drift 

0.0302 
(0.0088) 

-0.0101(7) 
(0.0022) 

0 
N/A 

0(24) 
N/A 

0 
N/A 

-0.0031(346) 
(0.0011) 

59.6 68.7 

FTSE100 
w’out drift 

0 
N/A 

-0.0066(7) 
(0.0020) 

0 
N/A 

0(111) 
N/A 

0 
N/A 

0.0009(259) 
(0.0003) 

59.6 82.6 

𝑛1, 𝑛2 and 𝑛3 are time periods for which the respective index is in that state. SE represents standard errors  
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Table 4.6: Non-linear least squares with lags and for additional assets 

Series 𝜶𝟏 
(s.e) 

B1 (n1) 
(s.e) 

𝜶𝟐 
(s.e) 

B2 (n2) 
(s.e) 

𝜶𝟑 
(s.e) 

B3 (n3) 
(s.e) 

C1 C2 

S&P500 6 lags 
w/swtch drift 

0.0589 
(0.0709) 

-0.0024(9) 
(0.01132) 

0.0066 
(0.0021) 

0(429) 
N/A 

-4.2601 
(1.8906) 

0.5843(5) 
(0.2618) 

57.80 108.94 

S&P500 6 lags 
w/const. drift 

0.0066 
(0.0021) 

0.0058(9) 
(0.0023) 

0 
N/A 

0(430) 
N/A 

0 
N/A 

-0.0077(4) 
(0.0030) 

57.80 109.20 

S&P500 6 lags  
w’out drift 

0 
N/A 

0.0069(9) 
(0.0017) 

0 
N/A 

0(9) 
N/A 

0 
N/A 

0.0011(425) 
(0.0003) 

57.80 67.65 

FTSE 6 lags  
w/ swtch drift 

0.6845 
(0.4872) 

-0.0754(6) 
(0.0578) 

-0.0113 
(0.0204) 

0(6) 
N/A 

0.1101 
(0.0395) 

-0.0128(353) 
(0.0047) 

58.07 62.24 

FTSE 6 lags  
w/ const. drift 

0.0970 
(0.0294) 

-0.0064(5) 
(0.0042) 

0 
N/A 

0(1) 
N/A 

0 
N/A 

-0.0112(365) 
(0.0036) 

57.53 58.60 

FTSE100 6 
lags w’out drift 

0 
N/A 

0.0058(6) 
(0.0009) 

0 
N/A 

0(29) 
N/A 

0 
(N/A) 

0.0008(330) 
(0.0003) 

57.80 69.52 

WTI no lags 
w/swtch drift 

0.0373 
(0.0226) 

-0.009(392) 
(0.0063) 

-0.0588 
(0.022) 

0(18) 
N/A 

0.0598 
0.119 

-0.0123(39) 
(0.0392) 

97.69 103.04 

WTI no lags 
w/const. drift 

0.0067 
(0.0042) 

-0.0132(14) 
(0.0053) 

0 
N/A 

0(358) 
N/A 

0 
N/A 

-0.0036(77) 
(0.0032) 

60.75 96.08 

WTI no lags 
w’out drift 

0 
N/A 

-0.0142(9) 
(0.0132) 

0 
N/A 

0(401) 
N/A 

0 
N/A 

0.0073(39) 
(0.0039) 

58.07 103.04 

WTI 6 lags 
w/swtch drift 

0.1987 
(0.0678) 

-0.0522(83) 
(0.0176) 

0.0308 
(0.0067) 

0(38) 
N/A 

0.03557 
(0.0266) 

-0.0103(322) 
(0.0078) 

72.18 76.18 

WTI 6 lags 
w/cnst. drift 

0.0366 
(0.0110) 

-0.0109(80) 
(0.0036) 

0 
N/A 

0(41) 
N/A 

0 
N/A 

-0.0106(322) 
(0.0035) 

71.65 76.18 

WTI 6 lags 
w’out drift 

0 
N/A 

-0.0071(24) 
(0.0063) 

0 
N/A 

0(340) 
N/A 

0 
N/A 

0.0041(79) 
(0.0028) 

63.13 95.88 

Copp no lags 
w/swtch drift 

0.2495 
(0.462) 

-0.0408(15) 
(0.0550) 

0.0043 
(0.0150) 

0(14) 
N/A 

0.0057 
(0.1523) 

0.0001(420) 
(0.0047) 

60.99 64.45 

Copp no lags 
w/const. drift 

0.0185 
(0.0070) 

-0.0133(15) 
(0.0020) 

0 
N/A 

0(74) 
N/A 

0 
N/A 

-0.00181(360) 
(0.0010) 

60.99 72.98 

Copp no lags 
w’out drift 

0 
N/A 

-0.0111(14) 
0.0038 

0 
N/A 

0(15) 
N/A 

0 
N/A 

0.0009(420) 
(0.0003) 

60.99 64.46 

Copp 6 lags 
w/swtch drift 

-0.5697 
(0.5341) 

0.0713(10) 
(0.0652) 

-0.134 
(0.138) 

0(2) 
N/A 

0.0485 
(0.0387) 

-0.0056(431) 
(0.0049) 

58.86 59.93 

Copp 6 lags 
w/const. drift 

0.0461 
(0.0162) 

-0.0065(96) 
(0.0021) 

0 
N/A 

0(13) 
N/A 

0 
N/A 

-0.0053(334) 
(0.0021) 

73.51 74.58 

Copp 6 lags 
w’out drift 

0 
N/A 

-0.0014(69) 
(0.0013) 

0 
N/A 

0(24) 
N/A 

0 
N/A 

0.0008(350) 
(0.0003) 

70.05 73.25 
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Figure 4.1: Log S&P500 Index and the Michigan Consumer Sentiment Index 
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Figure 4.2 S&P500 index: Results for non-linear least squares with a switching drift 
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Figure 4.3 FTSE 100 Index: Results for non-linear least squares with a switching drift 
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CHAPTER 5: Making the Commodity Storage Model 

Empirically relevant 

 

 

William and Wright’s (1991) seminal commodity storage model aimed at capturing properties of real 

commodity data but despite going through various iterations it could not capture first order auto-

correlations accurately. In this chapter we make three important changes to the model; We use an 

iso-elastic demand curve, add a convenience yield and introduce implicit saving behaviour. The 

resulting model retains the simplicity of the original model but is able to capture not only the first-

order autocorrelation but also skewness and kurtosis similar to that found in real commodity data. 

The saving behaviour introduced also offers an explanation for occasionally explosive behaviour that 

is observed in commodity prices; this provides an insight into what may cause the state-switching 

behaviour discussed in the previous chapters. An empirical application of the augmented model is 

provided to show that, when correctly calibrated, the model comes close to replicating distributional 

properties of selected commodities  

 

 

5.1 Introduction 

This chapter modifies William and Wright’s (1991) partial equilibrium commodity storage model so 

that it is able to better replicate the distributional properties typically exhibited by commodity prices. 

Storable commodities such as grains like wheat and sugar are characterized by two main features: a 

strong first order auto-correlation and occasional spikes or increases in volatility. Any model 

attempting to describe commodity prices needs to capture these two features of commodity prices. 

While there have been numerous iterations of William and Wright’s (WW henceforth) seminal work, 

they have not been successful at capturing both features simultaneously; at least not without 

complicating the model substantially. The model does not explicitly consider behavioural aspects 

which Chapter 3 alludes to and instead focusses on one primary shock mechanism, supply.  

Such modifications usually fail to capture the strong auto-correlation that is a feature of most 

commodities. Storage fundamentally sets apart commodities from other assets and forms the basis of a 

strong first-order auto-correlation; thus, WW’s commodity storage model provides a seminal study for 
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understanding commodity markets. At the outset, it is worth mentioning that the commodity storage 

model is primarily meant for agricultural commodities which have a 6 month to 1 year growing cycle 

as opposed to industrial metals or precious commodities which are mined on a more continuous basis. 

Through using an iso-elastic demand curve which also reacts to the amount of storage at hand, a 

multiplicative convenience yield similar to Ng and Murcia (2000) which reduces the frequency of 

stockouts and using a parameterized expectations algorithm to solve for the partial equilibrium model 

ala Gouel (2013) we show that simulations based on the solution of the partial equilibrium model can 

replicate the features commonly found in commodity prices. By calibrating the model as per 

convention, we observe auto-correlations of around 0.80 while still achieving occasional spikes that 

are typically found in commodity prices. Unlike other studies which focus solely on the auto-

correlation aspect we also test for explosiveness in our simulated price; this helps us compare our 

simulated results to real data at an additional level. Since the model attempts to replicate real and not 

nominal prices we do not always observe statistically significant evidence of explosiveness although 

that is a feature shared with real data. Another way of analysing locally non-stationary behaviour in 

commodity prices is through the fourth moment or Kurtosis. A positive excess Kurtosis is a feature of 

pricing processes that exhibit extreme peaks and troughs frequently.  

Before we introduce the model and the solution methodology, it is important to understand how the 

original model has evolved and what features various modifications to the model have introduced. 

While WW were the original creators of the partial equilibrium model, the model shot to prominence 

through a series of articles written by Deaton and Laroque (1992, 1995, 1996). Deaton and Laroque 

(DL henceforth) showed that the standard storage model of WW has a Stationary Rational 

Expectations Equilibrium (SREE) and in their article they solved an analytical version of the model. 

However, their model is unable to capture essential features of commodity prices and predicts a much 

higher frequency of stock outs than generally observed. The use of an autoregressive harvest 

processes is among the modifications they have applied to the standard storage model although the 

modified model was still unable to capture the high auto-correlation. Their major contribution in 

addition to proving that the model will have an SREE solution is a strategy for empirically estimating 

the model for different commodities using a maximum likelihood approach.  

Miranda (1993) estimates a nonlinear REE commodity storage model which includes government 

stockholding in addition to private stockholding. He finds that the existence of government stocks 

crowds out private stockholding. Miranda and Rui (1999) add storage costs to the model in addition to 

depreciating stock and use Chebychev orthogonal collocation to find a numerical price function which 

provides a better fit to the auto-correlation function. They consider both a constant storage cost and a 

semi-log cost of storage function similar to a convenience yield (Kaldor, 1939). Inclusion of a semi-

log cost of storage function eliminates stock outs and since the main mechanism through which auto-
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correlation is introduced in the model is storage, the lack of stock outs thus increases auto-correlation. 

However, this higher auto-correlation comes at the cost of less volatility in the price function since 

price in this model typically increases in response to a stock out. Thus, one feature of commodity 

prices is substituted for another.  

Ng and Murcia (2000) add a number of extensions to the model to explain the auto-correlation 

without compromising on volatility. They consider the cases of staggered production, long contracts 

and convenience yields. The convenience yield that we use in our augmented model is based on the 

specification in their article. They find that the inclusion of convenience yields can explain the auto-

correlation better than other alternatives although this comes at the cost of reduced volatility in the 

price process. However, their auto-correlation measures are around 0.6 on average as opposed to the 

0.8 observed in real commodity data. They also consider an MA(1) harvest process which increases 

auto-correlation. While an MA(1) harvest process can increase auto-correlation, we abstain from 

using this in our model as this is more likely to be a feature of a model aiming to replicate quarterly or 

monthly as opposed to annual data. In addition, they use a linear demand curve. 

Other articles that have contributed to this literature more recently include Wright (2010), Miao et al 

(2011), Guitterez et al (2014), Gouel (2013) and Guerra et al (2015) although the latter papers focus 

primarily on empirical estimation of the model through extending DL’s methodology. Gouel (2013) 

provides a useful summary of different numerical approaches that may be employed to numerically 

estimate the commodity storage model including Value Function Iterations, Projection Methods and 

Parameterized expectations algorithm (PEA). He shows that the PEA algorithm converges faster and 

that the solution has better properties than other methodologies. This algorithm is also fairly close to 

the original solution algorithm adopted by WW. Thus, we proceed with this numerical methodology 

in this chapter. Miao et al (2011) have attempted to augment the model in similar vein to the current 

chapter; however, in doing so they increase computational burden considerably and our results come 

closer to real data than theirs. They also employ the use of a fluctuating real interest rate which 

improves their results. While adding some complexity to the commodity storage model we ensure that 

the computational burden stays manageable. The main similarity between our augmented model and 

Mioa et al’s is the use of an iso-elastic variation of the demand curve.  

A recent article worth mentioning separately is Arsenau and Leduc’s (2013) study which extends the 

partial equilibrium model to a general equilibrium setting. They extend the canonical model by 

introducing a production sector and incorporating the consumption savings decisions. Thus, 

consumption, the real interest rate, storage and production are all simultaneously determined in the 

model. While their methodology for solving the model is similar to WW and Gouel (2013), they do 

not provide a simulation analysis since their main motivation is policy analysis. Since we are able to 

explain commodity prices within the confines of the canonical model, we do not extend our analysis 
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to the general equilibrium setting as it substantially increases the dimensionality of the problem. We 

do, however, try to incorporate saving behaviour in our partial equilibrium framework through 

augmenting the demand curve.   

None of the articles discussed above do any formal analysis on the volatility of simulated prices. We 

use the test developed by Philips, Shi and Yu (2013) to check if there is substantial explosiveness 

observed in simulated prices. We note that simulated prices tend to replicate real prices as opposed to 

nominal prices and thereby significant mean reversion is noted; as a result, the GSADF test is often 

unable to detect explosiveness as we pointed out in Chapter 4. The next section describes the original 

model and introduces our modifications to it. Section 5.3 elaborates on the numerical solution 

methodology while Section 5.4 compares the properties of our model to other versions of the model. 

Section 5.5 tests the sensitivity of the model solution to various parameters of interest while Section 

5.6 attempts to empirically replicate the properties for five commodities. Section 5.7 concludes. 

5.2 The Commodity Storage Model 

While we use modifications introduced in Ng and Murcia (2000) and Gouel (2013), it is instructive to 

look at the original model by Williams and Wright. The methodology we use to solve the model is 

fairly close to the algorithm adopted in the original model as well.  

Supply and Demand: 

The standard WW model is characterized by a linear demand curve and no supply response. Since the 

model is set in a partial equilibrium setting, the supply and demand functions are given.  

𝑃𝑡 = 𝑎 − 𝑏𝑄𝑡       (5.1) 

ℎ𝑡+1 = ℎ�(1 + 𝑣𝑡+1)       (5.2) 

𝑃𝑡 is the price of the commodity, 𝑄𝑡 is consumption demand, ℎ� is average yield/production and 𝑣𝑡 is a 

normally distributed weather shock. Each period the realization of the weather shock 𝑣𝑡 determines 

the yield in the following period, ℎ𝑡+1. The commodity is planted one period ahead and the realization 

of the weather shock determines the actual output obtained. If planned production responds to price, 

the above planned production function becomes a function of the incentive price 𝑃𝑡𝑟 i.e. the expected 

price anticipated given the distribution of the shock process: 

ℎ𝑡+1 = 𝑓(𝑃𝑡𝑟)       (5.2) 

In the standard model the weather shock is normally distributed with a mean of 0 and a standard 

deviation of 0.10. Specification of the weather shock can influence the solution of the model and the 

resulting decision rules. DL have investigated an AR(1) weather process while Ng and Murcia have 
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employed an MA(1) weather process. While building persistence in shocks this way inflates 

correlation in the resulting simulations, the results still fail to match real data. We find that reducing 

the standard deviation of shocks can also lead to higher correlations; we comment on these findings in 

Section 5.5.  

Investors: 

The model solves the investors’ problem. Investors or warehouse owners are risk neutral agents 

looking to maximize profits by optimally choosing an inventory level. This leads to an arbitrage 

condition that determines inventory demand. Investors purchase and carry forward an amount 𝑆𝑡 

today at price 𝑃𝑡 . Inventory is stored at constant cost 𝑘𝑡 per unit and undergoes depreciation 𝛿𝑡 . 

Inventory is sold in the following period at 𝑃𝑡+1; however, since the storage decision has to be 

undertaken one period prior to the actual sale of inventory, investors choose an inventory based on 

their expected price 𝐸𝑡(𝑃𝑡+1). The investors’ problem is thus: 

𝐸�Π𝑡+1(𝑆𝑡)� = �1−𝛿
1+𝑟

𝐸𝑡(𝑃𝑡+1)− 𝑃𝑡 − 𝑘𝑡� 𝑆𝑡    (5.3) 

Investors select storage to maximize their profits. Since storage cannot be negative, maximizing 5.3 

with respect to storage implies the following arbitrage condition (Scheinkman and Schechtman, 

1983): 

𝑆𝑡 ≥ 0 𝑖𝑓 1−𝛿
1+𝑟

𝐸𝑡(𝑃𝑡+1) − 𝑃𝑡 − 𝑘𝑡 ≥ 0      (5.4) 

Otherwise, 𝑆𝑡 = 0 

Thus, investors only enter the commodity market if they expect the price to rise by an amount that is 

sufficient to cover their cost of capital, the storage cost, the purchase cost and depreciation. In the 

standard storage model, WW do not employ the use of a convenience yield ala Kaldor (1939). The 

investors’ problem is thus, non-linear. Given supply (5.2), demand (5.1) and equilibrium conditions 

(5.5 and 5.6), we can solve for the optimal amount of storage and hence, derive availability using 

numerical methods.  

To close the model and find equilibrium storage, we define availability or the amount available each 

period to satisfy consumer demand and storage demand as  

𝐴𝑡 = 𝑆𝑡 + 𝑄𝑡       (5.5) 

This demand is satisfied through storage carried over from the previous period and the realized 

production in the current period (which depends on the weather shock in the current period, 𝑣𝑡).  

𝐴𝑡 = (1 − 𝛿)𝑆𝑡−1 + ℎ𝑡       (5.6) 
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Although availability is the state variable of the system, most solution algorithms solve for storage 

rules and through the storage rule, derive a decision rule for availability. This is due to the non-

linearity of storage. Once a decision rule has been found for the part for which a storage rule exists we 

are able to derive the availability decision rule for the availability space. 

 

5.2.1 Augmented Storage model 

Our modifications to the standard storage model are three fold. We use an iso-elastic demand function 

instead of a linear demand function ala Gouel (2013), we employ the use of a multiplicative 

convenience yield similar to the one used by Ng et al (2000) and introduce a response to storage in the 

demand function. We also use an iso-elastic supply function instead of opting for no supply response. 

While this does increase computational time, a supply response is more intuitively appealing and 

theoretically justifiable in a more general setting. In a number of applications of the WW model, we 

noted that although authors acknowledged a supply response in their narrative, they often solved the 

model assuming no supply response.   

Planned production is given by: 

ℎ𝑡+1 = 𝐸𝑡[(𝑃𝑡+1𝑣𝑡+1)𝜖𝑠] where 𝜖𝑠 > 0     (5.2a) 

𝑃𝑡+1𝑣𝑡+1 represents the incentive price to which commodity producers respond. 𝜖𝑠 is the supply 

elasticity of production. We propose a more general form for the demand function. In a general 

equilibrium setting, as in Arseneau and Leduc, consumers try to maximize utility by selecting not only 

current but also future expected consumption. This implies that current period consumption or 

demand is a function of future expected consumption in addition to being a function of current price. 

Since we are primarily interested in studying the impact of storage on prices, we represent this, more 

general demand function as 𝑄𝑡(𝑃𝑡,𝐸[𝑄𝑡+1]). However, expected future consumption is itself a 

function of storage; thus, the general form of the function becomes 𝑄𝑡(𝑃𝑡,𝐸[𝑄𝑡+1(𝑆𝑡)]) = 𝑄𝑡(𝑃𝑡 ,𝑆𝑡) 

where 𝑄𝑃𝑡 < 0 and 𝑄𝑆𝑡 > 0.  

When storage is low or 0, consumers anticipating lower consumption in the future (due to lower 

availability) start consuming a lower amount today; lower consumption in the current period may lead 

to a lower equilibrium price which may make more storage affordable for some investors. As a result, 

the number of stockouts is lower. The opposite is true when storage is positive. This can also be 

thought of as consumers transferring some of their consumption to the future in response to an 

anticipated price increase in future periods (i.e. consumption smoothing). Although a variety of 
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functional forms may be used to model this behaviour we rely on the simplest functional form. Our 

Inverse demand function is given by 

𝑃𝑡 = � 1
𝑆𝑡2+𝐶

�𝑄𝑡
1/𝜖𝑑  where 𝜖𝑑 < 0     (5.7) 

C is a constant and is chosen to determine how much consumers react to storage and how much 

consumption smoothing they prefer; 𝜖𝑑 is the constant price elasticity of demand. Price responds by a 

constant percentage to change in consumption but its response to storage is more volatile. We believe 

that this behaviour will help us explain the skewness and excess kurtosis in observed data. This also 

aligns well with the asset price behaviour we have worked with in previous chapters. Note, that due to 

the nonlinearity of storage and (5.5), both (5.7) and (5.2a) also become non-linear functions. While 

saving behaviour may be more accurately captured in a general equilibrium setting, since our main 

objective is to understand commodity price movements we are able to reduce the dimensionality of 

our problem and save significant computational time through incorporating saving behaviour within 

the consumption demand function.   

The notion of a convenience yield was first introduced by Kaldor in his seminal 1939 article where he 

discussed a commodity model with storage. Put simply convenience yield is the convenience of 

having goods to hand. Having goods to hand enables storage owners to meet unexpected increases in 

demand. Thus, precautionary or speculative demand may give rise to a convenience yield. As a result, 

including a convenience yield increases the demand for storage. Kaldor(ibid) provides additional 

justifications for a convenience yield.  

While there are different methods of modelling a convenience yield, we use the multiplicative 

convenience yield employed by Ng et al (2000). Prior to Ng et al, Miranda (1997) had used a 

logarithmic version of the convenience yield. Using a logarithmic convenience yield removes the non-

linearity in the model giving rise to continuous storage and price functions. However, this also 

substantially reduces the volatility of simulated price as there are no stock outs.  

The multiplicative convenience yield is expressed as a function of storage, 𝜙(𝑆𝑡). Holding on to more 

inventory will increase the convenience yield; however, this is likely to be at a decreasing rate. Thus, 

𝜙(𝑆𝑡) can be expressed as a concave function. We use the parameterization used by Ng et al: 

𝜙′(𝑆𝑡) = 𝜃 + (1 − 𝜃)𝑔(𝑆𝑡) 

where 

𝜃 =
(1 + 𝑟)(1 − 𝜀)

1 − 𝛿
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𝜀 is arbitrarily small; for a normalizing constant ‘L’, 𝑔(𝑆𝑡) is expressed as  

𝑔(𝑆𝑡) =
𝑆𝑡

(𝑆𝑡 + 𝐿)
 

Setting L= 0 eliminates the convenience yield. Ng et al discuss more properties and implications of 

this convenience yield. Introducing the multiplicative convenience yield along with the demand curve 

(5.2a) in the arbitrage condition (5.4) implies: 

𝑆𝑡 ≥ 0 𝑖𝑓 𝜙′(𝑆𝑡)(1−𝛿)
1+𝑟

𝐸𝑡(𝑃𝑡+1)− 𝑃𝑡(𝐴𝑡 − 𝑆𝑡)− 𝑘 ≥ 0    (5.8) 

In the resulting solution, stock outs are less common and more storage is held per period due to the 

convenience of having storage to hand. Storage builds more persistence in the model and the lower 

frequency of stock outs implies fewer episodes of explosive prices.  

In summary, our system solves for optimal storage in equation 5.8 given the following relationships: 

Augmented demand: 

𝑃𝑡 = �
1

𝑆𝑡2 + 𝐶
�𝑄𝑡

1/𝜖𝑑 

future planned production, (5.2a) 

ℎ𝑡+1 = 𝐸𝑡[(𝑃𝑡+1𝑣𝑡+1)𝜖𝑠] 

and the identities implied by (5.5) and (5.6) 

𝐴𝑡 = 𝑆𝑡 + 𝑄𝑡 

𝐴𝑡 = (1 − 𝛿)𝑆𝑡−1 + ℎ𝑡 

DL have proved that the above system has a Stationary rational expectations equilibrium. (5.2a) and 

(5.8) define the equilibrium of the commodity storage model. Our solution algorithm is outlined in the 

following section.   

5.3 Solution Algorithm 

In order to aid comparison with other research in the area we adopt the solution algorithm used by 

WW (1991). Gouel (2013), Ng et al (2000) and Arseneau et al (2013) adopt the same algorithm with 

minor amendments. The algorithm is often employed in the Macroeconomics literature and is referred 

to as the Parameterized expectations algorithm. In a nutshell, the algorithm aims to parameterize 

𝐸𝑡(𝑃𝑡+1) as a function of storage over a pre-determined grid. Although the actual state variable in the 
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model is availability, 𝐴𝑡 , due to the non-linearity of the model we use storage,  𝑆𝑡 , as the state variable 

and derive the decision rule for availability.  

The state space for the harvest/weather shock is approximated as a discrete process over an M point 

grid. Although there are different ways of discretizing a shock process, we use the same values and 

probabilities that WW employ (i.e. M=9). Each weather state 1 + 𝑣𝑡,𝑗 occurs with a probability 

𝜋𝑡,𝑗  .Note that 𝑣𝑡,𝑗 has a standard deviation of 0.10. A Gauss-Hermite quadrature would have 

discretized the weather process in the same way. Discretizing the weather shock enables us to 

calculate the expectation functions5. We also define an N point grid over storage  

𝑆𝑡,𝑛 = �𝑆𝑡,1,𝑆𝑡,2 … … 𝑆𝑡,𝑁�. 𝜓𝑝(𝑆𝑡) denotes the polynomial for expected price in terms of storage. We 

initialize the algorithm by selecting values for the polynomial coefficients i.e. 𝐸𝑡[𝑃𝑡+1] = 𝜓𝑝(𝑆𝑡) over 

all values of the storage grid. We formulate a guess for initial planned production ℎ𝑡� .  

Actual production is found for each realization of the shock i.e. ℎ𝑡,𝑚 = ℎ𝑡� (1 + 𝑣𝑡,𝑚). For every 

realization of the shock and production, ℎ𝑡 , we find availability, 𝐴𝑡 = (1 − 𝛿)𝑆𝑡,𝑖 + ℎ𝑡,𝑚. Using this 

level of availability and our current guess for the polynomial 𝜓𝑝(𝑆𝑡) we use MATLAB’s non-linear 

solver on equation (5.8) to find the equilibrium level of storage for each realization of the shock. If the 

equilibrium level of storage for any realization of the shock is negative we re-set the equilibrium 

storage level to zero. Equilibrium storage and availability allow us to find consumption and therefore 

price for each realization of the shock using (5.7). Expected price can thus be found as 𝐸𝑡(𝑃𝑡+1) =

∑ 𝜋𝑡,𝑗𝑃𝑡+1,𝑗
𝑚
𝑗=1 . 𝐸𝑡(𝑃𝑡+1) in turn allows us to find the producer’s incentive price and thereby actual 

planned production conditional on the distribution of the weather shock, ℎ𝑡� . For every level of storage 

on the grid we find ℎ𝑡� − ℎ𝑡� . If the calculated difference is below our tolerance threshold (we set the 

tolerance threshold to 10−8) we continue the algorithm; otherwise, we change ℎ𝑡�  to ℎ𝑡�  and repeat. 

Once planned production has converged, we regress 𝐸𝑡(𝑃𝑡+1) on all storage levels across the grid, 

𝑆𝑡 and find new coefficient estimates for the polynomial which we label 𝜓𝑝�(𝑆𝑡). If �𝜓𝑝� − 𝜓𝑝� is 

below our threshold tolerance we will have found the self-replicating polynomial for 𝐸𝑡(𝑃𝑡+1) as a 

function of storage and hence solved for the rational expectations equilibrium. If the values do not 

converge, we set 𝜓𝑝 = 𝜓𝑝�  and repeat the procedure from the initial step. Note that in addition to the 

polynomial for expected price, we can also find a polynomial expressing planned production as a 

function of storage from the above steps. Armed with these two polynomials we can find the 

equilibrium functions for 𝑃𝑡, 𝑆𝑡,𝑄𝑡 ,ℎ𝑡 for given availability, 𝐴𝑡.  

                                                           
5 𝑣𝑡 ,𝑗 = [−0.20 − 0.15 − 0.10 − 0.05  0 0.05 0.10 0.15 0.20];  
𝜋𝑡,𝑗 = [0.0401 0.0659 0.1212 0.1745 0.1966 0.1745 0.1212 0.0659 0.0401];  
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For our analysis we used a third-order polynomial such that 𝜕𝜓(𝑆𝑡)
𝜕𝑆𝑡

< 0 and 𝜕
2𝜓(𝑆𝑡)
𝜕𝑆𝑡2

≥ 0. As mentioned 

before, we discretize the error process over 9 grid points and choose a 50 point grid for storage.  

Equilibrium functions allow us to find values of the control variables in the commodity storage model 

for given values of the state variable 𝐴𝑡 in the current period. The support for these equilibrium 

functions is defined over the availability state space [0.8 – 1.2]. We use spline interpolation to plot the 

equilibrium functions as some of the functions are non-linear. Figure 5.1 shows the equilibrium 

functions for the initial calibration.  

The resulting splines allow us to run simulations and thus, observe the dynamic behaviour of 

commodity prices over time. The features of these simulated prices are then compared with actual 

prices. In particular we are interested in finding the first order autocorrelation and the occurrence of 

explosiveness or bubbles. Table 5.1 in the appendix states our calibrated values for initial 

specifications. Initial calibrations are derived from Ng et al (2000) for the convenience yield and 

Gouel (2013) for the elasticities. Our calibrations are chosen so that steady state availability and 

planned production are around 1. In our analysis we also provide a comparison with the original 

model and various other modifications to it. 

Note the prominent features of the equilibrium functions. Storage tends to stay zero until threshold 

availability is reached; once the threshold level has been reached it grows linearly with availability. In 

similar vein, planned production stays constant at 1.03 until availability increases beyond the 

threshold. Once producers observe storage behaviour they are forced to reduce planned production as 

their incentive price decreases. These features are shared across other specifications of the commodity 

storage model.  

Price and consumption on the other hand show slightly different behaviour due to some of the 

modifications we have introduced. Price is more volatile and reacts strongly when storage is low or 

zero. We believe that the strong reaction better captures real pricing behaviour. Consumption on the 

other hand tends to flatten out once availability increases beyond the threshold level. There is some 

evidence of consumption smoothing behaviour beyond the threshold level of availability. Consumers 

start saving a greater proportion of their income as prices are lower and there is evidence of an income 

effect. While the equilibrium functions are for one period only, simulations allow us to use these 

equilibrium functions to analyse dynamic properties of our model which is the subject matter of the 

next section. We also test the sensitivity of our model to various parameters in a separate section.  

5.4 Simulation Results: 

The equilibrium functions derived in Section 5.3 above allow us to simulate the commodity storage 

model. Thus, we are able to simulate a time series for commodity prices which incorporates the 
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impact of storage and weather shocks on the price of commodities. As stated previously, the objective 

of such an exercise is to replicate real commodity behaviour through matching the properties of its 

distribution. One time period for all the analysis carried out in this chapter is to be understood as one 

full commodity cycle, normally thought to be one year. Secondly, the model aims at replicating real as 

opposed to nominal prices. Before presenting simulation results we briefly discuss the properties of 

real commodity prices that we seek to replicate. The commodities we consider are coffee, cotton, 

maize, sugar and wheat.  

Our price data for annual commodity prices is the Grilli and Yang (1988) data series as augmented by 

Pfaffenzeller et al (2007). We use the latest (2011) update for our results. The data reports results on 

24 commodities along with an index of all 24 commodities from 1900-2011. Table 5.2 reports the 

properties of the 5 commodity series mentioned above. We report moments for both nominal and real 

values of each commodity. The real price series were obtained by dividing the nominal price series by 

the US CPI obtained from the Bureau of Labour statistics (base year: 1977-79 average). In addition to 

the moments and correlation we also report results for the GSADF test of explosiveness. Figure 5.2 

shows the nominal and real sugar price series. 

The graph highlights important features of commodity markets. The real price of sugar has been 

falling over the years primarily due to developments in technology (although this is not as high as the 

fall observed in other commodities such as cotton or wheat). However, both price series remain 

volatile and we continue to observe occasional spikes and troughs in both the real and nominal price 

series. Note that using annual instead of monthly data will make it more difficult to observe long 

periods of explosiveness. As the analysis in chapter 2 indicates, periods of explosiveness tend to last 

from anywhere between 2 months to 1 year. Thus, conducting the GSADF test on the real series 

instead of the nominal series and using annual instead of monthly data should reduce the probability 

of detecting explosiveness as noted in chapter 4. A ‘Yes’ in the GSADF test result row indicates that 

we were able to detect explosiveness in the series.  

Some features of the distributions of our commodities are common. All commodities have a high first 

order auto-correlation (around 0.8 on average), are positively skewed and have excess kurtosis 

although the extent of excess kurtosis tends to vary. These features are shared across nominal as well 

as real prices although the degree of positive skewness and excess kurtosis is lower in real as opposed 

to nominal prices on average. As outlined above, except Cotton we are able to detect explosive 

behaviour in all Nominal price series. On the other hand we are unable to detect statistically 

significant evidence of explosiveness in the real series even though their distributional characteristics 

appear similar to their nominal counterparts. Thus, for our simulation results to hold validity we 

would expect a high auto-correlation, positive skewness and excess kurtosis. Since our simulations are 

closer to real instead of nominal prices we may not be able to detect explosiveness very often. 
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For our simulation analysis we solve and simulate four different versions of the commodity storage 

model which highlight the importance of each feature introduced in the augmented version of the 

model. The first set of simulations is carried out for the fully augmented model described in section 

5.2.1 above. Next, we simulate the model without any savings behaviour and use a simple iso-elastic 

demand curve. The third set of simulations uses a linear demand function (equation (5.1)) instead of 

an iso-elastic demand function. Our final variation is the augmented model without a convenience 

yield. To get statistical properties we solve each model and simulate the model 2000 times; each 

simulated series is 700 periods in length. The results reported in Table 5.3 are averages. 

 

5.4.1 Augmented Model 

In addition to reporting auto-correlation, skewness, kurtosis and the percentage of series exhibiting 

bubbles, we also report the average frequency of stockouts in the simulated price series. Table 5.3 

reports the results for our 4 model variations. 

As noted in Table 5.3, our augmented model achieves a correlation of 0.7960 which is fairly close to 

the average correlation attained by the 5 commodities as noted in Table 5.2. Note that the simulations 

continue to be calibrated as per the values in Table 5.1. Our sensitivity analysis in the following 

sections suggests that the auto-correlation is sensitive to some parameters. We also observe positive 

skewness and excess kurtosis. While the skewness measure appears to be within the expected range, 

we do obtain a higher than expected value for kurtosis. None of the commodities in Table 5.2 exhibit 

Kurtosis higher than 8 whereas we obtain a kurtosis nearly double that number. This is partially due to 

the way we have modelled consumption behaviour but also reflects the impact of modelling the 

complex dynamics that result from storage.  

One of the major criticisms of the original WW model was that it predicted a much higher number of 

stockouts than generally observed in commodity markets. We observe stockouts on average 1.6% of 

the time or 11 periods out of 700. Statistically significant evidence of explosiveness was found in 

14.12% of the series which indicates that explosiveness may not be readily detectable in simulations 

of the commodity storage model although the simulated series continues to exhibit peaks and troughs 

that are very characteristic of actual series. Figure 5.3 shows a simulated price series using the 

augmented model.  

The simulated price series in Figure 5.3 shares properties with the Real price of Sugar; we observe a 

long term decline in price with occasional spikes or volatility. Due to the overall mean reverting 

nature of this process we were unable to detect a bubble in this particular simulation despite the 

occasional explosiveness in the series (particularly around period 60).  
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5.4.2 Comparison with other models 

Columns 3, 4 and 5 in table 5.3 present results from different variations of the augmented model. In 

the first variation we remove any feedback from storage to consumption; thus, the demand curve 

simplifies to: 

                                    𝑃𝑡 = 𝑄𝑡
1/𝜖𝑑     

As we have mentioned before, storage influences two aspects of commodity prices: correlation and 

volatility. These two aspects often conflict with each other. Storage ensures that quantities, and 

thereby consumption, across two consecutive periods are closer together which tends to increase auto-

correlation; when we observe a stockout, volatility increases and we typically see a spike in the price 

of the commodity which tends to reduce correlation. With the simple demand curve above, we note 

that the correlation reduces considerably although the frequency of bubbles increases. Measures of 

skewness and kurtosis on the other hand are out of sync with the skewness and kurtosis observed in 

real prices. The excessive kurtosis (57.3) is primarily responsible for the large number of series 

exhibiting statistically significant explosive behaviour (62.8%). Thus, we obtain a reasonably high 

correlation and explosive frequency but other properties of real data are not captured.  

For the linear demand model we used equation (5.1) which was calibrated based on the parameter 

values chosen by Ng et al that gave them one of the higher correlation values. Since Ng et al’s study is 

empirical in nature we chose the parameters for wheat and re-estimated the model. Due to the 

convenience yield in our model we were able to obtain an average correlation that is higher than what 

Ng et al obtained for the same specification however it is still much lower than the correlation 

observed in real data. The frequency of stock-outs is also higher but a similar amount of explosiveness 

is detected. Thus, the model with linear demand does much better than the standard model but it is 

unable to match the results of the fully augmented model.  

In the final variation we exclude the convenience yield while keeping saving behaviour and the iso-

elastic demand curve; thus we use equation (5.4) instead of equation (5.8) as the arbitrage 

relationship. This results in significant differences in the result. Having a convenience yield increases 

the demand for storage by virtue of assigning a value to having stock at hand; this reduces the number 

of stockouts observed. We note that excluding the convenience yield greatly increases the number of 

stockouts in the model. No stocks are held for more than a third of the period in our simulations. 

Unsurprisingly this results in a much lower correlation. Skewness and kurtosis are much smaller but 

are of the right sign. None of our 2000 simulations for this particular specification exhibited explosive 

behaviour which is an extreme result. In fact a number of simulations exhibited stationary or mean 

reverting behaviour. It is also worth mentioning that this variation comes closest to the original WW 

model with the only difference being that WW used a linear demand curve.  
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Despite its limitations, the augmented model comes closest to exhibiting characteristics ascribed to 

real commodity prices. Not only do we obtain a high enough correlation, we also observe fewer stock-

outs and the moments are of comparable magnitude to real data. The frequency of bubbles is low but 

as we have highlighted in Table 5.2b, it is often difficult to detect explosiveness, even in real data, in 

the presence of mean reverting behaviour which is observed in periods of exceptionally high harvests 

or high availability. The results also show the importance of each aspect of the augmented model as 

compared to the standard model. While the convenience yield appears to be the most important 

addition, the iso-elastic demand and saving behaviour also play a significant role. In the remaining 

sections of this chapter we proceed with the augmented model.  

5.4.3 Impulse Responses 

We can also use simulations to derive impulse responses. Figure 5.4 to 5.6 show the impact of 

positive and negative weather shocks in the first period on availability, storage, equilibrium price and 

planned production. Due to the non-linearity present in the model, the impact of a positive shock is 

different from that of a negative shock if the negative shock leads to a stock out. Since the steady state 

stock is 0.2745 we consider 3 different shocks; a positive 1 standard deviation shock to weather which 

increases realized production in period t; a negative 1 standard deviation weather shock which reduces 

storage but does not drive it to 0; a negative 3 standard deviation shock which leads to a stock-out. 

Note that for a different parameter specification, the steady state stock would be different and it is 

plausible that a much more frequently occurring weather shock would lead to a stock-out. 

Additionally, we also consider impacts of persistent shocks i.e. a weather shock that lasts 2 periods 

(Figure 5.7).  

Figure 5.4 shows the response (in terms of percentage deviation from steady state values) to a 1 

standard deviation positive shock to the weather for availability, storage, price and planned 

production. The positive shock leads to a bumper crop; a large proportion of the bumper crop is 

absorbed by storage which jumps around 40% in the period the shock is realized. The impact of the 

bumper crop is very persistent and storage stays above its steady state value for well over 30 periods. 

The impact on Availability and price on the other hand is much smaller. Availability increases by 8% 

while price falls by 4.5%. Recall that the price elasticity of demand in the baseline case is inelastic 

which explains why the price does not go into free fall. The inelastic price elasticity of supply is also 

prominent as there is less than a 1% fall in planned production. Since planned production does not fall 

a great deal, availability and storage continue to be high in subsequent periods. If supply were more 

responsive, we would see the response to the shock dissipate much quicker.  

The response sizes are similar but of the opposite sign with a negative 1 standard deviation shock. As 

mentioned before, a negative weather shock which causes a poor crop yield but is not sufficient to 
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cause a stock-out decreases stocks in the period of the shock and continues to impact stocks for a 

substantial period of time. The contemporaneous response is through a 40% fall in stock; as before, 

planned production increases only marginally by 1%.  

The impact is much more significant when there is a negative 3 standard deviation shock, as seen in 

Figure 5.6. We observe a stock-out in the period of the shock; availability falls by 25% and the price 

jumps by almost 20%. Thus, the response is asymmetric and increases due to the stock-out. Planned 

production increases by around 3.4%. As before, the impact is persistence and lasts for well over 20 

periods although the impact is halved in less than 5 periods. 

Contrast these shocks with a 2 standard deviation shocks that occurs in two consecutive periods (see 

Appendix 5B for an explanation of what we mean by a two period shock). Weather shocks such as 

these are not uncommon as evident from long droughts observed in a number of countries around the 

world. Persistent shocks can have a much greater impact on real prices than single period shocks as 

evident from Figure 5.7. In the second period of the shock, availability falls by 30% and most of the 

shock is absorbed by storage (70%). Prices jump by around 12% and planned production increases 

slightly. However, the second period shock compounds the impact greatly. Storage is driven to 0 as 

availability is now 30% less than steady state values. This results in a nearly 60% jump in real prices. 

Thus, multi-period shocks tend to explain the large increases in prices much better. Persistent 

droughts or period of bad weather are more likely to cause large jumps in prices than large shocks that 

occur for only one period.  

From the impulse response analysis we observe that extreme weather events can have a significant 

impact on the real price of a commodity. The impact on nominal price is likely to be greater still 

which likely results in the explosive path often observed in asset prices. Our analysis also hints at 

what could happen if extreme weather becomes more common as a result of climate change. If global 

temperatures continue to rise, leading to a change in the distribution of weather socks, persistent 

negative shocks to output may become more common. We also see that in cases where it is not easy to 

increase production, supply may be slow to respond.    

5.5 Sensitivity Analysis 

In this section we analyse the sensitivity of the model’s solution to its parameters. Parameter values 

for the baseline case are reported in table 5.1. The sensitivity of the model is considered by changing 

values of one parameter at a time. For each part of our analysis we changed the value of the parameter 

of interest and ran 2000 simulations for 700 periods each; we compare the first order auto-correlation, 

skewness, kurtosis, percentage of stockout periods and percentage of simulated series exhibiting 

statistically significant explosiveness. These results are reported in Table 5.4. In each case the second 

column represents the parameter value in the baseline scenario.  
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The sensitivity is evaluated with respect to depreciation 𝛿, Price elasticity of Demand 𝜖𝑑, Price 

elasticity of Supply 𝜖𝑠, the standard deviation of the weather shock 𝜎, the real rate of interest 𝑟 and the 

parameter 𝐶 which determines the demand function’s reaction to stocks. The most pronounced effects 

are observed for the weather shock. Reducing the standard deviation of the weather shock 

considerably increases autocorrelation. This is due to the low frequency of stockouts that results. 

When weather is more stable and predictable across periods, there are fewer episodes of bad weather 

which could result in stockouts. As a result we observe that only 0.2% or around 5 to 6 periods out of 

every 700 see a stockout. Since stocks are carried in almost every period, the price across periods 

becomes highly auto-correlated. We also observe that the distribution of prices follows the normal 

distribution more closely as the skewness and kurtosis measures are not statistically significantly 

different from the skewness and kurtosis of a normal distribution. Due to climate changes over the 

past few decades, however, this particular case does not appear particularly relevant; a more 

interesting scenario is that of higher weather volatility.  

When the volatility of the weather process is increased to 0.15 from 0.10 the change is significant. 

The correlation reduces to 0.52 and skewness and kurtosis measures increase considerably, indicating 

the number of extreme weather events. The number of stockout periods rises to 4.64% and as a result 

the incidence of extreme prices also tends to increase as evidenced by the number of bubbles detected. 

While global warming may not lead to such drastic changes in reality (as other parameters such as 

supply and demand elasticity are also likely to change), it is nevertheless a good indication of the 

direction of change if weather becomes more volatile. 

Other important determinants of the price process are the price elasticities of demand and supply. 

Increasing the magnitude of the price elasticity of demand, 𝜖𝑑, increases the correlation while 

reducing skewness and kurtosis. It also tends to increase the degree of stockouts; however, this does 

not always lead to an increase in the number of bubbles detected. The price elasticity of demand acts 

through the demand function (equation 5.7) and the storage function. With a higher price elasticity of 

demand, quantity demanded reacts more to a given change in price. If price increases the fall in 

consumption will be greater in the current period; simultaneously an increase in price encourages 

investors to hold more inventories. Thus, higher price elasticity translates into larger changes in 

quantity demanded and thus, storage. With higher storage we are likely to observe a higher first-order 

auto-correlation.  

Supply elasticity 𝜖𝑠 on the other hand has the opposite impact. If we have perfectly inelastic supply 

i.e. 𝜖𝑠 = 0, correlation increases, stockouts reduce but the incidence of explosive prices increases. If 

supply is inelastic, the impact of the weather shock is magnified as producers are unable to respond to 

changes in prices and the amount of supply solely depends on the weather shock. If supply is perfectly 

inelastic, the amount supplied every period, ℎ𝑡 is more predictable leading to more predictable 
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outcomes for consumption and inventory which we observe through the high auto-correlation. If 

extreme weather events are observed, we see a much higher increase in equilibrium price, which 

explains the higher incidence of bubbles when 𝜖𝑠 = 0. When supply elasticity is higher, the auto-

correlation tends to be lower and the equilibrium price is more skewed. The impact on the frequency 

of bubbles is less clear when price elasticity is high.   

The other parameters do not significantly impact our results. Due to the inclusion of the convenience 

yield the impact of the real interest rate becomes negligible. The depreciation rate on the other hand 

tends to have a small impact on the auto-correlation of equilibrium price. This impact comes through 

availability in equation (5.6) rather than the arbitrage equation (5.8). If the convenience yield were not 

included, both depreciation and the real rate of interest would likely have had a higher impact.  

5.6 Empirical Results 

As mentioned at the outset, a substantial amount of literature exists on the commodity model with 

storage but its empirical success has been limited. In this section, we show that our augmented model 

is able to capture features of actual data. Getting reliable estimates for price elasticities of demand and 

supply has been a difficult task, worthy of its own chapter. We rely on recent methods introduced by 

Roberts and Schlenker (2013) and some of their data to estimate the price elasticity of demand, 𝜖𝑑and 

use the estimated price elasticity of demand in our model to analyse if the model is able to capture 

features of real data. Roberts et al also lay out a methodology for measuring the price elasticity of 

supply by converting production data into calories. We do not use estimates for price elasticity of 

supply in our empirical analysis as that is beyond the scope of this article.    

Identification of the price elasticity of demand requires the use of instrumental variables as in 

equilibrium both quantities and prices are determined simultaneously. Roberts et al use two such 

instruments in their article to measure elasticities for corn, yield shocks and weather related data. We 

use their calculated weather shocks for our estimation. We rely on weather based instruments instead 

of yield shocks because the yield shock data they have calculated is specific for each commodity and 

relies on the availability of yield data; this data is not available for all the commodities that we 

consider.  

The two climate related variables that Roberts et al employ are average temperature in Celsius in the 

calendar year and average precipitation in the calendar year, both observed in the growing region of 

the crop. Both averages are found using the University of Delaware’s Climactic Research Centre data. 

They identify geographical regions where the commodities in their study are grown and using the 

database they find average annual temperature and average annual precipitation; these are then 

combined into annual global measures using area based weights. Since the growing regions for their 

commodities and ours tend to coincide (most production takes place in China, India, Brazil and the 
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United States), we use their average temperature and precipitation variables as instruments for our 

study. While this measure may not be perfect it is nevertheless likely to be highly co-related with 

actual weather data for our commodities and thus, fulfil the relevance criterion for instrumental 

variables. Note that yield shocks may themselves be endogenous as Roberts et al point out in their 

article. Weather related variables on the other hand are more likely to be exogenous as well as 

relevant.  

Thus, we use two stage least squares (TSLS) to estimate the following equation: 

𝑙𝑛𝑄𝑡 = 𝛼 + 𝜖𝑑𝑙𝑛𝑃𝑡 + 𝜂𝑡                          (𝟓.𝟗) 

𝑄𝑡 is consumption demand in year ‘t’, 𝑃𝑡 is average real price of the commodity in year ‘t’,  𝜖𝑑 is the 

price elasticity of demand and 𝜂𝑡 is an i.i.d error term. Note that (5.9) is an equilibrium relationship; 

thus the error term includes the impact of a number of variables that were part of the structural model; 

this necessitates the use of instrumental variables. The list of instruments includes average 

temperature in Celsius, the squared of average temperature in Celsius, annual average precipitation in 

metres and squared average precipitation in metres. Data on the instruments are available from 1961-

2008.  

We use the same real price data that were used to derive the results in Table 5.2 (Grilli and Yang). 

Data on world consumption for 4 of the 5 commodities were obtained from the United States 

Department of Agriculture’s Foreign Agriculture Service database. The database contains data on 

production and inventories. These data are only available from 1960, so equation (5.9) is estimated 

using data from 1961-2008. All data are annual. For Maize we rely on data from the Food and 

Agriculture Organization (FAO) of the United Nations. For each commodity, consumption was found 

by subtracting the change in inventories from production during the year i.e. 𝑄𝑡 = ℎ𝑡 + 𝑆𝑡−1 − 𝑆𝑡. 

Equation (5.9) is estimated for all 5 commodities. The estimation results for the TSLS regressions are 

available upon request. In summary, our qualitative findings are similar to Roberts et al. While the 

first stage coefficients are often individually insignificant, the regression itself is jointly significant 

and the second stage results are always significant, both individually and jointly. Roberts et al rely on 

futures data while we use measures of spot price; our primary data source is FAS while Roberts et al 

primarily rely upon FAO data. Column 2 in table 5.5 reports our point estimates for the price elasticity 

of demand for each commodity, which are obtained through estimating equation (5.9). The elasticity 

of supply 𝜖𝑠 is fixed at 0.3.  

Using the estimated price elasticity of demand we find the solution of our augmented storage model 

for each commodity. Note from Table 5.4(c) that changing the elasticity of supply can have an impact 

on the solution which in turn could impact the average auto-correlation and moments. For simplicity, 
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we keep the elasticity of supply fixed for all commodities although we recommend using appropriate 

measures of supply elasticity if the model is to be used for policy recommendations. The numerical 

solution is then used to simulate 2000 price series (each being 700 periods long) and relevant 

moments are found as averages. Columns 3 and 4 report actual and estimated first order auto-

correlations, columns 5 and 6 report actual and estimated measures of skewness while columns 7 and 

8 report actual and estimated measures of kurtosis respectively. 

Despite the fact that we are relying on only one parameter for our estimates, the model tends to 

perform well, particularly when first-order auto-correlation measures are considered. As seen from 

table 5.5, actual and estimated auto-correlation are much closer than have been observed in previous 

studies. The largest error occurs for Sugar where the estimated first order auto-correlation is 0.878 

compared to the actual correlation of 0.689.  Based on our study the results for sugar could be weaker 

due to sugar having a higher price elasticity of supply or the instrumental variable being inappropriate 

(as sugar may be grown in different geographical areas). We do not attempt to reconstruct the 

instrumental variable for each commodity as that would be beyond the scope of this chapter. 

Correlations for Coffee, Sugar, Maize and Wheat are overestimated while those for Cotton are under-

estimated.  

Measures of skewness and kurtosis on the other hand appear to be much more sensitive to changes in 

parameters. The errors are of larger magnitude in absolute as well as relative terms which highlights 

the shortcomings of our approach of using only one parameter. We believe that a more thorough study 

using more accurate parameter estimates will be able to match empirical estimates more closely. 

Measures of skewness in particular are underestimated and are often negative. Kurtosis measures on 

the other hand are much better and closer together with Cotton being the exception. Nevertheless, our 

brief foray into the empirical literature highlights the viability of our augmented model. Using just 

one empirically calculated parameter we are able to add a lot of respectability to the results obtained 

through the commodity storage model. With more precisely calibrated parameters the model would be 

able to better replicate the distribution of real commodity prices and also allow the researcher to 

measure impulse responses to changes in parameters of interest, such as the volatility of weather.  

 

5.7 Conclusion 

We have attempted to address the shortcomings of the commodity model with storage developed by 

William and Wright by augmenting the original model. This has involved modelling demand as iso-

elastic, incorporation of consumption smoothing/saving behaviour in the quantity demanded function 

and the inclusion of a multiplicative convenience yield. As opposed to the original model, the 
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augmented model exhibits characteristics typically found in real commodity pricing data; this includes 

a high first order auto-correlation, positive skewness and excess kurtosis. 

In addition to these distributional features our research is also the first to formally test for 

explosiveness in commodity prices in this literature. We have used Philips, Shi and Yu’s GSADF 

statistics for this purpose. We note that when these tests are conducted on real as opposed to nominal 

prices, the GSADF test is often unable to detect explosiveness. The reason for this is the presence of a 

mean reverting state in the real price series which is usually not significantly long in a nominal price 

series. Using the solution to the augmented commodity storage model we have shown simulated 

prices tend to resemble real as opposed to nominal commodity prices and thus, do not often exhibit 

statistically significant explosiveness even though high peaks and troughs continue to be present due 

to excess kurtosis.   

Impulse Response analysis shows asymmetric effects of negative and positive shocks when negative 

shocks lead to a stock-out. If quantity demanded and planned production are inelastic functions of 

price, most of the impact of the weather shock is absorbed by inventory owners. Price tends to 

respond by a greater magnitude if the weather shock leads to a stock-out. Irrespective of the size and 

direction of the shock, the impact of a weather shock on storage tends to be persistent. We also 

conducted a sensitivity analysis of the model solution and showed that the first order auto-correlation 

tends to be most sensitive to the variance of the weather shock, and the price elasticities of demand 

and supply respectively.  

Empirical analysis further supports the augmented commodity storage model. We use a measure of 

price elasticity of demand to find the first order auto-correlation for 5 storable commodities. Our 

empirical results are encouraging and while skewness and kurtosis are not always accurately captured, 

the first-order auto-correlation is estimated well. We believe that correctly calibrated parameters will 

further improve results.  

Future research areas are also highlighted. The model itself may be extended and incorporated in a 

broader General Equilibrium framework ala Arseneau et al. The augmented model itself can be used 

to analyse the impact of different types of weather shocks or different policies. Finally, the empirical 

validity of the model may be further scrutinized by using more precise calibration.  

Thus, this chapter shows that the commodity storage model still has traction and the augmentations 

we have added turn it into a useful tool to understand the impact of different policies or different 

shocks to storable commodities.   
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APPENDIX 5A – Tables and Figures 

Table 5.1: Calibrated values 

Parameter 𝜎 ℎ� 𝛿 𝑟 𝑘 𝜖𝑠 𝜖𝑑 𝐶 𝐿 

Calibration 0.10 1 0.02 0.05 0 0.2 -0.3 0.98 50 

 

 

Table 5.2a – Moments of Nominal Price series 

 Coffee Cotton Maize Sugar Wheat 

Auto-correlation 0.854 0.837 0.809 0.721 0.851 

Skewness 1.263 0.911 1.573 2.073 1.740 

Kurtosis 4.026 4.375 6.800 7.837 6.909 

PSY Test Result Yes No Yes Yes Yes 

 

 

Table 5.2b – Moments of Real Price series  

 Coffee Cotton Maize Sugar Wheat 

Auto-correlation 0.829 0.936 0.855 0.689 0.904 

Skewness 1.608 0.203 0.839 1.617 0.823 

Kurtosis 6.886 2.390 4.220 6.448 3.393 

PSY Test Result No No No No No 

 

 

Table 5.3 – Properties of simulated series 

 Augmented Model Iso-elastic Demand Linear Demand No CY 

Correlation 0.7960 0.6443 0.4986 0.1889 

Skewness 1.4411 5.1331 4.231 2.0812 

kurtosis 15.3942 57.2949 34.6041 9.2586 

stockouts 1.61% .99% 2.79% 36.29% 

Explosive series 14.12% 62.8% 15% 0%  
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Table 5.4 (a) Depreciation 

 𝛿 = 0.02 𝛿 = 0.00 𝛿 = 0.05 𝛿 = 0.10 

Correlation 0.7960 0.8030 0.7712 0.7302 

Skewness 1.4411 1.4006 1.7929 2.1952 

kurtosis 15.3942 14.3836 19.6657 24.8560 

stockouts 1.61% 1.65% 1.70% 1.32% 

Bubbles 14.12% 16% 18.0% 15.2% 

 

 

 

Table 5.4 (b) Demand Elasticity 

 𝜖𝑑 = −0.3 𝜖𝑑 = −0.2 𝜖𝑑 = −0.5 𝜖𝑑 = −1.0 

Correlation 0.7960 0.7024 0.8810 0.9472 

Skewness 1.4411 3.4439 0.0661 -0.5111 

kurtosis 15.3942 42.5758 4.4387 2.5124 

stockouts 1.61% 1.17% 2.51% 3.63% 

Bubbles 14.12% 30.0% 2.6% 0.6% 

 

Table 5.4 (c) Supply Elasticity 

 𝜖𝑠 = 0.2 𝜖𝑠 = 0.0 𝜖𝑠 = 0.5 𝜖𝑠 = 1.0 

Correlation 0.7960 0.9251 0.7243 0.6579 

Skewness 1.4411 0.4191 2.3217 3.1658 

kurtosis 15.3942 4.9359 26.8832 40.0015 

stockouts 1.61% 1.09% 1.57% 1.14% 

Bubbles 14.12% 38.8% 15.8% 16.4% 

 

Table 5.4 (d) Sensitivity of weather shock 

 𝜎 = 0.10 𝜎 = 0.05 𝜎 = 0.11 𝜎 = 0.15 

Correlation 0.7960 0.9235 0.7451 0.5175 

Skewness 1.4411 -0.3498 2.1271 5.2858 

kurtosis 15.3942 3.3257 21.6595 61.7512 

stockouts 1.61% 0.18% 2.19% 4.64% 

Bubbles 14.12% 0.2% 17.65% 34.8% 
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Table 5.4 (e) Interest Rate 

 𝑟 = 0.05 𝑟 = 0.0 𝑟 = 0.03 𝑟 = 0.10 

Correlation 0.7960 0.8021 0.7990 0.7870 

Skewness 1.4411 1.3991 1.4356 1.5478 

kurtosis 15.3942 14.0282 15.7072 16.5785 

stockouts 1.61% 1.55% 1.55% 1.73% 

Bubbles 14.12% 13.8% 12.2% 13.8% 

 

Table 5.4 (f) Consumption’s sensitivity to stocks 

 𝐶 = 0.98 𝐶 = 0.95 𝐶 = 0.99 𝐶 = 1.0 

Correlation 0.7960 0.8043 0.7880 0.7861 

Skewness 1.4411 1.2822 1.5547 1.5647 

kurtosis 15.3942 13.4020 17.2622 16.2360 

stockouts 1.61% 1.66% 1.65% 1.67% 

Bubbles 14.12% 12.2% 16% 15.2% 

 

Table 5.5 – Emprical estimates 

Commodity 𝝐𝒅 Actual 

Correlation 

Estimated 

Correlation 

Actual 

Skewness 

Estimated 

Skewness 

Actual 

Kurtosis 

Estimated 

Kurtosis 

Coffee -0.484 0.829 0.8540 1.608 0.2601 6.886 5.7091 

Cotton -0.497 0.936 0.8580 0.203 0.2088 2.390 5.5223 

Maize -0.743 0.855 0.9058 0.839 -0.3757 4.220 3.1788 

Sugar -0.573 0.689 0.8777 1.617 -0.0515 6.448 4.2348 

Wheat -0.746 0.904 0.9087 0.823 -0.3808 3.393 3.1379 
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Figure 5.1: Equilibrium Functions 
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Figure 5.2: Nominal and Real Price Series - Sugar 
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Figure 5.3: Simulated Price using Augmented Model Solution 
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APPENDIX 5B: IMPULSE RESPONSES 

This appendix explains the impulse responses that we generate in section 5.4.3. 

We define an impulse response to a shock of size 𝛿 in period 𝑡 − 𝑘 as 

∆𝑦(𝑡, 𝑘, 𝛿) = 𝑦(𝑡,𝑘, 𝛿) − 𝑦(𝑡,𝑘, 0)                                   𝟓𝑩 − 𝟏 

Where 𝑦(𝑡, 𝑘, 𝛿)is the shocked variable (e.g. price) at time 𝑡 that results from the shock 𝛿 + 𝜖𝑡−𝑘 at 

time 𝑡 − 𝑘 (𝜖 refers to the iid shock in the shocked variable’s process) whilst 𝑦(𝑡,𝑘, 0)is the value the 

variable takes on if no additional shock is introduced.  

If the data generating process of variable 𝑦 can be represented as an 𝑀𝐴(∞) 

𝑦(𝑡,𝑘, 0) = 𝑦(𝑡) = �𝜙𝑗𝜖𝑡−𝑗

∞

𝑗=0

                                      𝟓𝑩 − 𝟐 

 

And 

𝑦(𝑡,𝑘, 𝛿) = �𝜙𝑗𝜖𝑡−𝑗

𝑘−1

𝑗=0

+ 𝜙𝑘(𝜖𝑡−𝑘 + 𝛿) + � 𝜙𝑗𝜖𝑡−𝑗

∞

𝑗=𝑘+1

          5𝑩− 𝟑                    

This implies that ∆𝑦(𝑡,𝑘, 𝛿) = 𝜙𝑘𝛿                                                                    5𝑩− 𝟒   

If the data generating process cannot be represented as an 𝑀𝐴(∞) the value of the response will be 

different. The Impulse responses we generate in section 5.4.3 tend to impact the process for over 30 

years and likely have a different analytical form; however, the MA representation will suffice as an 

explanation. 

If instead of a 1 period shock, we have shocks in multiple periods e.g. 𝛿 in period 𝑡 − 𝑘 and 𝛿 in 

period t-k-1, we get a similar result. We define a 2 period impulse response in the following way: 

∆𝑦(𝑡,𝑘,𝑘 + 1, 𝛿, 𝛿) = 𝑦(𝑡,𝑘,𝑘 + 1, 𝛿, 𝛿) − 𝑦(𝑡,𝑘,𝑘 + 1,0,0)                  5𝑩 − 𝟓                                      

Where 𝑦(𝑡, 𝑘,𝑘 + 1, 𝛿, 𝛿) is the value of the shocked variable at time t that results from the shock 

𝛿 + 𝜖𝑡−𝑘  in period 𝑡 − 𝑘 and 𝛿 + 𝜖𝑡−𝑘−1 in period 𝑡 − 𝑘 − 1. The definition of 𝑦(𝑡,𝑘,𝑘 + 1,0,0) 

follows as before. 

Analogous to 5A-4 above, this implies that: 

∆𝑦(𝑡,𝑘,𝑘 + 1,𝛿, 𝛿) = 𝜙𝑘𝛿 + 𝜙𝑘+1𝛿                          5𝑩− 𝟔 
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Thus, if have ‘m’ shocks (𝛿1, 𝛿2, … , 𝛿𝑚) in ‘m’ consecutive periods (𝑡 − 𝑘, 𝑡 − (𝑘 + 1), … , 𝑡 −

(𝑘 + 𝑚)), the impulse response will be: 

∆𝑦(𝑡,𝑘, … ,𝑘 + 𝑚, 𝛿1, … , 𝛿𝑚) = �𝜙𝑗𝛿𝑗−𝑘+1

𝑘+𝑠

𝑗=𝑘

                   5𝑨 − 𝟕              
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APPENDIX 5C: DATA 

Table 5C-1: Data units for Commodity Consumption 

Commodity Units 

Coffee 1000 60 KG bags 

Cotton 1000 480 lb. Bales 

Maize 1000 Metric Tonnes 

Sugar 1000 Metric Tonnes 

Wheat 1,000,000 Metric Tonnes 
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CHAPTER 6: Conclusions 

By treating market efficiency as one of several states, we have provided different methodologies 

which allow us to estimate asset prices and measure the frequency of market inefficiency. This is an 

important contribution to the market efficiency literature as previous attempts have treated market 

efficiency as a binary concept. Market efficiency is desirable for an asset market as it negates the 

possibility of excess returns being earned by some market agents at the expense of others. Thus, our 

efficiency metrics could enable market experts to identify situations in which a market may be tending 

towards inefficiency. For some markets this may help policy makers identify when a policy change or 

intervention may become necessary. In addition to showing the utility of our methodologies using 

simulations we have also shown that they hold empirical relevance and in Chapter 4 we have also 

made theoretical contributions. Thus, this dissertation has complemented applied work with empirical 

and theoretical contributions.  

Our analysis began with a detailed overview of the literature on market efficiency with an emphasis 

on explosiveness. We presented an econometric test that enabled us to identify periods where 

commodity markets may have been explosive. By contrasting this test with existing tests we showed 

that it was a viable alternative for detecting market efficiency. Its main shortcoming was its inability 

to precisely date periods of inefficiency; however, the test performs better than alternatives when 

small samples our considered. Thus, Chapter 2 provided a brief introduction and insight into the crux 

of this dissertation. We found that for commodities most episodes of explosiveness were concentrated 

around the oil price crises in the 1970s and the financial crisis of 2007-08.  

We then showed that for a storable commodity, an auto-regressive switching state reduced form is 

possible under rational expectations. This allows us to estimate asset prices through state-switching 

autoregressive models. The first approach that we introduce uses Markov-state switching to estimate 

asset prices. Our contribution to this approach is to use a transition matrix derived from an adaptation 

of the PSY procedure (explained in Chapter 3). By using information on explosiveness and mean 

reversion in the sample, we are able to estimate a transition matrix. If this transition matrix is used in 

the maximum likelihood procedure for estimating a Markov switching autoregressive model we get 

much better results than the case where the transition matrix is directly estimated. We show that we 

gain a high probability for explosiveness in time periods which were typically associated with periods 

of explosiveness (such as the financial crisis from 2007-08) and get a high probability for mean 

reversion in time periods where prices were unusually low (such as the post financial crisis period).  

The second methodology for detecting market inefficiency uses threshold autoregressions instead of 

Markov-switching. Since market efficiency implies a random walk process for log asset prices, we 

first derived conditions which need to be satisfied for the existence of a mean and a variance in the 



155 
 

steady state. Building upon the results of these formulae we show that if asset returns or asset prices 

can be estimated using a threshold autoregression where states switch based on an exogenous trigger 

variable, we can identify periods in which asset markets exhibit inefficiency. This serves as a metric 

and enables us to calculate proportional efficiency for asset markets. To depict our methodology we 

empirically estimated the S&P500 and the FTSE100. Our results show that with the most general 

threshold model (i.e. one with a switching drift), the S&P500 and the FTSE100 are mostly efficient 

with period of inefficiency concentrated around the dot-com bubble and the oil price crises. We also 

highlighted how these results may change if model specification is not considered appropriately. 

Additionally, we also provided a limitation of tests of explosiveness and showed that when an asset 

market exhibits mean reversion, explosiveness may be difficult to detect using econometric tests.   

Finally, we modified a structural model for the real price of a storable commodity. We made 3 

changes to the original model and solved it using numerical procedures. The 3 changes introduced a 

convenience yield, incorporated saving behaviour and used an iso-elastic demand curve instead of a 

linear one. The resulting solution is able to capture autocorrelations of real commodities when 

calibrated appropriately. In addition, it is also does a reasonable job in capturing other distributional 

properties such as skewness and kurtosis. Calibrating the model for real data is not a trivial exercise 

and requires the identification of elasticities using data on price and quantities. We believe that the 

augmented commodity storage model could prove useful for policy analysis particularly in the light of 

climate change which is likely to be become a growing concern in the future and which is also the 

main mechanism through which commodity prices go through periods of explosiveness and mean 

reversion. Through simulation analysis we have also shown that periods of adverse weather, 

particularly those resulting from persistent negative shocks can have long lasting impacts and can 

cause the kind of explosive behaviour in commodity markets that is often referred to as a bubble.  

Thus, this dissertation provides a new perspective on market efficiency by treating it as a state. Not 

only have we provided objective methodologies which can indicate when markets are efficient or 

inefficient but have also sought to explain why these periods occur by augmenting the commodity 

storage model. A number of research streams open up as a result. We wish to apply our 

methodologies to more asset markets, particularly the market for exchange rates. From an 

econometric perspective additional theoretical results may be derived for the case where the threshold 

autoregressive model has a Markov-chain trigger variable instead of an exogenous trigger variable. 

The commodity storage model can also be extended or modified to make it more relevant to analyse 

other commodities such as metals.   
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