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Abstract

Small molecules and antisense oligonucleotides that inhibit the translation initiation factors 

eIF4A1 and eIF4E have been explored as broad-based therapeutic agents for cancer treatment, 

based on the frequent upregulation of these two subunits of the eIF4F cap-binding complex in 

many cancer cells. Here we provide support for these therapeutic approaches with mechanistic 

studies of eIF4F-driven tumor progression in a preclinical model of melanoma. Silencing eIF4A1 

or eIF4E decreases melanoma proliferation and invasion. There were common effects on the level 

of cell cycle proteins which could explain the antiproliferative effects in vitro. Using clinical 

specimens, we correlate the common cell cycle targets of eIF4A1 and eIF4E with patient survival. 

Finally, comparative proteomic and transcriptomic analyses reveal extensive mechanistic 

divergence in response to eIF4A1 or eIF4E silencing. Current models indicate that eIF4A1 and 

eIF4E function together through the 5′UTR to increase translation of oncogenes. In contrast, our 

data demonstrate that the common effects of eIF4A1 and eIF4E on translation are mediated by the 

coding region and 3′UTR. Moreover, their divergent effects occur through the 5′UTR. Overall, 

our work shows that it will be important to evaluate subunit-specific inhibitors of eIF4F in 

different disease contexts to fully understand their anticancer actions.
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INTRODUCTION

Steady state translation initiation is primarily regulated through the cytoplasmic mRNA cap 

binding complex, eukaryotic initiation factor 4F (eIF4F), comprised of the cap binding 

protein eIF4E, the RNA helicase eIF4A and the scaffolding protein eIF4G (reviewed in (1)). 

Increased protein levels of eIF4E (2), phospho-eIF4E (3), eIF4A1 (4) and eIF4G (5) are 

associated with poor clinical outcomes in multiple cancer contexts and are linked to 

aggressive phenotypes in cellular and preclinical models (6–8). In melanoma, many of the 

known oncogenic signaling pathways converge on eIF4F (9). Targeted therapies that 

deactivate these pathways are initially effective, but nearly universal acquired resistance 

leads to high mortality rates (10). Thus, second-line inhibition of eIF4F could significantly 

extend the period of response to targeted therapies for melanoma patients.

Classic models dictate that eIF4E is the rate-limiting factor for translation initiation in most 

normal tissues (11). Under physiological conditions, mRNAs are thought to compete for 

limiting amounts of eIF4E. In this model, mRNAs with longer and more structured 5′UTRs 

are weakly translated. In cancer cells, increased availability of eIF4E leads to selective 

translation of highly-sensitive oncogenes, such as MYC (12) and VEGF (13). More recently, 

this model was extended to incorporate 5′UTR sequence elements that confer eIF4E 

sensitivity such as the terminal oligonucleotide tract (5′TOP), pyrimidine-rich translational 

element (PRTE) and cytosine-enriched regulator of translation (CERT) (14–16). However, 

5′UTR features do not explain the full spectrum of eIF4E targets (17), including the class of 

mRNAs for which eIF4E negatively regulates translation. Improved models are necessary to 

predict outcomes of therapeutic inhibition of eIF4F in cancer.

Targets of eIF4A and eIF4E have been identified using polysomal RNA association or 

ribosome profiling to estimate translation efficiency (16,18–21). Some mRNAs have 

different requirements for individual eIF4F subunits (19,22), but global effects of eIF4A1 

and eIF4E depletion have not been assessed in parallel in the same cancer model. Here, we 

characterize the phenotypic and global proteomic effects of eIF4A1 and eIF4E inhibition in 

melanoma. We show that eIF4A1 and eIF4E promote melanoma proliferation through 

shared, network-level regulation of the cell cycle, and moreover, that eIF4F-dependent cell 

cycle proteins are significant combinatorial predictors of patient survival. Finally, we 

demonstrate that intrinsic features of mRNA coding sequence (CDS) and 3′UTR, but not 

5′UTR, predict shared targets of eIF4A1 and eIF4E. These data demonstrate that eIF4A1 

and eIF4E have distinct molecular consequences in the same cancer model, which implies 

that targeting eIF4F with different subunit-specific inhibitors will influence on-target and 

off-target therapeutic outcomes.

MATERIALS AND METHODS

Additional methods are provided in supplementary file S1.

Cell culture

WM858, WM46 and A375 were cultured in high glucose DMEM (Cellgro) supplemented 

with 10% fetal bovine serum (Life Technologies). WM46 was transduced with lentivirus 

Joyce et al. Page 2

Cancer Res. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



containing empty SparQ IRES RFP vector (QM531A-2, System Biosciences), or vector 

containing eIF4A1 (4096621, Open Biosystems) or eIF4E cDNA (5295521, Open 

Biosystems). RFP positive cells in the middle quantiles were selected by flow cytometry. 

The A375 melanoma cell line was a gift from Dr. David Fisher, and WM46 and WM858 

were a gift from Dr. Levi Garraway, all obtained prior to 2012. All cell lines were 

authenticated via short tandem repeat profiling at the American Tissue Culture Repository 

on May 19, 2016.

Transient knockdown

A375 and WM858 cells were transfected with Allstars Negative Control siRNA (Qiagen) or 

gene-specific siRNA at 7.5 nM using RNAiMAX (Life Technologies). Gene-specific siRNA 

sequences were 5′-GCATGGAGATATCTCCATGCAT and 5′-

GCATGGAGATATGGACCAATT for eIF4A1 (custom design, Qiagen) and 5′-

AAGAGCGGCTCCACCACTAAA and 5′-CAAAGCTTTGCTACAAATTTA for eIF4E 

(Hs_EIF4E_1 and Hs_EIF4E_8, Qiagen). siRNA-like off-target effects were assessed by 

siRNA-check (http://projects.insilico.us/SpliceCenter/siRNACheck). miRNA-like off-target 

effects were assessed by scanning 3′UTRs for perfect matches to the 8-mer seed region of 

each oligonucleotide (underlined above).

Proliferation assays

2500 cells per well were seeded into 96-well plates and, where appropriate, transfected with 

siRNA. After 24 hours (h), cell culture medium was replaced with 10μl Wst-1 (Pierce) in 

100μl complete medium. Cells were incubated in growth conditions for 30 minutes, and 

absorbance was measured at 450 nm on a Victor 3V plate reader (Perkin Elmer). Additional 

readings were taken at 48, 72 and 96h. Blank readings were subtracted from test readings 

and net absorbance values were plotted relative to the 24h time point. Significance was 

calculated by two-way ANOVA with Dunnett’s multiple correction test (GraphPad Prism 

v7.0).

Invasion assays

4.0 × 104 (knockdown) or 2.0 × 104 (overexpression) cells were washed and resuspended in 

serum free medium. Cells were seeded in rehydrated control or Matrigel invasion chambers 

(BD Biocoat), chambers were placed in wells of a 24-well plate containing 750μl DMEM 

supplemented with 30% FBS, and plates were incubated under growth conditions for 20h. 

Non-migratory cells were removed by scrubbing twice with a cotton swab. Filters were 

washed in cold PBS, fixed in cold 100% methanol and mounted with Vectashield Hard Set 

Mounting Medium with DAPI (Vector Labs). Eight visual fields were photographed for cell 

counting. Invasion assays were performed 48h post-transfection and 4 hours post-treatment 

with 1uM rotenone, when applicable. Significance was calculated by one-way ANOVA with 

Dunnett’s multiple correction test (GraphPad Prism v7.0).

Quantitative mass spectrometry

Knockdowns were performed in triplicate in 10cm dishes and cells were collected 72h post-

transfection. Samples were processed and analyzed for MS3 mass spectrometry as 
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previously described (23). Briefly, cells were lysed, proteins were digested using LysC and 

trypsin, and peptides were labeled with Tandem Mass Tag 10-plex reagents and fractionated. 

Data were collected on an Orbitrap Fusion mass spectrometer operating in MS3 mode using 

synchronous precursor selection for MS2 to MS3 fragmentation, and forward and reverse 

sequences were searched against a Uniprot human database (February 2014) using the 

SEQUEST algorithm. Additional processing steps included protein assembly and 

quantification from peptides, and calculation of Benjamini-Hochberg false discovery rates 

(FDR). Protein levels were normalized to the percent signal in each sample relative to the 

total signal across all multiplexed samples. Differentially expressed proteins had a fold 

change ≥|1.25| in all three biological replicates and FDR <0.1 in primary and secondary 

siRNA treatments.

Pathway and network analysis

Gene set enrichment analysis was performed using GSEA (http://software.broadinstitute.org/

gsea/index.jspGene). Differentially expressed proteins for each treatment were ranked based 

on their average fold-change across triplicates and analyzed against Reactome pathways 

(http://www.reactome.org/pathways) using the GSEA Preranked tool. We applied a classic 

enrichment statistic, filtered gene sets with >500 or <15 hits, and applied an FDR threshold 

≤0.1. To visualize enrichment of common pathways, we ranked all genes based on their 

average fold-change across all knockdown treatments and performed GSEA Preranked as 

above. The normalized enrichment score calculates the degree to which a gene set is 

overrepresented at the extremes of a ranked list, accounting for size of the gene set. To 

predict functional outcomes of differentially expressed genes, we used the Diseases and 

Functions tool in Ingenuity Pathway Analysis (IPA; Qiagen). Differentially expressed cell 

cycle proteins were assigned to cell cycle phases based on their membership in Reactome 

daughter categories under the cell cycle parent category.

Cell cycle analysis

Knockdowns were performed in 6 well dishes. Cells were collected 72 hours post-

transfection, washed once in PBS, fixed in 70% ethanol for 30 min at 4°C pelleted pelleted 

at 850xg for 10 min, and washed again in PBS. Pellets were resuspended in 50ul 100ug/ml 

RNase A and incubated at room temperature for 15 min. 200ul 50ug/ml propidium iodide 

was added and the suspension was incubated in the dark at room temperature for 20 min. 

Cells were passed through a cell strainer filter and analyzed on a BD LSR II FACS machine. 

Proportions of G1, S and G2 cells were assessed in FlowJo v10. Significance was calculated 

by two-way ANOVA with Dunnett’s multiple correction test (GraphPad Prism v7.0).

Apoptosis assays

Knockdowns were performed in 6 well dishes. Cells were collected 48 or 72 hours post-

transfection, stained with the Pacific Blue Annexin V Apoptosis Detection Kit (Biolegend) 

and analyzed on a BD LSR II FACS machine. Proportions of ANXAV- and propidium 

iodide-positive cells were assessed in FlowJo v10. Significance was calculated by two-way 

ANOVA with Dunnett’s multiple correction test (GraphPad Prism v7.0).
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Patient survival

Clinical and protein expression data (level 3; normalized expression) were obtained for skin 

cutaneous melanoma patients in TCGA. All protein data were generated by the Reverse 

Phase Protein Array Core Facility at MD Anderson Cancer Center (Houston, TX), providing 

adequate internal control among samples. Significance of Kaplan-Meier survival curves was 

calculated using the Gehan-Breslow-Wilcoxon test, which does not assume equivalent 

proportional hazards over time (GraphPad Prism software v7.0).

RNA sequencing (RNA-seq)

Knockdowns were performed in duplicate in 10cm dishes. RNA was extracted 72 hours 

post-transfection using Trizol reagent. cDNA libraries were prepared from 1ug total RNA 

using the Illumina TruSeq RNA sample preparation kit, v2. Raw counts were obtained using 

the Python package ‘HTSeq-count’, and normalized using the R package ‘deseq’. 

Differentially expressed mRNAs had a fold change ≥|1.25| and FDR≤0.1.

Effect size calculation

Cliff’s D was calculated using the cliff.delta function in the R package ‘effsize’. This test 

nonparametrically measures how often the values in one distribution are larger than those in 

another distribution. Significance was calculated by the Mann-Whitney-U test using the 

wilcox.test function in R.

miRNA reporter assays

Knockdowns were performed in triplicate in 96 well plates. 24h post-knockdown, cells were 

re-transfected with 100ng psiCheck2–6X-CXCR4 and 15nM si-Scr or artificial CXCR4 

siRNA (5′-GUUUUCACUCCAGCUAACACA-3) using Lipofectamine 2000 (Life 

Technologies). Dual luciferase assays (Promega) were performed and analyzed on a Victor 

3V plate reader (Perkin Elmer) 48h after reporter transfection. miRNA-targeted Renilla 
luciferase (R-luc) was normalized to untargeted firefly luciferase (F-luc) in each well. Fold 

repression was calculated as the R-luc:F-luc ratio in the absence of CXCR4 divided by the 

R-luc:F-luc ratio in the presence of CXCR4.

RESULTS

eIF4A1 and eIF4E positively regulate melanoma proliferation and invasion

We assessed the phenotypic effects of altered eIF4F expression in melanoma short-term 

cultures (MSTC), which are expanded directly from patient biopsies and provide an accurate 

representation of melanoma in vivo (24). The highly proliferative and invasive WM858 

culture has an average doubling time of 34 hours and invasion rate of 19.5% (Fig. 1A, si-

Scr). The weakly proliferative and invasive WM46 culture has an average doubling time of 

62 hours and invasion rate of 6% (Fig. 1B, oe-Empty). Knockdown of eIF4A1 or eIF4E in 

WM858 decreased proliferation and invasion (Fig. 1A, S1A) while overexpression in WM46 

increased invasion and modestly (p=0.127) increased proliferation (Fig. 1B, S1B). These 

data show that eIF4E and eIF4A1 positively regulate melanoma proliferation and invasion, 

two critical processes underlying disease progression.
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eIF4A1 and eIF4E have disparate effects on the melanoma proteome

MSTCs accurately reflect melanoma biology, but they are not ideal for integrative molecular 

profiling because of their slow growth rates, limited proliferative capacity and variable 

transfectability. A375 is an immortalized, transfectable melanoma cell line that is even more 

invasive and proliferative than WM858 in vitro. We confirmed that knockdown of either 

eIF4A1 or eIF4E using primary and secondary siRNAs (Fig. S1C,D) reduced proliferation 

and invasion of A375 cells (Fig. 1C). Thus, A375 is a suitable model system in which to 

examine responses to eIF4F inhibition.

All previous global studies on the effects of eIF4A1 and eIF4E have relied on polysome or 

ribosome profiling, but technical biases have contributed to discordant results (22). 

Moreover, these methods do not directly assess protein levels which are more closely related 

to cellular phenotypes than mRNA levels or ribosome occupancy. To define the eIF4F-

dependent melanoma proteome, we performed triple-stage mass spectrometry (MS3) on 

A375 cells depleted of eIF4A1 or eIF4E for 72 hours. We identified 1286 and 756 

differentially expressed proteins in eIF4A1- or eIF4E-depleted melanomas, respectively 

(Fig. 2A, Table S1). eIF4A1 and eIF4E protein levels were 3.6-fold (+/−0.23, 

FDR=4.65×10−4) and 3.3-fold (+/−0.16, FDR=1.82×10−3) reduced in their respective 

treatments, and neither was affected by depletion of the other.

Among all proteins that were affected by eIF4F depletion (either eIF4A1 or eIF4E), only 

19% (320/1706) were commonly affected by depletion of both factors (Fig. 2B). This was 

surprising given the shared phenotypic outcomes in eIF4A1- or eIF4E-depleted melanomas 

and their known physical interaction as members of the eIF4F cap-binding complex. To 

independently validate this result, we performed western blotting of several differentially 

expressed proteins (Fig. S2). As additional confirmation, we computationally predicted 

siRNA-like or miRNA-like off-target effects of each siRNA. There were no alternative 

binding sites in the human transcriptome that would lead to siRNA-like off target effects, 

even when allowing up to 2 mismatches. However, there were 38 decreased proteins whose 

mRNAs contained 8-mer miRNA seed matches to the siRNAs in their 3′UTRs. Since the 

siRNAs could act like miRNAs to repress translation of these proteins, we removed these 

genes from subsequent analyses. Overall, the vast majority of factor-specific effects were 

likely due to on-target depletion of eIF4A1 and eIF4E.

eIF4A1 and eIF4E promote melanoma proliferation via shared regulation of the cell cycle 
protein network

Despite the prevalence of factor-specific changes, we hypothesized that eIF4A1 and eIF4E 

depletion elicit common phenotypes via commonly dysregulated proteins. Consistent with 

this hypothesis, the 320 common protein changes predicted decreased proliferation 

(p=1.32×10−3, activation z-score=−2.557) and tumor progression (p=3.82×10−4, activation 

z-score=−0.728). To investigate this hypothesis further, we performed Gene Set Enrichment 

Analysis among differentially expressed proteins (Fig. 2C, Table S2). Three Reactome 

pathways were commonly enriched following depletion of either factor: Cell Cycle and 

related DNA Replication were decreased while the Tricarboxylic Acid Cycle and 

Respiratory Electron Transport Chain (TCA/ETC) was increased (Fig. 2C,D).
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Core regulators of all cell cycle phases contributed to the Cell Cycle pathway enrichment 

(Fig. 3A), suggesting a general dampening of the pathway rather than checkpoint-specific 

arrest. Consistent with this, the relative proportion of cells in G0/G1, S or G2/M phase was 

not affected by eIF4A1 or eIF4E depletion (Fig. 3B). Reduced cell number in the absence of 

cell cycle phase skewing could also be due to apoptosis, but we found no evidence for 

increased apoptosis at 48 or 72 hours post-knockdown (Fig. S3, 3C), nor did we detect an 

enrichment of apoptosis pathways (Fig. 2C). Thus, we conclude that eIF4A1 and eIF4E are 

required to maintain the overall rate of entry and progression through the cell cycle in 

melanoma.

We examined the importance of eIF4F-dependent cell cycle regulation to patient outcomes 

in 328 cutaneous melanoma patients in The Cancer Genome Atlas (TCGA) for which 

reverse phase protein array data was available. We first confirmed that low expression of 

eIF4E (eIF4A1 was not queried on the array) conferred a survival advantage in this dataset 

(p=0.0149, Fig 3E), as has been reported elsewhere (25,26). We next identified three core 

cell cycle proteins queried on the array that were commonly regulated by eIF4A1 and eIF4E: 

CCND1, CDK1 and CCNB1 (Fig 3D). Low expression of each factor alone confers a small 

survival advantage that is not statistically significant (Fig. S4), but low expression of all 

three factors together conferred a strong advantage (p=0.0030, Fig. 3E). These data suggest 

that network-level upregulation of cell cycle proteins by eIF4A1 and eIF4E reduces 

melanoma patient survival.

eIF4A1 and eIF4E promote melanoma invasion via distinct mechanisms

A common mechanism underlying eIF4A1- and eIF4E-dependent invasion was less clear 

from the functional enrichment data. However, increased glycolysis is associated with 

melanoma invasion (27), which led us to hypothesize that increased expression of the 

alternative metabolic pathway, TCA/ETC, in eIF4A1- and eIF4E- depleted melanomas (Fig. 

2D) results in a metabolic switch that reduces invasion. If true, inhibiting the ETC in the 

context of eIF4A1 or eIF4E depletion should restore high levels of invasion in A375. We 

treated cells with the ETC complex I inhibitor, rotenone, in combination with si-Scr, si-

eIF4A1 or si-eIF4E. Contrary to our hypothesis, rotenone decreased invasion in the si-Scr 

treatment and had no effect on invasion in eIF4A1- or eIF4E-depleted cells (Fig. S5). Thus, 

eIF4A1 and eIF4E do not promote melanoma invasion through increased use of the 

TCA/ETC metabolic pathway. In fact, this pathway appears to promote invasion through an 

eIF4F-independent mechanism.

Because the eIF4E- and eIF4A-dependent proteomes did not reveal any common pathways 

of melanoma invasion, we examined whether eIF4A1 and eIF4E might reduce invasion 

through different mechanisms. Separate analyses of the proteomes predicted reduced 

invasion of tumor cell lines (p=2.84×10−12 and 7.42×10−4, z=−2.39 and −1.308, for eIF4A1 

and eIF4E, respectively), but the specific proteins contributing to each factor’s enrichment 

differed. Notable examples included decreased expression of alpha and beta integrins in 

eIF4A1-depleted melanomas and decreased expression of epidermal growth factor receptor 

in eIF4E-depleted melanomas (28,29). Thus, it is likely that eIF4A1 and eIF4E commonly 

regulate the invasion phenotype by different molecular mechanisms.
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Direct and indirect regulation by eIF4A1 and eIF4E shape the melanoma proteome

Proteomics links eIF4A1- and eIF4E-dependent phenotypes to changes in protein output, but 

it does not discern whether the regulatory mechanism is direct (translational) or indirect 

(transcriptional or post-transcriptional). Previous studies used translational profiling at very 

early time points to identify direct targets and mitigate effects on transcription and mRNA 

stability (18–21). We devised an alternate strategy that enriches for direct targets at later 

time points by calculating discordance between mRNA and protein fold-changes.

92% of proteins detected by MS3 were also detected at the mRNA level by RNA-seq (Fig. 

4A). Among the overlapping set, 2602 mRNAs were differentially expressed using the |

1.25|-fold threshold applied to the MS3 dataset (Table S3, Fig. S6A). We note that this 

threshold is more permissive for the RNA-seq dataset because the dynamic range of fold-

changes was 2.6-times greater than that of MS3. Despite the large number of differentially 

expressed mRNAs, the Cell Cycle and TCA/ETC pathway enrichments were diminished at 

the mRNA level (Fig. S6B, Table S2). Thus, mRNA expression changes are less indicative 

of altered cellular processes than protein expression changes in the context of eIF4A1 and 

eIF4E depletion.

We next used mRNA fold-changes to infer direct and indirect protein targets of eIF4A1 and 

eIF4E among differentially expressed proteins. Proteins were classified as direct targets if 

there was no change or an opposing change in the cognate mRNA level. This method 

identified known direct targets (Table S4), along with many novel direct targets of both 

factors. In total, 76.8% (911/1186) of eIF4A1-responsive proteins and 67.5% (468/693) of 

eIF4E-responsive proteins were direct targets (Fig. 4B). Surprisingly, nearly half of all direct 

targets were negatively regulated by eIF4A1 or eIF4E (Fig. 4B, red points), suggesting a 

prominent role for eIF4A1 and eIF4E in translational repression which has been observed 

previously, but is poorly understood (16,18–21).

To investigate the relative contributions of direct and indirect regulation on the cellular 

processes regulated by eIF4F, we focused on commonly enriched cell cycle and TCA/ETC 

pathways, which are subject to opposing regulation; the cell cycle pathway was positively 

regulated by eIF4E and eIF4A whereas the TCA/ETC pathway was negatively regulated by 

eIF4E and eIF4A; (Fig. 2D). Among 56 positively-regulated cell cycle pathway members, 

77% and 62% of proteins were direct targets of eIF4A1 and eIF4E, respectively (Fig. 4C). 

Among 23 negatively-regulated TCA/ETC pathway members, 85% and 60% of proteins 

were direct targets of eIF4A1 and eIF4E, respectively (Fig. 4C). Thus, eIF4A1 and eIF4E 

directly regulate the cell cycle by promoting translation of one set of mRNAs and directly 

regulate the TCA/ETC pathway by inhibiting translation of a different set of mRNAs.

5′UTR features predict selective effects of eIF4A1 and eIF4E on translation

To define mRNA-based determinants of positive and negative translational regulation by 

eIF4A1 and eIF4E, we calculated the effect size for intrinsic mRNA features (Fig. 5A). All 

significant features for direct targets had diminished or even opposing effects among indirect 

targets (Fig. S7), highlighting their relevance to direct translational regulation. Surprisingly, 

all significant features in the 5′UTR were specific to either eIF4A1 or eIF4E. eIF4A1 
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promotes translation of mRNAs with long, GC-rich, structured 5′UTRs which is consistent 

with its biochemical activity as an RNA helicase. In contrast, eIF4E promotes translation of 

mRNAs with shorter, less structured 5′UTRs that are depleted of upstream start codons and 

upstream open reading frames.

The negative correlation between 5′UTR structure and eIF4E levels contradicts earlier 

models (1). We examined whether the presence of eIF4E-responsive 5′UTR sequence 

elements could explain this discrepancy. TOP and PRTE elements (14,15) were present in 

less than 10% of eIF4E-dependent 5′UTRs, suggesting that they do not broadly contribute 

to eIF4E-dependent regulation in melanoma. The CERT element was previously identified 

by polysome profiling in a mouse model of eIF4E-driven oncogenic transformation (16). In 

our dataset, the CERT element was present in 47.9% of eIF4E-responsive 5′UTRs. Notably, 

the CERT element was not more prevalent among positively versus negatively regulated 

5′UTRs (Fig. S8A). However, the CERT element was present at a higher density in the 

5′UTRs and 3′UTRs of positively-regulated mRNAs containing the motif compared to 

negatively-regulated mRNAs containing the motif (p=1.87×10−2 and 5.11×10−3, 

respectively; Fig. S8B). Our data independently corroborate a role for the 5′UTR CERT 

element in eIF4E-dependent regulation and further suggest that CERT elements may play a 

similar role in the 3′UTR.

Another reason that our eIF4E-responsive 5′UTRs deviate from earlier models may be that 

compensatory mRNA changes mask protein-level changes in the context of long-term eIF4E 

depletion. For example, eIF4E is known to promote translation of many ribosomal subunit 

proteins via 5′ UTR TOP motifs (14,15), but ribosomal subunit proteins were not 

downregulated in eIF4E-depleted melanoma. To investigate whether eIF4A1 or eIF4E 

knockdown leads to compensatory increases in mRNA levels that could mask reduction in 

protein levels, we examined our mRNA expression data and found dramatic upregulation of 

ribosomal subunits at the mRNA level (Fig. S9). This finding suggests that an increased 

number of transcripts compensates for the translational defect on ribosomal subunit mRNAs. 

Despite potential confounding factors, it appears that 5′UTR composition is the primary 

differentiator between eIF4A1-regulated and eIF4E-regulated transcripts.

CDS and 3′UTR features predict common translational targets of eIF4A1 and eIF4E

CDS and 3′UTR features defined common regulation by both factors. Rare codon 

frequency, 3′UTR length, miRNA binding site density and exon junction density were the 

only significant features among the shared direct targets of eIF4A1 and eIF4E (Fig. 5A). The 

increased density of miRNA binding sites among negatively regulated transcripts was 

intriguing since previous studies have implicated both eIF4E (30) and eIF4A (31) in 

miRNA-mediated repression. To validate this observation in a controlled setting, we tested 

miRNA function in A375 cells depleted of eIF4A1 or eIF4E using a dual luciferase reporter 

assay. Depletion of either factor reduced miRNA-mediated repression (Fig. 5C). In concert 

with our genome-wide analysis of shared eIF4A1 and eIF4E targets, these data establish that 

eIF4F negatively regulates translation via enforcement of miRNA-mediated repression in 

melanoma.
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Taken together, our data implicate features in the CDS and 3′UTR of target mRNAs as 

determinants of direct targets that are common to eIF4A1 and eIF4E, whereas distinct 

5′UTR features primarily determine eIF4A1- and eIF4E-specific targets. It is likely that the 

lack of predictive 5′UTR features among common targets reflects neutralization of the 

opposing 5′UTR features that determine factor-specific responses. These findings may be 

useful in predicting a priori which classes of proteins will be most affected by therapeutic 

inhibitors of eIF4A1 or eIF4E.

DISCUSSION

Significant efforts have been made to identify translational targets of eIF4F during 

transformation and cancer progression. Still, the rules governing eIF4F-dependent 

translation initiation and the key drivers of malignant phenotypes are not well understood. 

We demonstrate that although the eIF4F subunits eIF4A1 and eIF4E commonly promote 

melanoma proliferation and invasion, they have distinct effects on the melanoma proteome.

Proteomics defines eIF4F targets that contribute to melanoma phenotypes

Mass spectrometry is typically insensitive to small fold-changes, but recently developed 

MS3 overcomes this limitation (23) and enables reliable detection of physiological protein 

changes. We leveraged this technology to generate the first eIF4A1- and eIF4E-dependent 

proteomes. These datasets provide a new layer of insight into the phenotypic effects of 

eIF4A1 and eIF4E in cancer cells. A proteomic approach has distinct advantages over 

translation efficiency-based methods. The first is that for protein-coding genes, the proteins 

themselves, not mRNAs, are the primary effectors of biological processes and are thus much 

more closely related to cellular phenotypes. The second is that ribosome occupancy is only 

one of many factors contributing to cellular protein levels. Thus, changes in ribosome 

occupancy don’t always correspond with altered protein levels. The major limitation to 

proteomics is that it can be difficult to discern direct from indirect targets. We overcame this 

by performing an integrative mRNA analysis that enriched for direct translational targets. 

Still, integration of RNA expression, ribosome occupancy and proteomic data will be 

required to generate a complete model of eIF4F-dependent cancer formation and 

progression.

eIF4E and eIF4A1 have distinct effects on the proteome

Binding of eIF4E to the m7G cap (32) recruits eIF4G (33). eIF4G subsequently recruits 43S 

subunits and eIF4A (34), which melts local secondary structure to facilitate 43S scanning 

(35). These coordinated events are considered the critical steps in cap-dependent 

translational regulation. Because these three components are tightly associated, it is logical 

that knockdown of any of these factors could lead to common effects on protein translation.

Though a few eIF4A1- and eIF4E-specific targets have been identified (22), it was surprising 

that eIF4A1 and eIF4E proteomes were strongly discordant. Depletion of eIF4A1, in 

particular, had many effects that were not shared by eIF4E. While opposing regulation at the 

mRNA level may mask some eIF4E-dependent protein expression changes, it is likely that 

the different biochemical activities of eIF4E and eIF4A within the eIF4F complex or eIF4F-
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independent functions explain factor-specific dependencies. For example, eIF4A, not eIF4E, 

associates with mRNAs during the pioneer round of translation (36), which is required for 

mRNA quality control via nonsense-mediated decay.

Combinatorial models of eIF4F function on target mRNAs

Our data demonstrate that eIF4A1 and eIF4E target separate transcripts based on distinct 

sequence and structural features in the 5′UTR, but their shared targets are defined by 

common features in the CDS and 3′UTR. CDS and 3′UTR features may therefore predict 

translational responses to eIF4F independently of 5′UTR features. Consistent with our 

observations, a computational analysis of two published eIF4E overexpression datasets 

reported several features of the CDS and 3′UTR – including CDS GC content and 3′UTR 

length - that influence translational responses (17). Thus, CDS and 3′UTR associations may 

be more robust than 5′UTR features that tend to contribute inconsistently across studies.

The mechanism through which eIF4F is linked to non-5′UTR features has been elusive. Our 

data support a role for eIF4E and eIF4A in translation inhibition by promoting miNA-

mediated repression at the 3′UTR. Given the number of tumor suppressive miRNAs that 

have been discovered, including miR-211 in melanoma (37), this activity of the eIF4F 

complex may be critical for cancer progression. However, other predictive features also 

influenced eIF4F-dependent protein output on a genome-wide scale, and more research is 

necessary to understand the cooperative or antagonistic interactions among different features 

on a given transcript.

For example, the rare codon effect is the first evidence that potentially links eIF4F sensitivity 

to the efficiency of translation elongation. Initiation is often thought of as the rate-limiting 

step in translation, but elongation can be limiting in certain contexts (38) and ribosome 

profiling has begun to reveal novel mechanisms through which elongation regulates the 

proteome (39). This raises the possibility that eIF4F sensitivity depends, in part, on which 

step of translation (initiation or elongation) is limiting for a given transcript. An alternative 

explanation for the rare codon effect could be the role of codon usage in mRNA and protein 

stability, which is still poorly understood (40). Regardless, our data demonstrate that eIF4F 

sensitivity is a function of translational dynamics across the length of the transcript, not just 

in the 5′UTR. Thus, we propose that more accurate models of eIF4F dependence will 

integrate features of the 5′UTR, CDS and 3′UTR that together modulate protein output.

eIF4F inhibition is a promising approach to cancer therapy

eIF4F is frequently and homogeneously overexpressed in many cancers, and in virtually all 

cells of a tumor mass (41). Thus, eIF4F inhibition will target greater numbers of tumor cells 

than therapies that target subclonal genetic or gene expression changes. Moreover, cancer 

cells can become addicted to elevated levels of protein synthesis (42), potentially creating a 

therapeutic window to selectively target them.

Molecules that inhibit the eIF4E-cap interaction (43), eIF4E-eIF4G interaction (44) and 

eIF4A helicase activity (45,46) are effective in preclinical models. An antisense 

oligonucleotide inhibitor of eIF4E has shown particular promise (47,48) and is currently in 

Phase II clinical trials as part of combination therapies for prostate (NCT01234025) and 
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non-small cell lung (NCT01234038) cancers. Our data suggest that therapeutically targeting 

different eIF4F subunits in the same cancer will lead to disparate molecular outcomes that 

influence on- and off-target effects. Additionally, we observed a robust increase in 

expression of proteins required for oxidative phosphorylation in eIF4A1- and eIF4E-

depleted melanoma, whereas the opposite was found in eIF4E-depleted MCF7 human breast 

cancer cells (22,49). The data from both cell types are compelling, and the discrepancy 

likely reflects differences in baseline molecular or metabolic state of the different cell types. 

Thus, the effects of eIF4F inhibitors should not only be evaluated within cancer-subtypes, 

but among cancer subtypes with distinct molecular makeups. Ultimately, it is possible that 

rational selection of eIF4F inhibitors could lead to greater therapeutic effects and fewer off-

target effects than general inhibition of the upstream signaling pathways that converge on 

eIF4F.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. eIF4A1 and eIF4E are positive regulators of melanoma proliferation and invasion
Proliferation rates (left) and invasion rates (center) with representative images (right) for the 

(A) WM858 MSTC treated with siRNAs against eIF4A1 (si-eIF4A1 #1), eIF4E (si-eIF4E 

#1) or scrambled sequence (si-Scr), (B) WM46 MSTC treated with mammalian expression 

vectors encoding eIF4A1 (oe-eIF4A1), eIF4E (oe-eIF4E) or empty vector (oe-Empty) and 

(C) A375 melanoma cell line treated with si-Scr, or one of two independent siRNAs against 

eIF4A1 and eIF4E. Proliferation values were normalized to day one, and plotted relative to 

si-Scr. Percent invasion is calculated as the number of invasive cells on a matrigel-coated 

filter relative to the number of migratory cells on an uncoated control filter seeded at the 

same density. Error bars = standard error of the mean (SEM), n≥3 replicates/treatment, 

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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Figure 2. eIF4A1 and eIF4E commonly regulate cell cycle and oxidative phosphorylation
(A) Heatmap, hierarchically clustered by sample and gene, showing log2 fold-change 

relative to si-Scr for differentially expressed proteins in A375 treated with si-eIF4A1 #1 or 

si-eIF4E #1 (log2 fold-change ≥|1.25|, FDR<0.1). (B) Overlap between decreased (blue) or 

increased (red) proteins with each siRNA treatment. (C) Enriched Reactome pathways 

among decreased or increased proteins in the si-eIF4A1 #1 or si-eIF4E #1 treatments. In 

cases where multiple enriched pathways were under the same parent pathway, only the 

parent pathway has been shown. For complete enrichment results, see Table S1. (D) 

Enrichment plots for the commonly regulated Reactome categories, Cell Cycle and 

Tricarboxylic Acid Cycle/Eelectron Transport Chain (TCA/ETC). Black lines indicate the 

rank positions of category members based on average fold-change in all knockdown 

treatments. NMD=nonsense mediated decay, EJC=exon junction complex.
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Figure 3. The eIF4F-dependent cell cycle network influences melanoma patient survival
(A) Commonly regulated proteins that are annotated to the Reactome Cell Cycle pathway 

mapped onto phases of the cell cycle based on their Reactome subcategory annotations. 

Proteins that mediate transitions or function in multiple phases are shown in the gaps. Blue 

font denotes decreased protein expression level. (B) The frequency of each cell cycle phase 

in A375 cells treated with si-Scr, si-eIF4A1 or si-eIF4E (error bars = SEM, n=3 replicates). 

(C) The frequency of cells expressing the apoptotic marker, annexin 5 (ANXA5), or dead 

cell marker, propidium iodide (PI), in A375 cells treated with si-Scr, si-eIF4A1 or si-eIF4E 

(error bars = SEM, n=3 replicates). (D) Kaplan-Meier survival curves generated from 328 

cutaneous melanoma patients in TCGA. Patients used to generate the eIF4E curve were in 

the first or fourth quartiles based on normalized expression of the indicated protein (n=82 

per group). Patients used to generate the CDK1/CCNB1/CCND1 curve had above-median 

and below-median expression of all three proteins. The less stringent cutoff was applied to 

obtain a roughly equivalent sample size. For (B–D), *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001.
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Figure 4. Integrated RNA and protein analysis defines direct translational targets of eIF4A1 and 
eIF4E
(A) Overlap in transcripts detected in A375 by RNA-seq (FPKM≥1, n=2 biological 

replicates per treatment) and MS3 (peptides≥1, n=3 biological replicates per treatment). (B) 

Average log2 protein versus average log2 mRNA fold-change for differentially expressed 

proteins in si-eIF4A1 #1 or si-eIF4E #1 treatments. Red and blue points denote proteins that 

do not have a concordant change in mRNA level (mRNA fold-change in 2 biological 

replicates ≤1.25 and/or FDR<0.1 for increased proteins, ≥ −1.25 and/or FDR<0.1 for 

decreased proteins). (C) Manually-clustered heatmap showing log2 fold-change at the 

mRNA and protein level for differentially expressed proteins that are annotated to the 

commonly enriched Cell Cycle or TCA/ETC Reactome pathways. ‘Factor-specific’ refers to 

proteins that are directly regulated by one factor and indirectly regulated by the other.
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Figure 5. CDS and 3′UTR features predict direct regulation by eIF4A1- and eIF4E
(A) Manually-clustered heatmap of effect sizes (Cliff’s D) for thirteen mRNA features 

among direct targets of eIF4A1, eIF4E, or both factors. Dotted lines demarcate 5′UTR, 

CDS, 3′UTR and whole transcript features. p-values are shown for features where p<0.05 

and effect size is greater than 20%. (B) Fold-repression of a miRNA-targeted Renilla 
luciferase reporter relative to a non-targeted firefly luciferase reporter. *p<0.05, **p<0.01.
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