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Abstract

This paper employs the uni�ed transform, also known as the Fokas method, to

solve the advection-dispersion equation on the half-line. This method combines

complex analysis with numerics. Compared to classical approaches used to solve

linear partial di�erential equations (PDEs), the uni�ed transform avoids the

solution of ordinary di�erential equations and more importantly constructs an

integral representation of the solution in the complex plane which is uniformly

convergent at the boundaries. As a consequence, such solutions are well suited

for numerical computations. Indeed, the numerical evaluation of the solution

requires only the computation of a single contour integral involving an integrand

which decays exponentially fast for large values of the integration variable. A

novel contribution of this paper with respect to the solution of linear evolution

PDEs in general and the implementation of the uni�ed transform in particular

is the following: using the advection-dispersion equation as a generic example, it

is shown that if the transforms of the given data can be computed analytically,

then the uni�ed transform yields a fast and accurate method that converges

exponentially with the number of evaluations N yet only has complexity O(N).

Furthermore, if the transforms are computed numerically using M evaluations,
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the uni�ed transform gives rise to a method with complexity O(NM). Results

are successfully compared to other existing solutions.

Keywords: Uni�ed Transform, Advection-Dispersion Equation, Fokas

Method, Analytical Solution, Environmental Flows

1. Introduction

Several problems in physics and engineering are modelled by means of the

advection-dispersion equation (ADE). Starting from the pioneering work of

Taylor [1], the ADE has been used to predict transport of passive or reactive

scalars in natural (e.g. atmospheric, subsurface and surface �ows) as well as in5

con�ned (e.g., channels and tubes) environments. Given its importance in many

�elds in science and engineering, it is not surprising that there exists a plethora

of analytical solutions for the ADE under di�erent physical con�gurations. In

this work, we focus on the use of the ADE in environmental �ows such as those

occurring in natural porous formations (e.g., groundwater) and surface water10

bodies (e.g., rivers and channels).

There have been signi�cant e�orts in developing analytical solutions for

the ADE in the environmental engineering and hydrological communities. For

example, Ogata and Banks [2], van Genuchten and Alves [3], Kreft and Zuber [4],

Lee [5] and Guerrero et al. [6, 7], provide a compendium of analytical solutions15

for ADE that are applicable to fully saturated porous media. Other works [8, 9,

10] have derived analytical and semi-analytical solutions in order to study solute

transport in a fractured porous medium. With the goal of predicting transport

in geological formations displaying heterogeneities, analytical solutions have also

been applied to estimate the ensemble mean concentration (see [11] and [12] for20

details). Similarly, analytical solutions exist for contaminant mixing in rivers

[13, 14, 15, 16] and for bed-load sediment transport [17].

All of the above works rely on classical methods for solving linear partial

di�erential equations, namely separation of variables and speci�c integral transforms

[18, 19, 20]. However, as explained in [21], the traditional transforms have25
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several disadvantages which will be discussed below using the di�usion equation

as an illustrative example.

Consider the di�usion equation on the half-line, with Dirichlet boundary

conditions:

∂φ (x, t)

∂t
=

∂2φ (x, t)

∂x2
, 0 < x <∞;

φ (x, 0) = φo (x) , 0 < x <∞; φ (0, t) = go (t) , t > 0, (1)

where φ (x, t) denotes a scalar (e.g. temperature or concentration), φo (x) and30

go (t) are given functions and φo (x) → 0 as x → ∞. Using the sine transform,

one �nds the solution representation

φ (x, t) =
2

π

ˆ ∞
0

sin (λx) e−λ
2t

[ˆ ∞
0

sin (λξ)φo (ξ) dξ −
ˆ t

0

eλ
2τgo (τ) dτ

]
dλ.

(2)

1. The traditional approaches construct solutions which are not uniformly

convergent at the boundaries unless the boundary conditions are homogeneous.

In the particular case of equation (2), one cannot take the limit x → 035

inside the integral otherwise the solution vanishes since sin (λx) vanishes

for x = 0.

2. Because of 1, it is not straightforward to verify that the function φ (x, t)

de�ned by the right hand side of (2) satis�es the boundary condition

φ (0, t) = go (t).40

3. Because of 1, the solution obtained from traditional methods is not directly

suitable for numerical computations.

4. The traditional approaches require separability of the partial di�erential

equation, domain and boundary conditions.

5. It is in general di�cult to derive the proper transform.45

6. Traditional transforms exist only for few boundary value problems. For

example, there does not exist an x−transform for the equation ∂φ(x,t)
∂t +

∂3φ(x,t)
∂x3 = 0, see [22, 23].
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The uni�ed transform [21], also known as the Fokas method, has been used

to obtain solutions for the di�usion equation [24, 25, 26], the reactive-di�usion50

equation [27], and recently has been applied to a physical problem with non-separable

boundary conditions [28], as well as to interface problems [23, 22]. However the

Fokas method has not been implemented to advective-dispersive (or convective-di�usive)

problems.

In this work, we focus on solving the ADE via the uni�ed transform. This55

work is structured as follows. Section 2 provides the formulation of the relevant

physical-mathematical problem. The methodology is presented in Section 3

and speci�c semi-analytical solutions are obtained in Section 4. Computational

results are illustrated and discussed in Section 5 with particular emphasis on the

speed and order of convergence of the method. Finally, a summary is provided60

in Section 6.

2. Problem Formulation

Consider a one-dimensional semi-in�nite medium with space and time variables

x and t. The concentration of an inert solute is assumed to be governed by the

ADE65

∂C (x, t)

∂t
+ u

∂C (x, t)

∂x
= D

∂2C (x, t)

∂x2
, 0 < x <∞, (3)

subject to the following boundary and initial conditions:

C (0, t) = go (t) , (4)

C (x, t) → 0, as x→∞, t ≥ 0, (5)

C (x, 0) = Co (x) , (6)

where C [M/L3] denotes the concentration of an inert solute, u [L/T] represents

the constant velocity and D [L2/T] is the dispersion coe�cient. The problem

de�ned by equations (3)-(6) can represent solute transport in a river for which
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a time variable concentration go (t) is injected at the origin at time zero. It can70

also represent transport of a non-reactive substance through a fully saturated

soil column.

3. Methodology

Our starting point is the de�nition of the Fourier transform pair,

Ĉ (λ, t) =

ˆ ∞
0

e−ıλxC (x, t) dx, Im {λ} ≤ 0, (7)

C (x, t) =
1

2π

ˆ ∞
−∞

eıλxĈ (λ, t) dλ 0 < x <∞, (8)

with ı denoting the imaginary unit and λ is a complex variable.75

In order to obtain a solution to equation (3), we will proceed with the

following methodological procedure proposed by Fokas [29, 21].

1. Employ the Fourier transform to obtain the global relation (GR). This

equation provides an expression that couples the function C (x, t) with its

derivatives on the boundary of the domain.80

2. Obtain an integral representation of the solution C (x, t) in the complex

λ-plane.

3. By using the symmetry properties of the GR, eliminate from the integral

representation of C (x, t) (obtained in Step 2) the transforms of the unknown

boundary values.85

Next, we employ the above steps to construct a solution for the ADE (3) subject

to the initial and boundary conditions (4)-(6).

Employing equation (7) into (3) and integrating by parts we �nd the following

GR:

e(λ
2D+ıλu)tĈ (λ, t) = Ĉo (λ)− g̃1 (λ, t)− ıλg̃o (λ, t) , Im {λ} ≤ 0, (9)

where,90
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Ĉo (λ) =

ˆ ∞
0

e−ıλxCo (x) dx, Im {λ} ≤ 0, (10)

g̃1 (λ, t) =

ˆ t

0

e(λ
2D+ıλu)τ

[
D

(
∂C

∂x

)∣∣∣∣
x=0

− ugo (τ)

]
dτ, λ ∈ C, t > 0,(11)

g̃o (λ, t) = D

ˆ t

0

e(λ
2D+ıλu)τgo (τ) dτ, λ ∈ C, t > 0. (12)

The derivation of (9) follows precisely the same steps used in the usual transform

methods; details can be found in Appendix A.

Solving the GR (9) for Ĉ (λ, t) and employing the inverse Fourier transform

(8), we �nd

C (x, t) =
1

2π

ˆ ∞
−∞

eıλx−(λ2D+ıλu)t Ĉo (λ) dλ

− 1

2π

ˆ ∞
−∞

eıλx−(λ2D+ıλu)t [g̃1 (λ, t) + ıλg̃o (λ, t)] dλ. (13)

In summary, using the transform pair (7) and (8) and following the traditional95

transform methodology, we obtain an integral representation for the scalar

quantity C (x, t). However, the representation (13) involves the t-transform

of the unknown boundary value ∂C/∂x|x=0 de�ned by the function g̃1 (λ, t) in

(11). In order to eliminate this transform, we will adopt the two novel steps

described below.100

First, we deform the contour of the second integral in the right-hand-side

of equation (13) from the real axis to the upper half of the complex-plane. In

this connection, we need to determine the domain in the λ-complex plane where

exp
[
ıλx−

(
λ2D + ıλu

)
(t− τ)

]
is bounded (for x ≥ 0 and (t− τ) ≥ 0). This

can be achieved by analyzing the exponentials exp [ıλ] and exp
[
−
(
λ2D + ıλu

)]
:105

the exponential exp [ıλ] is bounded for Im {λ} ≥ 0. We also note that λ2D +

ıλu = D
(
λ2R − λ2I + 2ıλRλI

)
+ ıu (λR + ıλI), where λ = λR + ıλI . Thus,

Re
{
λ2D + ıλu

}
= D

(
λ2R − λ2I

)
− uλI . Examining the curve

D
(
λ2R − λ2I

)
− uλI = 0, (14)
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D+

D-

-u/D

D+

Figure 1: Boundaries ∂D+ and ∂D− of the domains D+ and D− which are de�ned by

D±=
{
λ = λR + ıλI , λR ∈ R, λI ∈ R, Re

{
λ2D + ıuλ

}
≶ 0
}
.

we note that if λI = 0, then λR = 0. Therefore, if λR = 0 then λI = 0 or

λI = −u/D. Also, we observe that λ2I + (u/D)λI ≥ 0 or λI (λI + u/D) = 0,110

hence, either λI ≥ 0 or λI < −u/D. Thus, we can replace the contour in the

second term of the right-hand-side of (13) with the contour ∂D+in Figure 1,

where the curve ∂D+ is de�ned by

D
(
λ2R − λ2I

)
− uλI = 0, with λ = λR + ıλI . (15)

Both functions g̃1 (λ, t) and g̃o (λ, t) (see equations (11) and (12)) depend on

λ only through the combination λ2D + ıλu. This fact motivates the search for115

a transformation λ→ v such that the above combination is invariant:

λ2D + ıλu = v2D + ıvu, (16)

or

(
λ2 − v2

)
D + ıu (λ− v) = 0. (17)
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Hence,

(λ− v) [(λ+ v)D + ıu] = 0. (18)

Thus, v = λ or v = −λ− ıu/D. Replacing λ by −λ− ıu/D in the global relation

(9) we obtain:120

e(λ
2D+ıλu)tĈ

(
−λ− ı u

D
, t
)

= Ĉo

(
−λ− ı u

D

)
− g̃1 (λ, t) +

(
ıλ− u

D

)
g̃o (λ, t) .

(19)

Solving (19) for g̃1, substituting the resulting equation in (13) with the

integration in the second term replaced by the integration along the contour

∂D+, we obtain the equation

C (x, t) =
1

2π

ˆ ∞
−∞

eıλx−(λ2D+ıλu)t Ĉo (λ) dλ

− 1

2π

ˆ
∂D+

eıλx−(λ2D+ıλu)t × (20){
Ĉo

(
−λ− ı u

D

)
− Ĉ

(
−λ− ı u

D
, t
)
e(λ

2D+ıλu)t +
(

2ıλ− u

D

)
g̃o (λ, t)

}
dλ.

It is important to note that the unknown term Ĉ (−λ− ıu/D, t) does not

contribute to the �nal expression, since both this term and exp (ıλx) are bounded

and analytic in D+. Furthermore, Ĉ (−λ− ıu/D, t) decays as λ → ∞. Thus,

according to Cauchy's theorem, the integralˆ
∂D+

eıλxĈ
(
−λ− ı u

D
, t
)
dλ

vanishes. Therefore, the general solution of the ADE (3) subject to the conditions

(4)-(6) is given by125

C (x, t) =
1

2π

ˆ ∞
−∞

eıλx−(λ2D+ıλu)t Ĉo (λ) dλ

− 1

2π

ˆ
∂D+

eıλx−(λ2D+ıλu)t
[
Ĉo

(
−λ− ı u

D

)
+
(

2ıλ− u

D

)
g̃o (λ, t)

]
dλ,

(21)
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where the contour ∂D+ is depicted in Figure 1 and de�ned by (15).

4. Speci�c Solutions

We illustrate several features of the analytical expression derived in Section

3. Using equation (21) as a starting point, we develop solutions for two speci�c

cases of increasing level of complexity.130

4.1. Test Case 1 - Continuously Injected Solute at Constant Concentration

For our �rst demonstration, we set in equations (4) and (6) go (t) = Ci

and Co (x) = 0. This situation represents, for example, advective-dispersive

transport of a solute through a homogeneous, fully saturated, porous medium

where an inactive tracer is continuously injected at the origin with inlet concentration135

Ci, i.e., these conditions are met in laboratory scale tracer experiments in soil

columns. Under the above conditions, equation (21) becomes

C (x, t) = − 1

2π

ˆ
∂D+

eıλx−(λ2D+ıλu)t
(

2ıλ− u

D

)
g̃o (λ, t) dλ, (22)

with

g̃o (λ, t) = CiD

ˆ t

0

e(λ
2D+ıλu)τdτ

= CiD

[
e(ıuλ+Dλ

2)t − 1

λ (ıu+Dλ)

]
. (23)

Using (22) and (23), the equation satis�ed by the scalar C (x, t) becomes

C (x, t) = −CiD
2π

ˆ
∂D+

eıλx−(λ2D+ıλu)t
(
2ıλ− u

D

)
λ (ıu+Dλ)

[
e(λ

2D+ıλu)t − 1
]
dλ,

(24)

which can be further simpli�ed to140
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h

D+

Figure 2: Schematic of the contour h.

C (x, t) = − ıCi
2π

ˆ
∂D+

(
2Dλ+ ıu

Dλ+ ıu

)
eıλx

[
1− e−(λ2D+ıλu)t

]
λ

dλ, (25)

where the integration over ∂D+ will be carried out numerically. In this connection,

it is convenient (using Cauchy's theorem) to replace ∂D+ by the contour h

depicted below (see Figure 2). This contour has the advantage that now not

only exp [ıλx] decays for large λ, but also exp
[
−
(
λ2D + ıλu

)
t
]
which oscillates

on the contour ∂D+, decays on the contour h.145

In summary, equation (25) is the solution for the initial boundary value

problem subject to go (t) = Ci and Co (x) = 0 and will be used to compute

the concentration �eld. Additional details regarding the numerical integration

is provided in Section 5. It is shown in Appendix B that equation (25) can be

simpli�ed further.150

The problem under consideration, i.e. go (t) = Ci and C (x, 0) = 0, has been

tackled in the past by Ogata and Banks [2]. In order to obtain a solution for this

problem, Ogata and Banks [2] mapped the ADE into a di�usion equation and

then made use of Duhamel's theorem [18] to derive the following approximate

analytical expression:155

C (x, t) ≈ Ci
2

{
Erfc

[
x− ut
2
√
Dt

]
+ e

ux
D Erfc

[
x+ ut

2
√
Dt

]}
. (26)

We will utilize equation (26), which represents an approximate solution for

the concentration �eld, to benchmark the results obtained through the uni�ed
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transform (computed by using equation (25)).

4.2. Test Case 2 - Time Variable Boundary Condition and Spatially Distributed

Initial Condition160

Next, we derive the solution for the following case: go (t) = Ai [cos (ωt) + 1]

and Co (x) = exp [−x] (see equations (4) and (6)) where Ai and ω are amplitude

and angular frequency respectively. Under this condition, both Ĉo (λ) and go (t)

(see equation (21)), can be computed analytically. Explicit expressions for

Ĉo (λ), Ĉo (−λ− ıu/D) and go (t) are provided below:165

Ĉo (λ) = − ı

λ− ı
, (27)

Ĉo

(
−λ− ı u

D

)
=

ıD

ıu+D (ı+ λ)
(28)

g̃o (λ, t) = DAi
{[

eλt(ıu+Dλ) − 1

λ (ıu+Dλ)

]
+ (29){

eλt(ıu+Dλ) [ λ (ıu+Dλ) cos (ωt) + ω sin (ωt)]− λ (ıu+Dλ)

λ2 (ıu+Dλ)
2

+ ω2

}}
.

Substituting these into (21) leads to

C (x, t) =
1

2π
[P1 (x, t)− P2 (x, t)] , (30)

where

P1 (x, t) = −
ˆ ∞
−∞

eıλx−(λ2D+ıλu)t
(

ı

λ− ı

)
dλ; (31)

P2 (x, t) =

{
Ai
ˆ
∂D+

eıλx−(λ2D+ıλu)t (2ıλD − u)

[
eλt(ıu+Dλ) − 1

λ (ıu+Dλ)

]
dλ

+

ˆ
∂D+

eıλx−(λ2D+ıλu)t
[

Dı

ıu+D (ı+ λ)
+Ai (2ıλD − u)×

eλt(ıu+Dλ) [ λ (ıu+Dλ) cos (ωt) + ω sin (ωt)]− λ (ıu+Dλ)

λ2 (ıu+Dλ)
2

+ ω2

]
dλ

}
.

(32)
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In summary, equation (30) provides the solution of the initial boundary value

problem with go (t) = Ai [cos (ωt) + 1] and Co (x) = exp [−x]. Similar to Test

Case 1, the contours in (31) and (32) can be replaced by the contour h depicted170

in Figure 2 which is used in the numerical evaluations and de�ned in the next

section.

5. Computational Results

For the upcoming computational illustrations, we plot the results for Test

Cases 1 and 2 in dimensionless form. The following dimensionless quantities175

were adopted for the concentration C, distance x and time t respectively:

χ =
C

Ci
; ξ =

xu

D
; η =

u2t

D
, (33)

with Ci denoting a characteristic concentration value at the inlet boundary.

The analytic solution of the solute concentration (after a suitable parametrization)

can be represented in terms of integrals of the following two forms:

L1(f, α) =

ˆ ∞
0

f(x)e−αxdx, L2(f, α) =

ˆ ∞
−∞

f(x)e−αx
2

dx, (34)

where the functions f are well behaved (smooth and bounded). In the case that

α is not small, we shall evaluate these integrals using Gauss-Laguerre quadrature

for L1 and Gauss-Hermite quadrature for L2. For the functions considered180

in this paper these quadrature rules will converge exponentially (we refer the

reader to [30, 31, 32] for the theory of these quadrature rules) with the number

of evaluations, which we denote throughout by N . These quadrature rules (the

weights and nodes) can also be computed extremely fast in O(N) operations

[33, 34, 35]. Similarly, if α is small (as in the case of (25) for small x) we shall185

truncate the domain of integration (typically to |λ| < 100) and apply standard

Gaussian quadrature which will also converge exponentially and have O(N)

cost. In all cases (assuming the functions Ĉo and g̃o are known), we recover a

quadrature method which can be implemented in O(N) operations per point
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(x, t) which will also converge pointwise exponentially in N . Note that this is190

a key advantage of the uni�ed transform over classical methods as mentioned

in the introduction. We will also consider the case where Ĉo and g̃o themselves

must be computed in Section 5.3.

All computational results were obtained using MATLAB on a standard

desktop computer and to compare we have computed accurate reference solutions

using adaptive Gauss-Kronrod quadrature to evaluate the integrals in the uni�ed

transform (with tolerance set to machine precision). For the numerical evaluations

of the concentration �eld through equation (21), the numerical computation of

the integrals in (25) and (30) is achieved by deforming ∂D+ to a contour h

between the real line and ∂D+ (see Figure 2). A convenient choice for h is the

union of the two line segments

{` [cos (π − θ) + ı sin (π − θ)] : ` ≥ 0}, (35)

{` [cos (θ) + ı sin (θ)] : ` ≥ 0}, (36)

where θ is the angle between the line segment and the real line. For our

illustrations, we set θ = π/6.195

5.1. Results for Test Case 1

As a �rst example, we consider the computation of the solution for η = 16.

Figure 3 shows the computed solution using equation (B11) with N = 50

quadrature points, denoted as Approach 1 in the plot, and the approximate

analytical solution (26) obtained through traditional methods. For completeness,200

we also include a comparison with a numerical solution based on the Crank-Nicolson

and backward Euler �nite-di�erence methods with ∆t = ∆x = h = 0.5. In

addition, Figure 3 compares with a solution, also based via the uni�ed transform,

obtained by mapping the ADE into a di�usion equation (denoted as Approach

2 in the plot). The uni�ed transform-based solution for the di�usion equation205

is well documented in the literature [24, 21] and for the sake of brevity it is not

reproduced here. All of the methods agree well.
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Figure 3: Dimensionless concentration χ (ξ, η) versus distance ξ at η = 16. Comparison

between the proposed analytical solution with other analytical and numerical solutions.

Approach 1 refers to the solution given by (B11) (which can also be obtained via (25)) for

N = 50. Approach 2 refers to the solution obtained through the uni�ed transform method

by mapping the ADE into a di�usion equation. We have also shown the solutions obtained

using Crank-Nicolson and backward Euler �nite-di�erence methods with h = 0.5 (note the

increased accuracy in using Crank-Nicolson).
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Figure 4: Left: Exponential convergence of the uni�ed transform as measured via a relative L2

norm. We have shown convergence using both (25) and the simpli�ed version (B11). Right:

Algebraic convergence of Crank-Nicolson (CN, order 2) and backward Euler (BE, order 1)

�nite-di�erence methods.

Figure 4 shows the convergence of the method for di�erent η as we increase

N , where we have approximated the relative error measured in L2 norm (i.e.

normalised by the L2 error of the true solution). As expected, we see exponential210

convergence in N , with the simpli�ed version requiring smaller N (see Figure 4,

left). Interestingly, whilst we need larger N for larger times to achieve modest

errors, there seems to be a cut-o� beyond which the errors depend similarly

with respect to N independent of η. To verify our solution, we have also shown

the error when using the Crank-Nicolson and backward Euler �nite-di�erence215

methods (see Figure 4, right). For the �nite-di�erence methods we note that

one needs to solve a triangularM ×M system at each step whereM ≈ O(h−1).

This can be done in O(M) operations as opposed to O(M3) for a full system

but still gives O(h−1∆t−1) operations to compute the solution at any �xed

time t and the methods only converge algebraically. This shows a signi�cant220

advantage of the uni�ed transform: as well as obtaining the solution at any

time without time-stepping, the integral representation lends itself to extremely

e�cient numerical integration.

Next, we consider the computation of the solution over a range of values of ξ

and η. Figure 5 (top) shows the concentration pro�le computed using the uni�ed225

transform. As time increases, the front of the solute cloud advances through the
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�ow domain and becomes more di�used with time. We have also shown the error

of the method with N = 250 using both (25) and (B11) (see Figure 5 bottom left

and bottom right respectively). The method is very fast, taking approximately

0.29s using (25) and 0.08s using (B11) to compute the pro�le over 4800 points.230

Using (25) is slower due to the need to compute two integrals. In comparison,

the reference solution was computed in 19s (with adaptive quadrature). Both

sets of errors approach machine precision over a large portion of the domain.

Using (B11) appears to struggle near the singularity at (ξ, η) = (0, 0) (this is

to be expected from the blow up of the integrand) and (25) appears to struggle235

more for small ξ, particularly at larger η due the need to evaluate a slowly

(but still exponentially) decaying oscillatory integrand. We found increasing

N allows more accurate solutions to be computed near the boundary. We also

remark that the concentration pro�le computed through the uni�ed transform

almost perfectly matches the solution computed through di�erent approaches240

such as the approximate solution given by (26) [2]. The approximation (26) was

found to agree to about 12 decimal places in the domain interior.

Finally, Figure 6 shows the value of N needed in order to ensure �ve digits of

accuracy, as a function of ξ. This shows that accurate solutions can be computed

extremely e�ciently, especially with the integral form (B11).245

5.2. Results for Test Case 2

Now we present the results obtained from equation (30) for an oscillatory

boundary condition and an exponentially distributed initial condition. For this

analysis, we set ω = 1 and Ai = Ci/2 in equations (27) and (29). Figure 7

shows the concentration as a function of distance for di�erent times (η =5,250

10, 20 and 30). In addition, Figure 7 compares the results computed from

the uni�ed transform (30) with the numerical solution of the ADE subject to

the conditions described in Section 4.2. The numerical solution was computed

using MATLAB's built-in function pdepe which runs a variable time-stepping

method, second order in the spatial resolution [36]. As shown in Figure 7, both255

methods agree well.
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Figure 5: Top: Concentration pro�le. Bottom left: Absolute error when using (25). Bottom

right: Absolute error when using (B11).
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20 and 30. Comparison between the proposed analytical solution with the fully numerical

solution (computed using h = 0.5).
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Figure 8 shows the convergence of the uni�ed transform as we increase N . In

the results depicted in Figure 8 (left), we see exponential convergence as before.

For completeness, we have also shown the convergence of pdepe as h ↓ 0 (Figure

8, right). As expected, the convergence of pdepe is algebraic with error of order260

O(h2), however this still serves to verify the computation of the solution using

the uni�ed transform. Finally, we have shown the solution over a range of values

of ξ and η, as well as the error of the uni�ed transform for N = 250 in Figure 9.

As before, we see errors close to machine precision over the domain, with larger

errors nearer the boundary ξ = 0. Again the method was very fast, taking 0.85s265

for evaluation at 6000 points.
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5.3. An Example where the Integral Transforms Cannot be Computed Analytically

As a �nal example, we will consider the case where the functions Ĉo and g̃o

themselves are computed numerically. Note that we only need to compute these

at O(N) points. We will use Gaussian quadrature with M1 nodes to compute

g̃o. Suitable quadrature rules for the computation of Ĉo depend on the decay

properties of Co(x) as x→∞. We will consider the case of

Co(x) = cos(x) exp(−x).

Note that Ĉo can be computed analytically but instead we shall use Gaussian-Laguerre

quadrature withM2 nodes. Altogether, this leads to a method with computational

cost O(N(M1 +M2)). In general, the error of such a method will depend on the

error of the computation of the integrals (a full discussion of which is beyond the

scope of this paper, but there is a large literature on the convergence methods

of di�erent quadrature rules). For this example we will take

go(t) = J0(t),

where J0 denotes the Bessel function of the �rst kind of order 0. For these choices

of functions, the error in the computation of the spectral functions decreases

exponentially in M1,M2.270

Figure 10 shows the exponential convergence of the method for M1 = N

and M2 = round(2N/5). For larger times, a larger value of N is needed. This

is because a larger value of M2 is needed for the quadrature to compute g̃o via

integrating go over a larger interval. We have also shown the solution computed

over a grid of 1200 points, with N = 600, M1 = 500 and M2 = 200, taking 10s275

with an maximum error bounded by ≈ 2× 10−14. We veri�ed this against the

solution using pdepe where the solutions agreed to about �ve decimal places.

However, the uni�ed transform is able to gain much more accurate solutions.

Finally, to examine how the error depends on varyingM1 andM2, Table 1 shows

the average absolute error (over the same computational grid) with N = 500280

and various M1 and M2. We see that large M1 is more critical to computing

very accurate solutions as expected due to the exponential decay of Co.
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case of using quadrature to evaluate the spectral functions. Right: Computed solution over

various ξ and η. The maximum absolute error was bounded by ≈ 2× 10−14.

HHH
HHH

HH
M2

M1
100 200 300 400 500

40 3.49×10−8 1.49×10−10 8.02×10−11 8.00×10−11 8.00×10−11

80 3.48×10−8 6.92×10−11 2.53×10−13 9.36×10−15 5.90×10−15

120 3.48×10−8 6.91×10−11 2.48×10−13 3.80×10−15 3.35×10−16

160 3.48×10−8 6.91×10−11 2.48×10−13 3.77×10−15 3.18×10−16

Table 1: Average error for various M1 and M2.
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6. Summary

We have implemented the uni�ed transform to obtain the solution of the

advection-dispersion equation in a half-line with a Dirichlet boundary condition285

(constant and time varying). The uni�ed transform method contains the classical

approaches as special cases. In particular, we highlight the following key advantages

of this new method: (1) it allows one to construct a representation of the solution

which is uniformly convergent at the boundaries; (2) it can be implemented

numerically in a straightforward manner; and (3) the uni�ed transform is computationally290

e�cient for large times, since it does not require discretization of the time

domain. The solution obtained by the new method is in excellent agreement

with the computational results obtained through numerical methods and other

analytical solutions. In particular, it gives rise to a numerical method converging

exponentially as the number of evaluations N increases and only has O(N)295

complexity.

Although the solution was obtained for advective-dispersive problems relevant

for environmental engineering and hydrological applications, it can be employed

to study a series of other applications regarding heat and mass transfer in

mechanical, chemical, petroleum and biomedical engineering [e.g., 37]. The300

solution obtained through the uni�ed transform is well-suited to compute the

concentration �eld from laboratory tracer experiments in soil columns where, in

general, the velocity and dispersion coe�cient are homogeneous. It is important

to note that it is straightforward to implement the uni�ed transform to problems

posed on a �nite interval [38, 39]. Also a major advantage of the uni�ed305

transform is its applicability to a wide range of boundary conditions including

Neumann, Robin and non-local boundary conditions. It can also be applied

to some problems where classical methods apparently fail [40, 41] and PDEs

involving third order spatial derivatives (see point 6 in the introduction). Multidimensional

applications and extensions to reactive transport will be presented in future310

work.

Finally, it should be emphasised that the uni�ed transform is the only
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existing method which expresses the solution of linear evolution PDEs in terms

of an integral involving a contour in the λ−complex plane. This opens the way

for an e�cient numerical evaluation of the solution. In this paper, for the �rst315

time, the advantage of the numerical implementation of the uni�ed transform

is elucidated.

Appendix A

Multiplying equation (3) with e−ıλx and integrating with respect to x, we

obtain320

∂

∂t

ˆ ∞
0

e−ıλxC (x, t) dx+

ˆ ∞
0

e−ıλxu
∂C (x, t)

∂x
dx =

ˆ ∞
0

e−ıλxD
∂2C (x, t)

∂x2
dx.

(A1)

This equation can be further simpli�ed to

∂Ĉ (λ, t)

∂t
+ u

ˆ ∞
0

e−ıλx
∂C (x, t)

∂x
dx = D

ˆ ∞
0

e−ıλx
∂2C (x, t)

∂x2
dx. (A2)

Integration by parts of the second term in the left-hand side of (A2) yields

u

ˆ ∞
0

e−ıλx
∂C (x, t)

∂x
dx = u

[
−C (0, t) + ıλĈ (λ, t)

]
. (A3)

For the right-hand side of (A2), we obtain the following expression after integration

by parts:

D

ˆ ∞
0

e−ıλx
∂2C (x, t)

∂x2
dx = D

[
− ∂C (x, t)

∂x

∣∣∣∣
x=0

+ ıλ

ˆ ∞
0

e−ıλx
∂C (x, t)

∂x
dx

]
.

(A4)

Integrating by parts again, we obtain325

D

ˆ ∞
0

e−ıλx
∂2C (x, t)

∂x2
dx = D

[
− ∂C (x, t)

∂x

∣∣∣∣
x=0

− ıλC (0, t)− λ2Ĉ (λ, t)

]
.

(A5)
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Substituting equations (A3) and (A5) into (A2) yields

∂Ĉ (λ, t)

∂t
+
(
λ2D + ıuλ

)
Ĉ (λ, t) = −

[
D
∂C (x, t)

∂x

∣∣∣∣
x=0

− uC (0, t)

]
(A6)

−ıDλC (0, t) .

The above expression can be re-written as

∂

∂t

[
e(λ

2D+ıλu)tĈ (λ, t)
]

= −
[
D
∂C (x, t)

∂x

∣∣∣∣
x=0

− uC (0, t)

]
e(λ

2D+ıλu)t

−ıDλC (0, t) e(λ
2D+ıλu)t. (A7)

Integrating in time, equation (A7) becomes

e(λ
2D+ıλu)tĈ (λ, t)− Ĉ (λ, 0) = −

ˆ t

0

[
D
∂C (x, τ)

∂x

∣∣∣∣
x=0

− uC (0, τ)

]
e(λ

2D+ıλu)τdτ

− ıDλ

ˆ t

0

C (0, τ) e(λ
2D+ıλu)τdτ. (A8)

Recalling that C (0, t) = go (t), equation (A8) can be written in the more

compact form330

e(λ
2D+ıλu)tĈ (λ, t) = Ĉo (λ)− ĝ1 (λ, t)− ıλĝo (λ, t) , (A9)

with Ĉo (λ), ĝ1 (λ, t) and ĝo (λ, t) de�ned in equations (10)-(12). Equation (A9)

is identical to the global relation (9).

Appendix B

Analyzing equation (25), it is clear that λ = 0 is a removable singularity:

lim
λ→0

[
1− e−(λ2D+ıλu)t

λ

]
= ıut.
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Figure 11: Mapping the singularity λ = 0 to the point Λ = ıν/ (2D), with ν := u − x/t, in

theΛ complex plane with the new contour L̃.

Thus, before we split (25) with the goal of obtaining a simpler expression, we335

�rst deform ∂D+ to go above λ = 0 (i.e. bypassing the singularity). We call

this new contour L.

In order to simplify the above solution (25), we divide C (x, t) into two terms

C (x, t) = C1 (x) + C2 (x, t) , (B1)

with

C1 (x) = − ıCi
2π

I1 (x) ; (B2)

C2 (x, t) =
ıCi
2π

I2 (x, t) , (B3)

where I1 (x)and I2 (x, t) are given by340

I1 (x) =

ˆ
L

(
2Dλ+ ıu

ıu+Dλ

)
eıλx

λ
dλ, (B4)

and I2 (x, t) =

ˆ
L

(
2Dλ+ ıu

ıu+Dλ

)
eıλx

λ
e−(λ2D+ıλu)tdλ. (B5)

We can use Cauchy's theorem in the domain above L, where neither λ = 0 nor

λ = −uı/D are in this domain. As a consequence, we �nd I1 (x) = 0. In other

words, C1 (x) = 0.

In order to simplify I2 and compute C2 (x, t), we observe that the argument

of the exponential term in (B5) can be re-written as follows:345
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−
(
λ2D + ıλu

)
t+ ıλx = −tD

[
λ2 +

ıλ

D

(
u− x

t

)]
= −tD

[
λ2 +

ıλ

D
ν

]
= −tD

[
λ2 +

ıλ

D
ν −

( ν

2D

)2
+
( ν

2D

)2]
= −tD

(
λ+ ı

ν

2D

)2
−t ν

2

4D
, (B6)

with ν := u− x/t. Therefore, C2 (x, t), see equation (B3), becomes

I2 (x, t) = e−t
ν2

4D

ˆ
L

(
2Dλ+ ıu

Dλ+ ıu

)
e−tD[λ+ı ν2D ]

2

λ
dλ. (B7)

If we employ the change of variables Λ = λ+ ıν/ (2D), the expression for I2 can

be re-written in the form

I2 (x, t) = e−t
ν2

4D

ˆ
L̃

[
2DΛ+ ı (u− ν)

DΛ+ ı
(
u− ν

2

) ] e−tDΛ
2

Λ− ı ν2D
dΛ, (B8)

where the contour L̃ is depicted in Figure 11.

Comparing equations (B7) and (B8), it follows that the point λ = 0 is350

mapped to the point Λ = ıν/ (2D). Thus, we need to distinguish the following

two cases: (1) u > x/t, and (2) u < x/t. These two cases are depicted in

Figure 11 where the new contour L̃ is either above the real axis of the Λ plane

if u > x/t, or below if u < x/t. In the second case, we can deform the contour

L̃ to the real axis; however, in the �rst case we also obtain a pole contribution355

from Λ = ıν/ (2D).

I2 (x, t) =

 e−t
ν2

4D Ĩ2 (x, t) , if u < x
t

e−t
ν2

4D Ĩ2 (x, t)− 2ıπ , if u > x
t

(B9)

with

Ĩ2 (x, t) +
ˆ +∞

−∞

[
2DΛ+ ı (u− ν)

DΛ+ ı
(
u− ν

2

) ] e−tDΛ
2

Λ− ı ν2D
dΛ. (B10)
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Note that Λ = −ı (u− ν/2) /D = −ı (u+ x/t) /(2D) never contributes to I2

since it is below the real axis.

Making use of equations (B3), (B9), (B10) and substituting into (B1) yields360

C (x, t) =


ıCi
2π e

−t ν24D

´ +∞
−∞

[
2DΛ+ı(u−ν)
DΛ+ı(u− ν2 )

]
e−tDΛ

2

Λ−ı ν2D
dΛ , if u < x

t ;

ıCi
2π

[
−2ıπ + e−t

ν2

4D

´ +∞
−∞

[
2DΛ+ı(u−ν)
DΛ+ı(u− ν2 )

]
e−tDΛ

2

Λ−ı ν2D
dΛ

]
, if u > x

t .
(B11)

In summary, equation (25) can be re-written in the form (B11). To make

this suitable for quadrature, we let τ =
√
tDΛ and rewrite the integral in the

dimensionless form

Ĩ2 (x, t) =

ˆ +∞

−∞

 2τ + ı ξ√η

τ + ı
√
η+ ξ√

η

2

 e−τ
2

τ − ı
√
η− ξ√

η

2

dτ. (B12)

For η close to ξ, we deform this contour into the complex plane to avoid the

pole.
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