
On Verifying Timed Hyperproperties
Hsi-Ming Ho
University of Cambridge, UK
hsi-ming.ho@cl.cam.ac.uk

Ruoyu Zhou
University of Cambridge, UK
ruoyu.zhou@cl.cam.ac.uk

Timothy M. Jones
University of Cambridge, UK
timothy.jones@cl.cam.ac.uk

Abstract
We study the satisfiability and model-checking problems for timed hyperproperties specified with
HyperMTL, a timed extension of HyperLTL. Depending on whether interleaving of events in different
traces is allowed, two possible semantics can be defined for timed hyperproperties: synchronous and
asynchronous. While the satisfiability problem can be decided similarly as for HyperLTL regardless
of the choice of semantics, we show that the model-checking problem for HyperMTL, unless the
specification is alternation-free, is undecidable even when very restricted timing constraints are
allowed. On the positive side, we show that model checking HyperMTL with quantifier alternations
is possible under certain conditions in the synchronous semantics, or when there is a fixed bound
on the length of the time domain.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Timed Automata; Temporal Logics; Cybersecurity

Digital Object Identifier 10.4230/LIPIcs.TIME.2019.16

Related Version A full version of the paper is available at http://arxiv.org/pdf/1812.10005.

Funding This work was supported by the Engineering and Physical Sciences Research Council
(EPSRC), through grant references EP/K026399/1 and EP/P020011/1.

1 Introduction

Background. One of the most popular specification formalisms for reactive systems is
Linear Temporal Logic (LTL), first introduced into computer science by Pnueli [52] in the
late 1970s. The success of LTL can be attributed to the fact that its satisfiability and
model-checking problems are of lower complexity (PSPACE-complete, as compared with
non-elementary for the equally expressive first-order logic of order) and it enjoys simple
translations into automata and excellent tool support (e.g., [15, 35]).

While LTL is adequate for describing features of individual execution traces, many se-
curity policies in practice are based on relations between two (or more) execution traces.
A standard example of such properties is observational determinism [37, 54, 59]: for every
pair of execution traces, if the low-security inputs agree in both execution traces, then the
low-security outputs in both execution traces must agree as well. Such properties are called
hyperproperties [17]: a model of the property is not a single execution trace but a set of
execution traces. HyperLTL [16], obtained from LTL by adding trace quantifiers, has been
proposed as a specification formalism to express hyperproperties. For example, operational
determinism can be expressed as the HyperLTL formula:

∀πa ∀πb G(Ia = Ib)⇒ G(Oa = Ob) .
© Hsi-Ming Ho, Ruoyu Zhou, and Timothy M. Jones;
licensed under Creative Commons License CC-BY

26th International Symposium on Temporal Representation and Reasoning (TIME 2019).
Editors: Johann Gamper, Sophie Pinchinat, and Guido Sciavicco; Article No. 16; pp. 16:1–16:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/226941916?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:hsi-ming.ho@cl.cam.ac.uk
mailto:ruoyu.zhou@cl.cam.ac.uk
mailto:timothy.jones@cl.cam.ac.uk
https://doi.org/10.4230/LIPIcs.TIME.2019.16
http://arxiv.org/pdf/1812.10005
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 On Verifying Timed Hyperproperties

HyperLTL inherits almost all the benefits of LTL; in particular, tools that support HyperLTL
verification can be built by leveraging existing tools for LTL.

For many applications, however, in addition to the occurences and orders of events, timing
has to be accounted for as well. For example, one may want to verify that in every execution
trace of the system, whenever a request req is issued, the corresponding acknowledgement
ack is received within the next 5 time units. Timed automata [4] and timed logics [5, 9, 39]
are introduced exactly for this purpose. In the context of security, timing anomalies caused
by different high-security inputs is a realistic attack vector that can be exploited to obtain
sensitive information; this kind of timing side-channel attacks also play significant roles in
high-profile exploits like Meltdown [45] and Spectre [38]. In order to detect such undesired
characteristics of systems, one needs to reason about timed hyperproperties.

▶ Example 1 ([55]). A piece of C code that selects between two variables x and y based
on a secret selection bit b (i.e. the user gets the output—either x or y—but does not know
which one was actually selected) may be written as follows:
uint32_t select_u32(uint32_t b, uint32_t x, uint32_t y)
{

return b ? x : y;
}

This straightforward implementation, however, may result in a timing side channel—depending
on what compiler optimisations are applied, the execution time can depend on which of x
and y is returned. In sensitive applications like cryptography libraries and embedded smart-
card software, such code snippets are usually replaced by obfuscated, functional-equivalent
versions, with the hope of eliminating the potential leakage of secret information. In this
case, one such version is as follows:
uint32_t ct_select_u32(uint32_t b, uint32_t x, uint32_t y)
{

signed bit = 0 - b;
return (x & bit) | (y & ~bit);

}

Nevertheless, such attempts of obfuscation can easily be wiped out by more agressive code
optimisations. For instance, after compilation by clang 3.3 (-O2), the C code above results
in the following assembly code, which contains a jump instruction and may still reveal the
truth value of b via differences in execution times due to branch prediction. The issue can,
however, be detected by an analysis based on suitable instruction-level timing models.
ct_select_u32:

mov 0x4(%esp),%al
test %al,%al
jne L
lea 0xc(%esp),%eax
mov (%eax),%eax
ret

L: lea 0x8(%esp),%eax
mov (%eax),%eax
ret

Given the highly-sophisticated cache hierarchies, pipeline stalls, etc. in contemporary real
machines, the timing side channel in the example above may be difficult to realise and exploit
in an actual attack; but such issues may also manifest themselves at lower levels (e.g., RTL),
as illustrated by the following example.

▶ Example 2 ([44]). An AND gate with two inputs A, B and an output C and respective
delays TA, TB , and TC can be modelled as the timed automaton with two clocks x, y

H.-M. Ho, R. Zhou, and T. M. Jones 16:3

{A1}, x = TA

{B1}, x = TB

y := 0

{B0}, x = TB

y := 0

{C1}, y = TC

{A0}, x = TA

y := 0

{C0}, y = TC

Figure 1 A timed automaton modelling an AND gate with inputs A, B and output C with
respective delays TA, TB , and TC .

in Figure 1 where x = TA checks if the value of clock x is TA, y := 0 resets clock y to 0, etc.
(suppose that TA < TB and TB − TA < TC). Intuitively, the truth values of A and B are
obtained after TA and TB respectively, and the output C = A ∧ B has a delay of TC from
the point when its value is confirmed. Of course, once A turned out to be 0 (i.e. A0 has
happened), the output C must be 0 as well. But the time C0 happens (assuming C = 0)
also depends on the truth value of A. In other words, when C = 0, a low-security user (to
whom A0 and A1 are non-observable), provided that he/she can measure time, can also infer
the truth value of A while he/she should not be able to. The pair of traces with C = 0 that
reveals A is depicted in Figure 2 and Figure 3. In this simple example, however, the timing
side channel can be removed by adding y := 0 on the self-loop on the lower-right location.

0 TA TB

{A1} {B0} {C0}

TC

Figure 2 A trace ρ1 with A = 1, B = 0, and C = 0.

0 TA TB

{A0} {B0} {C0}

TC

Figure 3 A trace ρ2 with A = 0, B = 0, and C = 0.

Contributions. We propose HyperMTL, obtained by adding trace quantifiers to Metric
Temporal Logic (MTL) [39], as a specification formalism for timed hyperproperties. We
consider systems modelled as timed automata, and thus system behaviours are sequences of
events that happen at different instants in time; this gives two possible pointwise semantics
of HyperMTL: asynchronous and synchronous (this is in contrast to HyperLTL, for which
a synchronous semantics is sufficient). We show that, as far as satisfiability is concerned,
HyperMTL is similar to HyperLTL, i.e. satisfiability is decidable for fragments not containing
∀∃, regardless of which semantics is assumed. However, in contrast with HyperLTL (whose
model-checking problem is decidable), model checking HyperMTL is undecidable if there is
at least one quantifier alternation in the specification, even when the timing constraints
used in either the system or the specification are very restricted. Still, the alternation-free
fragment of HyperMTL, which is arguably sufficient to capture many timed hyperproperties
of practical interest, has a decidable model-checking problem. Finally, we identify several

TIME 2019

16:4 On Verifying Timed Hyperproperties

subcases where HyperMTL model checking is decidable for larger fragments, such as when
the synchronous semantics is assumed, the model is untimed, and the specification belongs
to a certain subclass of one-clock timed automata, or when the time domain is bounded a
priori by some N ∈ N>0.

Related work. Since the pioneering work of Clarkson and Schneider [17], there has been
great interest in specifying and verifying hyperproperties in the past few years. The frame-
work based on HyperLTL [16] is possibly the most popular for this purpose, thanks to its
expressiveness, flexibility, and relative ease of implementation. In addition to satisfiabil-
ity [23, 24] and model checking [16, 28], tools for monitoring HyperLTL also exist [3, 25, 26].
Notably, the complexity of monitoring HyperLTL, as well as model checking HyperLTL on
restricted (tree-shaped or acyclic) Kripke structures, are studied in [12] and shown to be
much lower than those of the general satisfiability and model-checking problems. These
results, however, do not apply in the current timed setting—we will see in Section 4 that
our main undecidability result holds even with these structural restrictions on the system.

Our formulation of HyperMTL is very closely related to HyperSTL [47] originally proposed
in the context of quality assurance of cyber-physical systems. While [47] focusses on testing,
we are concerned with the decidability of verification problems. On the other hand, the
semantics of HyperSTL is defined over sets of continuous signals, i.e. state-based; as noted
in [47], however, the price to pay for the extra generality is that implementing a model checker
for HyperSTL is very difficult, especially for systems modelled in proprietary frameworks
(such as Simulink®). Practical reasoning of HyperMTL, by contrast, can be carried out easily
with existing highly optimised timed automata verification back ends, e.g., Uppaal [43].1
Indeed, a prototype model checker based on Uppaal for the synchronous semantics of
HyperMTL (with some restrictions) is reported in [32], although it does not consider the
decidability of verification problems. Another relevant work [30], also based on Uppaal,
checks noninterference in systems modelled as timed automata (similar to Example 4; see
below). Their approach, however, is specifically tailored to noninterference and does not
generalise. Some similar (but different) notions of noninterference for timed automata have
been considered in [29,58].

It is also possible to extend hyperlogics in other quantitative dimensions orthogonal to
time. HyperPCTL [2] can express probabilisitic hyperproperties, e.g., the probability dis-
tribution of the low-security outputs are independent of the high-security inputs. In [27],
specialised algorithms are developed for verifying quantitative hyperproperties, e.g., there is
a bound on the number of traces with the same low-security inputs but different low-level
outputs. The current paper is complementary to these works.

2 Timed hyperproperties

Timed words. A timed word (or a trace) over a finite alphabet Σ is a finite sequence of
events (σ1, τ1) . . . (σn, τn) ∈ (Σ×R≥0)∗ with τ1 . . . τn an increasing sequence of non-negative
real numbers (‘timestamps’), i.e. τi < τi+1 for all i, 1 ≤ i < n.2 For t ∈ R≥0 and a timed

1 For more detailed accounts of the state-based and event-based semantics for timed automata and logics,
see, e.g., [7, 51].

2 To simplify the exposition, we focus on finite timed words in this paper (this assumption does not
make the verification problems easier in general; e.g., HyperLTL satisfiability remains undecidable). All
of our technical results carry over to the case of infinite timed words with some simple modifications.
For example, in Section 3, suitable subformulae can be added to rule out the runs that get stuck in

H.-M. Ho, R. Zhou, and T. M. Jones 16:5

word ρ = (σ1, τ1) . . . (σn, τn), we write t ∈ ρ iff t = τi for some i, 1 ≤ i ≤ n. We denote by
TΣ∗ the set of all timed words over Σ. A timed language (or a trace property) is a subset of
TΣ∗.

Timed automata. Let X be a finite set of clocks (R≥0-valued variables). A valuation v

for X maps each clock x ∈ X to a value in R≥0. The set G(X) of clock constraints (guards)
g over X is generated by g := ⊤ | g∧ g | x ▷◁ c where ▷◁ ∈ {≤, <,≥, >}, x ∈ X, and c ∈ N≥0.
The satisfaction of a guard g by a valuation v (written v |= g) is defined in the usual way.
For t ∈ R≥0, we let v + t be the valuation defined by (v + t)(x) = v(x) + t for all x ∈ X.
For λ ⊆ X, we let v[λ ← 0] be the valuation defined by (v[λ ← 0])(x) = 0 if x ∈ λ, and
(v[λ← 0])(x) = v(x) otherwise.

A timed automaton (TA) over Σ is a tuple A = ⟨Σ, S, s0, X,∆, F ⟩ where S is a finite set of
locations, s0 ∈ S is the initial location, X is a finite set of clocks, ∆ ⊆ S×Σ×G(X)×2X×S is
the transition relation, and F is the set of accepting locations. We say that A is deterministic
iff for each s ∈ S and σ ∈ Σ and every distinct pair of transitions (s, σ, g1, λ1, s1) ∈ ∆ and
(s, σ, g2, λ2, s2) ∈ ∆, g1 ∧ g2 is not satisfiable. A state of A is a pair (s, v) of a location
s ∈ S and a valuation v for X. A run of A on a timed word (σ1, τ1) . . . (σn, τn) ∈ TΣ∗ is a
sequence of states (s0, v0) . . . (sn, vn) where (i) v0(x) = 0 for all x ∈ X and (ii) for each i,
0 ≤ i < n, there is a transition (si, σi+1, g, λ, si+1) such that vi + (τi+1− τi) |= g (let τ0 = 0)
and vi+1 =

(
vi + (τi+1− τi)

)
[λ← 0]. A run of A is accepting iff it ends in a state (s, v) with

s ∈ F . A timed word is accepted by A iff A has an accepting run on it. We denote by JAK
the timed language of A, i.e. the set of all timed words accepted by A. Two fundamental
results on TAs are that the emptiness problem is decidable (PSPACE-complete), but the
universality problem is undecidable [4].

Timed logics. The set of MTL formulae over a finite set of atomic propositions AP is
generated by

ψ := ⊤ | p | ψ1 ∧ ψ2 | ¬ψ | ψ1 UI ψ2 | ψ1 SI ψ2

where p ∈ AP and I ⊆ R≥0 is a non-singular interval with endpoints in N≥0 ∪ {∞}.3 We
omit the subscript I when I = [0,∞) and sometimes write pseudo-arithmetic expressions
for constraining intervals, e.g., ‘< 3’ for [0, 3). The other Boolean operators are defined as
usual: ⊥ ≡ ¬⊤ and ψ1 ∨ ψ2 ≡ ¬(¬ψ1 ∧ ¬ψ2). We also define the dual temporal operators
ψ1ŨIψ2 ≡ ¬

(
(¬ψ1) UI (¬ψ2)

)
and ψ1S̃Iψ2 ≡ ¬

(
(¬ψ1) SI (¬ψ2)

)
. Using these operators,

every MTL formula ψ can be transformed into an MTL formula in negative normal form,
i.e. ¬ is only applied to atomic propositions. To ease the presentation, we will also use the
usual shortcuts like FI ψ ≡ ⊤UI ψ, GI ψ ≡ ¬FI ¬ψ, XI ψ ≡ ⊥UI ψ, and ‘weak-future’
variants of temporal operators, e.g., Fψ ≡ ψ ∨ Fψ. Given an MTL formula ψ over AP in
negative normal form, a timed word ρ = (σ1, τ1) . . . (σn, τn) over ΣAP = 2AP, and t ∈ R≥0,
we define the MTL satisfaction relation |= as follows:4

(ρ, t) |= ⊤ iff t ∈ ρ;
(ρ, t) |= ⊥ iff t /∈ ρ;

self-loops labelled with {pϵ}.
3 In the literature, this logic (with the requirement that constraining intervals must be non-singular) is

usually referred to as MITL [5], but we simply call it MTL in this paper for notational simplicity. Also
note that our undecidability results carry over to the fragment with only future operators.

4 The formulation of the pointwise semantics of MTL here deviates slightly from the standard one (cf. [8,
50]) to enable a formal treatment of interleaving of events in different traces.

TIME 2019

16:6 On Verifying Timed Hyperproperties

(ρ, t) |= p iff t ∈ ρ and p ∈ σi;
(ρ, t) |= ¬p iff t ∈ ρ and p /∈ σi;
(ρ, t) |= ψ1 ∧ ψ2 iff (ρ, t) |= ψ1 and (ρ, t) |= ψ2;
(ρ, t) |= ψ1 ∨ ψ2 iff (ρ, t) |= ψ1 or (ρ, t) |= ψ2;
(ρ, t) |= ψ1 UI ψ2 iff there exists t′ > t such that t′ − t ∈ I, (ρ, t′) |= ⊤, (ρ, t′) |= ψ2, and
(ρ, t′′) |= ψ1 for all t′′ such that t′′ ∈ (t, t′) and (ρ, t′′) |= ⊤;
(ρ, t) |= ψ1ŨIψ2 iff for all t′ > t such that t′ − t ∈ I and (ρ, t′) |= ⊤, either (ρ, t′) |= ψ2
or (ρ, t′′) |= ψ1 for some t′′ such that t′′ ∈ (t, t′) and (ρ, t′′) |= ⊤;
(ρ, t) |= ψ1 SI ψ2 iff there exists t′, 0 ≤ t′ < t such that t− t′ ∈ I, (ρ, t′) |= ⊤, (ρ, t′) |= ψ2,
and (ρ, t′′) |= ψ1 for all t′′ such that t′′ ∈ (t′, t) and (ρ, t′′) |= ⊤;
(ρ, t) |= ψ1S̃Iψ2 iff for all t′, 0 ≤ t′ < t such that t − t′ ∈ I and (ρ, t′) |= ⊤, either
(ρ, t′) |= ψ2 or (ρ, t′′) |= ψ1 for some t′′ such that t′′ ∈ (t′, t) and (ρ, t′′) |= ⊤.

We say that ρ satisfies ψ (ρ |= ψ) iff (ρ, 0) |= ψ, and we write JψK for the timed language
of ψ, i.e. the set of all timed words satisfying ψ. It is well known that any MTL formula
can be translated into a TA accepting the same timed language [6]; this implies that the
satisfiability and model-checking problems for MTL are decidable (EXPSPACE-complete).

Adding trace quantifiers. Let V be an infinite supply of trace variables, the set of Hy-
perMTL formulae over AP are generated by

φ := ∃π φ | ∀π φ | ψ
ψ := ⊤ | ⊤π | pπ | ψ1 ∧ ψ2 | ¬ψ | ψ1 UI ψ2 | ψ1 SI ψ2

where π ∈ V , p ∈ AP, and I ⊆ R≥0 is a non-singular interval with endpoints in N≥0 ∪ {∞}
(to ease the notation, we will usually write, e.g., pa for pπa). Without loss of generality we
forbid the reuse of trace variables, i.e. each trace quantifier must use a fresh trace variable.
Syntactic sugar is defined as in MTL, e.g., FI ψ ≡ ⊤UI ψ. A HyperMTL formula is closed
if it does not have free occurrences of trace variables. Following [22], we refer to fragments
of HyperMTL by their quantifier patterns, e.g., ∃∗∀∗-HyperMTL. Finally, note that trace
quantifiers can be added to TAs in the same manner (in this case, quantified TAs operate
over ‘stacked’ traces; see the semantics for HyperMTL below).

In contrast with TAs and MTL formulae, which define trace properties, HyperMTL for-
mulae define (timed) hyperproperties, i.e. sets of trace properties. Depending on whether
one requires timestamps in quantified traces to match exactly (i.e. all quantified traces must
synchronise), two possible semantics can be defined accordingly.

Asynchronous semantics. A trace assignment over Σ is a partial mapping from V to
TΣ∗. We write Π∅ for the empty trace assignment and Π[π 7→ ρ] for the trace assignment
that maps π to ρ and π′ to Π(π′) for all π′ ̸= π. Given a HyperMTL formula φ over AP whose
quantifier-free part is in negative normal form, a trace set T over ΣAP, a trace assignment
Π over ΣAP, and t ∈ R≥0, we define the HyperMTL asynchronous satisfaction relation |= as
follows (we omit the cases where the definitions are obvious or exactly similar):

(T, t) |=Π ⊤ iff t ∈ ρ for some ρ ∈ range(Π);5

(T, t) |=Π ⊤π iff t ∈ ρ for ρ = Π(π);
(T, t) |=Π pπ iff t ∈ ρ for ρ = Π(π) and p ∈ σi for the event (σi, t) in ρ;

5 Note the dependency of the interpretation of ⊤ on Π; in particular, it is possible for a trace set with
out-of-sync traces to satisfy ∀πb (pb U qb) but not ∀πa ∀πb (pb U qb).

H.-M. Ho, R. Zhou, and T. M. Jones 16:7

(T, t) |=Π ψ1 UI ψ2 iff there exists t′ > t such that t′− t ∈ I, (T, t′) |=Π ⊤, (T, t′) |=Π ψ2,
and (T, t′′) |=Π ψ1 for all t′′ such that t′′ ∈ (t, t′) and (T, t′′) |=Π ⊤;
(T, t) |=Π ψ1ŨIψ2 iff for all t′ > t such that t′− t ∈ I and (T, t′) |=Π ⊤, either (T, t′) |=Π
ψ2 or (T, t′′) |=Π ψ1 for some t′′ such that t′′ ∈ (t, t′) and (T, t′′) |=Π ⊤;
(T, t) |=Π ∃π φ iff there is a trace ρ ∈ T such that (T, t) |=Π[π 7→ρ] φ;
(T, t) |=Π ∀π φ iff for all traces ρ ∈ T , (T, t) |=Π[π 7→ρ] φ.

We say that T satisfies a closed HyperMTL formula φ in the asynchronous semantics (T |= φ)
iff (T, 0) |=Π∅ φ.

The asynchronous semantics for HyperMTL is (arguably) the most natural choice of
semantics for the current event-based setting. As the examples below illustrate, allowing
explicit interleaving of events may simplify the specification even when no quantitative
timing constraint is involved.

▶ Example 3. Consider again the system in Example 2 and a low-security user uL who can
observe {B0, B1, C0, C1} but not {A0, A1}. The property “if B0 occurs in both πa and πb,
then the corresponding C0’s must occur simultaneously in both πa and πb” (a variant of
noninference [46]) can be specified with the following HyperMTL formula in the asynchronous
semantics:

φ1 = ∀πa ∀πb

(
FB0

a ∧ FB0
b ⇒ F(C0

a ∧ C0
b)

)
.

In particular, C0
a ∧C0

b holds only when the two {C0}-events occur simultaneously in πa and
πb. It is clear that the system does not satisfy φ1, as there are two traces of the system
where B0 occurs in both, but the occurrences of C0 are at different times; as we mentioned
earlier, this allows uL to infer A by timing C0. If, on the other hand, the timing accuracy
attainable by uL is limited and thus it can only differentiate events that are d time units
apart, the system can instead be checked against

φ2 = ∀πa ∀πb

(
FB0

a ∧ FB0
b ⇒ F

(
C0

a ∧ (F≤d C
0
b ∨O≤d C

0
b)

))
where O is the past version of F. This will be satisfied if TB − TA ≤ d, and since uL will
not be able to infer A, the system may be considered secure in this case. Finally, note that
in the original (synchronous) semantics for HyperLTL [16], φ1 is satisfied by the system, as
events are synchronised by their positions rather than times of occurrence.

▶ Example 4 (Noninterference in event-based systems [31]). A system operating on sequences
of commands issued by different users can be modelled as a deterministic finite automaton
A over Σ = U × C where U is the set of users and C is the set of commands. Additionally,
let Obs be the set of observations and out : S × U → Obs be the observation function for
what can be observed at each location by each user. Let there be a partition of U into
two disjoint sets of users UH ⊆ U and UL ⊆ U . Noninterference requires that for each
w ∈ Σ∗ where w ends with a command issued by a user in UL and A reaches s after reading
w, the subsequence w′ obtained by removing all the commands issued by the users in UH

results in a location s′ such that the observation out(s′, uL) of each user uL ∈ UL is identical
to out(s, uL). For our purpose, we can combine A and out (in the expected way) into an
automaton A′ over ΣAP where AP = (U × C) ⊎ (U × Obs) (atomic propositions in U × Obs
reflect the observations at the location that has just been entered). Checking noninterference
then amounts to model checking A′ (whose locations are all accepting) against the following
HyperMTL formula in the asynchronous semantics:

φ3 = ∀πa ∀πb

(
G(⊤b ⇒ ψL

b ∧ ψ=
U,C)

∧G(⊤a ∧ ⊥b ⇒ ψH
a)⇒ G(⊤b ⇒ ψ=

out(UL))
)

TIME 2019

16:8 On Verifying Timed Hyperproperties

(where ψL
b asserts that the command in πb is issued by a user in UL, ψ=

U,C says that the two
synchronised commands in πa and πb agree on U and C, etc.). Specifically,

G(⊤b ⇒ ψL
b ∧ ψ=

U,C) asserts that πb only contains low commands and πa also contains
these commands at the exactly same times;
G(⊤a ∧ ⊥b ⇒ ψH

a) asserts that all the commands that are only present in πa are high
commands;
G(⊤b ⇒ ψ=

out(UL)) ensures that, after each low command in πb, the observation of each
uL ∈ UL is identical to the observation of uL after the corresponding low command in
πa, regardless of the high commands that occur in the preceding ‘gaps’.

We remark that while this example is essentially untimed, the asynchronous event-based
formulation leads to a much simpler and clearer specification than the state-based one in [16].

Synchronous semantics. A less general semantics can be defined for HyperMTL formulae
where each trace quantifier only ranges over traces that synchronise with the traces in
the current trace assignment (this is the case in the original HyperLTL semantics [16]). For
example, the second quantifier in ∃πa ∃πb ψ requires πb to satisfy (πa, t) |= ⊤a ⇔ (πb, t) |= ⊤b

for all t ∈ R≥0. The HyperMTL synchronous satisfaction relation |=sync can, in fact, be
expressed in the asynchronous semantics by explicitly requiring newly quantified traces to
synchronise in the quantifier-free part of the formula. More precisely, for a closed HyperMTL
formula φ = Qφ′ where Q denotes a block of quantifiers of the same type (i.e. all existential
or all universal) and φ′ is a possibly open HyperMTL formula, and a set V of trace variables,
let (abusing notation slightly) sync(φ, V) = Q

(
G(

∧
π∈Q∪V ⊤π)∧ sync(φ′,Q∪ V)

)
when Q

are existential, sync(φ) = Q
(

G(
∧

π∈Q∪V ⊤π)⇒ sync(φ′,Q∪V)
)

when Q are universal, and
sync(ψ, V) = ψ when ψ is quantifier-free. The following lemma holds subject to rewriting
the formula into prenex normal form.

▶ Lemma 5. For any trace set T over ΣAP and closed HyperMTL formula φ over AP,
T |=sync φ iff T |= sync(φ, ∅).

While the synchronous semantics may seem quite restricted (intuitively, the chance that
two random traces of a timed system have exactly the same timestamps is certainly slim!),
one can argue that it already suffices for many applications if stuttering steps are allowed.
We will see later that for alternation-free HyperMTL, the asynchronous semantics can be
emulated in the synchronous semantics using a ‘weak inverse’ of Lemma 5.

Satisfiability and model checking. Given a closed HyperMTL formula φ over AP, the
satisfiability problem asks whether there is a non-empty trace set T ⊆ TΣ∗

AP satisfying it,
i.e. T |= φ (or T |=sync φ, if the synchronous semantics is assumed). Given a TA A over
ΣAP and a closed HyperMTL formula φ over AP, the model-checking problem asks whetherJAK |= φ (or JAK |=sync φ). Our focus in this paper is on the decidability of these problems,
as their complexity (when they are decidable) follow straightforwardly from standard results
on MTL [5] and HyperLTL [16, 22].

3 Satisfiability

To emulate interleaving of events (of a concurrent or distributed system, say) in a syn-
chronous, state-based setting, it is natural and necessary to introduce stuttering steps. In
the context of verification, it is often a desirable trait for a temporal logic to be stutter-
invariant [41,42] so that it cannot be used to differentiate traces that ought to be regarded
as the same (e.g., in an iterative refinement process, an abstract component of a system

H.-M. Ho, R. Zhou, and T. M. Jones 16:9

may be replaced by a concrete implementation that simulates an abstract step with some
additional internal actions). As a simple attempt to reconcile the asynchronous and syn-
chronous semantics of HyperMTL, we can make use of silent events in the same spirit to
enable synchronisation of interleaving traces while preserving the semantics. More precisely,
let stutter(ρ) for a trace ρ ∈ TΣ∗

AP be the maximal set of traces ρ′ ∈ TΣ∗
APϵ

(APϵ = AP∪{pϵ})
such that

for every event (σi, τi) in ρ′, either σi = {pϵ} or pϵ /∈ σi;
ρ can be obtained from ρ′ by deleting all the {pϵ}-events.

This extends to trace sets T ⊆ TΣ∗
AP in the obvious way. For a closed alternation-free

HyperMTL formula φ = Qψ over AP, let stutter(φ) = Qψ′′ be the HyperMTL formula
over APϵ obtained by replacing in ψ, e.g., all ⊤π with ¬pϵ

π, to give ψ′, and finally let
ψ′′ = G(

∨
π∈Q ¬pϵ

π) ∧
(∧

π∈Q G(pϵ
π ⇒

∧
p∈AP ¬pπ)

)
∧ ψ′ when Q are existential and ψ′′ =

G(
∨

π∈Q ¬pϵ
π) ∧

(∧
π∈Q G(pϵ

π ⇒
∧

p∈AP ¬pπ)
)
⇒ ψ′ when Q are universal. Intuitively, ψ′′

ensures that the traces involved are well-formed (i.e. satisfy the first condition above), and
its own satisfaction is insensitive to the addition of silent events. The following lemma
follows from a simple structural induction.

▶ Lemma 6. For any trace set T over ΣAP and closed alternation-free HyperMTL formula
φ = Qψ over AP (Q is either a block of existential quantifiers or universal quantifiers and
ψ is quantifier-free), T |= φ iff stutter(T) |=sync stutter(φ).

The following two lemmas follow from Lemma 6 and the fact that for alternation-free
HyperMTL formulae, satisfiability in the synchronous semantics can be reduced (in the same
way as HyperLTL) to MTL satisfiability.

▶ Lemma 7. The satisfiability problem for ∃∗-HyperMTL is decidable.

▶ Lemma 8. The satisfiability problem for ∀∗-HyperMTL is decidable.

Lemma 6, however, does not extend to larger fragments of HyperMTL. For example, consider
T = {({p}, 1)({r}, 3), ({q}, 2)} and φ = ∃πa ∀πb (F pa∧¬F qb). Now it is obvious that T |̸= φ,
but since ({p}, 1)({r}, 3) ∈ stutter(T), we have stutter(T) |=sync stutter(φ) (provided that
the definition of stutter(·) is extended to general HyperMTL formulae, as in Lemma 5). Still,
it is not hard to see that the crucial observation used in ∃∗∀∗-HyperLTL satisfiability (if
∃π0 . . . ∃πk ∀π′

0 . . . ∀π′
ℓ ψ is satisfiable, then it is also satisfiable by the trace set {π0, . . . πk})

extends to HyperMTL in the asynchronous semantics; the following lemma then follows from
Lemma 7.

▶ Lemma 9. The satisfiability problem for ∃∗∀∗-HyperMTL is decidable.

Finally, note that the undecidability of ∀∃-HyperLTL carries over to HyperMTL: in the syn-
chronous semantics, the reduction in [22] applies directly with some trivial modifications (as
we work with finite traces); undecidability then holds for the case of asynchronous semantics
as well, by Lemma 5.

▶ Lemma 10. The satisfiability problem for ∀∃-HyperMTL is undecidable.

▶ Theorem 11. The satisfiability problem for HyperMTL is decidable if the formula does
not contain ∀∃.

4 Model checking

We now turn to the model-checking problem, which behaves quite differently than in the
case of HyperLTL.

TIME 2019

16:10 On Verifying Timed Hyperproperties

s0 s1 s2

s3

s4

s5

s6

s7

s8

s9 shalt

(s0, ϵ)→ (s1, a)→ (s2, ab)→ (s4, b)→ (s6, bd)→ (s7, d)→ (s9, ϵ)→ (shalt , h)

a! b!

b?

a?

c!

d!

c?

e?

b?

f?

g!

d?

h!

Figure 4 A DCM and its unique halting computation.

0

{pbegin, a!} {b!} {a?}{d!} {b?} {d?} {pend , h!}

1

1

1

Figure 5 A trace encoding the halting computation of the DCM in Figure 4. Note that each m!

is followed by a corresponding m? exactly 1 time unit later.

The alternation-free case. Without loss of generality, we consider only the case of
∃∗-HyperMTL in the asynchronous semantics. By Lemma 6, checking JAK |= φ (for a
TA A over ΣAP and a closed ∃∗-HyperMTL formula φ over AP) is equivalent to checking
stutter(JAK) |=sync stutter(φ). To this end, we define stutter(A) as the TA over ΣAPϵ

obtained from A by adding a self-loop labelled with {pϵ} to each location; it should be
clear that Jstutter(A)K = stutter(JAK). In this way, the problem reduces to model check-
ing ∃∗-HyperMTL in the synchronous semantics which, as the model-checking problem for
∃∗-HyperLTL, can be reduced to MTL model checking.

▶ Theorem 12. Model checking alternation-free HyperMTL is decidable.

The general case. Recall that the model-checking problem for HyperLTL is decidable even
when the specification involves arbitrary nesting of quantifiers. This is unfortunately not the
case for HyperMTL: allowing only one quantifier alternation already leads to undecidability.
To see this, recall that any TA can be written as a formula ∃X ψ where X is a set of (new)
atomic propositions and ψ is an MTL formula [33, 53]. The undecidable TA universality
problem—given a TA A over Σ, deciding whether JAK = TΣ∗—can thus be reduced to model
checking HyperMTL: one simply checks whether there exists an X-labelling for every timed
word over Σ so that ψ is satisfied. Here we show that model checking HyperMTL is essentially
a harder problem: in the case of asynchronous semantics, model checking HyperMTL with
quantifier alternations necessarily involves TAs with ϵ-transitions [11], and therefore remains
undecidable even when both the model and the specification are deterministic and only one of
them uses a single clock (i.e. the other is untimed); by contrast, (standard) TA universality
over finite timed words is decidable when the TA uses only one clock [49].

We adapt the undecidability proof of the reactive synthesis problem for MTL in [14],
which itself is by reduction from the halting problem for deterministic channel machines
(DCMs), known to be undecidable [13]. Note that, in contrast to HyperMTL model checking,

H.-M. Ho, R. Zhou, and T. M. Jones 16:11

MTL reactive synthesis is decidable when the specification is deterministic [19]; in this sense,
quantification over traces is more powerful than quantification over strategies (there is a
winning strategy of the controller for all possible strategies of the environment).6 For our
purpose, we introduce the ◁I operator, in which we allow I to be singular (note that this is
merely syntactic sugar and does not increase the expressiveness of MTL [33, 53]):

(T, t) |=Π ◁I φ iff there exists t′, 0 ≤ t′ < t such that t−t′ ∈ I, (T, t′) |=Π ⊤, (T, t′) |=Π φ,
and (T, t′′) |̸= Πφ for all t′′ such that t′′ ∈ (t′, t) and (T, t′′) |=Π ⊤.

Let LTL◁ be the fragment of MTL where all timed subformulae must be of the form ◁I φ,
and all φ’s in such subformulae must be ‘pure past’ formulae; these requirements ensure
that LTL◁, in which we will write the quantifier-free part of the specification, translates into
deterministic TAs [18]. To ease the understanding, we will first do the proof for the case of
asynchronous semantics and then adapt it to the case of synchronous semantics.

▶ Theorem 13. Model checking ∃∗∀∗-HyperMTL and ∀∗∃∗-HyperMTL are undecidable in
the asynchronous semantics.

Proof. A DCM S = ⟨S, s0, shalt ,M,∆⟩ can be seen as a finite automaton equipped with an
unbounded fifo channel: S is a finite set of locations, s0 is the initial location, shalt is the
halting location (such that shalt ̸= s0), M is a finite set of messages, and ∆ ⊆ S ×{m!,m? |
m ∈ M} × S is the transition relation satisfying the following determinism hypothesis: (i)
(s, q, s′) ∈ ∆ and (s, q, s′′) ∈ ∆ implies s′ = s′′; (ii) if (s,m!, s′) ∈ ∆ then it is the only
outgoing transition from s. Without loss of generality, we further assume that there is no
incoming transition to s0, no outgoing transition from shalt , and (s0, q, s

′) ∈ ∆ implies that
q ∈ {m! | m ∈ M} and s′ ̸= shalt . The semantics of S can be described with a graph G(S)
with vertices {(s, x) | s ∈ S, x ∈ M∗} and edges defined as follows: (i) (s, x) → (s′, xm) if
(s,m!, s′) ∈ ∆; (ii) (s,mx)→ (s′, x) if (s,m?, s′) ∈ ∆. In other words, m! ‘writes’ a copy of
m to the channel and m? ‘reads’ a copy of m off the channel. We say that S halts if there is
a path in G(S) from (s0, ϵ) to (shalt , x) (a halting computation of S) for some x ∈ M∗. An
example DCM and its unique halting computation are depicted in Figure 4.

The idea, as in many similar proofs (e.g., [50]), is to encode a halting computation of
S as a trace where each m? is preceded by a corresponding m! exactly 1 time unit earlier,
and each m! is followed by an m? exactly 1 time unit later if shalt has not been reached
yet. To this end, let the model A be an (untimed) finite automaton over Σ = 2AP where
AP = {m!,m? | m ∈ M} ∪ {pbegin, pend , pread, p1, q1} and whose set of locations is S ∪ {s1},
where s1 is a new non-accepting location. The transitions of A follow S: for each m ∈ M ,
s

{m?}−−−→ s′ is a transition of A iff (s,m?, s′) ∈ ∆, and similarly for m!—except for those going
out of s0 or going into shalt , on which we further require pbegin or pend to hold, respectively.
Let s0 be the initial location and shalt be the only accepting location, and finally add
transitions s0

{pread}−−−−→ shalt and s0
{p1}−−−→ s1

{q1}−−−→ shalt . It is clear that A is deterministic and
it accepts only three types of traces:
1. From s0 through some other locations of S and finally shalt , i.e. those respecting the

transition relation, but not necessarily the semantics, of S.
2. From s0 to shalt in a single transition (on which pread holds).
3. From s0 to s1 and then shalt .
It remains to write a specification φ such that JAK |= φ exactly when A accepts a trace of
type (1) that also respects the semantics of S (one such trace that corresponds to the unique

6 Indeed, the quantifier-free part ψ in the simpler encoding mentioned above (based on labelling timed
words with propositions in X) is already in LTL◁ and thus is deterministic.

TIME 2019

16:12 On Verifying Timed Hyperproperties

halting computation of the DCM in Figure 4 is depicted in Figure 5). This is where the
traces of types (2) and (3) come into play: for example, if a trace of type (1) issues a read
m? without a corresponding write m!, then a trace of type (3) can be used to ‘pinpoint’ the
error. More precisely, let φ = ∃πa ∀πb (ψ1 ∧ ψ2 ∧ ψ3 ∧ ψ4) where

ψ1 = F pend
a ensures that πa is of type (1);

ψ2 = F(pread
b ∧ ψR) ⇒ F(pread

b ∧ ◁≥1 p
begin
a), where ψR =

∨
{m?

a | m ∈ M}, is a simple
sanity check which ensures that in πa, each m? must happen at time ≥ t + 1 if pbegin

happens at t;
ψ3 =

∧
m∈M

(
F(q1

b ∧m?
a)⇒

(
F(pbegin

a ∧F p1
b)∧F(q1

b ∧◁=1 p
1
b)⇒ F(p1

b ∧m!
a)

))
ensures

that each m?, if it happens at t, is preceded by a corresponding m! at t− 1 in πa;
ψ4 =

∧
m∈M

(
F(p1

b ∧m!
a)⇒ F(pend

a ∧◁<1 p
1
b)∨

(
F(q1

b ∧◁=1 p
1
b)⇒ F(q1

b ∧m?
a)

))
ensures

that each m! at t is followed by a corresponding m? at t+ 1 (unless pend happens first)
in πa.

Now observe that the only timed subformulae are ◁≥1 p
begin
a , ◁=1 p

1
b , and ◁<1 p

1
b . As p1

and pread cannot happen in the same trace (πb), it is not hard to see that the reduction
remains correct if we replace these by ◁≥1(pbegin

a ∨p1
b), ◁=1(pbegin

a ∨p1
b), and ◁<1(pbegin

a ∨p1
b)

(respectively) to obtain ψ′
2, ψ′

3, and ψ′
4. It follows that ψ1 ∧ ψ′

2 ∧ ψ′
3 ∧ ψ′

4 can be translated
into a one-clock deterministic TA. Finally, it is possible to move all the timing constraints
into the model and use an untimed HyperLTL formula as the specification: in the model,
ensure that p1 and q1 are separated by exactly 1 time unit, and add s0

{p2}−−−→ s1
{q2}−−−→ shalt

such that p2 and q2 are separated by < 1 time unit; in the specification, use p2, q2 to rule
out those πa’s with some m? at < 1 time unit from pbegin. ◀

Now we consider the synchronous semantics. The corresponding result is weaker in
this case, as we will see in the next section that in several subcases the problem becomes
decidable. Still, the reduction above can be made to work if the model has one clock and
an extra trace quantifier is allowed.

▶ Theorem 14. Model checking ∃∗∀∗-HyperMTL and ∀∗∃∗-HyperMTL are undecidable in
the synchronous semantics.

Proof of Theorem 14. We use a modified modelA′ whose set of locations is S∪{s1, s2, s3, s4};
the transitions are similar to A in the proof of Theorem 13, but we now use a clock x in the
path s0

{p1}−−−→
x:=0

s1
{q1}−−−−−−→

x≥1,x:=0
shalt , the paths s0

{p2}−−−→
x:=0

s2
{q2}−−−−−−→

x≤1,x:=0
shalt , s0

{p3}−−−→
x:=0

s3
{q3}−−−−−−→

x>1,x:=0

shalt , s0
{p4}−−−→
x:=0

s4
{q4}−−−−−−→

x<1,x:=0
shalt are added, and s0

{pread}−−−−→ shalt is removed. Moreover, a
self-loop labelled with {pϵ} is added to each of s0, s1, s2, s3, s4, and shalt . The specification
is φ′ = ∃πa ∀πb ∀πc

∧
1≤i≤9 ψ

′
i where

∧
1≤i≤9 ψ

′
i is the following untimed LTL formula:

ψ′
1 = F pend

a ;
ψ′

2 = F(q4
b ∧ ψR)⇒ ¬F(p4

b ∧ pbegin
a) where ψR =

∨
{m?

a | m ∈M};
ψ′

3 =
∧

m∈M

(
F(q1

b ∧ q2
c ∧m?

a) ∧ F(p1
b ∧ p2

c)⇒ F(p1
b ∧ p2

c ∧m!
a)

)
;

ψ′
4 = F(q3

b ∧ ψR)⇒ ¬F(p3
b ∧X q3

b);
ψ′

5 = F(q3
b ∧ q4

c ∧ ψR)⇒ ¬F(p3
b ∧X p4

c);
ψ′

6 = F(p4
b ∧ ψW)⇒ ¬F(q4

b ∧ ¬X⊤) where ψW =
∨
{m!

a | m ∈M};
ψ′

7 =
∧

m∈M

(
F(p1

b ∧ p2
c ∧m!

a) ∧ F(q1
b ∧ q2

c)⇒ F
(
q1

b ∧ q2
c ∧ (m?

a ∨ pϵ
a)

))
;

ψ′
8 = F(p3

b ∧ ψW)⇒ ¬F(p3
b ∧X q3

b);
ψ′

9 = F(p3
b ∧ p4

c ∧ ψW)⇒ ¬F(q3
b ∧X q4

c).

H.-M. Ho, R. Zhou, and T. M. Jones 16:13

In this modified reduction, ψ′
1, ψ′

2 play similar roles as ψ1, ψ2 in the proof of Theorem 13.
ψ′

3 ensures that if each m? at t is preceded by an event at t − 1, then m! must hold there.
ψ′

4 and ψ′
5 ensures that each m? at t is actually preceded by an event at t− 1. The roles of

ψ′
6, ψ′

7, ψ′
8, and ψ′

8 are analogous (note the use of silent events at the end of πa). ◀

Restricted models. We conclude this section by showing that the undecidability results
above can actually be obtained for trivial systems with only a single location. In particular,
the structural restrictions considered in [12] have no effect on the decidability of HyperMTL
model checking.

▶ Corollary 15. Model checking ∃∗∀∗-HyperMTL and ∀∗∃∗-HyperMTL are undecidable in the
asynchronous semantics for systems with only one location.

▶ Corollary 16. Model checking ∃∗∀∗-HyperMTL and ∀∗∃∗-HyperMTL are undecidable in the
synchronous semantics for systems with only one location.

5 Decidable subcases

While the negative results in the previous section may be disappointing, we stress again that
model checking alternation-free HyperMTL is no harder than MTL model checking, and it can
in fact be carried out with algorithms and tools for the latter. In any case, we now identify
several subcases where model checking is decidable beyond the alternation-free fragment.

Untimed model + untimed specification. The first case we consider is when both the
model and the specification are untimed, and the asynchronous semantics is assumed (note
that, if instead, the synchronous semantics is assumed, then this case is simply HyperLTL
model checking). Our algorithm follows the lines of [16] and is essentially based on self-
composition (cf. [10], and many others; see the references in [16]) of the model; the difficulty
here, however, is to handle interleaving of events. Let the model A be a finite automaton over
ΣAP and the specification be a (untimed) closed HyperMTL formula over AP. Without loss
of generality, we assume the specification to be φ = ∃π1 ∀π2 . . . ∃πk−1 ∀πk ψ, which can be
rewritten into ∃π1 ¬∃π2 ¬ . . .∃πk−1 ¬∃πk ¬ψ. We start by translating stutter(¬ψ) (in which
we replace all occurrences of ⊤i with ¬pϵ

i , i.e. regarded here simply as an MTL formula over
(APϵ)k = {pi | p ∈ APϵ, 1 ≤ i ≤ k}) into the equivalent finite automaton over Σ(APϵ)k , and
take its product with (i) the automaton for G(

∨
1≤i≤k ¬pϵ

i)∧
(∧

1≤i≤k G(pϵ
i ⇒

∧
p∈AP ¬pi)

)
and (ii) the automaton obtained from stutter(A) by extending the alphabet to Σ(APϵ)k and
renaming all the occurrences of p to pk, to obtain B. Now let C be the projection of B
onto (APϵ)k−1 = {pi | p ∈ APϵ, 1 ≤ i ≤ k − 1} (this step corresponds to ∃ in ¬∃πk). By
construction, B accepts only traces that are well-formed in dimensions 1 to k−1, and so does
C; but C may accept traces containing {pϵ

i | 1 ≤ i ≤ k−1}-events. We replace these events by
ϵ (the ‘real’ silent event, which can be removed with the standard textbook constructions,
e.g., [36]) to obtain C′. Finally, we complement C′ to obtain C′′ (this step corresponds
to ¬ in ¬∃πk). We can then start over by taking the product of C′′, the automaton for
G(

∨
1≤i≤k−1 ¬pϵ

i) ∧
(∧

1≤i≤k−1 G(pϵ
i ⇒

∧
p∈AP ¬pi)

)
, and the automaton obtained from

stutter(A) by extending the alphabet to Σ(APϵ)k−1 and renaming all the occurrences of p to
pk−1; the resulting automaton is the new B. We continue this process until the outermost
quantifier ∃π1 is reached, when we test the emptiness of B (at this point, it is an automaton
over ΣAPϵ).

▶ Proposition 17. Model checking HyperMTL is decidable when the model and the specific-
ation are both untimed.

TIME 2019

16:14 On Verifying Timed Hyperproperties

One clock + one alternation. The algorithm outlined in the previous case crucially
depends on the fact that both A and φ are untimed, hence their product (in the sense
detailed in the previous case) can be complemented. When the synchronous semantics is
assumed and there is only one quantifier alternation in φ, it might be the case that we do
not actually need complementation. For example, if A is untimed and φ = ∀πa ∃πb ∃πc ψ

where ψ translates into a one-clock TA, the corresponding model-checking problem clearly
reduces to universality for one-clock TAs, which is decidable but non-primitive recursive [1].7
This observation applies to other cases as well, such as when A is a one-clock TA and
φ = ∃πa ∀πb ψ where ψ is untimed; here model checking reduces to language inclusion
between two one-clock TAs.

Untimed model + MIA specification. The main obstacle in applying the algorithm
above to larger fragments of HyperMTL, as should be clear now, is that universal quantifiers
amount to complementations, which are not possible in general in the case of TAs. Moreover,
we note that the usual strategy of restricting to deterministic models and specifications does
not help, as the projection step in the algorithm necessarily introduces non-determinism.
To make the algorithm work for larger fragments, we essentially need a class of automata
that is both closed under projection and complementable. Fortunately, there is a subclass
of one-clock TAs that satisfies these conditions. We consider two additional restrictions on
one-clock TAs:

Non-Singular (NS): a one-clock TA is NS if all the guards are non-singular (i.e. must be
of the form x ∈ I where x is the single clock and I is a non-singular interval).
Reset-on-Testing (RoT): a one-clock TA is RoT if whenever the guard of a transition is
not ⊤, x must be reset on that transition.

One-clock TAs satisfying both NS and RoT are called metric interval automata (MIAs),
which are determinisable [21]. Since the projection operation cannot invalidate NS and
RoT, the algorithm above can be applied when the synchronous semantics is assumed, A is
untimed, ψ or ¬ψ translates to a MIA, and only one complementation is involved; in this
case it runs in elementary time.

▶ Proposition 18. Model checking ∀∗∃∗-HyperMTL (∃∗∀∗-HyperMTL) is decidable in the
synchronous semantics when the model is untimed and ψ (¬ψ) translates into a MIA in the
specification φ = ∀π1 . . .∃πk ψ (φ = ∃π1 . . .∀πk ψ).

On the other hand, we can adapt the proof of Theorem 14 to show that model checking
an untimed model against an ∃∗∀∗-HyperMTL specification φ in the synchronous semantics,
when the quantifier-free part ψ (instead of ¬ψ) translates into a MIA, remains undecidable.

▶ Proposition 19. Model checking ∃∗∀∗-HyperMTL is undecidable in the synchronous se-
mantics when the model is untimed and ψ in the specification φ = ∃π1 . . .∀πk ψ translates
into a MIA.

The decidability results in the synchronous semantics are summarised in Table 1.

Bounded time domains. We end this section by showing that when there is an a priori
bound N (where N is a positive integer) on the length of the time domain, the model-
checking problem for full HyperMTL becomes decidable; in fact, in the case of synchronous

7 This case is undecidable in the asynchronous semantics by Theorem 13; as explained above, the al-
gorithm may introduce ϵ-transitions in the asynchronous semantics, while universality for one-clock
TAs with ϵ-transitions is undecidable [1].

H.-M. Ho, R. Zhou, and T. M. Jones 16:15

Model
Spec. untimed NS+RoT NS RoT

untimed Dec.
(Proposition 17)

Dec. for ∀∗∃∗

(Proposition 18)
Undec. for ∃∀∀
(Proposition 19)

Undec. for ∃∀∀
(Proposition 19)

NS+RoT Undec. for ∃∀∀
(Theorem 14) Undec. Undec. Undec.

NS Undec. Undec. Undec. Undec.

RoT Undec. Undec. Undec. Undec.

Table 1 Decidability of model checking untimed or one-clock TAs against (one-clock) HyperMTL
in the synchronous semantics; NS stands for Non-Singular constraints and RoT stands for Reset-
on-Testing.

semantics it reduces to the satisfiability problem for QPTL [56]. From a practical point of
view, this implies that time-bounded HyperMTL verification (at least for the ∃∗∀∗-fragment,
say) can be carried out with highly efficient, off-the-shelf tools that work with LTL and
(untimed) automata, such as SPOT [20], GOAL [57], and Owl [40].

We assume the asynchronous semantics. For a given N , we consider all traces in which all
timestamps are less than N . Denote by JAK[0,N) the set of all such traces in JAK; the model-
checking problem then becomes deciding whether JAK[0,N) |= φ. As before, we assume φ to
be ∃π1 ¬∃π2 ¬ . . . ∃πk−1 ¬∃πk ¬ψ. Following [34, 48], we can use the stacking construction
to obtain, from the conjunction ψ′ of stutter(¬ψ) and G(

∨
π∈Q ¬pϵ

π) ∧
(∧

π∈Q G(pϵ
π ⇒∧

p∈AP ¬pπ)
)
, an equi-satisfiable untimed (QPTL) formula φ = ∃W ψ′ over the stacked

alphabet (APϵ)k ∪ Q (where (APϵ)k = {pi,j | p ∈ APϵ, 1 ≤ i ≤ k, 0 ≤ j < N} and
Q = {qj | 0 ≤ j < N}). We apply the following modifications to φ to obtain φ′:

introduce atomic propositions {pϵ
i | 1 ≤ i ≤ k} and add the conjunct

∧1≤i≤k G
((
∧0≤j<N (qj ⇒ pϵ

i,j)
)
⇔ pϵ

i

)
;

introduce atomic propositions {qi,j | 1 ≤ i ≤ k, 0 ≤ j < N} and add the conjunct

∧1≤i≤k G
(
∧0≤j<N (¬pϵ

i ∧ qj ⇔ qi,j)
)

;

project away {pϵ
i,j | 1 ≤ i ≤ k, 0 ≤ j < N} and Q;

replace all occurrences of pϵ
i by ⊥i.

Now, as we mentioned earlier, we can writeA as an (MSO[<,+1] [48]) formula φA = ∃XA ψA
where XA is a set of atomic propositions such that AP∩XA = ∅ and ψA is an MTL formula
over AP ∪ XA. Let φA be its stacked counterpart ∃XA ∃Y ψA; we translate φA back into
an untimed automaton A over the stacked alphabet AP ∪Q. The problem thus reduces to
untimed model checking ofA against ∃π1 ∀π2 . . . ∃πk−1 ∀πk φ′ in the asynchronous semantics,
which is decidable by Proposition 17 (φ′ has outermost existential propositional quantifiers,
but clearly the equivalent automaton can be used directly in the algorithm).

Finally, note that the proof is simpler for the case of synchronous semantics: we can
simply work with a (non-stuttering) MSO[<,+1] formula in all the intermediate steps
without translating it into an automaton, and then check the satisfiability of the final formula
by stacking it into a QPTL formula.

▶ Proposition 20. Model checking HyperMTL is decidable when the time domain is [0, N),
where N is a given positive integer.

TIME 2019

16:16 On Verifying Timed Hyperproperties

References
1 Parosh Aziz Abdulla, Johann Deneux, Joël Ouaknine, Karin Quaas, and James Worrell. Uni-

versality analysis for one-clock timed automata. Fundam. Inform, 89(4):419–450, 2008.
2 Erika Ábrahám and Borzoo Bonakdarpour. HyperPCTL: A temporal logic for probabilistic

hyperproperties. In QEST, volume 11024 of Lecture Notes in Computer Science, pages 20–35.
Springer, 2018.

3 Shreya Agrawal and Borzoo Bonakdarpour. Runtime verification of k-safety hyperproperties
in HyperLTL. In CSF, pages 239–252. IEEE Computer Society, 2016.

4 Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

5 Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. The benefits of relaxing punctuality.
Journal of the ACM, 43(1):116–146, 1996.

6 Rajeev Alur and Thomas A. Henzinger. Back to the future: towards a theory of timed regular
languages. In FOCS, pages 177–186. IEEE Computer Society, 1992.

7 Rajeev Alur and Thomas A. Henzinger. Logics and models of real time: A survey. In REX,
volume 600 of LNCS, pages 74–106. Springer-Verlag, 1992.

8 Rajeev Alur and Thomas A. Henzinger. Real-time logics: Complexity and expressiveness.
Information and Computation, 104(1):35–77, 1993.

9 Rajeev Alur and Thomas A. Henzinger. A really temporal logic. Journal of the ACM,
41(1):164–169, 1994.

10 Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure information flow by self-
composition. Mathematical Structures in Computer Science, 21(6):1207–1252, 2011.

11 Béatrice Bérard, Antoine Petit, Volker Diekert, and Paul Gastin. Characterization of the
expressive power of silent transitions in timed automata. Fundam. Inform, 36(2-3):145–182,
1998.

12 Borzoo Bonakdarpour and Bernd Finkbeiner. The complexity of monitoring hyperproperties.
In CSF, pages 162–174. IEEE Computer Society, 2018.

13 D. Brand and P. Zafiropulo. On communicating finite state machines. Journal of the ACM,
30:323–342, 1983.

14 Thomas Brihaye, Morgane Estiévenart, Gilles Geeraerts, Hsi-Ming Ho, Benjamin Monmege,
and Nathalie Sznajder. Real-time synthesis is hard! In FORMATS, volume 9884 of LNCS,
pages 105–120. Springer, 2016.

15 Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco Pistore,
Marco Roveri, Roberto Sebastiani, and Armando Tacchella. NuSMV2: An opensource tool
for symbolic model checking. In CAV, volume 2404 of LNCS, pages 359–364. Springer, 2002.

16 Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N.
Rabe, and César Sánchez. Temporal logics for hyperproperties. In POST, volume 8414 of
LNCS, pages 265–284. Springer, 2014.

17 Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of Computer Security,
18(6):1157–1210, 2010.

18 Laurent Doyen, Gilles Geeraerts, Jean-François Raskin, and Julien Reichert. Realizability of
real-time logics. In FORMATS, volume 5813 of LNCS, pages 133–148. Springer, 2009.

19 Deepak D’Souza and P. Madhusudan. Timed control synthesis for external specifications. In
STACS, volume 2285 of LNCS, pages 571–582. Springer, 2002.

20 Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud Michaud, Etienne
Renault, and Laurent Xu. Spot 2.0 - a framework for LTL and ω-automata manipulation. In
ATVA, volume 9938 of LNCS, pages 122–129. Springer, 2016.

21 Thomas Ferrère. The compound interest in relaxing punctuality. In FM, volume 10951 of
LNCS, pages 147–164. Springer, 2018.

22 Bernd Finkbeiner and Christopher Hahn. Deciding hyperproperties. In CONCUR, volume 59
of LIPIcs, pages 13:1–13:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

H.-M. Ho, R. Zhou, and T. M. Jones 16:17

23 Bernd Finkbeiner, Christopher Hahn, and Tobias Hans. Mghyper: Checking satisfiability of
HyperLTL formulas beyond the ∃∗∀∗ fragment. In ATVA, volume 11138 of Lecture Notes in
Computer Science, pages 521–527. Springer, 2018.

24 Bernd Finkbeiner, Christopher Hahn, and Marvin Stenger. Eahyper: Satisfiability, implica-
tion, and equivalence checking of hyperproperties. In CAV, volume 10427 of Lecture Notes in
Computer Science, pages 564–570. Springer, 2017.

25 Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup. Monitoring
hyperproperties. In RV, volume 10548 of LNCS, pages 190–207. Springer, 2017.

26 Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup. RVHyper: A
runtime verification tool for temporal hyperproperties. In TACAS, volume 10806 of Lecture
Notes in Computer Science, pages 194–200. Springer, 2018.

27 Bernd Finkbeiner, Christopher Hahn, and Hazem Torfah. Model checking quantitative hy-
perproperties. In CAV, volume 10981 of Lecture Notes in Computer Science, pages 144–163.
Springer, 2018.

28 Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. Algorithms for model checking
HyperLTL and HyperCTL∗. In CAV, volume 9206 of LNCS, pages 30–48. Springer, 2015.

29 Guillaume Gardey, John Mullins, and Olivier H. Roux. Non-interference control synthesis for
security timed automata. Electr. Notes Theor. Comput. Sci, 180(1):35–53, 2007.

30 Christopher Gerking, David Schubert, and Eric Bodden. Model checking the information flow
security of real-time systems. In ESSoS, volume 10953 of LNCS, pages 27–43. Springer, 2018.

31 J. A. Goguen and J. Meseguer. Security policies and security models. In S&P, pages 11–20.
IEEE Computer Society, 1982.

32 Jens Heinen. Model checking timed hyperproperties. Master’s thesis, Saarland University,
2018.

33 Thomas A. Henzinger, Jean-François Raskin, and Pierre-Yves Schobbens. The regular real-
time languages. In ICALP, volume 1443 of LNCS, pages 580–591. Springer, 1998.

34 Hsi-Ming Ho. On the expressiveness of metric temporal logic over bounded timed words. In
RP, volume 8762 of Lecture Notes in Computer Science, pages 138–150. Springer, 2014.

35 Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering,
23(5):279–295, 1997.

36 John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

37 Marieke Huisman, Pratik Worah, and Kim Sunesen. A temporal logic characterisation of
observational determinism. In CSFW, page 3. IEEE Computer Society, 2006.

38 Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan
Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploiting
speculative execution. CoRR, abs/1801.01203, 2018.

39 Ron Koymans. Specifying real-time properties with metric temporal logic. Real-Time Systems,
2(4):255–299, 1990.

40 Jan Kretínský, Tobias Meggendorfer, and Salomon Sickert. Owl: A library for ω-words,
automata, and ltl. In ATVA, volume 11138 of Lecture Notes in Computer Science, pages
543–550. Springer, 2018.

41 Antonín Kučera and Jan Strejček. The stuttering principle revisited. Acta Informatica, 41(7–
8):415–434, 2005.

42 L. Lamport. What good is temporal logic? In R.E.A. Mason, editor, IFIP Congress, pages
657–667, Amsterdam, 1983. North-Holland.

43 Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. International Journal
on Software Tools for Technology Transfer, 1(1-2):134–152, 1997.

44 Yang Li, Kazuo Sakiyama, Shigeto Gomisawa, Toshinori Fukunaga, Junko Takahashi, and
Kazuo Ohta. Fault sensitivity analysis. In Stefan Mangard and François-Xavier Standaert,
editors, CHES, volume 6225 of Lecture Notes in Computer Science, pages 320–334. Springer,
2010.

TIME 2019

16:18 On Verifying Timed Hyperproperties

45 Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh,
Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
Meltdown: Reading kernel memory from user space. In USENIX Security Symposium, pages
973–990. USENIX Association, 2018.

46 John McLean. A general theory of composition for trace sets closed under selective interleaving
functions. In S&P, pages 79–93. IEEE Computer Society, 1994.

47 Luan Viet Nguyen, James Kapinski, Xiaoqing Jin, Jyotirmoy V. Deshmukh, and Taylor T.
Johnson. Hyperproperties of real-valued signals. In MEMOCODE, pages 104–113. ACM,
2017.

48 Joël Ouaknine, Alexander Rabinovich, and James Worrell. Time-bounded verification. In
Proceedings of CONCUR 2009, volume 5710 of LNCS, pages 496–510. Springer, 2009.

49 Joël Ouaknine and James Worrell. On the language inclusion problem for timed automata:
Closing a decidability gap. In LICS, pages 54–63. IEEE Computer Society, 2004.

50 Joël Ouaknine and James Worrell. On the decidability and complexity of metric temporal
logic over finite words. Logical Methods in Computer Science, 3(1), 2007.

51 Joël Ouaknine and James Worrell. Some recent results in metric temporal logic. In FORMATS,
volume 5215 of LNCS, pages 1–13. Springer, 2008.

52 Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57. IEEE, 1977.
53 Jean-François Raskin. Logics, automata and classical theories for deciding real time. PhD

thesis, FUNDP (Belgium), 1999.
54 A. W. Roscoe. Csp and determinism in security modelling. In S&P, pages 114–127. IEEE

Computer Society, 1995.
55 Laurent Simon, David Chisnall, and Ross J. Anderson. What you get is what you C: Con-

trolling side effects in mainstream C compilers. In EuroS&P, pages 1–15. IEEE, 2018.
56 A. Prasad Sistla, Moshe Y. Vardi, and Pierre Wolper. The complementation problem for

Büchi automata with applications to temporal logic (extended abstract). In ICALP, volume
194 of LNCS, pages 465–474. Springer, 1985.

57 Ming-Hsien Tsai, Yih-Kuen Tsay, and Yu-Shiang Hwang. Goal for games, omega-automata,
and logics. In CAV, volume 8044 of Lecture Notes in Computer Science, pages 883–889.
Springer, 2013.

58 Panagiotis Vasilikos, Flemming Nielson, and Hanne Riis Nielson. Secure information release
in timed automata. In POST, volume 10804 of LNCS, pages 28–52. Springer, 2018.

59 Steve Zdancewic and Andrew C. Myers. Observational determinism for concurrent program
security. In CSFW, page 29. IEEE Computer Society, 2003.

	Introduction
	Timed hyperproperties
	Satisfiability
	Model checking
	Decidable subcases

