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ABSTRACT 

A warming climate, increasing frequency and severity of extreme heat events, and the heat island 

effect are cumulatively expected to exacerbate climate thermal loading on urban buildings. This 

in turn could lead to increased summertime overheating risk, with any active means for address-

ing this likely to influence future energy consumption and CO2 emission patterns. This paper 

examines how the microclimatic loading presented by the heat island (UHI) effect influences 

summertime adaptive comfort in urban residential buildings. The method for addressing this is 

the simulation of a residential street canyon within the London heat island. Key findings high-

lighted adaptive capabilities to achieve summertime ‘comfort’ in most rooms without the need 

for energy intensive mechanical cooling. The indiscriminate and widespread adoption of mechan-

ical cooling within the canyon length is estimated to result in a 0.4 K increase in nocturnal 

canyon temperatures, and an additional 4.4% of CO2 released to the climate. In contrast, a 

targeted approach to addressing residual risk more than halves the canyon CO2 emission estimate, 

which in turn highlights the necessity for detailed overheating assessments in estimating energy 

use in ‘difficult to cool’ residential neighbourhoods within UHIs.  

Keywords: Adaptive comfort; urban heat island effect; space-conditioning; cooling loads; urban 

energy use. 

 

1. Introduction  

The influences of climate change and the heat island (UHI) effect are expected to exacerbate envi-

ronmental thermal loading on urban buildings. This is likely to lead to increased summertime overheat-

ing risk with potential for causing adverse effects to the health and wellbeing of building occupants. The 

use of active means for addressing such heat-related risks are likely to influence future energy consump-

tion and CO2 emissions, particularly in residential areas where cooling has traditionally received less 

attention in temperate climate cities in Europe and the UK.  

The heat island experienced in cities relative to rural contexts results from a net positive thermal 

balance that arises from surface property changes; including increased morphological roughness that 

affects the radiative balance and convective cooling efficiency [1–3], high heat storage and low albedo 

material use [4], reduced evapotranspiration from green and blue-space loss and high surface water runoff 

[3,4], and increased heat and pollution generated from human activities [1]. The UHI effect that results 

is an additional environmental thermal load that affects how energy is used within buildings, with 
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potential benefit in winter and increased consumption in summer. Building energy use in turn contrib-

utes to and intensifies UHIs by feeding back heat as anthropogenic emissions [4,5]. If high-energy solu-

tions are increasingly adopted to condition buildings in the summer, the net annual influence could 

generate a positive feedback-loop of ever-worsening energy expenditure, CO2 emissions, and  a warming 

and unhealthy urban environment [6,7].  

The purpose of this study is to identify summertime heat island influence and its degree of signifi-

cance to indoor conditions of urban residential units, and its relevance when considering adaptive com-

fort assessments. To achieve this in a manner that is not reliant on site-specific measured data and 

suitable for wider applicability, the study presents the combined approach of using an urban climate 

framework and a building energy model, as a simplified and computationally efficient simulation path-

way to estimate UHI influence on indoor comfort and corresponding building energy use. 

1.1. Background to domestic overheating 

Dwelling characterisation is a significant determinant of overheating risk [8]. Main characteristics 

include solar heat gain defences, ventilation rates, thermal capacity, and insulation of the structure; all 

of which describe how dwellings modify the coupling between outdoor and indoor environments [9]. 

Reviews of the UK dwelling stock have revealed those built before 1920 (particularly uninsulated loft 

conversions), 1960s, and post-1990s to be at heightened risk [9]. In contrast to larger detached dwellings, 

apartment flats and mid-terraced dwellings tend to have increased vulnerability due to their compact 

arrangements and spatial standards [10,11]. As a concern, most high-density arrangements (e.g. 95% of 

high-rise flats) tend to be sited in central urban areas, where the risk of overheating is heightened by 

high occupancy gains and the additional climate load from the UHI effect [11]. In this study, a simplified 

climate model is utilised to account for this heightened urban risk by simulating a reasonable approxi-

mation of the relevant local canyon climate. This is significant given that the weather file used in 

simulations have been found to present the largest impact on overheating estimation [12]. 

Previous studies on domestic overheating have consistently identified higher risk for top-floor flats 

and terraced house attics [13]. This is attributed to relatively higher exposure to solar thermal loading 

transferring into indoor rooms (pronounced with poorly insulated constructions); as well as by the trap-

ping of buoyancy-driven internal airflow (pronounced with constructions with high airtightness). Single-

aspect arrangements (particularly south-facing) exacerbate the issue by preventing cross-ventilation and 

being adversely affected by heat flow from adjoining units [14]. The management of flats and multiple-

occupation units can also place arrangements at risk, as inadequately ventilated communal areas and 

circulation routes could transfer gains to adjoining dwelling units. Ground floor and basement units in 

contrast have been found to be relatively cooler, owing to reduced exposure to solar gains and greater 

heat conduction to the subsurface [15].  

Until recently, such overheating risk had been estimated with the use of fixed thresholds. In recent 

times these have been criticised as attempts to define a phenomenon that is inherently imprecise [16], 

as well as being insensitive towards adaptive capacities particularly in free-running buildings. Updates 

to CIBSE guidance have consequently revised assessment practices to utilise Adaptive Comfort theory 

[17], which suggests a ‘dynamic’ threshold that is sensitive to external climate variations, as oppose to 

a fixed one that is either arbitrary or based on limited evidence. The approach allows for the natural 

adaptation of human physiology to seasonal durations of overheating as well as short-term daily inten-

sities and relative maximum thresholds. This also allows for specific climate considerations such as heat 
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island and heatwave influence to be included in determining overheating risk and prevents periods of 

discomfort and concomitant energy demand for cooling from being overestimated. 

1.2. Adaptation and occupant behaviour  

Adaptation may be approached as environmental and behavioural modifications. The environmental 

adaptation of the built-environment may be approached from macro-scale urban planning to micro-scale 

detailing of buildings and their constituent rooms. The adaptation of urban parameters is associated 

with UHI influence, with the central objective to minimise heat storage factors of the urban energy 

balance [1]. Urban morphology, materiality, and green and blue-space distribution are such parameters 

that urban planning processes can modify to mitigate UHI intensities [3]. It is critical to incorporate 

such principles into urban policy, as their implementation will in turn drive building specific adaptations 

and determine their eventual efficacy. At the building scale, the available adaptation measures are 

numerous with varying efficiencies. Good ventilation for example is considered a fundamental necessity 

for moderating a free-running dwelling’s indoor climate. Higher rates achieved by opening window vents 

is associated with efficient dissipation of heat from internal gains and absorbed climate loads. It increases 

airflow from one space to another to facilitate convective and advective heat dissipation. The existence 

of a temperature gradient (higher indoor temperature relative to outdoor) will make use of buoyancy 

forces to achieve natural convection. Convection is also forced by the movement of air by induced 

currents (pressure differential), with wind loading and turbulent flow on and around a building envelope 

forcing heat loss to a much greater efficiency, regardless of temperature gradients. Cross-ventilation 

facilitated by dual-aspect arrangements increases this forced convection benefit, while vent arrangements 

assist with buoyancy-driven natural convection flow. Vent opening however has limitations in certain 

conditions. On calm days with low wind flow (anticyclonic conditions typical of heatwaves and high 

UHI intensity) forced convection is less available for efficient heat dissipation, while conditions with 

negligible internal-to-external temperature gradient will reduce natural convection dissipation. This is 

particularly critical for night-purge ventilation strategies, as with a warming climate the diurnal tem-

perature variation may not be enough to purge stored heat [18]. 

In addition to such behavioural tasks that seek to modify the environment, heat stress and thermal 

comfort relief is dependent on how occupants modify their own physiological state. The adjustment of 

activity levels (metabolic rate) and/or application of clothing are key physiological adaptations to con-

sider and are dependent on the description of the occupants concerned. Effective engagement with 

adaptive strategies is also influenced by occupant rituals (routines and habits) [19]. Some habits are 

governed by occupant automatic decision-making processes, while others will be rational and reflective. 

The efficiency of engagement with adaptive measures consequently requires a deeper understanding of 

occupant descriptions as well as how their rituals might favour or inhibit the use of these measures. 

Building design must therefore seek to take account of occupant practices, rather than attempting to 

impose ideal behaviours. Individual occupant control in this regard has significant bearing on how users 

respond to warmer conditions. Greater control of the indoor climate is believed to increase the perception 

of comfort and encourage adaptive actions such as vent opening [20]. In domestic circumstances, occu-

pants often have considerable advantage over the ability to control their environment unlike communal 

settings. This however is dependent on the physical and mental capacity of occupants. If occupants are 

faced with a vulnerability as with older people, lack of control over their surroundings may render 

adaptive approaches redundant. The nature of controls and the complexity of their operation are there-

fore significant aspects to consider in the design of Adaptive Comfort friendly domestic spaces.   
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2. Methodology 

To approximate urban climate processes and influences, this study utilises the validated multiscale 

coupled framework published as the ‘Urban Weather Generator’ or UWG (V4.1.0) [21,22]. The frame-

work is based on multiscale energy balances and Monin-Obukhov similarity theory and is composed of 

four coupled sub-models. A summary of principal data exchanges is presented in Gunawardena et al. 

[23], while detailed description of its workings is included in Bueno et al. [22,24], with field data valida-

tions from Basel, Toulouse, and Singapore included in Bueno et al. [22,24] and Nakano et al. [25]. The 

framework is primed with the input of a rural weather file, which is used by the sub-models to calculate 

temperature and humidity values to compile a modified urban canyon-specific weather file. This output 

file can then be used by dynamic building thermal modelling software to simulate indoor conditions and 

energy use of buildings representative of the canyon neighbourhood [23].   

In this study, a case study morphology that represents an urban residential district in London 

(maritime temperate) is considered. To aggregate results, a site within a relatively uniform morpholog-

ical context was selected, and a mid-terraced canyon section was extracted to represent the increased 

vulnerability of such compact arrangements [10,14]. This canyon section represents a 100 m extent of 

Gloucester Terrace in the Bayswater Conservation Area of Westminster. The buildings on either side of 

this canyon represent Grade II Listed terraces with narrow 4-5 storey townhouses including attics and 

basements (see Fig. 1). The construction includes stuccoed uninsulated masonry facades typical of the 

area, thick masonry uninsulated party-walls, timber joisted floors, and uninsulated slate and lead 

trimmed mansard roofs (see Table A1)[26]. Most units have been internally converted to multi-occu-

pancy arrangements (which makes significant contribution to meeting housing needs of the area) [27], 

some with energy performance enhancements (disregarded for this study). 

     

Fig. 1. Gloucester Terrace, typical canyon view (© Google Earth, Street-view 2018) (a); and typical section (b). 

The Gloucester Terrace morphology was normalised by averaging parameters to generate a rough-

ness profile with a 500 m characteristic radius. The rural weather data used for this study was the 

Typical Meteorological Year (TMY) for London Gatwick (LGW) (~40 km due south of the site). This 

input weather data represents the rural boundary condition where the influence of the city is assumed 

negligible, and follows the ‘rural’ designation advocated by CIBSE [28] in relation to simulating the 

relative influences of London’s climate. The roughness profile, together with the rural weather file were 

then input to the UWG to generate a new weather file that includes UHI influence on air temperature 

and humidity values for the canyon.   
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The resulting UWG profile was then applied to a thermal model of a representative mid-terraced 

unit of the Gloucester Terrace canyon, created using the dynamic simulation platform IES-VE [29] to 

estimate indoor environmental conditions and energy use. This simulation unit was considered for two 

occupancy profiles including small families (FamOcu) and older couples (EldOcu) as detailed in Appen-

dix: Table A1. The overheating assessment firstly considered the now superseded CIBSE [30] and EST 

[31] fixed threshold criteria as a reference for the second assessment of the current Adaptive Comfort 

method [12,16,32]. The adaptive actions tested included increasing air change rates by increased window 

operation and usage of motorised fans. To address overheating concerns, air-conditioning scenarios were 

simulated for the unit in isolation as well as for the entire canyon neighbourhood (Table 1). 

Table 1 

Scenarios simulated. 

Scenario Description  

Base-LGW Free-running base unit (as existing) simulated with rural LGW weather data 

LGW+UHI Free-running base unit simulated with UHI morphed weather data from the UWG 

…+AC0 Cooling load applied to Base-LGW unit @ summer profile (see Appendix, Table A2) 

…+AC1 Cooling load applied to LGW+UHI 

…+UAC Simulated with widespread cooling load in urban canyon (40 units) 

3. Results 

The following presents firstly, the features of the weather files generated by the UWG with UHI influence 

included; secondly, indoor overheating assessments for the mid-terraced unit at Gloucester Terrace; and 

finally results from cooling scenarios. 

3.1. Generated urban microclimate profile  

 

Fig. 2. Annual UHI ∆T (K) frequencies for canyon. 

The UWG translation produced a microclimate profile for the Gloucester Terrace canyon with a 

UHI intensity (∆T) annual mean of M = 1.72 K (SD = 1.66) and a summertime mean of M = 1.65 K 

(SD = 1.57); including summer  = 12.2 K and  = -2.2 K. While a direct comparison 
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with observed historical data is not straightforward given the changes a city such as London has expe-

rienced over the years [32], a few studies can be presented to highlight the relative significance of the 

descriptive features of this simulation. The summer mean UHI ∆T for example is similar to the recorded 

1.6 K for central London reported by Chandler [33] for data between 1931 and 1960; although is lower 

than the Watkins et al. [34] value of ~2.8 K measured in 1999. The simulated peak is considerably higher 

than the Watkins et al. [34] observed 8.0 K; 9.5 K derived from Bohnenstengel et al. [35] modelled data; 

and Doick et al. [36] measurements of 10.0 K for the nocturnal UHI. Reviews of UHI ∆T frequency 

distributions highlight these peak values as rare occurrences (<1%) [32]. The singular (hourly) high 

figure of the UWG translation could therefore be regarded as an extreme value in a frequency distribu-

tion that included intensities >9 K representing <0.2% of the annual hours (Fig. 2a). 

3.2. Overheating estimation with fixed thresholds  

Fixed thresholds for defining overheating vary between sources. As examples, the simulation of the 

Gloucester Terrace unit was considered for both FamOcu and EldOcu occupation profiles in relation to 

the criteria defined by CIBSE [30] and EST [31]. Under single-aspect (no cross-ventilation) and free-

running conditions with minimal adaptive measures, the simulation results for both profiles demon-

strated that nearly all rooms exceeded the CIBSE [30] overheating criterion (Fig. 3a). Both north and 

south-facing rooms demonstrated positive correlation with building storey level, suggesting that over-

heating hours of exceedance increase with floor level; e.g. highest risk is at south-facing attic room, 

which overheats (hrs >26°C) for 8.8% of its occupation (FamOcu profile). However, for higher thresholds 

of >28°C and >26°C for the EldOcu profile, overheating hours of exceedance at the attic level was 

slightly lower than for the penultimate floor level. This counterintuitive outcome was caused by a feature 

of the dwelling, where the attic storey offset that facilitates the mansard-parapet junction detail (Fig. 

1b) presents a reduced floor area (~7 m2 less) for the rooms at this level than those below (in addition 

to a reduced head-height). This resulted in the area-based internal gains profile calculating lesser gains 

relative to lower rooms; while lower window solar-gain from smaller extents (35-45% less area than floors 

below) and heat loss from a more exposed surface also contributed.  

 

Fig. 3. Summertime overheating hours of exceedance by profile, floor level, and room (a); CIBSE hrs >26°C and 

EST degree-hrs >27°C by floor level, room, and profile (b); and thermal gains by floor level and room for FamOcu 

profile (c). 



 

7 

 

The results for the FamOcu profile highlighted a significant higher overheating risk for south-facing 

rooms (M = 562 hrs, SD = 216) than north (M = 378 hrs, SD = 154) when the CIBSE [30] hrs >26°C 

criterion was considered. A similar relationship was demonstrated with the EST [31] degree-hrs >27°C 

assessment for south (Mann-Whitney Mean Rank = 13.9) and north-facing (MR = 7.1) rooms (though 

the EST threshold is defined as an air temperature, it is considered in this study as a dry-resultant 

temperature or DRT for comparative assessment). The EST [31] assessment gives a better account of 

overheating severity, which highlighted first and second floor rooms as experiencing considerably greater 

severity than attic rooms (Fig. 3b). This again was caused by the above-mentioned mansard roof features 

of the unit that modify internal and external gains for these floor levels (Fig. 1b). The peak-day gains 

profiles highlighted that south-facing living rooms peak in the morning hours, while north-facing rooms 

peak (greater in relative magnitude) in the afternoon, which is not ideal for the higher daytime occu-

pancy of the EldOcu profile. Gains analysis also demonstrated that the cooler temperatures achieved in 

basement rooms to be caused by a heat flux to the subsurface (through the uninsulated floor). For 

example, with the FamOcu profile ~3 MWh of thermal energy representing ~70% of summer gains for 

the rooms were conducted through to the ground. 

3.3. Adaptive measures and assessment  

The simulation of the unit adopted standard ventilation rates advised by CIBSE [30] for windows 

left open only during the day and following the assumed summer occupational profile (i.e. 3.0 ach). 

Night-time ventilation operation was excluded from this simulation due to assumed security and noise 

concerns given the central urban locality [37,38]. To assess the influence of ventilation rates on over-

heating hours (>26°C), the model for the FamOcu profile was simulated for the summer period with 

increasing air-change rates facilitated by increased durations of opened vents. 

 

Fig. 4. Overheating hours of exceedance (DRT >26°C) variation with increasing air-change rate. 

Under single-aspect free-running conditions, the results demonstrated summertime overheating 

hours predictably decreasing with increasing air-change rates following a polynomial regression (Fig. 4). 

CIBSE [30] guidance states that if 24-hour ventilation operation is utilised, air-change rates may be 
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increased by up to 10 ach. The results show that beyond 10 ach, the reduction in overheating is minor, 

while meeting the 1% CIBSE [30] criterion exclusively from an air-change rate increase would require 

very high rates to be achieved; e.g. for the ‘average for rooms’ this is likely to be ~13 ach.  

The methodology presented by CIBSE [16,32] restricts the Adaptive Comfort assessment to none-

heating months from May-to-September (N = 153 days), with rooms requiring compliance with a min-

imum of two out of the three Criteria. These are defined in terms of the difference (or ∆T) between the 

actual room operative temperature ( ) and the limiting maximum acceptable temperature ( ); 

with Criterion 1 requiring the number of hours ( ) that ∆T is ≥1 K to be ≤3% of occupied hours;  

Criterion 2 that accounts for overheating severity requiring the weighted exceedance ( ) to be ≤6 on 

any one day, and Criterion 3 sets the upper limit  temperature ( ) where ∆T shall not exceed 

4 K. For Gloucester Terrace, the FamOcu profile was considered under the Category II  threshold, 

while the EldOcu profile was considered under Category I that defines a more onerous  (-1 K) for 

assessment [16]. The results showed that ‘failure-days’ (days where two out of the three criteria are not 

satisfied) for both profiles gradually increased with floor level, with the notable exception of the attic 

level (Fig. 5). This finding and its explanation is in common with the previous fixed threshold assess-

ment. Comparing both occupant profiles highlights that the EldOcu profile (higher expectation) results 

in notably higher failure-days mostly due to the onerous . In terms of orientation, both profiles 

demonstrated that maintaining comfort with adaptive strategies as challenging for south-facing rooms 

than north-facing. For most days and in the most frequented spaces (i.e. north-facing bedrooms) of the 

FamOcu profile, comfort temperatures were achieved by adaptive practices (Fig. 5a).  

      

Fig. 5. Summertime (May-to-September) Adaptive Comfort [16,32] failure-days (a); and Criterion 1-3 failure-day 

breakdown (b). 

Failure-days for both profiles demonstrated a strong positive correlation to Criterion 3, moderate 

correlation to Criterion 1, and a weak correlation to Criterion 2. This suggests that the variance in 

overheating failure-days is influenced by the failure of Criterion 3, followed by Criterion 1, and the least 

by Criterion 2 (considering daily severity of overheating). If the room is within the seasonal duration 

criterion ( ); and does not exceed the  threshold (heat stress safeguard); a warm day that exceeds 

the daily criterion ( ), may fall within the permitted ‘comfort range’. This relaxation is significant for 
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anomalous extreme heat events, when for short durations warmer temperatures may be endured pro-

vided the  limit is not exceeded. Sensitivity of the CIBSE [16,32] Adaptive Comfort assessment in 

relation to the CIBSE [30] 1% hours of exceedance (>26°C) criterion for the same period highlighted 

that save for basement rooms, all other floors demonstrated significant reduction in overheating failure-

days; notably pronounced for north- rather than south-facing rooms (Table 2). 

Table 2 

Sensitivity of Adaptive Comfort against fixed threshold assessment. 
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 % % % % % % % % % % 

Reduction FamOcu 0 0 98 78 98 73 98 71 98 73 

Reduction EldOcu 0 0 74 73 74 51 74 50 77 68 

 

Table 3 

UHI influence on overheating assessments.  
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FamOcu Profile 
Fixed >26°C exceedance (% of failure-days) 

Base-LGW  3% 12% 18% 39% 22% 47% 22% 48% 22% 39% 

LGW+UHI 10% 18% 29% 44% 30% 51% 30% 52% 29% 48% 

UHI influence +7% +6% +11% +5% +8% +4% +8% +4% +7% +9% 

Fixed >27°C degree-hrs (%) 

Base-LGW  0% 2% 4% 15% 4% 25% 5% 26% 4% 17% 

LGW+UHI 1% 5% 11% 26% 12% 41% 14% 43% 14% 34% 

UHI influence +1% +3% +7% +11% +8% +16% +9% +17% +10% +17% 

Adaptive Comfort (% of failure-days) 

Base-LGW  0% 0% 0% 5% 0% 10% 1% 10% 0% 5% 

LGW+UHI 0% 0% 1% 10% 1% 14% 1% 15% 1% 13% 

UHI influence 0% 0% +1% +5% +1% +4% 0% +5% +1% +8% 

EldOcu Profile 

Fixed >26°C exceedance (% of failure-days) 

Base-LGW  8% 16% 24% 43% 27% 48% 27% 48% 21% 40% 

LGW+UHI 9% 16% 25% 43% 27% 48% 27% 48% 25% 43% 

UHI influence +1% 0% +1% 0% 0% 0% 0% 0% +4% +3% 

Adaptive Comfort (% of failure-days) 

Base-LGW  0% 1% 7% 23% 6% 11% 7% 24% 1% 12% 

LGW+UHI 0% 1% 7% 24% 7% 12% 7% 24% 6% 14% 

UHI influence 0% 0% 0% +1% +1% +1% 0% 0% +5% +2% 

The adaptive comfort assessment is influenced by the prevailing air-velocity in a room. The indoor 

operative temperature ( ) may be revised down from its default value (relatively still) to address the 

cooling effect provided by motorised fan use controlled by occupants. If such fans raised room airflow 

velocity from 0.1 to 0.6 ms-1 for example,  could be adjusted down by up to 2 K (assuming 1met for 
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sedentary person) [32]. Applying this additional adaptation to the summer peak-day of 30 June (FamOcu 

profile with default 3.0 ach natural ventilation), resulted in rooms deemed to overheat reduced from 

eight to three rooms. The overall effect was greatest for south-facing rooms from the first floor and 

above. As far as the Criteria are concerned, greatest effect was noted for Criterion 3 and 2, although 

Criterion 2 suggested a marginal (1%) increase in failure at higher-level south-facing rooms (Table 4). 

Table 4 

Impact of fan usage on summertime overheating for FamOcu profile. 

Fan usage  
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Reductions: % % % % % % % % % % 

Criterion 1 - - - 0 - 0 - 0 - 0 

Criterion 2 - 0 67 0 80 0/1* 86 0/1* 83 82/1* 

Criterion 3 - - 0 75 0 48 0 48 0 75 

Overall overheating - - 0 0 0 47 0 48 0 95 

* Failure of Criterion 2 increased by 1%. 

3.4. Cooling load applications 

At high floor level south-facing rooms, overheating risk was still estimated following the considera-

tion of adaptive measures to suggest some requirement for alternative cooling measures. As means of 

addressing this risk, a domestic air-conditioning scenario for the entire unit (scenario AC1, Appendix, 

Table A2) was first simulated. This indiscriminate (entire unit) application addressed overheating risk 

(disregarding adaptive contributions) with 3.8% additional annual energy usage (Table 5). The impact 

of accounting for the UHI effect (comparison between AC0 and AC1 scenarios, Table 1 and Table A2) 

was highlighted by a 24.6% increase in the chiller load estimate for the unit. 

 
* Period between 2005-11; and ** 2008-13 [39]. 

Fig. 6. Simulated annual energy usage comparison with UK national averages (a); and summer peak day (30 

June) Gloucester Terrace canyon dry-bulb temperature (DBT) and UHI intensity profile comparison with and 

without canyon cooling loads (+UAC) (b). 
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The Gloucester Terrace canyon (100 m with 40 mid-terraced units) was subsequently simulated to 

estimate the impact of widespread and indiscriminate application of air-conditioning on canyon temper-

atures. Visual inspection of the peak-day UHI ∆T profiles for LGW+UHI and LGW+UHI+UAC sce-

narios highlighted that the influence was minimal during the morning-to-midday period, while in the 

evening and at night a pronounced increase in canyon temperatures was evident (Fig. 6b). The sum-

mertime hourly UHI ∆T comparison for both scenarios indicated a statistically significant difference in 

estimated canyon temperatures, with UHI ∆T mean for the free-running canyon (LGW+UHI) elevated 

from M = 1.65 K (SD = 1.7, N = 5064 hrs) to M = 1.81 K (SD = 2.02) with the widespread use of 

domestic air-conditioning (LGW+UHI+UAC). This equated to a summertime hourly average tempera-

ture increase of 0.1 K during the day and 0.4 K during the night (8PM-6AM). 

As rejected heat from widespread air-conditioning use adds to environmental thermal loading, a 

modest 1.9% annual energy reduction was estimated relative to the free-running unit with no air-condi-

tioning (LGW+UHI+UAC), attributed to a marginally reduced heating load estimated at the start of 

the heating period (Table 5). With cooling also employed at the unit (LGW+UHI+AC1+UAC), the 

influence of widespread air-conditioning contributed to a modest 0.3% increase in energy use (increased 

chiller load). In terms of aggregated CO2 assessments, this future scenario resulted in an additional 

~70 metric tons of CO2 released to the climate. However, when a targeted approach (addressing residual 

risk in difficult to cool rooms) was simulated, this canyon emission estimate was reduced to ~30 t. 

Table 5 

Summary table of annual energy use* and CO2 emission influence. 

Scenario  Total en-

ergy* 

(MWh) 

% Total elec-

tricity* 

(MWh) 

Total 

nat. gas* 

 (MWh) 

Total CO2 

emissions 

(kgCO2) 

% Canyon 

aggregate CO2 

emissions 

(kgCO2) 

Influence of the UHI effect 
       

Base-LGW  122 
 

56 66 43,485 
  

LGW+UHI 106 
 

56 50 40,093 
  

Savings 16 13.1% 0 16 3,392 7.8% 135,680 

Influence of adding summer air-conditioning to unit (to address overheating) 

LGW+UHI 106 
 

56 50 40,093 
  

LGW+UHI+AC1 110 
 

60 50 42,004 
  

Savings -4 -3.8% -4 0 -1,911 -4.8% -76,440 

UHI influence on summer air-conditioning of unit (to address overheating) 

Base-LGW+AC0 123 
 

59 64 44,867 
  

LGW+UHI+AC1 110 
 

60 50 42,004 
  

Savings 13 10.6% -1 14 2,863 6.4% 114,520 

Effect of widespread air-conditioning for entire canyon on free-running unit 

LGW+UHI 106 
 

56 50 40,093 
  

LGW+UHI+UAC 104 
 

56 48 39,739 
  

Savings 2 1.9% 0 2 354 0.9% 14,160 

Effect of widespread air-conditioning for entire canyon and unit 

LGW+UHI 106  56 50 40,093   

LGW+UHI+AC1+UAC 110  68 42 41,838   

Savings -4 -3.8% -12 8 -1,745 -4.4% -69,800 

Effect of widespread air-conditioning for entire canyon on air-conditioned unit 

LGW+UHI+AC1 110.1 
 

60 50 42,004 
  

LGW+UHI+AC1+UAC 110.4 
 

68 42 41,838 
  

Savings -0.3 -0.3% -8 8 166 0.4% 6,640 

* See Fig. 6a for usage comparison with DECC UK national averages. Negative values indicate relative increases. 
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4. Discussion 

Previous findings including higher overheating risk in top-floor rooms, single-aspect (particularly 

south-facing), and multiple occupancy arrangements; and lower risk in ground floor and basement rooms 

generally agree with Gloucester Terrace simulation results; save for minor deviations explained by the 

unique features of the unit. It is worth noting that compared to dwellings built around the 1960s, post-

1990, and compact purpose-built top-floor flats built in recent times, observations at nineteenth century 

terraced housing such as at Gloucester Terrace have been found to be less pronounced [11,13,14,40]. 

Examining diurnal change in overheating is significant for determining occupancy risk. A study of diur-

nal profiles of English dwellings (n = 224) for example had monitored indoor temperatures to be at their 

highest during evening and lowest during early morning hours [40]. The Gloucester Terrace simulation 

for the FamOcu profile agreed, although the EldOcu profile demonstrated the daytime average  for 

all bedrooms as marginally higher than evening; possibly explained by higher daytime occupancy result-

ing in marginally increased gains. The performance of the envelope and its material properties are key 

determinants of how the lagged temperature response is experienced, with envelopes with higher thermal 

inertia likely to shift this risk to evening and nocturnal periods [23,41]. In bedrooms this shift could lead 

to nocturnal discomfort, sleep deprivation, and heat-related health issues. Data from a study of London 

dwellings (n = 36) monitored during the summer of 2009 highlighted that >40% exceeded the recom-

mended CIBSE [30] night-time overheating threshold [8]. For north-facing bedrooms at Gloucester Ter-

race with its high thermal mass facades, the nocturnal hours (8 PM to 6 AM) that exceeded the 24°C 

sleep deprivation threshold [12,32,42] was estimated at 38% and 27% for FamOcu and EldOcu profiles 

respectively. These high percentages suggest that summertime nocturnal sleep deprivation may already 

be an issue for occupants. For both profiles however, the CIBSE [12] critical bedroom threshold of 

temperatures >26°C for not more than 1% (≤33 hrs) of annual nocturnal hours (10 PM to 7 AM) was 

not exceeded.  

The principal adaptation considered in this study was window vent operation by occupants. There 

are many reasons for why dwelling occupants operate vents. These could relate to ventilation, noise, 

spatial layout, security and safety, habit, and thermal relief concerns. The Dubrul [19] survey of vent 

opening practices in temperate climates found the principal reasons to be associated with improving air 

quality and maintaining the desire to relate to the outdoor environment, rather than seeking thermal 

relief. It was demonstrated that the vents were closed by occupants to control temperature, mainly to 

keep warm rather than cool. The survey also found that vents were less likely to be opened in flats, 

older dwellings with sliding sash windows or with open fireplaces (e.g. at Gloucester Terrace), with 

central heating; high air-tightness, side-hung windows; and non-south-facing rooms. Habitual practices 

of occupation were also identified as a key influence [19]. For example, it could be said that some 

occupants prefer to sleep with a vent open to facilitate the exchange of ‘fresh’ air, while inner-city 

dwellers will be discouraged by concerns such as noise, pollution, and security. Such barriers to effective 

vent operation in dwellings may prove to be particularly disadvantageous during extreme heat events. 

For example, a sample study of dwellings in London (n = 5) and Manchester (n = 4) during the 2003 

pan-European heatwave found indoor spaces to be ~5 K warmer, mainly explained by the lack of occu-

pant engagement [43]. While urban difficulties could be addressed by using technical solutions such as 

acoustic baffles, insect mesh, and security barriers, dwellings in Conservation Areas such as Gloucester 

Terrace will be challenged by the need to conserve their historic appearance that often precludes signif-

icant modification to vents.  
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The secondary adaptation considered the localised thermal relief achieved by occupant use of fans. 

Motorised or otherwise, the device cools by enhancing forced convection. In this study, this adaptive 

influence reduced overheating risk in most rooms to highlight how a device with low-to-moderate energy 

consumption could be utilised to adapt to warmer conditions (Table 4 and Table 6). At high floor level 

south-facing rooms however, residual risk was still estimated to suggest the requirement of additional 

cooling measures.  

Table 6 

The adaptive measure of occupant fan usage and its influence on overheating risk. 

Summertime residual  
overheating 
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FamOcu Profile 
LGW+UHI+Fan failure-days 0.0% 0.0% 0.0% 0.0% 0.0% 7.9% 0.0% 7.9% 0.0% 0.7% 

Mortality exceedance* 1.3% 1.3% 6.5% 8.5% 7.8% 12.4% 7.8% 14.4% 9.8% 15.7% 

EldOcu Profile 
LGW+UHI+Fan failure-days 0.0% 0.0% 0.0% 0.0% 0.0% 8.6% 0.0% 8.6% 0.0% 3.3% 

Mortality exceedance*  0.7% 1.3% 5.2% 7.2% 6.5% 8.5% 6.5% 11.1% 6.5% 9.8% 

* Average daily �� that exceeds the London mortality threshold: 24.7°C [44]. 

The Adaptive Comfort assessment considers overheating risk in terms of comfort expectations, with 

vulnerabilities of occupants addressed by more onerous criteria (EldOcu profile). This dynamic comfort 

approach is not explicitly linked to morbidity or mortality thresholds. The Adaptive Comfort principle 

of associating outdoor temperatures to indoor adaptability suggests that such outdoor mortality thresh-

olds could in turn be associated to the assessment of indoor health risks. However, the relationship is 

not explicitly associated in available overheating assessments. Table 6 demonstrates that even though 

thermal comfort is achieved with adaptations, significant percentages of daily averages still exceed the 

London outdoor mortality threshold (24.7°C) [44]; this is particularly the case at higher floor levels, and 

for the FamOcu profile. If such regional mortality thresholds are adopted as the limit (region-specific 

and dynamically associated to its mortality regression) beyond which indoor temperatures may be con-

sidered unsafe, all rooms of the unit may still be regarded to overheat despite achieving comfort. Another 

criticism is that the significance of prolonged exposure to moderately high temperatures (>25°C is 

acknowledged as detrimental to sleep and health), is not addressed by the criteria. Furthermore, the 

criterion thresholds offered are still mostly based on studies of office buildings, with limited evidence 

considered on occupant health and comfort in dwellings, and even fewer examined for nocturnal condi-

tions when adaptive practices are restricted [45].  

A climate projection study considering London dwellings had found that although vent opening 

reduces overheating risk at present, its impact decreased considerably towards the 2030s [46]. This is 

further complicated by most adaptive measures including vent operation requiring significant occupant 

engagement, which may not always be available or consistent to alleviate overheating risk. The afore-

mentioned study consequently suggested that the future requirement for alternative active cooling solu-

tions as likely, particularly in urban areas of southern England [46]. Another projection study has esti-

mated that climate change and concomitant heat-related risks as likely to compel 29-42% of households 

in the south of England acquiring air-conditioning by 2050 [47]. Although currently there is little use of 

domestic air-conditioning in Europe and the UK (~3%), the reality of increasing heat-related risks will 

encourage adoption [48], with the Committee on Climate Change (CCC) identifying growing domestic 
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air-conditioning unit sales, and ~5% of conservatories in London as already air-conditioned [49]. For 

cities like London where high-density living is increasing and a potent UHI is typically observed, this 

growing air-conditioning use could soon lead to unsustainable residential energy consumption. The way 

in which this growth is deployed will also influence the magnitude of future consumption increases, 

particularly if indiscriminate use is utilised as the dominant adaptation as demonstrated by the study’s 

simulations. As an alternative, a targeted approach informed by overheating assessments could provide 

efficient risk mitigation. For example, the simulated use of air-conditioning only in problem rooms 

(south-facing, first-to-attic level rooms identified by the Adaptive Comfort assessment, Table 6) resulted 

in a 3.6% lower energy use estimate for the unit in isolation, while an even lower 4.4% was estimated 

for the widespread canyon air-conditioning scenario (loads in these rooms were higher as the canyon 

climate was relatively warmer).  

The use of excess energy in abeyance, air-conditioning also has an adverse effect on the urban 

climate from the heat rejected from such systems [50]. A simulation study of semiarid Phoenix (USA) 

found their waste heat to have negligible effect near the surface during the day (though a maximum is 

released), while air temperature increase >1 K was observed at night [51]; an observation concurred by 

another simulation study of central Paris (temperate climate) [52]. A simulation study considering Tou-

louse also concluded that under a future scenario with widespread air-conditioning, rejected heat would 

elevate outdoor summer air temperatures by 0.8 K for residential quarters [53]. In comparison, the 

simulation of the Gloucester Terrace canyon resulted in a moderate nocturnal increase of 0.4 K. The 

nocturnal significance of such anthropogenic heat emissions is attributed by climatologists to the con-

tracted canopy-layer, which concentrates emissions nearer to the surface while during the day the greater 

depth of the boundary-layer encourages rejected heat to rise further up into the atmosphere to minimise 

the surface effect [52]. Another complicating factor is that some systems use evaporative cooling to 

exchange heat (latent heat) with the external environment [50]. This means that rejected moisture can 

increase canopy-layer humidity, thereby affecting nocturnal urban comfort and heightening vulnerability 

to heat-related health risks [54]. The rejection of waste heat from air-conditioning consequently increases 

outdoor temperatures and discomfort, from which urban inhabitants must then seek to protect them-

selves further by increasing energy consumption needed for further cooling. A positive feedback loop of 

this nature is likely to lead to unhealthy urban surroundings that discourage inhabitants from engaging 

with the outdoors [2]. The dominant and convenient use of the technology therefore adds to environ-

mental, economic, and social burdens, while diverting attention away from alternative low-impact adap-

tive measures. Avoiding, or in the very least managing the use of air-conditioning, is a primary objective 

to reducing urban energy demand, as well as anthropogenic heat emissions.  

5. Conclusions  

In this simulation study of Gloucester Terrace, the influence of the UHI effect on fixed threshold 

overheating estimation for the representative unit was significant and particularly pronounced for the 

FamOcu profile (Table 3 and Table 7). However when the Adaptive Comfort assessment was considered, 

this significance was considerably reduced with residual influence mostly evident at high floor level 

south-facing rooms. This reduction is predictable, as the method accounts for some occupant adaptation 

to outdoor climate loads, including that of the UHI. By using further adaptive practices such as fan 

operation, the study highlighted that conditions that facilitate ‘comfort’ could be increased in most 

indoor spaces for both occupancy profiles examined (Table 6). At high floor level south-facing rooms 

however, residual risk was still evident to suggest the requirement for some mechanical cooling. Ad-
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dressing this current and probable increased future summertime overheating risk with mechanical cool-

ing is likely to increase energy consumption. The simulation of a hypothetical summertime scenario in 

which the entire canyon length of 40 units indiscriminately adopts mechanical cooling resulted in a 3.8% 

increase in energy use relative to a free-running canyon. This translated to a CO2 release increase of 

~1.7 t per unit, aggregated to ~70 t for the canyon length.  

Table 7 

Summary of UHI influence on overheating assessments.  
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FamOcu Profile 
Fixed >26°C exceedance +7% +6% +11% +5% +8% +4% +8% +4% +7% +9% 

Fixed >27°C degree-hrs +1% +3% +7% +11% +8% +16% +9% +17% +10% +17% 

Adaptive Comfort 0% 0% +1% +5% +1% +4% 0% +5% +1% +8% 

EldOcu Profile           

Fixed >26°C exceedance +1% 0% +1% 0% 0% 0% 0% 0% +4% +3% 

Adaptive Comfort 0% 0% 0% +1% +1% +1% 0% 0% +5% +2% 

If cooling is inevitable in urban localities with such ‘difficult-to-cool’ dwellings (older units with 

limitations on fabric modifications), strategic arrangements such as district chilling and alternative fuel 

sources would require further attention, while targeted applications considering only high-risk conditions 

such as south-facing rooms will prevent wasteful provision. The latter simulation of only south-facing 

rooms air-conditioned, more than halved (to ~30 t) the canyon CO2 emission estimate. This targeted 

approach however would mean that more detailed overheating assessments of residential neighbourhoods 

including location specific climate loading would be required. This study addressed this by utilising a 

novel, computationally efficient pathway to include UHI loads and anthropogenic emissions resulting 

from cooling loads to present an Adaptive Comfort-based estimation approach. As no standardised 

categorising of dwelling types and their features are presently in use, meta-analysis and generalised 

conclusions should be considered with caution. The assessment presented here is therefore dependent on 

the characteristics of Gloucester Terrace, and is only aggregated to the canyon neighbourhood as the 

uniform morphological features lends itself suitable.  
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Appendix 

Table A1 

Key parameters used for simulation. 

PARAMETER  DESCRIPTION  GLOUCESTER TERRACE UNIT 

Unit profile   

Conditioned area  Main unit only; mews extension omitted 366 m2 

Each floor  Two equal room volumes, single-aspect (i.e. no 

cross-ventilation) 

Rooms facing north considered as bed-

rooms 

Rooms facing south (front elevation) con-

sidered as living rooms  

Occupational profile, 

FamOcu 

Young (working) couple/small family (two adults + one child) assumed for all six units as 

typical scenario 

Occupation  61 m2 per flat = two-bed, three persons per flat  

3 × 6 flats [55] 

18 persons considered for full occupation 

Density ~20 m2 per person 

Weekdays  

 

Working week 6 AM to 6 PM at load factor 0.60 

6 PM to 11 PM at 1.00 

11 PM to 6 AM at 0.10 

Weekends 

 

Full occupation 8 AM to 12 AM at 1.00 

12 AM to 8 AM at 0.10 

Holidays UK profile 24 hrs at 0.1 

Summer profile  Adaptive Comfort assessment [12,16]  May-to-September (N = 153 days) 

Occupational profile, 

EldOcu 

Older couple (full-day occupation) assumed for all six units as non-typical scenario 

Occupation Two persons per flat   

2 × 6 flats 

12 persons for full occupation 

Density ~30.5 m2 per person 

Full week Full occupation 6 AM to 10 PM at load factor 0.75 

10 PM to 6 AM at 0.10 

Thermal performance  

Heating 

 

Natural gas central heating  

DHW not served by HVAC boiler 

ScoP: 0.80  

Seasonal efficiency: 0.89 

Set point: 19°C 

Relative Humidity  Max. 70% 

Ventilation 

 

Natural ventilation requirement 

61.2 m3 h-1× 6 (flats) - Part F, Table 5.1b [56]  

0.3 ach 

 

Cooling  

 

Natural ventilation for one-sided building (sin-

gle-aspect rooms) with vents open at day and 

closed at night. Table 5.21 [32] 

3.0 ach  

@ summer profile 

Air leakage  UK average  0.7 ach; On continuously 

Internal gains As per occupational profile  

People  

 

Sensible  

Latent  

70 WP-1 

45 WP-1 

Lighting   Sensible  7 Wm-2 

Equipment   Sensible  5 Wm-2 

Cooking  

 

Sensible  

Latent  

3 Wm-2 

1 Wm-2 

Default construction [26]  

Ave. floor height Height varies per floor 3.0 m 

Window ratio Main unit only; mews extension omitted 23% (77 m2) 

Windows 6mm single-glazing  U-Value: 5.10 Wm-2 K-1 

G-Value: 0.82 

Walls  Stuccoed brickwork 1.33 Wm-2 K-1 

Upper floors Timber joisted with boards 0.35 Wm-2 K-1 

Basement floor Limestone on screed 2.26 Wm-2 K-1 

Roof Slate on timber structure  0.80 Wm-2 K-1 
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PARAMETER  DESCRIPTION  GLOUCESTER TERRACE UNIT 

Urban site    

Ave. building height For canyon 17.5 m 

Coverage ratio Estimate 54% 

Tree/green cover Estimate 8% 

Non-building anthropogenic 

emissions 

Based on Greater London averaged estimate 

[57] 

5.1 Wm-2 

Table A2 

Cooling loads for simulation. 

Parameter  Strategy Description  Values 

Cooling upgrades   

Unit  

cooling 

(+AC0 & +AC1) 

Air-conditioning to address 

overheating risk 

Min EER: 2.4 

 

Included EER: 3.125 

CoP: 0.92 

@ summer profile 

  Set point 23°C 

  Cooling capacity  2600 BTU per flat 

12.5 Wm-2 

Urban cooling  

(+UAC) 

Widespread use of domestic 

air-conditioning in canyon 

(40 units) 

Building heat release Greater London  

average [57]  

4.6 Wm-2 

  UWG emission factor for domestic units 1.0 
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