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Mapping the transcriptional landscape of haematopoietic stem and 

progenitor cells 

Sonia Shaw 

 

Maintenance of the blood system requires balanced cell-fate decisions of haematopoietic stem and 

progenitor cells (HSPCs). Individual haematopoietic stem cells (HSCs) decide between self-

renewal and differentiation and can generate all mature cell types. Cell-fate decisions are made at 

the single-cell level and are governed by regulatory networks. Dysregulation in this balanced 

process could lead to serious blood disorders such as leukaemia; therefore, it is important to 

understand how individual cells make these cell-fate decisions.  

To investigate HSPC populations, 1,654 cells were profiled by single-cell RNA-sequencing. Index 

sorting made it possible to sort HSPCs using broad sorting gates and retrospectively assign them 

to common HSPC populations, retaining all information about specific functionally pure 

populations while also capturing any intermediate cells normally excluded by conventional gating. 

Reconstruction of differentiation trajectories revealed dynamic expression changes associated with 

early lineage differentiation from HSCs. This transcriptional atlas of HSPC differentiation was 

further used to identify candidate genes for a CRISPR screen investigating genes implicated in 

HSC biology. These candidate gene perturbations were interrogated for changes in the expression 

of the HSC marker EPCR, as well as changes in apoptosis and lineage output. 

Transcription factors play a key role in regulating cell-fate decisions and operate within organized 

regulatory programs. To study relationships between transcription factors in HSPC populations, 

qRT-PCR was used to profile the expression of 41 genes, including 31 transcription factors, in 

HSPCs at the single-cell level. This approach confirmed known aspects of haematopoiesis and 

made deeper investigation of HSPC heterogeneity possible. Regulatory networks were 

reconstructed using Boolean network inference models and recapitulated differentiation of HSCs 

towards megakaryocyte–erythrocyte progenitors and lymphoid-primed multipotent progenitors. 

By comparing these two models, a rule specific to the megakaryocyte-erythrocyte progenitor 

network was identified, in which GATA2 positively regulated Nfe2 and Cbfa2t3h. This was 

subsequently validated using transcription factor binding profiles and in vitro luciferase assays 

using a model cell line.  
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Overall, the work presented in this thesis confirmed known aspects of HSPC biology using single-

cell gene expression analysis and demonstrated how in silico approaches can be used to guide in 

vitro and in vivo investigations. In addition, the single-cell RNA-sequencing data was developed 

into an intuitive web interface that can be used to visualise the gene expression for any gene of 

choice at single-cell resolution across the HSPC atlas, providing a powerful resource for the 

haematopoietic community. 
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1  Introduction 

 

 

Chapter 1: Introduction 

 

Parts of this chapter have been adapted from the review article co-authored by Fiona Hamey and 

Sonia Shaw (Hamey et al. 2016). 

 

1.1. The adult haematopoietic system 

The haematopoietic system consists of cells of the blood and immune systems, and is created by 

haematopoiesis, the process of mature blood cell formation (Orkin and Zon 2008; Laurenti and 

Göttgens 2018). The adult human has an estimated turnover of around 1012 blood cells per day, 

sustained by the constant production of new cells (Ogawa 1993). All cells of the haematopoietic 

system arise from haematopoietic stem cells (HSCs), and the mature blood and immune cells are 

involved in performing critical functions such as oxygen and nutrient transport, immune protection, 

and wound repair.  

The haematopoietic system has been extensively studied due to the accessibility of material and 

the ability to isolate and study cells at multiple stages of differentiation (N. K. Wilson et al. 2015). 

It serves as a model system of adult stem cell biology, as well as the cell fate decisions that occur 

during HSC differentiation (Section 1.2) (Orkin and Zon 2008; Laurenti and Göttgens 2018). The 

haematopoietic system is an important system to study, as dysregulation during haematopoiesis 

can lead to serious blood disorders, such as leukaemia (Section 1.3). 

1.1.1. The haematopoietic hierarchy 

The adult haematopoietic system is classically described as a hierarchy, in which long-term HSCs 

(LT-HSCs) lie at the apex of the tree and differentiate through progressively more committed 

progenitors that give rise to all the mature blood cell types (Fig. 1.1). The mature cells produced 

can be divided into myeloid, erythroid, and lymphoid cells, with specific functions ranging from 

oxygen transport by erythrocytes and phagocytosis of pathogens by macrophages, to functions in 

innate and adaptive immunity by lymphocytes such as natural killer cells or B- and T-cells (Bryder, 

Rossi, and Weissman 2006). 
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Figure 1.1. The haematopoietic differentiation hierarchy. The classic view of the haematopoietic tree, based on 

publications by Moignard et al. and Wilson et al. (Moignard et al. 2013; N. K. Wilson et al. 2015). Long-term HSCs 

(LT-HSCs) sit at the top of the hierarchy and differentiation through progressively more committed progenitor cells 

into mature blood cell types. FSR-HSC: finite self-renewal HSC; MPP: multipotent myeloid progenitor; PreMegE: 

pre-megakaryocyte-erythrocyte progenitor; MEP: megakaryocyte-erythrocyte progenitor; CMP: common myeloid 

progenitor; GMP: granulocyte-macrophage progenitor; LMPP: lymphoid multipotent progenitor; CLP: common 

lymphoid progenitor; NK cell: natural killer cell. 

 

Haematopoietic stem and progenitor cells (HSPCs) are found in the bone marrow, the home of 

haematopoiesis in adult mammals (Eaves 2015). At the top of the hierarchy, HSCs are responsible 

for maintaining the entire haematopoietic system. LT-HSCs are capable of both symmetric and 

asymmetric division, meaning they can produce two HSCs or two progenitor cells, or one of each, 

respectively. They generally exist in a quiescent, non-replicative state, and are defined by their 

ability to reconstitute the haematopoietic system in irradiated mice over several months (Morrison 

and Weissman 1994). They were first phenotypically defined as Lineage- Thy1.1low Sca1+, where 

Lineage (Lin) describes a cocktail of mature blood cell markers (Spangrude, Heimfeld, and 

Weissman 1988). Since then, HSC isolation protocols have advanced and can isolate enriched HSC 

populations with increasing functional purity. These strategies are largely based on the LSK (Lin- 

Sca1+ c-Kit+) phenotype and isolate HSCs with up to 50% functional purity; however, higher 

enrichment can be achieved by using the signalling lymphocyte activation molecule (SLAM) 

family of surface markers, including CD48 and CD150, as well as endothelial protein C receptor 

(EPCR) (Beerman et al. 2010; Dykstra et al. 2007; Goodell et al. 1996; Morita, Ema, and Nakauchi 
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2010; Kiel et al. 2005; Balazs et al. 2006; D. G. Kent et al. 2009). In fact, 67% functional purity 

was achieved by isolating SLAM (CD48- CD150+) Sca1hi cells (N. K. Wilson et al. 2015). 

The LSK compartment, which makes up 0.05-1% of the adult bone marrow, also contains short-

term or finite self-renewal HSCs (FSR-HSC), and multipotent progenitors (MPPs). FSR-HSCs 

and MPPs are multipotent progenitors that can transiently provide multilineage repopulation in 

lethally irradiated mice but have limited self-renewal capacity (Spangrude, Heimfeld, and 

Weissman 1988; Curtis et al. 2004; Morrison et al. 1997; Okada et al. 1992; Harrison and Zhong 

1992). MPPs can be subdivided into four subpopulations: MPP1-4 (Pietras et al. 2015). MPP1 cells, 

or FSR-HSCs, were identified as a metabolically active subset of HSCs (A. Wilson et al. 2008; 

Cabezas-Wallscheid et al. 2014). MPP2 and MPP3 cells are distinct myeloid-biased subsets, with 

MPP2 biased towards megakaryocyte production, and MPP3 displaying granulocyte-macrophage 

potential. Finally, MPP4 cells are a lymphoid-primed MPP subset (Pietras et al. 2015). All four 

MPP subtypes work together to control blood production. It was originally thought that MPPs give 

rise to mature blood cells by directly differentiating into common myeloid progenitors (CMPs) and 

common lymphoid progenitors (CLPs) (Akashi et al. 2000; Kondo, Weissman, and Akashi 1997). 

However, more recent work showed that MPPs high in Flk2 expression produce both lymphoid 

and granulocyte-monocyte lineages (Adolfsson et al. 2001, 2005). These cells were named 

lymphoid-primed multipotent progenitors (LMPPs).  

LMPP cells expressed granulocyte-macrophage and lymphoid genes, and can produce 

granulocytes, macrophages, T- and B-cells, and only very rarely megakaryocyte-erythroid cells 

(Luc et al. 2008; Adolfsson et al. 2001, 2005). A study by Pronk et al. compared transcriptional 

profiles of CLPs and a pre-granulocyte-macrophage cell type with predominant myeloid potential, 

and found they were more similar to each other than either cell type was to cells of the erythroid 

lineage (Pronk et al. 2007). These results suggest that the lymphoid and myeloid lineages branch 

off earlier than the erythroid lineage, and LMPPs mark a first step towards lymphoid and myeloid 

lineages. As cells become increasingly lymphoid-restricted, granulocyte-monocyte potential is lost, 

resulting in CLPs. These cells lack myeloid potential, but can rapidly produce natural killer (NK) 

cells, B- and T-cells (Kondo, Weissman, and Akashi 1997). 

CMPs were identified by Akashi et al. as a population that can give rise to all myeloid lineages, 

producing megakaryocyte-erythroid progenitors (MEPs) and granulocyte-monocyte progenitors 

(GMPs) (Akashi et al. 2000). The functional and cell-fate identity of this population has been 
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challenged by several studies (Section 1.1.2). As it is possible to isolate both CMPs and LMPPs, it 

is possible GMPs can arise independently from both populations. These cells produce 

macrophages, granulocytes and mast cells (Dahlin and Hallgren 2015; Akashi et al. 2000). MEPs, 

on the other hand, exclusively produce erythrocytes, megakaryocytes, or mixed colonies (Akashi 

et al. 2000). Evidence suggests that MEPs may be derived from CMPs or directly from HSCs (H. 

Iwasaki et al. 2005). More detailed erythroid and myeloid progenitors can be elucidated using 

CD105, CD150 and CD41, which identified the PreMegE (pre-megakaryocyte-erythrocyte) 

population (Pronk et al. 2007). These cells produced erythrocyte, megakaryocyte, and mixed 

colonies, indicating PreMegEs have no granulocyte-macrophage potential and include bipotential 

progenitors as well as cells in early commitment stages. They are likely to occur slightly earlier in 

development than MEPs as functional and gene expression analyses indicate they are upstream of 

early unipotent cell populations that specifically give rise to erythroid colonies or megakaryocytes 

(Pronk et al. 2007). 

1.1.2. Challenges to the classic view of the haematopoietic hierarchy 

In recent years, questions have been raised that are altering the classical view of the haematopoietic 

hierarchy, in which all mature blood cells are produced from a single LT-HSC population 

(Cavazzana-Calvo et al. 2011). In mice, four subtypes of adult bone marrow HSCs were identified 

(α, β, γ and δ) that vary in their lineage bias and self-renewal activity (Dykstra et al. 2007). 

Specifically, α and β cells have robust self-renewal activity, but α cells are lymphoid potential-

deficient; γ cells are multipotent but have limited self-renewal activity and are derived from β cells, 

suggesting they represent an intermediate stage of repopulating cells; δ are the most lymphoid-

primed, lacking durable myeloid potential, and also have limited self-renewal capacity. Only β 

cells demonstrate traits typically associated with LT-HSCs (Dykstra et al. 2007). Other studies 

have also suggested the existence of lineage-primed HSCs alongside balanced HSCs based on 

repopulation kinetics, differential cytokine responses, and transcription factor expression patterns 

(Muller-Sieburg et al. 2002, 2004; Sieburg et al. 2006; Adolfsson et al. 2005; Arinobu et al. 2007). 

Overall, recent evidence suggests that more heterogeneity and lineage-priming exist in HSCs than 

previously recognised. 

Furthermore, the functional and cell-fate identity of CMPs has been questioned by multiple groups 

(Adolfsson et al. 2005; Arinobu et al. 2007; Bendall et al. 2014; Görgens et al. 2013; J. H. Levine 

et al. 2015; Murre 2007; Pronk et al. 2007; Laurenti et al. 2008; Yamamoto et al. 2013). A recent 
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study questioned the existence of the CMP population by using massively parallel RNA-

sequencing (MARS-seq) to measure gene expression in 2,730 myeloid progenitors. Paired with 

transplantation assays, the authors found that CMPs are not heterogeneous cells with undetermined 

fates, but are instead primed towards erythroid or myeloid fates (Paul et al. 2015). Perié et al. 

reached a similar conclusion with a genetic barcoding experiment, which showed that CMPs 

produce highly biased myeloid or erythroid outputs after 14 days (Perié et al. 2015). These studies 

suggest that cells defined as CMPs may actually be at an early commitment stage, and therefore 

question the usefulness of this classically defined population (Hamey et al. 2016). 

While the haematopoietic hierarchy has been well-defined, evidence of heterogeneity in HSPCs, 

as well as questions raised about cell functions and identities, demonstrate gaps in our 

understanding of the differentiation pathways towards myeloid, erythroid, and lymphoid cell fates.  

1.2. Cell fate decision making 

Cell fate decisions are controlled by patterns of gene expression and are essential in maintaining 

the haematopoietic system and determining haematopoietic differentiation pathways. Gene 

expression occurs when a DNA sequence is transcribed into RNA, which, for protein-coding genes, 

is translated into a protein by a ribosome. The process is regulated at every step by extrinsic 

signalling and epigenetic factors; understanding how gene expression is regulated is critical for 

understanding how cell fate decisions occur in haematopoiesis.  

1.2.1. Chromatin structure and epigenetics 

The genomes of higher eukaryotes are primarily made up of non-coding regions, as well as protein-

coding and RNA-coding genes, which only make up around one percent of the 3.3Gbp of sequence 

(Lander et al. 2001). The non-coding regions have important functions such as encoding regulatory 

DNA elements (section 1.2.2) and structural DNA elements, such as centromeres and telomeres 

(Alexander et al. 2010). 

Due to its large size, DNA must be packaged efficiently within the nucleus of every cell, while still 

allowing access to DNA for gene expression and DNA replication. This is achieved by supercoiling 

the DNA around histones to form nucleosomes (Kornberg and Lorch 1992, 1999). Accessibility to 

DNA is modified by chromatin remodellers, which are ATP-dependent enzymes that move 

histones along the DNA helix. This produces two chromatin states: euchromatin, which is open 



6  Introduction 

 

 

and transcriptionally active, and heterochromatin, which is dense and silent (Felsenfeld and 

Groudine 2003).  

Epigenetic modifications are also able to influence transcription factor binding to DNA and 

regulation of gene expression by acting on both DNA and histones. DNA methylation at cytosine 

residues is a stable and heritable repressive mark, causing epigenetic silencing. It is essential for 

normal development and is involved in processes such as genomic imprinting and X-chromosome 

inactivation. Epigenetic post-transcriptional modifications of histones include acetylation, 

methylation, phosphorylation, ubiquitination and sumoylation of the histone tails (Jin, Li, and 

Robertson 2011). Specific proteins regulate histone modifications. These proteins include histone 

acetyl and methyl transferases, as well as histone deacetylases (Kouzarides 2007). Histone 

modifications regulate processes such as gene transcription, DNA replication and DNA repair 

(Cedar and Bergman 2009).  

1.2.2. Gene regulatory elements 

Gene regulatory elements (GREs) are categorised by their function and include promoters, 

enhancers, silencing elements, insulators, and locus control regions. GREs are generally cis acting, 

meaning they act on the same DNA strand (Maston, Evans, and Green 2006). 

RNA polymerase binds the promoter region to initiate transcription. The promoter has well 

characterised features that facilitate pre-initiation complex assembly, including specific DNA 

sequences to which general transcription factors bind, leading to the recruitment of the RNA 

polymerase. The most common is the TATA box, which is approximately 30bp upstream of the 

transcriptional start site. Once bound by the TATA-binding protein, the DNA is partially unwound 

to facilitate transcription (Lee and Young 2000).  

Enhancers are important for activating transcription above basal levels, resulting in tissue-specific 

gene expression. They are able to do so independent of location and orientation (Maniatis, 

Goodbourn, and Fischer 1987). Transcription factors bind to distal enhancers and cause the 

enhancer to loop to the promoter, whereas co-localised enhancer and promoter elements form 

“chromatin hubs” and integrate transcriptional regulation with other cis-regulatory elements 

(Bulger and Groudine 2011). The Mediator protein complex is important for coordinating 

promoter-enhancer interactions with the basal transcriptional machinery (Malik and Roeder 2010; 

Maston, Evans, and Green 2006).  
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Insulators block the transcriptional effect of neighbouring genes and prevent crosstalk between 

genomic regions. They are important for preventing inappropriate regulation of adjacent genes, as 

well as separating the genome into functional and non-functional transcriptional units (Bushey, 

Dorman, and Corces 2008; Joughin et al. 2010). Silencers also have a negative effect on 

transcription, and are sequence-specific elements that may exert their effect by directly interfering 

with the general transcription factor assembly, or by passively inhibiting other elements upstream 

of the target gene (Ogbourne and Antalis 1998; Maston, Evans, and Green 2006). Locus control 

regions enhance the expression of linked genes at distal chromatin regions in a tissue-specific and 

copy number-dependent manner. They are involved in regulating gene expression through 

chromatin domain-opening activity, as well as increasing transcriptional activity to physiological 

levels (Q. Li et al. 2002). Overall, different functions are executed by cis-acting GREs to contribute 

to the regulation of cell lineage-specific gene expression. 

1.2.3. Transcription factors 

Transcription factors are a key class of trans-acting transcriptional regulators that exert their effects 

by binding to DNA elements. Transcription factors rarely act independently, but rather form 

complexes with other transcription factors, chromatin modifiers and co-factors (Ravasi et al. 2010; 

Vaquerizas et al. 2009). An enhancer is usually bound by multiple transcription factors, which may 

have mutually exclusive or stabilising functions (M. Levine and Davidson 2005). Transcription 

factors may bind directly to specific DNA binding sites or indirectly through other transcription 

factors (Slattery et al. 2014). They often have cell type-specific expression patterns and play a key 

role in determining gene expression profiles and cell fates (Vaquerizas et al. 2009).  

1.2.3.1. Transcription factors in haematopoiesis 

A number of transcription factors are known to play key roles in haematopoiesis and HSC 

regulation. Indeed, examples of key transcription factors can be identified along the erythroid, 

myeloid, and lymphoid lineages. Tal1 encodes the transcription factor SCL, which is key for the 

development of HSPCs (Bloor et al. 2002). Disruption of Tal1 also causes defects in the erythroid 

and megakaryocytic lineages (Hall et al. 2003). Neutrophil differentiation is regulated by the 

transcription factor encoding gene Gfi1, as mice lacking its expression have defects in neutrophil 

production (Hock et al. 2003; Karsunky et al. 2002). Ikzf1 encodes the transcription factor 

IKAROS, which is key in normal B-cell development; mouse models demonstrate that an Ikaros-

null mutation results in foetal and adult defects in lymphopoiesis (J. H. Wang et al. 1996; Marke, 
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van Leeuwen, and Scheijen 2018). Therefore, given the key role transcription factors play in 

determining cell-fates, it is important to investigate their regulation to improve our understanding 

of gene expression dynamics during HSPC differentiation.  

Specific transcription factors important for haematopoiesis will be discussed in more detail in 

Chapters 4-6. 

1.2.4. Gene regulatory networks 

Haematopoiesis is determined by the complex regulation of gene expression through gene 

regulatory networks, which are made up of transcription factors, epigenetic regulators, as well as 

GREs (Davidson 2009). Transcription factors can regulate their own expression as well as that of 

other transcription factors, generating feed-back and feed-forward loops and creating complex 

interconnected circuits (John E. Pimanda and Gottgens 2010; Davidson 2009; Miranda-Saavedra 

and Göttgens 2008; Davidson 2010). Gene regulatory networks describe highly interconnected 

relationships between transcription factors and the genes they regulate, in which the effect on gene 

expression caused by transcription factor binding determines the stability of gene expression (Alon 

2007). The network therefore determines which transcription factors are expressed at any moment, 

defining cell identities. As such, investigating gene regulatory networks can be useful to understand 

how transcription factors interact to cause cell fate changes. Network reconstruction will be further 

discussed in Section 1.5.4.3. 

 

1.3. Dysregulation of transcriptional control in haematopoiesis 

The haematopoietic system is tightly regulated as any dysregulation in the gene regulatory network, 

such as transcription factor overexpression, deletion, or abnormal gene fusions, can result in 

imbalance and malignancy (Sive and Göttgens 2014). The disruption of transcription factor 

function can, for example, lead to leukaemia. The transcription factor Runx1 is essential during 

definitive haematopoiesis in embryonic development, and its absence causes embryonic death in 

mouse models (Q. Wang et al. 1996; Okuda et al. 1996). In adult human haematopoiesis, however, 

disruption of RUNX1 results in predisposition to acute myeloid leukaemia (AML) (Sun and 

Downing 2004; Sakurai et al. 2014; M. Ichikawa et al. 2004). The transcription factor was in fact 

discovered by an observation that the gene was rearranged in leukaemic cells of t(8;21) AML 

patients to form the RUNX1-ETO fusion protein (Miyoshi et al. 1991). The transcription factor 
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SCL was also identified by its role in T-cell acute lymphoblastic leukaemia (ALL), in which it was 

ectopically expressed due to t(1;14) chromosomal translocations (Begley et al. 1989). Lmo2 

encodes a transcription factor that normally activates an erythroid-specific gene expression 

program (Warren et al. 1994). It was identified by a t(11;14) translocation in T-cell ALL (Boehm 

et al. 1991). Mouse models have shown that activation of LMO2 by the translocation causes self-

renewal of committed T-cells, which accumulate additional mutations and eventually cause 

leukaemia (Herblot et al. 2000; Curtis and McCormack 2010). 

Understanding the processes regulating HSPC differentiation during normal haematopoiesis is 

therefore key for uncovering how its dysregulation results in aberrant decision-making, which in 

turn lead to serious blood disorders (Tenen 2003).  

1.4. Mammalian genome editing 

Targeted genome editing was first achieved by homologous recombination, in which a DNA 

sequence is exchanged between two similar sequences; it is also a DNA repair mechanism which 

replaces damaged DNA (Scherer and Davis 1979; Smithies et al. 1985; X. Li and Heyer 2008). 

Traditional methods took advantage of endogenous homologous recombination to alter the 

genome, which was a precise but inefficient approach and was only possible in mice due to the 

absence of culturable embryonic stem cells in other mammals (D. Carroll 2017).  

Advances in genome editing technologies have made it possible to perform genetic manipulations 

at higher efficiencies in all types of cells and organisms. These high-efficiency methods are 

programmable to cause a double-stranded break at the desired target, stimulating repair by 

homologous recombination or non-homologous end-joining (K. Lim 2015). These genome-editing 

technologies use engineered nucleases composed of a sequence-specific DNA-binding domain, 

which searches for the target locus, and a non-specific DNA cleavage molecule, which generates 

the double-stranded break (Gaj et al. 2013; K. Lim 2015). These methods include zinc-finger 

nucleases (ZFN), transcription activator-like effector nucleases (TALENs) and clustered regularly 

interspaced short palindromic repeats (CRISPR)/Cas9. Briefly, ZFNs are a hybrid of a DNA 

cleavage domain derived from a bacterial protein and zinc fingers identified from sequence-specific 

eukaryotic transcription factors. TALENs use the same DNA cleavage domain, but its sequence-

specific DNA-binding domain is derived from DNA recognition modules from transcription factors 

of plant pathogenic bacteria (D. Carroll 2017). CRISPR/Cas9, on the other hand, is a prokaryotic 

acquired immunity system and uses RNA molecules to target a genomic locus (Barrangou et al. 
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2007; Makarova et al. 2006). It has become the system of choice for genome editing, as it is a more 

efficacious, less expensive, and less cumbersome technology than ZFNs or TALENs. The 

CRISPR/Cas9 system was used in this thesis to perturb target genes in HSCs (Chapter 4). 

1.4.1. The CRISPR/Cas9 system 

The CRISPR/Cas9 system for genome editing was adapted from the acquired immunity mechanism 

of bacteria and archaea. The microbes capture viral DNA segments and integrate them between 

CRISPR sequences, which are transcribed into CRISPR RNAs (crRNA). The crRNA then guides 

the silencing of invading DNA by Cas nucleases. Cas9 in particular participates in crRNA 

biogenesis and destruction of invading DNA (Jinek et al. 2012; Sorek, Lawrence, and Wiedenheft 

2013).  

This system has recently been adapted for mammalian genome editing (Cong et al. 2013; Mali et 

al. 2013). A short guide RNA (gRNA) sequence is designed to bind a target sequence in the 

genome. The gRNA also binds the Cas9 nuclease and guides it to cut at the target location. This 

technology allows virtually any genomic location to be effectively targeted (P. D. Hsu, Lander, and 

Zhang 2014). The CRISPR/Cas9 technology also makes it possible to more easily perform genome-

wide knockout screens. Individual cells can be perturbed by one or more gRNA from a pooled 

library targeting thousands of genes. Cells that have had essential genes knocked out will die, but 

the surviving cells can be sequenced to uncover the genes causing their perturbation phenotype 

(Shalem et al. 2014; T. Wang et al. 2014).  

1.4.1.1. CRISPR/Cas9 use in investigations of the haematopoietic system 

CRISPR/Cas9 has also been used to perform genome editing of HSPCs. For example, lentiviral 

transduction of gRNAs and Cas9 into a single HSC was used to modify five genes and produce 

myeloid malignancy, generating an AML mouse model (Heckl et al. 2014). In human HSPCs, 

transfection of Cas9 and gRNA encoding plasmids was used to target B2M and CCR5 to investigate 

the possible therapeutic implications of the technology (Mandal et al. 2014). A CRISPR-Cas9 

knockin mouse, which expresses Cas9 and can be transfected with target gRNAs, has also been 

effectively used for genomic research (Platt et al. 2014; Pettitt et al. 2009). Tzelepis et al. designed 

a genome-wide CRISPR screening platform to identify therapeutic targets in AML. Cas9-

expressing mice were used to validate their murine lentiviral gRNA library. By transducing Cas9-

expressing cancer cell lines with the gRNA library, they identified 492 AML-specific cell-essential 
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genes as well as many other clinically actionable candidates (Tzelepis et al. 2016). These studies 

demonstrate the value of using CRISPR/Cas9 genome editing to interrogate HSPC biology with 

potential therapeutic implications. 

1.5. Single cell biology 

Analysis of transcriptional regulation has traditionally used bulk cell populations, often due to the 

limitations of available technologies. However, these analyses can only provide information on cell 

population averages (Moignard and Göttgens 2014). While HSPCs regulate their functional output 

at the population level, differentiation is a stochastic process occurring in individual cells (A. M. 

Klein and Simons 2011; Simons and Clevers 2011). Bulk expression analysis assumes 

homogeneity within a population and may therefore fail to capture the heterogeneity of the fate 

decision-making processes of individual cells (Fig. 1.2A). Advances in single-cell profiling 

technology have now made it possible to profile large numbers of individual cells simultaneously, 

which has been widely explored in HSPCs to increasingly define the heterogeneity within different 

cell types (N. K. Wilson et al. 2015; Paul et al. 2015; Hamey et al. 2016). 

1.5.1. Heterogeneity in HSPC populations 

It is widely accepted that haematopoiesis occurs in a hierarchical fashion, in which HSCs 

differentiate into mature blood cells, passing through intermediate progenitor states with varying 

lineage potential (Bryder, Rossi, and Weissman 2006; Pronk et al. 2007; Laurenti and Göttgens 

2018). Technological advances have made it possible to study the haematopoietic hierarchy in 

further detail, revealing heterogeneity within HSPC populations, including the HSC pool. Single-

cell clonal output investigations have shown that heterogeneity exists within the HSC compartment 

in terms of their self-renewal and repopulation potential, as well as their differentiation output, 

highlighting the need to study individual cells rather than population averages (Dykstra et al. 2007). 

Furthermore, the MPP compartment has been subdivided into four functionally distinct subgroups 

(Pietras et al. 2015; Cabezas-Wallscheid et al. 2014).  

Indeed, single-cell studies have also challenged the structure of the haematopoietic hierarchy. A 

study that isolated human cells from myeloid, erythroid, and megakaryocytic fates found that most 

of the multipotent cells in the bone marrow were in the HSC compartment and there was an absence 

of intermediate progenitor populations (Notta et al. 2015). Single-cell barcoding can be used to 

study functional properties of cells by tagging individual cells with unique barcodes that are 
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noncoding stretches of DNA (Naik, Schumacher, and Perié 2014). Cells are commonly labelled 

with these barcodes by retroviral transduction, allowing the cells to be tracked in vivo. Perié et al. 

used this technique to track the contribution of individual cells to different lineages after 

transplantation into lethally irradiated mice, sequencing the cells to reveal the barcode identity 

(Perié et al. 2015). They investigated whether the CLP-CMP divide is the first step of lineage 

commitment. As previously discussed, they found that the CMP population is composed of 

heterogeneous cells primed towards myeloid or erythroid outputs, suggesting they are at an early 

commitment stage. Furthermore, after transplanting barcoded HSCs and MPPs, they found that cell 

fates toward myeloid and erythroid lineages were mainly determined by the HSCs while most 

MPPs were restricted to a single fate (Perié et al. 2015). These studies together demonstrate the 

heterogeneity that exists within HSPCs, as well as the value single-cell analysis offers for resolving 

the behaviour of individual cells.  

1.5.2. Fluorescence-Activated Cell Sorting 

An essential first step in many single-cell profiling techniques is the isolation of individual cells. 

To do so, many studies take advantage of fluorescence-activated cell sorting (FACS), which 

quantitatively assesses fluorophores at single-cell resolution. Cells are stained with fluorophore-

conjugated antibodies against cell surface markers and separated based on multiple parameters, 

including size, granularity and fluorescent properties correlated to surface marker expression 

(Lindström 2012). Flow cytometers can detect 30 or more different parameters per cell, limited by 

the number of distinguishable fluorophores and capabilities of the instrument and analysis software 

(Nettey, Giles, and Chattopadhyay 2018; Brummelman et al. 2017). The sorted cells can then be 

used in various applications, such as functional or gene expression analyses. However, the cells 

can usually only be used for one type of experiment and therefore represent a snapshot of the cell 

population at the point of collection. If collected at the single-cell level, the snapshots are likely to 

reveal heterogeneity among the isolated cells. 

Index sorting is an important advancement in FACS, as it collects data for all the parameters 

measured, including well position for each single-cell sorted into a 96- or 384-well plate. By pairing 

FACS with index sorting, it is possible to obtain the FACS phenotype of every cell, to be 

retrospectively reviewed (Osborne 2011; Schulte et al. 2015). The index sorting data can then be 

paired with gene expression analysis to compare populations based on both gene and surface 

marker expression (Fig. 1.2B). This technique is widely applicable and can be used to characterise 
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many cellular systems (Schulte et al. 2015; Hayashi et al. 2010). In the haematopoiesis field, 

Wilson et al. paired single-cell gene expression profiling with functional analyses to interrogate 

heterogeneity within HSC isolation strategies (N. K. Wilson et al. 2015). They defined a refined 

sorting strategy that separated HSCs from non-HSCs by retrospectively linking gene expression 

profiles and functional outcome to the index sorting data. Single-cell transplantation and RNA-

sequencing of the enriched population identified genes associated with long-term self-renewal. The 

study highlighted a key difference in the enrichment for cell cycle genes between functional HSCs 

and non-HSCs, where HSCs expressed higher levels of genes associated with negative regulation 

of cell proliferation and non-HSCs were primed towards proliferation (N. K. Wilson et al. 2015).  

 

Figure 1.2. Single-cell analysis. (A) Schematic demonstrating the importance of single cell analysis. Profiling a 

population using bulk analysis will only reveal population averages and therefore will obscure the heterogeneity that 

exists in individual cells. Single-cell technology makes it possible to collect measurements for individual cells, 

revealing the variance that exists in heterogeneous populations. (B) Sorting cells using fluorescence-activated cell 

sorting (FACS) makes it possible to isolate individual cells to be analysed using single-cell molecular profiling 

techniques. The technique used will vary based on the experimenter's interests and include qRT-PCR or scRNA-seq. 

FACS paired with index sorting collects data for all parameters measured, including surface marker expression and 

well position for each cell. The gene expression profiles can therefore be compared to the surface marker expression 

data to characterise populations and inform future work. qRT-PCR: quantitative real-time polymerase chain reaction; 

RNA-seq: RNA-sequencing. Figure adapted from Hamey et al. (2016). 



14  Introduction 

 

 

 

Another technique for studying single cells is mass cytometry (Cytometry by Time of 

Flight/CyTOF). While FACS uses fluorochromes to label antibodies, mass cytometry instead 

requires the antibodies to be labelled with transition element isotopes, which are then quantified 

by the concentrations of metal-tagged antibodies (Bendall et al. 2012; Behbehani et al. 2012). Mass 

cytometry can measure 40 or more parameters simultaneously, allowing for in-depth investigations 

of cell phenotypes, limited only by the choice of antibodies. It can be a useful method for studying 

signalling cells in a variety of experimental conditions (Behbehani et al. 2012). However, the cells 

are not available for further molecular and functional analyses after mass cytometry; instead, the 

results may provide insights for designing FACS strategies for further investigations (Behbehani 

et al. 2012).  

1.5.3. Single-cell gene expression profiling 

The heterogeneity of cell populations also affects the analysis of regulatory relationships. Using 

population expression data to extrapolate to the single-cell level forces assumptions about how 

individual cells behave. It is necessary to know whether genes are expressed in the same cell to 

determine whether they are co-regulated or regulate each other; these relationships will be masked 

at the population level, which suggests all cells express the same level of each gene. Therefore, 

single-cell gene expression analysis is a useful tool to reveal the complex relationships that exist 

within a gene regulatory network. 

Single-cell technologies are rapidly advancing and expanding, with new technologies frequently 

being introduced. To study gene expression at the single-cell level, techniques such as quantitative 

real-time polymerase chain reaction (qRT-PCR) and single-cell RNA-sequencing (scRNA-seq) can 

be applied. qRT-PCR amplifies specific messenger RNA (mRNA) transcripts to measure the 

expression of selected genes; when performed on single cells, expression of multiple genes can be 

measured at the single-cell level (Sanchez-Freire et al. 2012). Fluidigm BioMarkTM is a dynamic 

array integrated microfluidics circuit which allows gene expression studies of up to 96 selected 

genes in 96 cells. This can be further extended by using multiplexing approaches (G. Guo et al. 

2013). The genes of interest are selected by the investigator, meaning the technique is best used for 

looking at specific questions, targets or systems (Moignard et al. 2013). Single-cell qRT-PCR has 

been widely used to interrogate heterogeneity and transcriptional regulation in HSPCs (G. Guo et 

al. 2013; N. K. Wilson et al. 2015; Moignard et al. 2013, 2015; Pina et al. 2012, 2015).  
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In contrast to qRT-PCR, which is limited to a small, curated set of genes, scRNA-seq is a 

transcriptome-wide approach for measuring gene expression. The mRNA from single cells is 

reverse-transcribed and the resulting complementary DNA (cDNA) is amplified and sequenced as 

a pool, with unique combinations of indexes marking each cell (Picelli et al. 2014; Kolodziejczyk 

et al. 2015). This method can be used to profile gene expression in individual cells within a 

population of interest, providing insights into differentiation lineages and the regulatory 

programmes governing these populations (Nestorowa et al. 2016). Similarly, MARS-seq is an 

automated method of RNA sequencing, designed to process thousands of multiplexed cells that are 

barcoded at the molecular, cellular and plate level (Jaitin et al. 2014). This approach allows the 

processing of thousands of cells as well as the characterisation of multiple cell populations within 

a single dataset for an in-depth and broad picture of variability and heterogeneity; however, 

compared to scRNA-seq, it results in much shallower sequencing depth per cell. New technologies 

are constantly emerging in the single-cell field, aiming to increase throughput while keeping costs 

low; the technologies relevant to this thesis are scRNA-seq and qRT-PCR, which will be explored 

further in Chapters 3 and 5, respectively. 

1.5.4. Computational analysis of single-cell data 

Single-cell expression profiling can produce tens to thousands of gene expression measurements 

per cell, in which each cell represents part of a heterogeneous population. These datasets are 

complicated to interpret due to the high-dimensionality nature of the data. Single-cell expression 

profiling therefore needs to be paired with computational methods to resolve the complex datasets 

and enable investigations of the underlying biology. 

1.5.4.1. Dimensionality reduction 

Dimensionality reduction methods make it possible to visualise high-dimensional data in a low-

dimensional space, most frequently in two or three dimensions. Doing so enables comparisons of 

gene expression between groups of cells. Dimensionality reduction methods have been widely 

applied to population expression data to uncover differences between cells (Fig. 1.3A) (Hamey et 

al. 2016).  

Principal component analysis (PCA) is a widely used linear dimensionality reduction method 

(Hotelling 1933a, 1933b; Pearson 1901; Jolliffe 2011). PCA applies a linear transformation to the 

data so that each principal component (PC) explains the maximum variance within the data. They 
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are ordered so that PC1 has the largest variance, followed by PC2, and so on; as such, plotting the 

data in the first two or three PCs can reveal separation between different cell states. PCA has been 

applied to single-cell analysis of HSPCs, for example to investigate aging and differentiation in 

HSCs or to interrogate the regulation of erythroid and myeloid fates (Kowalczyk et al. 2015; Pina 

et al. 2015).  

However, linear techniques may struggle with capturing complex structures and may not always 

be the most suitable visualisation for single-cell expression profiles. Recently, non-linear methods 

such as t-distributed stochastic embedding (t-SNE) and diffusion maps have been applied to single-

cell data to uncover more complex relationships in the data (Maaten and Hinton 2008; Haghverdi, 

Buettner, and Theis 2015). t-SNE embeds the data in a low-dimensional space while conserving 

the distribution of distances in the high-dimensionality space, meaning that cells with similar 

expression profiles are nearby on the reduced dimensionality plot. This method has been used on 

single-cell datasets to interrogate diverse aims, such as visualising the overlap between 

haematopoietic populations or investigating the molecular mechanisms underlying development in 

the mouse embryo (N. K. Wilson et al. 2015; Scialdone et al. 2016). These studies demonstrate the 

usefulness of t-SNE for representing heterogeneous single-cell datasets. 

Single-cell expression profiling can be used to capture molecular changes throughout 

differentiation. These datasets need to be visualised with an appropriate dimensionality reduction 

method, which can capture the continuous nature of differentiation. Diffusion maps consider 

lengths of diffusion-like random walks through the data in the high-dimensional space to determine 

a projection of the cells. This method has been adapted for use with single-cell expression data 

(Haghverdi, Buettner, and Theis 2015). Moignard et al. used the diffusion map method on single-

cell qRT-PCR data to visualise cell progression during early blood development, in which diffusion 

maps successfully separated populations from different time points and illustrated a progression 

through differentiation (Moignard et al. 2015). 

In addition to these methods, researchers have developed web interfaces that are accessible to non-

bioinformaticians. The advantage of these methods is the same as their disadvantage—the 

interfaces are quick and easy to use, producing a plot of a complex dataset within minutes, but the 

investigator has little to no input on how these plots are constructed. Still, these methods can be 

highly informative and do not require any computational skill to analyse the dataset. Two such 

methods are STREAM (Single-cell Trajectories Reconstruction, Examination and Mapping) and 
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SPRING (H. Chen et al. 2018; Weinreb, Wolock, and Klein 2018). STREAM was developed to 

reconstruct differentiation trajectories and capture gene expression changes during differentiation 

using pseudotime ordering, which orders cells in a putative differentiation trajectory based on gene 

expression (Section 1.5.4.2). STREAM uses a non-linear dimensionality method called modified 

local linear embedding (MLLE), which uses multiple weight vectors for each point while 

embedding the low-dimensional data (Z. Zhang and Wang 2006). STREAM is unique in that the 

visualisation includes density information throughout pseudotime to show how many cells of each 

investigated population are in which stage of differentiation. The online web-interface can also be 

used to identify genes important in defining branching points, as well as genes that transition across 

a given lineage branch (H. Chen et al. 2018).  

SPRING, on the other hand, uses a force-directed layout of k-nearest neighbour graphs to capture 

long-distance relationships between cells (Weinreb, Wolock, and Klein 2018). Cells are connected 

based on similarities in their expression profiles, and the connections form the edges of the graph. 

Edges are weighted by the strength of similarities between cells, and the graph is then generated 

by bringing similar cells together: the edges cause an attracting force between similar cells or a 

repelling force between cells that differ. Force-directed graphs have previously been used to 

visualise haematopoietic data collected by mass cytometry. The Klein lab have recently created an 

interactive web-interface for researchers to explore their scRNA-seq expression data (Spitzer et al. 

2015; J. H. Levine et al. 2015; Weinreb, Wolock, and Klein 2018). 

Overall, a wide range of dimensionality-reduction and visualisation methods are available; the best 

choice for a specific project will ultimately depend on the dataset and question at hand. These 

methods are further explored in Chapter 3. 

Dimensionality reduction makes it possible to not only visualise heterogeneity within a dataset, but 

to also group cells and query differences between populations. Clustering methods separate cells 

into groups in an unsupervised and unbiased way, based on information such as gene expression 

profiles (Fig 1.3B). Gene expression specific to individual populations can then be used to identify 

cell types or novel marker genes (Hamey et al. 2016). Hierarchical clustering is a well-established 

method that has been used extensively to identify subgroups of cells within single-cell data, and 

therefore connects or separates cells in a heterogeneous dataset based on their gene expression (N. 

K. Wilson et al. 2015; Moignard et al. 2013; G. Guo et al. 2013). 



18  Introduction 

 

 

 

Figure 1.3. Single-cell profiling enables the exploration of cell population heterogeneities. (A) Dimensionality 

reduction techniques allow visualisation of heterogeneities within a population of cells based on single-cell expression 

profiles. Plotting cells in this two-dimensional coordinate system can confirm that subpopulations separate based on 

their expression profiles (i) or can be used to visualise data with a continuous nature, for example describing 

differentiation processes (ii). (C) Unbiased clustering techniques can be used to explore similarities between cells in 

single-cell datasets. In hierarchical clustering, as shown here, the most similar groups of cells are closely connected in 

the dendrogram. This structure then allows exploration of different levels of clustering within the data: for example, 

the cells can be split into three groups corresponding to their cell type. Figure adapted from Hamey et al. (2016). 

 

1.5.4.2. Reconstructing lineage differentiation 

During haematopoiesis, a cell increasingly specialises as it commits to one of several cell fates. 

Isolating populations at different stages of differentiation and profiling them at the single-cell level 

describes cell differentiation but is limited by time resolution and therefore assumes the cells are 

synchronised. However, as discussed in section 1.5.1, single-cell analysis reveals the large 

variation that exists in populations previously thought to be homogeneous in bulk studies (N. K. 

Wilson et al. 2015; Moignard et al. 2013, 2015; Pina et al. 2015). To resolve the heterogeneity 
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within data, in silico lineage reconstruction uses computational methods to infer lineage 

differentiation based on single-cell data. 

Individual cells undergoing differentiation can be clustered into groups based on single-cell 

expression profiling data. The most similar groups can be connected into a structure representing 

a lineage hierarchy (Fig. 1.4A) (Hamey et al. 2016). The spanning-tree progression analysis of 

density-normalised events (SPADE) algorithm uses this approach to construct lineage hierarchies 

from flow and mass cytometry data (P. Qiu et al. 2011). SPADE calculates a density-dependent 

sample of the data to ensure that rare populations are not obscured, after which the cells are 

clustered based on their expression profiles. The clusters are then linked in a tree structure 

representing the lineage hierarchy. An advantage of SPADE is that it includes rare cell populations 

and does not require prior information to infer the lineage structure, but the different random 

density-dependent samples can lead to different clusters and therefore alternative tree structures, 

limiting the stability of this approach (Hamey et al. 2016). SPADE was used by Guo et al. to 

construct a lineage tree of the haematopoietic hierarchy (G. Guo et al. 2010). The authors 

questioned whether commitment occurs at the CMP stage using single-cell qRT-PCR data 

quantifying 280 commonly used surface markers. The lineage tree constructed by SPADE showed 

CMPs were found in both megakaryocyte-erythrocyte (MegE) and lympho-myeloid lineages, and 

that MegE cells were closely connected to LT-HSCs, indicating a very early lineage bias (G. Guo 

et al. 2013).  

Scaffold is another computational method used to reconstruct differentiation hierarchies. The 

approach involves an initial clustering step, from which a force-directed graph is constructed. 

Spitzer et al. used Scaffold to visualise the hierarchy of the murine immune system based on single-

cell mass cytometry data (Spitzer et al. 2015). The authors constructed Scaffold maps for cells from 

different samples to compare the immune system organisation in different tissues, species, and 

genetic backgrounds, and demonstrated that circadian rhythm influenced the distribution of 

immune cells. Scaffold also allows new data to be projected onto an existing structure, making it 

possible to integrate multiple datasets from various tissues and disease states (Spitzer et al. 2015). 

These studies demonstrate how constructing differentiation hierarchies in silico can provide 

insights into biological systems. 

Ordering individual cell profiles by progress through differentiation is an exciting extension of 

inferring differentiation hierarchies. Assuming that gene and protein expression continuously 
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change as cells differentiate, and that a sample contains cells spread at a sufficient density through 

differentiation, it was hypothesised that single‐cell expression profiles could be used to arrange 

cells in ‘pseudotime’, where the position of a cell in pseudotime corresponds to its progress through 

differentiation (Fig. 1.4B) (Hamey et al. 2016). Algorithms have been designed based on these 

assumptions to solve this computational ordering problem. Trapnell et al. describe Monocle, which 

performs a dimensionality reduction in the data before constructing a graph on this lower 

dimensional representation and finding the minimum spanning tree (Trapnell et al. 2014). Cells are 

then ordered in pseudotime based on their position in the minimum spanning tree, making it 

possible to investigate changes in gene expression patterns throughout pseudotime. The authors 

used this approach to reconstruct the differentiation of human primary myoblasts and identify 

branching towards an alternative cell fate present in their data (Trapnell et al. 2014). 

Another algorithm, Wanderlust, was applied to single‐cell mass cytometry data to capture B‐cell 

development in human bone marrow (Bendall et al. 2014). Wanderlust first considers a k‐nearest‐

neighbour graph on the single‐cell expression data. The ordering of cells is based on the path 

lengths originating from a user‐defined starting cell. Wanderlust can cope with very large numbers 

of cells, and subsamples cells to obtain stable orderings, avoiding the possibility of ‘short circuits’ 

through the data. Using Wanderlust, Bendall et al. ordered cells encompassing B-cell development 

with the aim of inferring a developmental trajectory, and confirmed that all the landmarks of B-

cell lymphopoiesis were correctly ordered (Bendall et al. 2014).  

Both Monocle and Wanderlust have limitations, however. Monocle is unstable and susceptible to 

short circuits, meaning that multiple applications of Monocle on the same dataset may result in 

multiple different trajectory inferences. Furthermore, Wanderlust cannot be used to identify 

branches when a differentiation trajectory separates towards multiple lineages. Updates to both 

these methods have been released. Monocle was upgraded to Monocle 2, which uses reverse graph 

embedding instead of minimum spanning tree to reconstruct lineage trajectories. This method 

doesn’t require the user to predetermine the number of branches, allowing for more unbiased 

investigation of lineage potential (Mao et al. 2017; X. Qiu et al. 2017). Wishbone improved upon 

Wanderlust to avoid problems that could arise due to outliers in the data, and made it possible to 

identify cells that are differentiating towards an alternative cell fate (Setty et al. 2016).  

Furthermore, alternative algorithms have been developed for constructing pseudotime orderings. 

Haghverdi et al. developed diffusion pseudotime (DPT) to provide a more robust method that can 
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identify branching towards multiple fates (Haghverdi et al. 2016). DPT measures the distance 

between cells based on lengths of random walks through single-cell expression data. It then 

considers the relationships between orderings from the starting point and end point of the main 

trajectory to identify branching points. The authors used DPT to reconstruct gene expression 

changes through differentiation in murine developmental haematopoiesis using previously 

published single-cell qRT-PCR data (Haghverdi et al. 2016; Moignard et al. 2015). These methods 

therefore make it possible to investigate continuous differentiation processes within single-cell 

snapshot data and identify lineage trajectories to improve our understanding of differentiation 

hierarchies within biological systems. 

 
Figure 1.4. Reconstructing lineage differentiation using single-cell expression profiles. Methods have been 

developed to reconstruct lineage differentiation from single-cell measurements under the assumption that the cells 

closest in the differentiation process will have the most similar gene or protein expression profiles. (A) A cell 

population can contain several subpopulations (represented by different colours) from different stages of lineage 

differentiation (i). Individual cells can be clustered into groups based on gene or protein expression profiles (ii). By 

assigning similarity scores between groups, a graph can be constructed where each node corresponds to a cell cluster 

and the edges between nodes are weighted by similarity scores between clusters (iii). This graph can then be used to 

find a reconstruction of the lineage tree. (B) A seemingly homogenous population can contain cells at multiple stages 

of differentiation, depicted on a red-to-blue spectrum (i). These cells can be computationally ordered in pseudotime 

based on similarities in their expression profiles, representing their progress through differentiation (ii). Gene or protein 

expression patterns can then be explored along pseudotime to identify key biological events or factors linked to the 

differentiation process (iii). Figure adapted from Hamey et al. (2016). 

 

1.5.4.3. Identifying and modelling regulatory relationships 

It is important to define the underlying regulatory programmes governing haematopoietic 

differentiation to better understand how multipotent cells choose between different fates (Gottgens 

2015; Peter and Davidson 2015). Transcriptional regulatory networks are composed of 
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transcription factors and the cis-regulatory elements to which they bind (Section 1.2). Network 

reconstruction directly from experimental evidence has been limited to the simplest organisms due 

to the number of possible regulations and complex network structures in more complex organisms. 

Many studies have instead focused on inferring regulatory networks using gene expression data 

collected from multiple experimental perturbations or conditions. Small sample sizes and masked 

heterogeneity within cell types constrain network inference from population expression data; 

single-cell approaches represent a powerful alternative for identifying new regulatory relationships, 

as each cell represents an observation with its own expression levels, vastly increasing sample sizes 

(Hamey et al. 2016). 

The large sample sizes obtained by measuring single-cell gene expression can be used to identify 

potential regulatory relationships by considering correlations between genes (Fig. 1.5A). Setting a 

threshold on correlation strength can identify putative networks consisting of genes linked with the 

highest positive or negative correlations. Several studies have used this approach to identify and 

experimentally validate regulatory relationships between highly correlated genes (Moignard et al. 

2013; Pina et al. 2015). 

Decision-making in cells is governed by complex networks of transcriptional factors with possible 

combinatorial interactions between network elements. A regulatory relationship between two genes 

cannot therefore be considered in isolation, as it may depend on the presence or absence of 

additional transcription factors. Logical relations can be abstracted as Boolean functions, where 

gene expression is either “on” or “off” (Fig. 1.5B). These abstractions form part of a Boolean 

network, which make it possible to model and simulate regulatory networks. Single-cell gene 

expression data can be converted to binary data for each cell, providing a large number of possible 

Boolean states (Fig. 1.5C). Boolean network modelling has been used to computationally infer 

networks from single-cell expression data describing embryonic blood development and 

embryonic stem cells (Moignard et al. 2015; Xu et al. 2014). A drawback of Boolean modelling, 

however, is that the abstraction of gene expression levels to binary on/off states may discount 

quantitative expression differences. A recent study addressed this problem, making it possible to 

consider more than two expression levels for genes using Boolean modelling (Collombet et al. 

2017). 
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Figure 1.5. Inferring regulatory relationships from single-cell expression data. (A) Correlation between gene pairs 

can be calculated from single-cell gene expression measurements. Some gene pairs will exhibit positive correlation 

(red), whereas others will be negatively correlated (blue) (left gene-gene correlation heatmap). The strongly correlated 

gene pairs can be selected by setting thresholds; here, correlations below the threshold are in white (middle gene-gene 

strongest correlation heatmap). Connections between the highly correlated pairs can be drawn in a network diagram 

representing positive or negative correlations with red or blue lines, respectively (right). (B) Transcription factors can 

be part of combinatorial regulatory relationships. Activation of factor C by both factor A and B could be described by 

two different scenarios, represented by Boolean logic functions: either A or B alone activate C (Boolean Or), or both 

A and B need to bind to activate C (Boolean And). The truth tables detail the output of the And/Or functions. (C) 

Boolean functions can be used to model regulatory networks. Single-cell gene expression measurements (left) are 

converted into binary (ON/OFF) expression (middle) by setting an expression threshold. Computational methods 

applied to the binary data allow inference of regulatory relationships, represented by Boolean And/Or functions (right). 

Image adapted from Hamey et al. (2016). 

 

1.5.4.4. HSPC regulatory networks 

Single-cell data have been very useful to identify previously unrecognised regulatory networks and 

important factors in lineage commitment. Pina et al. used single-cell qRT-PCR to investigate self-



24  Introduction 

 

 

renewing cells and erythroid- or myeloid-committed progenitors in mice (Pina et al. 2015). Lineage 

commitment was associated with negative gene regulatory relationships and Ddit3 was identified 

as a previously unrecognised key player in lineage commitment. Ddit3 was positively associated 

with Gata2 in self-renewing and committed cells, and negatively associated with Cebpa, important 

for neutrophil commitment. Knockdown of Ddit3 caused a loss of erythroid function and a switch 

to myelo-monocytic potential; conversely, enforcing its expression in GMPs increased self-renewal 

properties and reduced myeloid potential. Analysing wild-type and Ddit3-overexpressing GMPs 

by PCA confirmed that Ddit3 positively regulates erythroid fates while negatively regulating 

myeloid fates. The authors found that overexpressing Ddit3 altered the global transcription network 

of GMPs, increasing connectivity with Gata2 and preventing myeloid fate by stabilising primitive 

megakaryocyte-erythrocyte precursors. Regulatory network modelling therefore demonstrated that 

conflicting lineage-potential programmes exist at the point of cell commitment and identified a 

regulatory relationship between Gata2 and Ddit3 (Hamey et al. 2016; Pina et al. 2015).  

To analyse regulatory relationships between transcription factors during haematopoiesis, Moignard 

et al. used single-cell qRT-PCR to profile the expression of 18 key transcription factors in LT-

HSCs, PreMegEs, GMPs and CMPs (Moignard et al. 2013). Correlation analysis showed a 

reduction in negative correlations between transcription factors for individual populations 

compared to all cell populations as a whole, suggesting a lack of repression may be important in 

cell fate transitions. Two new regulatory links were identified: Gata2-Gfi1b and Gata2-Gfi1, 

highlighting a previously unrecognised regulatory triad where mutual inhibition between Gfi1b and 

Gfi1 is regulated by Gata2 (Hamey et al. 2016; Moignard et al. 2013).  

These studies highlight the utility of single-cell network interrogation in finding regulatory 

networks obscured in bulk population studies and increasing our understanding of cell-fate decision 

making during haematopoiesis. 
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1.6. Aims 

This thesis explores the transcriptional landscape of haematopoietic stem and progenitor cell 

differentiation. The “transcriptional landscape” describes gene expression during haematopoiesis, 

in which cells differentiate from an HSC to mature cells, moving through intermediate progenitor 

states (John E. Pimanda and Gottgens 2010; Waddington 1957). To understand how cell fate 

decisions are regulated and lead towards the different blood cell types, it is important to study gene 

expression regulation in the context of HSPC heterogeneity. Advances in single-cell technology 

make it possible to isolate and profile thousands of cells to study relationships between genes 

through differentiation. Furthermore, advances in genome editing and CRISPR/Cas9 technology 

make it possible to easily perturb target genes and study the implications on HSPC biology. In the 

work presented in this thesis, experimental and computational approaches are used to investigate 

haematopoiesis and address the following aims: 

• Profile the transcriptional landscape of haematopoietic stem and progenitor cells at the 

single-cell level 

• Investigate genes implicated in HSC biology using the CRISPR/Cas9 system  

• Identify and validate regulatory networks controlling differentiation in haematopoietic stem 

and progenitor cells 
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Chapter 2: Materials & Methods 

 

2.1. Cell culture 

2.1.1. Mammalian cell lines 

2.1.1.1. 416B 

CD34+ mouse haematopoietic suspension cell line. This cell line was used for luciferase assays 

(Section 2.2.3). 416B cells were grown in Roswell Park Memorial Institute Medium (RPMI 1640, 

Sigma R8758) with 10% foetal calf serum (FCS, Sigma), 1% penicillin-streptomycin (P/S, Sigma, 

P0781-100ml) and 1% L-Glutamine (Sigma) at 37°C and 5% CO2. Cells were passaged every 2-3 

days to maintain cells between 2x105 cells/ml and 1x106 cells/ml. The cell count should never 

exceed 1x106 cells/ml. 

2.1.1.2. 293T 

Human cell line derived from the HEK 293 cell line containing the SV40 T antigen. This cell line 

was used to produce recombinant retroviruses. 293T cells were grown in Dulbecco’s Modified 

Eagle’s Medium (DMEM D6429, Sigma) with 10% FCS, 1% P/S, and 1% L-Glutamine at 37°C 

and 5% CO2. Cells were passaged every 2-3 days to maintain 30-80% confluency. 

2.1.1.3. HoxB8-Cas9 

Mouse cell line generated from the HoxB8-FL cell line (Redecke et al. 2013) and contains the Cas9 

protein. This cell line was used for validating guide RNAs for CRISPR screening (Section 2.2.2). 

HoxB8-Cas9 cells were grown in RPMI 1640, 10% Hyclone foetal bovine serum (FBS, Gibco), 

5% Flt3 conditioned media (produced in house; Section 2.1.1.3.1), 1% P/S, 1% L-Glutamine, 50 

µM 2-mercaptoethanol (Invitrogen) and 1 µM oestradiol (Sigma). The cells were maintained at 

37°C and 5% CO2. Cells were passaged every 3-4 days to maintain cells between 1x105 cells/ml 

and 1.5x106 cells/ml.  

2.1.1.3.1. Flt3 conditioned media 

This medium was used to supplement the HoxB8 complete medium. FLT3 medium was made from 

B16-FL cells. B16-FL cells were cultured in RPMI 1640, 10% Hyclone FBS, 50 µM 2-

mercaptoethanol, 1% P/S and 1% L-Glutamine. Once the cells were confluent, the medium was 
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harvested and replaced daily for 3 days. After 3 days, the supernatant was pooled, centrifuged, 

filtered through a 0.2 µM filter and stored at -20°C. 

2.1.2. HSC maintenance 

Primary HSCs were isolated from wild-type (C57BL/6) and Cas9 transgenic mice. The cells were 

grown in StemSpan SFEM (StemCellTechnologies), 1% P/S, 1% L-Glutamine, 100 µM 2-

mercaptoethanol, 20 ng/ml IL-11 (R&D Systems), 300 ng/ml SCF (R&D Systems) and 10% FBS. 

FBS was batch-tested by the Kent lab. Cells were maintained in flat- or U-bottom 96-well plates at 

37°C and 5% CO2. Cell medium was changed every 4 days and cells were only passaged if they 

were kept in culture for more than 7 days. 

2.1.2.1. Cas9 transgenic mice 

Dr George Vassiliou generously gifted our lab with the Cas9 transgenic mouse line used in this 

thesis (Tzelepis et al. 2016). The mouse line was kept in a C57BL/6 background and was created 

by inserting a human EF1a promoter-driven Cas9 expression cassette into the Rosa26 locus in the 

JM8 mouse embryonic stem cell line (Pettitt et al. 2009). CBS maintained the mouse stock.  

 

2.2. Cell Biology 

2.2.1. Flow cytometry 

BD Falcon 5 ml polypropylene tubes were used for all sorting procedures on the BD Influx4, 

Influx5 and BD FACSMelody (BD Biosciences). BD Falcon 5ml polystyrene tubes were used for 

all flow cytometry analysis on the BD LSRFortessa™ (BD Biosciences) unless otherwise stated. 

2.2.1.1. Fluorescence Activated Cell Sorting (FACS): bone marrow HSPCs 

The vertebrae, sternum, femurs, tibiae, and iliac crests were collected into 15 ml FACS buffer (2% 

heat-inactivated FBS in phosphate-buffered saline (PBS) without calcium and magnesium) from 

mice (Table 2.1). All procedures were performed in compliance with the United Kingdom Home 

Office regulations for animal work. 

All centrifugation steps were performed at 300 g for 5 minutes. 
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The bones were crushed with a pestle and mortar and bone marrow tissue was harvested and filtered 

through a 70 µm cell strainer (BD Falcon). Cells were centrifuged and resuspended in 3 ml FACS 

buffer. 5 ml of ammonium chloride (StemCellTechnologies) was added for red cell lysis. The cells 

were incubated on ice for 10 minutes after which 7 ml of FACS buffer was added to neutralize the 

ammonium chloride, and the cells were centrifuged again. The cells were resuspended in 500 µl 

FACS buffer in a 5 ml polystyrene tube and lineage depleted using the EasySepTM Mouse 

Haematopoietic Progenitor Cell Enrichment Kit (StemCellTechnologies, used 2015-2017) or the 

EasySepTM Mouse Haematopoietic Progenitor Cell Isolation Kit (StemCellTechnologies, used 

2017 onwards). The protocol for both kits was altered from the manufacturer’s protocol.  

EasySepTM Mouse Haematopoietic Progenitor Cell Enrichment Kit modified protocol: 5 µl/ml of 

EasySepTM Mouse Haematopoeitic Progenitor Cell Isolation Cocktail was added to the 

resuspended cells and the cells were incubated on ice for 15 minutes. 80 µl/ml of EasySepTM Biotin 

Selection Cocktail was then added, and the cells were incubated on ice for another 15 minutes. The 

EasySepTM Mouse Progenitor Magnetic Microparticles were vortexed for 30 seconds and 50 µl/ml 

were added to the cells. The cells were incubated on ice for a further 10 minutes, after which the 

tube was topped up with FACS buffer up to 2.5 ml. 

EasySepTM Mouse Haematopoietic Progenitor Cell Isolation Kit modified protocol: 1:100 of 

EasySep™ Mouse Hematopoietic Progenitor Isolation Cocktail was added to the resuspended cells 

and the cells were incubated on ice for 15 minutes. The EasySep™ Streptavidin RapidSpheres™ 

were vortexed for 30 seconds and added to the cells in a 1:25 ratio. The cells were incubated on ice 

for a further 10 minutes, after which the tube was topped up with FACS buffer up to 2.5 ml. 

The cells were run through the EasySep™ Magnet (StemCellTechnologies) twice, each time for 3 

minutes. After lineage depletion, cells were stained for 30 minutes with the appropriate panel of 

antibodies (Section 2.2.1.4). Cells were then centrifuged and resuspended in 500 µl FACS buffer 

or stained with a secondary antibody when necessary. Prior to FACS, 7-amino-actinomycin (7-

AAD, ThermoFisher) or 4’,6-Diamidino-2-Phenylindole (DAPI, Invitrogen) was added to each 

sample as a viability dye. The BD Influx4 and Influx5 were used for all cell sorting. Cell sorting 

was performed by the CIMR Flow Cytometry Core. 

Single-stain controls and an all-stain control were made using non-lineage depleted cells and were 

used as gate-setting controls. The all-stain control was made by staining mouse bone marrow cells 

before lineage depletion and was made for every mouse used. 
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Table 2.1. Mouse strain, age, sex, and number used for FACS. 

Chapter Experiment Strain  Age (weeks) Sex (F/M) Number 

5 single-cell qRT-PCR C57BL/6 8-12 F 3 

3 single-cell RNA-seq C57BL/6 8-12 F 5 

4 CRISPR screen Cas9 19-22 F/M 3-8 

For single-cell gene expression analysis, single cells were sorted into 96-well plates into either the mixture required 

for Fluidigm BioMarkTM HD (Section 2.4.1) or for Smart-Seq2 (Section 2.4.2) (Picelli et al. 2014). For CRISPR 

screening, bulk HSCs (250 cells) were sorted into 96-well U-bottom plates into HSC base medium (without cytokines). 

 

2.2.1.2. HoxB8-Cas9 retroviral transduction analysis 

HoxB8-Cas9 cells were transduced with guide RNA (gRNA) retroviruses (Section 2.2.3.4) and 

analysed on day 3 post-transduction. The cells were analysed by flow cytometry using the BD 

LSRFortessaTM. Cells were washed with 1 ml FACS buffer and centrifuged at 300 g for 5 minutes. 

Once spun down, the cells were resuspended in 500 µl FACS buffer + 7-AAD, except for unstained 

and green fluorescent protein (GFP) controls, which were resuspended in 500 µl FACS buffer only. 

The cells were then analysed for GFP expression. 

2.2.1.3. HSC retroviral transduction analysis: flow cytometry 

2.2.1.3.1. Day 7 analysis by flow cytometry 

E-SLAM HSCs (Lin- CD48+ CD150- CD45+ EPCR+) from Cas9 transgenic mice were transduced 

with gRNA retroviruses (Section 2.2.3.5). On day 7 post-transduction, the cells were analysed by 

flow cytometry using the BD LSRFortessaTM. Cells were pipetted up and down and 100 µl was 

transferred to a new U-bottom 96-well plate (BD Falcon). The cells were stained in the wells using 

the E-SLAM2 panel (Table 2.3), which did not require any secondary staining. After 30 minutes 

on ice, cells from each well were transferred into individual 1.4 ml polypropylene tubes 

(ThermoFisher). The empty wells were washed with 200µl FACS buffer + 7-AAD, which was then 

added to the corresponding polypropylene tube (final volume: 300 µl). Single-stain and all-stain 

controls were prepared in FACS buffer without the addition of 7-AAD. A small fraction of cells 

taken from an empty vector sample were used as a GFP single-stain control. 

Results were analysed using FlowJo_V10 and statistical analysis was performed in GraphPad 

Prism 8. Both the percentage of GFP+ Lin- EPCR+ cells and the median EPCR expression in GFP+ 
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Lin- cells was recorded. Each set of gRNAs was compared to the empty vector using a one-way 

analysis of variance (ANOVA) and Dunnett’s multiple comparisons test. In the analysis of median 

EPCR expression, the results for the three gRNAs for each gene were pooled and reanalysed 

together using the same statistical significance tests. 

2.2.1.3.2. Annexin V apoptosis analysis by flow cytometry 

Annexin V BUV395 (BD Biosciences) was added to the E-SLAM2 panel towards the end of this 

investigation to see whether the CRISPR perturbation phenotypes affected apoptosis. A 10X 

Annexin V Binding Buffer (BD Biosciences) was required to see the Annexin V staining. It was 

freshly diluted in distilled water for each use.  

Cells were stained in 100 µl HSC medium as described above using the E-SLAM2 panel with the 

addition of Annexin V BUV395. After 30 minutes on ice, cells from each well were transferred 

into individual 1.4 ml polypropylene tubes. The empty wells were washed with 200 µl Binding 

Buffer + 7-AAD, which was then added to the corresponding polypropylene tube (total volume: 

300 µl). The 1.4 ml polypropylene tubes were placed inside 5 ml polystyrene tubes for flow 

cytometry analysis. Single-stain and all-stain controls were prepared in Binding Buffer only. A 

small fraction of cells taken from an empty vector sample were used as a GFP single-stain control. 

Cells that were positive in both Annexin V and 7-AAD were already dead, whereas cells that were 

Annexin V positive and 7-AAD negative were in early apoptosis. Viable cells were negative for 

both viability markers. 

Results were analysed using FlowJo_V10 and statistical analysis was performed in GraphPad 

Prism 8. Each set of gRNAs was compared to the empty vector using a one-way analysis of 

variance (ANOVA) and Dunnett’s multiple comparisons test.  

2.2.1.3.3. FACS: GFP+ cells for genotyping and differentiation assays 

On day 7 post-transduction, the HSCs that were analysed by flow cytometry were pooled and spun 

down at 300 g for 5 minutes. Once centrifuged, 200 µl of medium was removed and replaced with 

100 µl of fresh complete medium. 

On day 10 post-transduction, the HSCs were sorted for genotyping and differentiation assays. Only 

the EPCR+ samples were used for these investigations. Although the cells were sorted on 7-AAD 

and GFP only, they were additionally stained with the GFP sorting panel (Table 2.3). 100 µl of 
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medium was removed for staining (total staining volume: 100 µl). After 30 minutes on ice, cells 

from each well were transferred into individual 5 ml polypropylene tubes. The empty wells were 

washed with 200µl FACS buffer + 7-AAD, which was then added to the corresponding tube (total 

volume: 300µl). The cells were sorted on the BD FACSMelody for genotyping and differentiation 

assays as detailed below: 

• Differentiation assays: cells were sorted into 1.5 ml Eppendorf tubes filled with 300 µl HSC 

base medium. Each sample was sorted for GFP+ and GFP- cells and for three cell counts: 

100, 200 and 400 cells. When there were too few cells, only the 100 and 200 cell counts 

were sorted. 

• Genotyping: cells were sorted into 1.5 ml Eppendorf tubes filled with 100 µl FACS buffer. 

Each sample was sorted for GFP+ cells only. Cells were sorted for the maximum number 

of cells possible, i.e. until the sample was empty. 

2.2.1.4. Antibody Panels 

Table 2.2. List of antibodies used for FACS and flow cytometry. 

Antigen Fluorophore Manufacturer Clone 

Annexin V BUV395 BD Biosciences --- 

B220 Pe-Cy7 Biolegend RA3-6B2 

CD105 APC Biolegend MJ7/18 

CD150 Pe-Cy7 Biolegend TC15/12F12.2 

CD150 PB Biolegend TC15/12F12.2 

CD16/32 PE Biolegend 93 

CD16/32 Al647 Biolegend 93 

CD3 Pe-Cy7 Biolegend 17A2 

CD34 FITC BD Pharmingen RAM34 

CD41 FITC BD Pharmingen Mw/Reg30 

CD45 BV711 Biolegend 30-F11 

CD45 FITC Biolegend 30-F11 

CD48 APC Biolegend HM48-1 

CD48 PB Biolegend HM48-1 

c-Kit APC-Cy7 Biolegend 2B8 

EPCR PE Stem Cell Tech. RMEPCR1560 

Flk2 (CD135) Pe-Cy5 e-Bioscience A2F10 

Gr-1 Pe-Cy7 Biolegend RB6-8C5 

IL-7Ra Biotin Biolegend A7R34 

Lineage Cocktail (Lin)  Stem Cell Tech. * 

Mac1 Pe-Cy7 Biolegend M1/70 

Nk1.1 Pe-Cy7 Biolegend PK136 

Sca1 PB Biolegend E13-161.7 

Sca1 BV421 Biolegend 108133 

Sca1 BV605 Biolegend 108133 

Streptavidin BV510 Biolegend * 
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Antigen Fluorophore Manufacturer Clone 

Ter119 Pe-Cy7 Biolegend Ter-119 

*Lineage Cocktail (StemCellTechnologies) was a pre-mixed combination of biotinylated antibodies targeting non-

haematopoietic cells and non-progenitor cells (CD5, CD11b, CD19, CD45R/B220, Ly6G/C(Gr-1), TER119, 7-4). The 

lineage cocktail was used with Streptavidin BV510 for FACS and flow cytometry analysis. 

 

Table 2.3. Antibody panels used for FACS and flow cytometry. 

Staining Panel Antibodies Chapter 

PreMegE Lin BV510, Sca1 PB, CD105 APC, CD150 Pe-Cy7, CD16/32 PE, 

CD41 FITC, 7-AAD 

5 

MPP Lin BV510, IL-7Ra Biotin, c-Kit APC-Cy7, Sca1 PB, Flk2 Pe-Cy5, 

CD34 FITC, 7-AAD 

5 

ST-HSC Lin BV510, IL-7Ra Biotin, c-Kit APC-Cy7, Sca1 PB, CD48 APC, 

CD150 Pe-Cy7, CD34 FITC, CD16/32 PE, CD135 Pe-Cy5, 7-AAD 

5 

HSPC Lin BV510, EPCR PE, CD48 PB, Sca1 BV605, CD34 FITC, Flk2 Pe-

Cy5, CD150 Pe-Cy7, CD16/32 Al647, c-Kit APC-Cy7, DAPI 

3 

E-SLAM 1 Lin BV510, EPCR PE, CD48 APC, CD150 Pe-Cy7, c-Kit APC-Cy7, 

Sca1 BV421, CD45 FITC, 7AAD 

4 

E-SLAM 2 Gr1 Pe-Cy7*, Mac1 Pe-Cy7*, B220 Pe-Cy7*, CD3 Pe-Cy7*, Ter119 

Pe-Cy7*, Nk1.1 Pe-Cy7*, Sca1 BV605, CD45 BV711, CD150 PB, 

EPCR PE, CD48 APC, c-Kit APC-Cy7, 7AAD 

º Annexin V BUV395 

4 

GFP Sorting 

Panel 

Gr1 Pe-Cy7*, Mac1 Pe-Cy7*, B220 Pe-Cy7*, CD3 Pe-Cy7*, Ter119 

Pe-Cy7*, Nk1.1 Pe-Cy7*, EPCR PE, 7AAD 

4 

* Antibodies used to generate a lineage cocktail were conjugated to the same fluorophore.  

º Annexin V BUV395 was added to the E-SLAM2 panel for apoptosis analysis (Section 2.2.1.3.2) 

 

2.2.2. HSC retroviral transduction analysis: differentiation assays 

Differentiation assays were performed on day 10 post-transduction. After flow analysis, the 

remaining cells representing each perturbation phenotype were pooled. Initially, fractions of cells 

equalling to roughly 400, 200 and 100 cells were taken and placed into a methylcellulose-based 

medium (MethoCult™ GF M3434, StemCellTechnologies). However, it was not possible to 

differentiate GFP positive and negative cells microscopically. Therefore, an additional FACS step 

was included. Cells were sorted based on GFP expression on either the BD FACSMelody (BD 

Biosciences) or the BD Influx 4 sorter. Cells were sorted directly into 300 µl HSC medium without 

cytokines. Specific numbers of both GFP+ and GFP- cells were sorted separately (400, 200, and 

100 cells). If there were too few cells, only the 100 and 200 cell counts were sorted. The cells were 

then placed into 2.7 ml methylcellulose-based medium and vortexed. Once all air bubbles had 

dissipated from the medium (usually after 5-10 minutes), the mixture was split between 2 wells of 
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a 6-well SmartDish™ (StemCellTechnologies) using a 5 ml syringe and 16-gauge needle. The 

plates were incubated at 37°C and 5% CO2. After 10 days, the plates were imaged and analysed 

using STEMvision™ Acquisition and Analyzer software (StemCellTechnologies) on the “Human 

14-Day CFU” setting. Burst forming unit-erythroid (BFU-E), colony forming unit-granulocyte-

macrophage (CFU-GM), and colony forming unit-granulocyte-erythrocyte-macrophage-

megakaryocyte (CFU-GEMM) colonies were manually assigned in the STEMvision™ Marker 

software.  

2.2.3. Retrovirus Production and Transduction 

2.2.3.1. Gene selection 

Gene selection for the HSC CRISPR screen (Chapter 4) was performed based on the MolO and 

SuMO genes that were previously identified, which are listed in Table 2.4 (N. K. Wilson et al. 

2015). The expression of each gene was visualized on the mouse single-cell gene expression atlas 

(Nestorowa et al. 2016). Genes that did not have expression specific to the LT-HSC region were 

not considered for further analysis. Violin plots were produced for the remaining candidate genes 

to select for genes that have highest expression in the E-SLAM and LT-HSC populations. By doing 

so, the list of 44 genes was narrowed down to 16 candidate genes. 

Table 2.4. MolO and SuMO genes. 

MolO Genes SuMO Genes 

Cd82 Gimap6 Pdzk1ip1  Vwf Ablim1 Inhba Wfdc2 

Cdkn1c Gstm1 Ptpn14  Cd74 Ly6e Ifitm1* 

Cldn10 Limd2 Smtnl1  Cyp27a1 Mapk12 Ly6a* 

Ctsf Ltb Sox18  Gbp6 Ndnf Mllt3* 

Fads3 Mettl7a1 Sqrdl  Gbp8 Ralgapa1 Procr* 

Fgfr3 Neo1  Trim47  Gm4951 St8sia4 Ramp2* 

Gimap1 Pde1b  Ubl3  Ifitm3 Tftp2 Sult1a1* 

Genes were identified by Wilson et al. (2015). Genes in bold are genes that were chosen for the CRISPR screen.  

* represent genes that are both MolO and SuMO genes. 

 

2.2.3.2. Oligo Generation 

Once the candidate genes were selected, gRNA sequences were chosen. The Brie gRNA library 

(Doench et al. 2016) provided sequences for gRNAs for most of the candidate genes; however, 

where unavailable, gRNAs were designed using the “Broad Institute sgRNA Designer: 

CRISPRko” tool, selecting S. pyogenes (NGG) as the CRISPR enzyme and mouse as the target 
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taxon (Broad Institute 2018). The chosen gRNA sequences were checked using UCSC Genome 

Browser to make sure that each sequence was present only within the gene of interest. If there was 

overlap with other genes, a new sequence was generated and verified. Three gRNA sequences were 

chosen per gene of interest. 

The gRNAs were modified to meet the criteria of the published protocol for cloning into the 

pKLV2-U6gRNA5(BbsI)-PGKpuro2AmAG-W CRISPR gRNA expression vector (Tzelepis et al. 

2016). A G nucleotide was appended at the 5’ end of each sequence. The 5’ overhang of the top 

oligo was CACC and the 5’ overhang of the complement bottom oligo was CAAA. All oligos 

(Table 2.5) were ordered through Sigma at 100 mM in TE buffer, purified by desalt purification. 

2.2.3.3. Production of retroviruses in 293Ts 

293T cells at 70% confluency (10 cm plates) were used to produce retroviruses. On day 0, 293Ts 

were transfected using TransIT-LT1 Transfection Reagent (Mirus). A transfection reagent mix 

(500 µl DMEM + 45 µl TransIT-LT1) and DNA mix (5 µg construct + 5 µg pMD2.G + 5 µg ∆R8.9 

in 500 µl DMEM) were prepared for each construct of interest. The DNA mix was slowly and 

drop-wise added to the transfection reagent mix, mixed gently, and incubated at room temperature 

for 30 minutes. The mixture was then added slowly and drop-wise to 10 cm plates containing 293T 

cells in 10 ml 293T medium. The plates were incubated at 37°C. On day 1, the medium was 

changed from 293T medium to 6 ml base HSC medium (no cytokines and 2-mercaptoethanol). On 

day 2, the supernatant was recovered from each plate using a 5ml syringe, filtered through a 0.45µm 

filter and aliquoted into 2ml cryogenic tubes (ThermoFisher Nunc™ Cryovials). These tubes were 

then stored at -80°C. 

This protocol was also adapted to be performed in 6 well plates, using 100 µl DMEM + 9 µl 

TransIT-LT1 for the transfection reagent mix and 1 µg of the construct, pMD2.G and ∆R8.9 in 100 

µl DMEM for the DNA mix. On day 1, the medium was changed to 1.5 ml base HSC medium. All 

other steps are as previously described. 

2.2.3.4. Batch-testing of retroviruses in HoxB8-Cas9 cells 

Retroviruses made for the HSC CRISPR screen (Chapter 4) were tested for transduction efficiency 

in the HoxB8-Cas9 cell line before being used in primary cells. On the day of transduction (Day 

0), HoxB8-Cas9 cells were plated at 3.3 x 105 cells in 440 µl HoxB8 complete medium in a 24-

well plate. 5.33 µl polybrene (1 mg/ml, Sigma) was added to each well for a final concentration of 
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8 µg/ml. For batch testing, between 12 and 22 of the viruses made at one time (Section 2.2.3.3) 

were tested, along with an empty vector and untreated control. 100 µl of viral supernatant was 

added to the appropriate well and topped up with 120 µl of HoxB8 medium. The plate was then 

centrifuged for 90 min at 779 g at 32°C (maximum acceleration, no brake). After centrifugation, 

the plate was incubated for 90 min at 32°C. 330 µl of medium was then removed and replaced with 

560 µl of fresh complete medium. The plate was then incubated at 37°C and 5% CO2. The 

following day (Day 1), 440 µl of fresh medium was added to each well. On Day 2, the cells were 

split 1:2 to prepare for analysis the next day. On Day 3, the cells were analysed for GFP expression 

by flow cytometry (Section 2.2.1.2). 

2.2.3.5. Retroviral transduction of HSCs 

To prepare for retroviral transduction of HSCs, 96-well U-bottom plates were first coated with 

Retronectin (Clontech) to improve transduction efficiency. The stock Retronectin (1 µg/µl) was 

diluted 1:100 in PBS and 50 µl was added to the each well. The plates were incubated for 2 hours 

at room temperature before the Retronectin was discarded. 50 µl of 2% bovine serum albumin 

(BSA, Sigma)/PBS was then added to the wells and incubated for 30 minutes at room temperature. 

After 30 minutes, the 2% BSA/PBS was removed and replaced with 110 µl base HSC medium. 

The plate was then kept in the fridge until required later that day. 

HSCs were isolated from the bone marrow of Cas9 transgenic mice as previously described 

(Section 2.2.1.1) and were first sorted into two bulk populations using the E-SLAM1 panel: Lin- 

CD48+ CD150- EPCR+ (referred to as EPCR+ cells), and Lin- CD48+ CD150- EPCR- (referred to 

as EPCR- cells), where EPCR- cells were used as controls. All sorting was done on the BD Influx4 

and Influx5. The first sort was performed in 2.0 Drop Enrich mode. The EPCR- and EPCR+ cells 

were then sorted in bulk (250 cells) directly into 110 µl base HSC medium in a 96-well U-bottom 

plate, using the 1.0 Drop Pure mode. 

Once the cells were sorted, each well was topped up with 10 µl of a 12X Cytokine Cocktail (5 

µg/ml IL-11, 100µg/ml SCF), 0.2 µl 50mM 2-mercaptoethanol, and 1 µl of 1 mg/ml polybrene. 1 

µl of virus was added to the wells as appropriate. Empty vector and untreated controls were used 

for each FACS experiment and 3 replicates for each virus were collected when possible (depending 

on the number of cells sorted).  
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After the addition of virus, the cells were spun down at 600 g for 30 minutes at 32°C (maximum 

acceleration, no brake). The cells were then incubated for 30 minutes at 32°C, after which they 

were maintained in a 37°C and 5% CO2 incubator. The next day (Day 1), each well containing cells 

was topped up with 80 µl of complete HSC medium. The cell medium was changed on Day 4 by 

carefully removing 120 µl of medium from each well and replacing it with 120 µl of fresh complete 

medium. On Day 7, cells were analysed for changes in EPCR expression by flow cytometry 

(Section 2.2.1.3). On Day 10, cells were sorted for differentiation assays (Section 2.2.2) and 

genotyping (Section 2.4). 

2.2.3.6. Oligo sequence list 

Table 2.5. Sequences of gRNAs used for the HSC CRISPR screen. 

Oligo Name Sequence (5' - 3') 

Cdkn1c_sg1_pKLV2_L CACCGCGGGTCGGAGGTCGCGACCA 

Cdkn1c_sg2_pKLV2_L CACCGAGACGACCAGGGCCTCGAAG 

Cdkn1c_sg3_pKLV2_L CACCGCGTGGCGACTCGGGACGGCG 

Cdkn1c_sg1_pKLV2_R AAACTGGTCGCGACCTCCGACCCGC 

Cdkn1c_sg2_pKLV2_R AAACCTTCGAGGCCCTGGTCGTCTC 

Cdkn1c_sg3_pKLV2_R AAACCGCCGTCCCGAGTCGCCACGC 

Fgfr3_sg1_pKLV2_L CACCGGTATAGTTGCCACGATCGGA 

Fgfr3_sg2_pKLV2_L CACCGGAGGCTGGCAGCGTGTACGC 

Fgfr3_sg3_pKLV2_L CACCGTGACAAGGACCTGTCGGACC 

Fgfr3_sg1_pKLV2_R AAACTCCGATCGTGGCAACTATACC 

Fgfr3_sg2_pKLV2_R AAACGCGTACACGCTGCCAGCCTCC 

Fgfr3_sg3_pKLV2_R AAACGGTCCGACAGGTCCTTGTCAC 

Neo1_sg1_pKLV2_L CACCGCGTAACCGATGGCATAACCT 

Neo1_sg2_pKLV2_L CACCGGGTTCCAAGATTATCCACAG 

Neo1_sg3_pKLV2_L CACCGAACACCGTTATCTGGCAATG 

Neo1_sg1_pKLV2_R AAACAGGTTATGCCATCGGTTACGC 

Neo1_sg2_pKLV2_R AAACCTGTGGATAATCTTGGAACCC 

Neo1_sg3_pKLV2_R AAACCATTGCCAGATAACGGTGTTC 

Pde1b_sg1_pKLV2_L CACCGCAACACCATCTCGATAACCA 

Pde1b_sg2_pKLV2_L CACCGAAAACTCATCAGAAACACTG 

Pde1b_sg3_pKLV2_L CACCGGGACTGCAGTAGAGTATGTG 

Pde1b_sg1_pKLV2_R AAACTGGTTATCGAGATGGTGTTGC 

Pde1b_sg2_pKLV2_R AAACCAGTGTTTCTGATGAGTTTTC 

Pde1b_sg3_pKLV2_R AAACCACATACTCTACTGCAGTCCC 

Ramp2_sg1_pKLV2_L CACCGGAATCAATCTCATCCCACTG 

Ramp2_sg2_pKLV2_L CACCGACCAAGCCGAGATCCACCCG 

Ramp2_sg3_pKLV2_L CACCGCTCTTGTACTCATACCAGCA 

Ramp2_sg1_pKLV2_R AAACCAGTGGGATGAGATTGATTCC 

Ramp2_sg2_pKLV2_R AAACCGGGTGGATCTCGGCTTGGTC 
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Oligo Name Sequence (5' - 3') 

Ramp2_sg3_pKLV2_R AAACTGCTGGTATGAGTACAAGAGC 

Smtnl1_sg1_pKLV2_L CACCGCTAAGAGTGGCGAATCAGGG 

Smtnl1_sg2_pKLV2_L CACCGAGAGACCGGAAGTGACACAA 

Smtnl1_sg3_pKLV2_L CACCGAGCAGAGGTTACTGTCAACG 

Smtnl1_sg1_pKLV2_R AAACCCCTGATTCGCCACTCTTAGC 

Smtnl1_sg2_pKLV2_R AAACTTGTGTCACTTCCGGTCTCTC 

Smtnl1_sg3_pKLV2_R AAACCGTTGACAGTAACCTCTGCTC 

Sox18_sg1_pKLV2_L CACCGAGCAGCGGCCCCGATTCCAG 

Sox18_sg2_pKLV2_L CACCGCAGAGTGGGTAGCTCGCGGA 

Sox18_sg3_pKLV2_L CACCGCCGACGAGTTGCGCATTCGG 

Sox18_sg1_pKLV2_R AAACCTGGAATCGGGGCCGCTGCTC 

Sox18_sg2_pKLV2_R AAACTCCGCGAGCTACCCACTCTGC 

Sox18_sg3_pKLV2_R AAACCCGAATGCGCAACTCGTCGGC 

Inhba_sg1_pKLV2_L CACCGACAAGCAATCCGCACGTCCA 

Inhba_sg2_pKLV2_L CACCGCGAGGAAATGGGCTTAAAGG 

Inhba_sg3_pKLV2_L CACCGCTGCTGCTGAAATAGACGGA 

Inhba_sg1_pKLV2_R AAACTGGACGTGCGGATTGCTTGTC 

Inhba_sg2_pKLV2_R AAACCCTTTAAGCCCATTTCCTCGC 

Inhba_sg3_pKLV2_R AAACTCCGTCTATTTCAGCAGCAGC 

Ndnf_sg1_pKLV2_L CACCGGACTGTGGTACGTCCAAAGG 

Ndnf_sg2_pKLV2_L CACCGAAGGGGTTAAAGTCTAGACC 

Ndnf_sg3_pKLV2_L CACCGCAGTGGAACTCAAAGACGGG 

Ndnf_sg1_pKLV2_R AAACCCTTTGGACGTACCACAGTCC 

Ndnf_sg2_pKLV2_R AAACGGTCTAGACTTTAACCCCTTC 

Ndnf_sg3_pKLV2_R AAACCCCGTCTTTGAGTTCCACTGC 

Wfdc2_sg1_pKLV2_L CACCGCACACTACTAAACCACCGGG 

Wfdc2_sg2_pKLV2_L CACCGACAGTAGCAACCCTAGTAGG 

Wfdc2_sg3_pKLV2_L CACCGTGGGACTACTACTCAATCAG 

Wfdc2_sg1_pKLV2_R AAACCCCGGTGGTTTAGTAGTGTGC 

Wfdc2_sg2_pKLV2_R AAACCCTACTAGGGTTGCTACTGTC 

Wfdc2_sg3_pKLV2_R AAACCTGATTGAGTAGTAGTCCCAC 

Pdzk1ip1_sg1_pKLV2_L CACCGCGGCGAAGACGATTGCAACA 

Pdzk1ip1_sg2_pKLV2_L CACCGAGAACACAGCGACAGCAATG 

Pdzk1ip1_sg3_pKLV2_L CACCGCAACCACTTCTGGTGCCAGG 

Pdzk1ip1_sg1_pKLV2_R AAACTGTTGCAATCGTCTTCGCCGC 

Pdzk1ip1_sg2_pKLV2_R AAACCATTGCTGTCGCTGTGTTCTC 

Pdzk1ip1_sg3_pKLV2_R AAACCCTGGCACCAGAAGTGGTTGC 

Procr_sg1_pKLV2_L CACCGTCCAAGACAACCATCATGTG 

Procr_sg2_pKLV2_L CACCGTGCGCCCTTTGTAACTCCGA 

Procr_sg3_pKLV2_L CACCGGCCACATCGAAGAAGACATG 

Procr_sg1_pKLV2_R AAACCACATGATGGTTGTCTTGGAC 

Procr_sg2_pKLV2_R AAACTCGGAGTTACAAAGGGCGCAC 

Procr_sg3_pKLV2_R AAACCATGTCTTCTTCGATGTGGCC 
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Oligo Name Sequence (5' - 3') 

Sult1a1_sg1_pKLV2_L CACCGGGTGGCAAGCTAGATAAGTG 

Sult1a1_sg2_pKLV2_L CACCGATGTGTCTTAATGATCCGTG 

Sult1a1_sg3_pKLV2_L CACCGTCCGCAAAGTATTTGATGAG 

Sult1a1_sg1_pKLV2_R AAACCACTTATCTAGCTTGCCACCC 

Sult1a1_sg2_pKLV2_R AAACCACGGATCATTAAGACACATC 

Sult1a1_sg3_pKLV2_R AAACCTCATCAAATACTTTGCGGAC 

Trim47_sg1_pKLV2_L CACCGTGATGAGGGCCACAGTACGG 

Trim47_sg2_pKLV2_L CACCGACGCGACAGTAGCGCTCCAG 

Trim47_sg3_pKLV2_L CACCGCTGGGACCGGCCCAACATTG 

Trim47_sg1_pKLV2_R AAACCCGTACTGTGGCCCTCATCAC 

Trim47_sg2_pKLV2_R AAACCTGGAGCGCTACTGTCGCGTC 

Trim47_sg3_pKLV2_R AAACCAATGTTGGGCCGGTCCCAGC 

Gbp8_sg1_pKLV2_L CACCGCACTAAACCAGAGCACACCC 

Gbp8_sg2_pKLV2_L CACCGCGTCTGGCAGGACAGAATCA 

Gbp8_sg3_pKLV2_L CACCGGCTAGAGCTGAAGTTAAATG 

Gbp8_sg1_pKLV2_R AAACGGGTGTGCTCTGGTTTAGTGC 

Gbp8_sg2_pKLV2_R AAACTGATTCTGTCCTGCCAGACGC 

Gbp8_sg3_pKLV2_R AAACCATTTAACTTCAGCTCTAGCC 

Gm4951_sg1_pKLV2_L CACCGTGGGGTGACGGACAAAACCA 

Gm4951_sg2_pKLV2_L CACCGGGTGAGAGCAACATTGAGCG 

Gm4951_sg3_pKLV2_L CACCGATTCTACTTCGTGAGAACAC 

Gm4951_sg1_pKLV2_R AAACTGGTTTTGTCCGTCACCCCAC 

Gm4951_sg2_pKLV2_R AAACCGCTCAATGTTGCTCTCACCC 

Gm4951_sg3_pKLV2_R AAACGTGTTCTCACGAAGTAGAATC 

 

Table 2.6. Primer sequences used to sequence the pKLV2-U6gRNA5(BbsI)-PGKpuro2AmAG-W vector. 

Primer Name Primer Sequence (5' - 3') 

SN037_Seq_F1 AGATAATTAGAATTAATTTGACTG 

SN037_Seq_F2_LKO.15 GACTATCATATGCTTACCG 

SN037_Seq_R1 CATGCTCCAGACTGCCTTG 

 

2.2.4. Luciferase Assays 

Luciferase assays were used to validate regulatory relationships between genes, inferred from in 

silico regulatory network models (Chapters 5 and 6). The two relationships interrogated were 

between Gata2 and Nfe2, and Gata2 and Cbfa2t3h. The Cbfa2t3h minimal and full promoter 

sequences, as well as the Nfe2 enhancer sequence, were cloned into pGL2-Basic and pGL2-

Promoter vectors (Section 2.3.4.4). The mm10 mouse genome coordinates of chromosomal regions 

tested are as follows: chr8:122699004-122701098 for the Cbfa2t3h full promoter, 
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chr8:122699111-122699377 for the Cbfa2t3h minimal promoter, and chr15:103258245-

103258850 for the Nfe2 enhancer. Both wild-type and mutant GATA2 constructs were generated, 

in which all GATA2 binding sites were mutated to prevent binding activity.  

Luciferase assays were performed with the help of Sarah Kinston as previously described 

(Bockamp et al. 1995). 416B cells were transfected with the linearized Nfe2 and Cbfa2t3h 

constructs and pPGK-Neo by electroporation. The transfected cells were harvested, washed, and 

centrifuged. A luciferase buffer was made up with LB buffer (25 mmol/L Tris-phosphate buffer 

pH 7.8, 8 mmol/L MgCI2, 1 mmol/L 1,4-Dithio-DL-threitol [DTT], 1% Triton-X 100, 1% BSA 

and 15% glycerol), ATP and the luciferase substrate D-Luciferin (Promega). 100 µl of sample was 

mixed with the luciferase buffer and incubated for 5 minutes in the dark at room temperature. The 

samples were then assayed for light emission in a Berthold LB 953 luminometer (Berthold).  

In analysing the results from the luciferase assay, the luciferase activity was normalised against 

empty vector and the fold change was used to show differences in luciferase activity. 

 

2.3. Molecular Biology 

2.3.1. Agarose gel electrophoresis 

DNA fragments were separated by size using agarose gel electrophoresis. The amount of agarose 

(Biogene) used ranged between 0.8-3.0% depending on the application. Agarose was mixed with 

1xTBE (Tris/Borate/EDTA; produced on site) and dissolved in a microwave. Once the solution 

cooled, 0.5 µg/ml ethidium bromide solution (Sigma) was added to stain DNA.  

Samples were mixed with a 6x loading dye (NEB). DNA reference ladders (50 bp-1 kb, NEB) were 

used according to the expected size of the DNA. Gels were run on an electric field of 80-120 V and 

the DNA was then visualized using a UV transilluminator. 

2.3.2. DNA purification 

2.3.2.1. Gel extraction 

DNA was visualized using a UV transilluminator and the bands of interest were excised using a 

scalpel blade. DNA was then extracted using the QIAquick Gel Extraction Kit (Qiagen) as per 

manufacturer’s instructions and eluted in 30 µl elution buffer. 
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2.3.2.2. PCR purification 

PCR fragments were purified using the QIAquick PCR Purification Kit (Qiagen) as per 

manufacturer’s instructions and eluted in 30 µl elution buffer.  

2.3.3. Plasmid purification 

Plasmids were purified from starting cultures of various volumes. Starting cultures consisted of 

lysogeny broth (LB) + 100 µg/ml ampicillin (Sigma) inoculated with a single bacterial colony. 

Bacteria were cultured for 16 hours at 37°C, shaking at 220 rpm. Culture volumes used are detailed 

in the appropriate subsections. 

2.3.3.1. Mini Preps 

Mini preps were performed following the QIAprep Spin Miniprep Kit (Qiagen) as per 

manufacturer’s instructions, from a 2 ml starting culture. DNA was eluted in 30 µl ultra-pure water. 

The DNA was then sequenced (Source BioScience) and run on an agarose gel to confirm the 

presence of correctly sized DNA fragments.  

2.3.3.2. Maxi Preps 

Maxi preps were performed to purify large quantities of plasmid DNA. The volume of the starting 

culture was 100 ml. Maxi preps were performed following the Plasmid DNA Purification Kit 

(Macherey-Nagel) following the “Maxi” instructions (AX 500). DNA was resuspended in 200-300 

µl ultra-pure water.  

2.3.3.2. Xtra Maxi Prep 

Xtra maxi preps were performed when a very large quantity of plasmid DNA was required, for 

example to purify a vector used as a backbone or for retrovirus production. The volume of the 

starting culture was 300 ml. Xtra maxi preps were performed following the NucleoBond Xtra® 

Maxi Kit (Macherey-Nagel) as per manufacturer’s instructions. DNA was resuspended in 200-300 

µl ultra-pure water. 

2.3.4. Cloning strategies 

2.3.4.1. Restriction Digests 

Restriction enzymes and buffers were purchased from New England Biolabs. Digests were 

performed in 50-100 µl volumes depending on the application and quantity required. Restriction 
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enzymes made up no more than 10% of the reaction volume. Reactions consisted of the restriction 

enzyme, the appropriate 10X buffer, DNA, and ultra-pure H2O. The reactions were incubated at 

37°C for 1 hour to overnight, and then purified by gel extraction or PCR purification. 

2.3.4.2. Weissman protocol 

This protocol was used for cloning gRNA into the pKLV2-U6gRNA5(BbsI)-PGKpuro2AmAG-W 

plasmid (Addgene), which was digested with BbsI. The protocol was originally described by the 

Weissman lab (Adamson et al. 2016) and then adapted as described below. 

Annealing: Oligos were annealed by mixing 1µl of the forward and reverse oligos (10 µM) with 

23 µl dH2O and 25 µl 2X Annealing Buffer (200mM potassium acetate, 60 mM HEPES-KOH pH 

7.4, 4 mM Magnesium Acetate). The mixture was incubated at 95°C for 5 minutes, then left to 

anneal by gradually cooling to room temperature (on the benchtop, not in a PCR machine) for 10-

20 minutes. The annealed oligos were diluted 20-fold for ligation. 

Ligation: 500ng of the digested vector backbone was mixed with 10 µl of 1:20 diluted annealed 

oligos, 2 µl of fresh 10X T4 ligase buffer (NEB), 1 µl T4 ligase (NEB). The volume was made up 

to a 20 µl total reaction volume. A negative control was made by using dH2O instead of annealed 

oligos. The ligation mixture was incubated at room temperature for 1-4 hours, or overnight at 16°C.  

Transformations were done using MegaX DH10BTM T1® ElectrocompTM Cells (ThermoFisher) 

following the manufacturer’s protocol. All of the transformed bacteria were plated onto a LB+ 

Ampicillin plate (made on site) and incubated at 37°C overnight. 

2.3.4.2.1. Modified Weissman protocol 

The Weissman protocol was modified to incorporate a Rapid DNA Ligation Kit (Roche), which 

contained a 5X DNA dilution buffer, T4 DNA ligation buffer, and ligase. The oligos were annealed 

as previously described and diluted 1:20 in water. The 5X DNA dilution buffer was diluted in 

sterile H2O. 100 ng of the digested vector backbone was mixed with 2 µl of the diluted annealed 

oligos in up to 10 µl of 1X DNA dilution buffer. 10 µl of T4 DNA ligation buffer and 1 µl ligase 

were added to the mix and incubated at room temperature for 5 minutes. The ligation mixture was 

then used for transformations in DH5α cells (Invitrogen). 
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2.3.4.3. Yusa Lab protocol 

This protocol was used for cloning gRNA into the pKLV2-U6gRNA5(BbsI)-PGKpuro2AmAG-W 

and pKLV2-U6gRNA5(BbsI)-PGKpuro2AmAG-W-ccdB plasmids (provided by Oliver Dovey, 

Vassiliou lab), which were digested with BbsI. The protocol was described by the Yusa lab 

(Tzelepis et al. 2016). 

Oligo phosphorylation and annealing: 1 µl each of the forward and reverse strand oligos (10 mM) 

were mixed with 1 µl of 10X T4 ligase buffer (NEB), 0.5 µl of T4 PNK (NEB) and 6.5 µl dH2O. 

The mixture was placed in a PCR machine and the following program was run: 30 min at 37°C → 

5 min at 95°C → ramp down to 25°C at 0.1°C/sec → 4°C (hold). The annealed oligos (ds-oligo) 

were diluted to 7.1 pmol/µl in EB buffer (Qiagen) by diluting 2 µl ds-oligo in 139 µl EB, 3µl of 

which was then diluted in 57 µl EB. 

Ligation: 1 µl of 20ng/µl digested vector backbone was mixed with 2 µl diluted ds-oligo, 1 µl 10X 

ligase buffer, 1 µl T4 ligase and 5 µl dH2O. A negative control was made by using dH2O instead 

of ds-oligo. The mixture was incubated at 16°C for 2 hours to overnight. 

Transformations were done using Library EfficiencyTM DH5αTM Competent Cells (ThermoFisher). 

5 µl of the ligation mixture was mixed with 50 µl bacterial cells and incubated for 30 minutes on 

ice. The cells were heat-shocked at 42°C for 45 seconds, and then incubated on ice for 5 minutes. 

250 µl SOC medium was added to the cells and the transformed bacteria were incubated at 37°C 

for 30 min (shaking at 300 rpm). The transformed bacteria were plated onto a LB+ Ampicillin plate 

and incubated at 37°C overnight. 

2.3.4.4. Cloning for luciferase assays 

GeneArt Strings (ThermoFisher) were ordered for the Cbfa2t3h minimal promoter and full 

promoter, as well as the Nfe2 enhancer region. These GeneArt String products had both wildtype 

and mutated GATA2 sites. 20 bp of the pBluescript KS vector were inserted at either end of the 

sequence to enable Gibson Assembly (Section 2.3.4.4.1). The mutated sequences were cloned into 

the pGL2-Basic Vector or pGL2-Promoter Vector by Gibson Assembly. 

For Gibson Assembly, the digested backbone and GeneArt String fragments were used in a 1:1 

ratio. They were mixed with deionized H2O and 2X Gibson Assembly Master Mix (NEB) in a 20 

µl reaction volume. The mixture was incubated at 50℃ for 15 minutes, after which it could be used 

for transformations. 
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2.3.4.4.1. GeneArt String Sequences 

Restriction enzyme site GATA2 binding site Mutated base pair 

Cbfa2t3h minimal promoter (restriction enzymes XhoI/HindIII): chr8:122699111-122699377 

GTACCGAGCTCTTACGCGTGCTAGCTCGAGGTGGGAGGTCTCAGGGCTACAGGCGGGATAGGAGGAAGTTG

TTGGGAAGTCAGACCGGAATGGCATGGTGGAGGGAGAACCGGCAACCAGGCAGATGGTTCCTGACGAGGAA

GCTCTGGGCACAGCTGCAGGCCCCCGACCCCCACCGCATTATCACTGTGACACAGCTGGCTGCCTCACCCC

TGAAGGCTGCAGGAGGACCTCCCCCATGCTGTCCCCAAGCCCGCCCCGTGTCACATGAGGCCCTGCAGACT

CCCACCCTCCGTCAAGCTTGGCATTCCGGTACTGTTGGTAAAA 

Cbfa2t3h minimal promoter - mutated (restriction enzymes XhoI/HindIII)  

GTACCGAGCTCTTACGCGTGCTAGCTCGAGGTGGGAGGTCTCAGGGCTACAGGCGGGCGAGGAGGAAGTTG

TTGGGAAGTCAGACCGGAATGGCATGGTGGAGGGAGAACCGGCAACCAGGCAGATGGTTCCTGACGAGGAA

GCTCTGGGCACAGCTGCAGGCCCCCGACCCCCACCGCATTGGCACTGTGACACAGCTGGCTGCCTCACCCC

TGAAGGCTGCAGGAGGACCTCCCCCATGCTGTCCCCAAGCCCGCCCCGTGTCACATGAGGCCCTGCAGACT

CCCACCCTCCGTCAAGCTTGGCATTCCGGTACTGTTGGTAAAA 

Cbfa2t3h full promoter (restriction enzymes Nhe1/HindIII): chr8:122699004-122701098 

GGGAGGTACCGAGCTCTTACGCGTGCTAGCACCCTGGCATGGGAAGAGTGTGAGGGAACAGGAGGGAGCCC

CCAATCCCTGGCATAAAGCTGGGTGCAGACTGCAGACGGCCATGGTTTCTGCAGGGAACCGCGGCCCCTCA

AGCTCTCTGCAGCCACTTCCTTCCCCACTCCTTCCTTATCTATCGGACCACCCAGCGCAGAAAGCCACAAC

CAACGTCTACTTCCCCACAAACACCAACTGCCCTCCTGGGGGCATAGGGAGCGGATGATCACCCCCAGGTG

CTGGGGCAGTCCCCCACTTGTGAGCAACTTTCTTCTCTTTCAAACCCCACCTCCGTGAGACCTGCTGATTG

GAAAAGCATGCGGACAGGGCAGTAAGCAACGCCAGGCCTCCTCTTGAAAGCGGAAGTGTCCCATCTGTGGG

CCCCACAGGTGCAAGCCAGGAACATCTGCCTCGGAGCTGGTGGGGAGCCACCCACTCCCACCAGCCGCACC

CAGGGTCCAGCCCTGCTGCCTCTTGGGCTAGGGGCTGTTTTCAAAAACCCCTCACTGCCCCTGATCCAAAC

CCTTCCTTGGCTCACTCACTCACTCTGATATATTTGGGGGGAGGGGCTGTGGCTCAGCTGCACTGGTTCTG

GGGACCATGACACTGCTCTGTTCTTCAGAGGTCAAGGAGCCTGGCCCCTGCAGGACTGCTGGCACTGAAAA

TAAACAGACACAACCCAGTGCCCTCGTTGATCCCATGCTCCACCCTCATCAGAACACAGGGAACACAGTGA

CACTGGTGGACTGTCCTATCTCACAGCAGGGTCCTCTCTCCTCAAACCCTGAAGAGAACAGTCAGCCAGCA

GGGTAGAAGGGGCAAGCAGGACCCCATGTTTTGGAACTCAAGACCTAAGCTTGTAGCTTGTTGTATTACTC

TTAATTTCAAGACACTCAAGGCCAAGACAGTGACATCCAGGAAGACATGAAACAAGGGGTTTTTAGTAGCC

AACTATCTACATGAACAAGCTAAACGTTAAATCAAAGCAAAGCATAGTGGCCCTATTAGCATCCTAGGACC

ATGTCTGGGAACCCTTACCAGGTTTAAGAGAACATTATTCCTTCCCATGAAACCACCCTATAGTTTCATCA

CCGTTTAGTAAGTGGCTTTCTCTGGAACCTGAAGCTATAATAGCATTATTTCTACTGGGATTCACTTGGAA

AGGGGCCTGGAGTTTCTCCCAAGTAGACAGCCTTTCTAGCAAGCTCCAGGTCACTAGGCAGAGAGGCCAAC

TGCCTATGTGTGGCCTGTTTGGCTCAAGCTTCCTTTAAAGAAGGTAATATAGGATGGGGTTTCCACAGCTG

GGAGACTAGACTGTGACCCTGATCCTATCTGAGGCCAGGCACAACATGACAATGGAGATTCTTCCAGGCAA

GAGGTGACCAGAGAACCACTGATGGTGATGGAGAGACCACCTGAGCCATGGGTGGGCAGGAGGCTGGTCAG

AGTCCTGACCATGCTCACTCCTGACTCTGCCAGCACCCCCAATAGGTCGTTCATTGGAGGGCAAATAGAAA

GGGTTTCTTGGTCTTGGGCAAAGTGTGGCTGAAGGCAGGCAAAGTGGGTGGAGTCTCTGGACCTCCCAGGC

CACAGGAAGGGCTATGCCCCATGGGAAGATAGACAGATGAGCCAGAGGCTCTGGCCAGGATGGACATTACT

CCAGGGTGGAGGAAACACACTCCATGAGCCACACCAGATTGGGCCCAGTGGGAGGTCTCAGGGCTACAGGC

GGGATAGGAGGAAGTTGTTGGGAAGTCAGACCGGAATGGCATGGTGGAGGGAGAACCGGCAACCAGGCAGA

TGGTTCCTGACGAGGAAGCTCTGGGCACAGCTGCAGGCCCCCGACCCCCACCGCATTATCACTGTGACACA

GCTGGCTGCCTCACCCCTGAAGGCTGCAGGAGGACCTCCCCCATGCTGTCCCCAAGCCCGCCCCGTGTCAC

ATGAGGCCCTGCAGACTCCCACCCTCCGTCCAGGGCCACAACCCAGCTCTGCCGGCTGTAGTGACTAGAAA
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GGCCTGGAGCCTCCAAGGAACAGAGGCACGGGCTCCGAGACGCCAAAGCTCCTCCAGCCCTCCTGTAGATC

TAAGTAAGCTTGGCATTCCGGTACT 

Cbfa2t3h full promoter - mutated (restriction enzymes Nhe1/HindIII) 

GGGAGGTACCGAGCTCTTACGCGTGCTAGCACCCTGGCATGGGAAGAGTGTGAGGGAACAGGAGGGAGCCC

CCAATCCCTGGCATAAAGCTGGGTGCAGACTGCAGACGGCCATGGTTTCTGCAGGGAACCGCGGCCCCTCA

AGCTCTCTGCAGCCACTTCCTTCCCCACTCCTTCCTTGTCTGGCGGACCACCCAGCGCAGAAAGCCACAAC

CAACGTCTACTTCCCCACAAACACCAACTGCCCTCCTGGGGGCATAGGGAGCGGATGATCACCCCCAGGTG

CTGGGGCAGTCCCCCACTTGTGAGCAACTTTCTTCTCTTTCAAACCCCACCTCCGTGAGACCTGCTGATTG

GAAAAGCATGCGGACAGGGCAGTAAGCAACGCCAGGCCTCCTCTTGAAAGCGGAAGTGTCCCATCTGTGGG

CCCCACAGGTGCAAGCCAGGAACATCTGCCTCGGAGCTGGTGGGGAGCCACCCACTCCCACCAGCCGCACC

CAGGGTCCAGCCCTGCTGCCTCTTGGGCTAGGGGCTGTTTTCAAAAACCCCTCACTGCCCCTGATCCAAAC

CCTTCCTTGGCTCACTCACTCACTCTGCAATATTTGGGGGGAGGGGCTGTGGCTCAGCTGCACTGGTTCTG

GGGACCATGACACTGCTCTGTTCTTCAGAGGTCAAGGAGCCTGGCCCCTGCAGGACTGCTGGCACTGAAAA

TAAACAGACACAACCCAGTGCCCTCGTTGATCCCATGCTCCACCCTCATCAGAACACAGGGAACACAGTGA

CACTGGTGGACTGTCCTTTCTCACAGCAGGGTCCTCTCTCCTCAAACCCTGAAGAGAACAGTCAGCCAGCA

GGGTAGAAGGGGCAAGCAGGACCCCATGTTTTGGAACTCAAGACCTAAGCTTGTAGCTTGTTGTATTACTC

TTAATTTCAAGACACTCAAGGCCAAGACAGTGACATCCAGGAAGACATGAAACAAGGGGTTTTTAGTAGCC

AACTCGCTACATGAACAAGCTAAACGTTAAATCAAAGCAAAGCATAGTGGCCCTATTAGCATCCTAGGACC

ATGTCTGGGAACCCTTACCAGGTTTAAGAGAACATTATTCCTTCCCATGAAACCACCCTATAGTTTCATCA

CCGTTTAGTAAGTGGCTTTCTCTGGAACCTGAAGCTATAATAGCATTATTTCTACTGGGATTCACTTGGAA

AGGGGCCTGGAGTTTCTCCCAAGTAGACAGCCTTTCTAGCAAGCTCCAGGTCACTAGGCAGAGAGGCCAAC

TGCCTATGTGTGGCCTGTTTGGCTCAAGCTTCCTTTAAAGAAGGTAATATAGGATGGGGTTTCCACAGCTG

GGAGACTAGACTGTGACCCTGATCCTCTCTGAGGCCAGGCACAACATGACAATGGAGATTCTTCCAGGCAA

GAGGTGACCAGAGAACCACTGATGGTGATGGAGAGACCACCTGAGCCATGGGTGGGCAGGAGGCTGGTCAG

AGTCCTGACCATGCTCACTCCTGACTCTGCCAGCACCCCCAATAGGTCGTTCATTGGAGGGCAAATAGAAA

GGGTTTCTTGGTCTTGGGCAAAGTGTGGCTGAAGGCAGGCAAAGTGGGTGGAGTCTCTGGACCTCCCAGGC

CACAGGAAGGGCTATGCCCCATGGGAAGACAGACAGATGAGCCAGAGGCTCTGGCCAGGATGGACATTACT

CCAGGGTGGAGGAAACACACTCCATGAGCCACACCAGATTGGGCCCAGTGGGAGGTCTCAGGGCTACAGGC

GGGCGAGGAGGAAGTTGTTGGGAAGTCAGACCGGAATGGCATGGTGGAGGGAGAACCGGCAACCAGGCAGA

TGGTTCCTGACGAGGAAGCTCTGGGCACAGCTGCAGGCCCCCGACCCCCACCGCATTGGCACTGTGACACA

GCTGGCTGCCTCACCCCTGAAGGCTGCAGGAGGACCTCCCCCATGCTGTCCCCAAGCCCGCCCCGTGTCAC

ATGAGGCCCTGCAGACTCCCACCCTCCGTCCAGGGCCACAACCCAGCTCTGCCGGCTGTAGTGACTAGAAA

GGCCTGGAGCCTCCAAGGAACAGAGGCACGGGCTCCGAGACGCCAAAGCTCCTCCAGCCCTCCTGTAGATC

TAAGTAAGCTTGGCATTCCGGTACT 

Nfe2 enhancer (restriction enzymes SacI/XhoI): chr15:103258245-103258850 

AGCTAACATAACCCGGGAGGTACCGAGCTCTGGGAAAATCCTATCCACATGTAAACTGGAACACAAGGAAA

ATAACCGATGACTCTGGAGATCTGACTCCACTATCTAGCAAAGTTTTTACTTTATACTACCCCCACTCCCG

ACTTCATCAGGGGAGCGTGAGTATTCCTGGGTCCCAGGCGTCCTTCACCACCACCCCCATCCGGGGCAACC

GCCCTGCTCTGCTGCTTTGGATAACACCGGGCCCTCCCCCTATTCCCCCTGTGGCTGCCTCCCCCTTCCGT

CTGTTGAGAGAGGAAGCCAGGGGGTGGCGGGTGCAATGCTGTGGGGCACTGATAAAAGGCCAGTACTATCC

CCGCCCTCTGGGGCCACTGCGGTCACACCAGTAGGCAATCCAGCAAGGCAGCCAGTTCCCTGTGGGACCCA

TGGCCCTCCCCTGGTTCCACCTCTAGCCACCCCGCCCTGCTCACCCTTCTCGGGAAGCTGGTTGCATAACC

CAGTGGGGTGTTTGGCAACAATGCTTGTGGCTTGACCTGATGCTGCTGGTGGTGTGCACATACGTAGTGGA

GGTGGGTTGGACTGGGGTGACAGGTTAACTATTTAGGGGTTGGGTGAGCAGCAAAAGTGGAAAATGTTCTC

GAGATCTGCATCTCAATTAGTCAGCAA 
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Nfe2 enhancer - mutated (restriction enzymes SacI/XhoI) 

AGCTAACATAACCCGGGAGGTACCGAGCTCTGGGAAAATCCGGTCCACATGTAAACTGGAACACAAGGAAA

ATAACCGATGACTCTGGAGATCTGACTCCACTGTCTAGCAAAGTTTTTACTTTATACTACCCCCACTCCCG

ACTTCATCAGGGGAGCGTGAGTATTCCTGGGTCCCAGGCGTCCTTCACCACCACCCCCATCCGGGGCAACC

GCCCTGCTCTGCTGCTTTGGACAACACCGGGCCCTCCCCCTATTCCCCCTGTGGCTGCCTCCCCCTTCCGT

CTGTTGAGAGAGGAAGCCAGGGGGTGGCGGGTGCAATGCTGTGGGGCACTGACGAAAGGCCAGTACTGTCC

CCGCCCTCTGGGGCCACTGCGGTCACACCAGTAGGCAATCCAGCAAGGCAGCCAGTTCCCTGTGGGACCCA

TGGCCCTCCCCTGGTTCCACCTCTAGCCACCCCGCCCTGCTCACCCTTCTCGGGAAGCTGGTTGCATAACC

CAGTGGGGTGTTTGGCAACAATGCTTGTGGCTTGACCTGATGCTGCTGGTGGTGTGCACATACGTAGTGGA

GGTGGGTTGGACTGGGGTGACAGGTTAACTATTTAGGGGTTGGGTGAGCAGCAAAAGTGGAAAATGTTCTC

GAGATCTGCATCTCAATTAGTCAGCAA 

 

2.3.4.5. Plasmid List 

Table 2.7. List of plasmids used as backbones for various applications. 

Plasmid Name Source Chapter 

pGL2-Basic Vector Göttgens Lab 6 (Luciferase assays) 

pGL2-Promoter Vector Göttgens Lab 6 (Luciferase assays) 

pKLV2-U6gRNA5(BbsI)-

PGKpuro2AmAG-W 
Addgene #67976 4 (gRNA cloning) 

pMD2.G Göttgens Lab 4 (retrovirus production) 

∆R.89 Göttgens Lab 4 (retrovirus production) 

 

 

2.4. HSC retroviral transduction analysis: genotyping  

2.4.1. Genotyping primer design 

Primers were designed using Primer3 (Koressaar and Remm 2007; Untergasser et al. 2012). The 

gene sequence was looked up on Ensembl (Zerbino et al. 2018) and visualized in ApE Plasmid 

Editor. The guide sequences were identified in the gene and enclosed in square brackets in Primer3, 

to ensure they were included in the primer sequence. Table 2.8 shows the overhangs used in the 

primer design. The order in which the primers were used was determined by their proximity to the 

cleavage site. Primers were designed for all guides but only the ones listed in Table 2.9 were used. 

Specifications for primer design included: 

• The primer closest to the cleavage site must be between 70-200bp away from the cleavage 

site 

• Total product size including overhangs should be between 400-600bp 

• Avoid big differences in primer Tm
 within primer pairs by setting it between 56-63℃ in 

Primer3 
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• Avoid long stretches of single bases 

• Avoid big differences in GC% within primer pairs 

 

Table 2.8. Primer overhang sequences 

Proximity to cleavage site Overhang sequence (5' - 3') 

Closest TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG 

Furthest GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG 

 

Table 2.9. Genotyping primers 

Primer Name Sequence (5' - 3') 

Procr_sg1_geno1_L GTCTCGTGGGCTCGGAGATGTGTATAA 

GAGACAGTCCGATTGCAGACC TCAGTT 

Procr_sg1_geno1_R TCGTCGGCAGCGTCAGATGTGTATAA 

GAGACAGGGAGGATGGTGACGT TTTGG 

Trim47_sg3_geno1_L GTCTCGTGGGCTCGGAGATGTGTATAA 

GAGACAGAGGCCTCTGAAATCACCACA 

Trim47_sg3_geno1_R TCGTCGGCAGCGTCAGATGTGTATAA 

GAGACAGTGCGCTGTTCCTCTTGTCTA 

Wfdc2_sg3_geno1_L TCGTCGGCAGCGTCAGATGTGTATAA 

GAGACAGTTTAGGACCGAGCGAAGGAG 

Wfdc2_sg3_geno1_R GTCTCGTGGGCTCGGAGATGTGTATAA 

GAGACAGTTCCTGGTCCCTCTTTGTCC 

Gbp8_sg1_geno1_L TCGTCGGCAGCGTCAGATGTGTATAA 

GAGACAGCTTCACAGGCATAGCTCCCT 

Gbp8_sg1_geno1_R GTCTCGTGGGCTCGGAGATGTGTATAA 

GAGACAGCCTCCTCCTACCTTTTCCACA 

 

2.4.2. Isolating gDNA 

Genomic DNA was isolated from sorted GFP+ cells using the QIAamp DNA Micro Kit (Qiagen) 

following the suggested protocol. The carrier RNA diluted in Buffer AE was always added to 

Buffer AL to improve yield. The gDNA was eluted into 30µl water and stored at -4℃.  

2.4.3. Testing genotyping primers 

All genotyping primers used were first tested using HoxB8-FL gDNA, which was isolated by Iwo 

Kucinski. 
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To test the primers, the following PCR reaction mixture was prepared on ice: 1.25 µl of the forward 

and reverse primers (10mM), 5 µl of 5X Phusion® High-Fidelity Reaction Buffer (NEB), 0.5 µl of 

10 mM dNTP solution (NEB), 0.25 µl of Phusion ® High-Fidelity Polymerase (NEB), 10-20 ng/µl 

of the gDNA template and water up to a 25 µl total reaction volume. The following PCR program 

was used: 98℃ for 30s → 30 cycles of 98℃ for 10s, 59℃ for 20 s, 72℃ for 20 s → 72℃ for 7 

min. The product was then checked on an 0.9% agarose gel. 

A band corresponding to the expected product size was seen for all primers, indicating that all the 

primers worked at an annealing temperature of 59℃. 

2.4.4. Genotyping protocol 

The same PCR as described in Section 2.4.3 was used for genotyping the gDNA of interest. After 

the product was checked on a 0.9% agarose gel, a second PCR reaction was set up to anneal the 

indexing primers (Nextera XT Index Kit v2 Set A, Illumina) to the previous PCR product. 1 µl of 

the forward and reverse primers were mixed with 10 µl of KAPA HiFi HotStart PCR Mix (KAPA 

Biosystems, Roche), 2 µl of template from the previous PCR, and 6 µl of water for a total reaction 

volume of 20 µl. The following PCR program was then used: 98℃ for 3 min → 20 cycles of 98℃ 

for 20s, 55℃ for 15s, 72℃ for 1min → 72℃ for 5 min. The product was again checked on an 

0.9% agarose gel. After confirming that the product was as expected, it was cleaned up using 

Agencourt AMPure XP Beads (Beckman Coulter). 4 µl of each sample was pooled in a 1.5 ml 

Eppendorf tube. The beads were added to the sample in a 1:0.7 ratio (sample: beads). The mixture 

was incubated at room temperature for 5 minutes and then placed on a magnetic stand (Invitrogen) 

for 2 minutes. The supernatant was carefully removed, and the beads were washed twice with 

freshly prepared 80% ethanol. Once the beads were dry, 20 µl of EB was added to each tube. The 

samples were vortexed and incubated at room temperature for 2 minutes before being placed on 

the magnetic stand for 2 minutes. The entire volume of supernatant was then transferred to another 

1.5 ml Eppendorf tube without disturbing the remaining beads. The product was run on the 

BioAnalyzer system (Agilent Genomics) using the Agilent High Sensitivity DNA Kit (Agilent 

Genomics) to visualize the product size and quality. Finally, the product was quantified using the 

KAPA Library Quantification Kit (KAPA Biosystems, Roche) following the suggested protocol. 

The quantified sample was diluted to the appropriate concentration (10 nM) and sent for sequencing 

at the Genomics Core, CRUK CI (University of Cambridge) on the MiSeq Nano System (Illumina). 
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2.5. Single Cell Gene Expression Analysis 

2.5.1. Single cell gene expression analysis (Fluidigm BioMark™ HD) 

The protocol for isolating single bone marrow HSPCs is detailed above (Section 2.2.1). Cell 

processing for single cell gene expression analysis was performed as previously described 

(Moignard et al. 2013). TaqMan®
 assays (Table 2.11, Applied Biosystems) in TE Buffer (Life 

Technologies) were pooled in a 1:100 dilution of each assay, constituting a 0.2X TaqMan® assay 

mix. This mix was aliquoted and stored at -20℃. 

Single cells were sorted directly into a 96-well PCR plate by FACS. Each well contained 5 µl of 

2X Reaction Mix (CellsDirect One-Step qRT-PCR kit, Life Technologies), 0.1 µl SUPERase 

RNase Inhibitor (Ambion), 2.5 µl of the 0.2X assay mix, 1.2 µl TE buffer and 1.2 µl Superscript 

III/Platinum Taq (CellsDirect One-Step qRT-PCR kit, Life Technologies) for a total volume of 10 

µl per well. After sorting, the plates were vortexed then centrifuged at 700 g for 2 minutes at 8℃. 

The plates were stored at -80℃. 

2.5.1.1. Specific Target Amplification 

Reverse transcription and preamplification were performed using the conditions listed in Table 

2.10. Victoria Moignard previously determined the optimum number of preamplification cycles for 

haematopoietic cells to be 22 cycles, which brings the gene expression within the dynamic range 

of the Fluidigm BioMark™ HD platform. The cDNA was then stored at -20℃.  

 

Table 2.10. Thermocycler conditions for synthesis and specific target amplification of cDNA from single cells. 

Step Temperature (℃) Time Cycles 

cDNA synthesis 50 15 min --- 

Inactivation of SuperScript III/ Activation of 

Platinum Taq 
95 2 min --- 

Specific target amplification 
95 15 s 

22 
60 4 min 

Hold 4 ∞ --- 
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2.5.1.2. qRT-PCR on the Fluidigm BioMark™ HD platform 

After preamplification, qRT-PCR was performed on the Fluidigm BioMark™ HD platform using 

a 48:48 Dynamic Array integrated fluidics chip (Fluidigm). The cDNA was diluted 1:5 in TE 

buffer.  

A 96-well plate was used to prepare the reagents for loading onto the 48:48 Dynamic Array. On 

one half of the plate, 2.7 µl of the diluted cDNA was mixed with 3 µl of a TaqMan® Universal 

Mastermix (Applied Biosystems) and 0.3 µl Gene Expression Sample Loading Reagent 

(Fluidigm). Each well contained a different sample. On the other half of the plate, 3 µl of each 

FAM-labelled TaqMan® assay was mixed with 3 µl Gene Expression Assay Loading Reagent 

(Fluidigm). Each well contained a different assay. 4.5 µl of each assay or sample was loaded into 

individual assay or sample inlets on the 48:48 Dynamic Array. Samples and assays were loaded 

into integrated fluidics chip using the IFC Controller MX (Fluidigm). The 48:48 Dynamic Array 

was then transferred to the Fluidigm BioMark™ HD for qRT-PCR. The following qRT-PCR 

program was used: 95℃ for 10 minutes → 40 cycles of 95℃ for 15 seconds, 60℃ for 1 minute. 

 

Table 2.11. List of TaqMan® assays used for single cell gene expression analysis. 

Gene name  Assay ID Gene name Assay ID 

Bptf  Mm01251151_m1 Ldb1  Mm00440156_m1 

Cbfa2t3h  Mm00486780_m1 Lmo2  Mm01281680_m1 

Cdkn2a  Mm00494449_m1 Lyl1  Mm01247198_m1 

Csf1r  Mm01266652_m1 Mecom  Mm01289155_m1 

Dnmt3a  Mm00432881_m1 Meis1  Mm00487659_m1 

Egfl7  Mm00618004_m1 Mitf  Mm01182480_m1 

Eif2b1  Mm01199614_m1 Mpl  Mm00440310_m1 

Erg  Mm01214246_m1 Myb  Mm00501741_m1 

Ets1  Mm01175819_m1 Nfe2  Mm00801891_m1 

Ets2  Mm00468977_m1 Nkx2-3  Mm01199403_m1 

Etv6  Mm01261325_m1 Notch1  Mm00435249_m1 

Fli1 Mm00484409_m1 Pbx1  Mm04207617_m1 

Gata1  Mm00484678_m1 Polr2a  Mm00839493_m1 

Gata2  Mm00492300_m1 Prdm16  Mm00712556_m1 

Gata3  Mm00484683_m1 Procr  Mm00440992_m1 

Gfi1  Mm00515855_m1 Runx1 Mm01213405_m1 

Gfi1b  Mm00492318_m1 Spi1  Mm00488142_m1 

Hhex  Mm00433954_m1 Sh2b3  Mm00493156_m1 

HoxA5  Mm00439362_m1 Smarcc1  Mm00486224_m1 

HoxA9  Mm00439364_m1 Tal1  Mm01187033_m1 

HoxB4  Mm00657964_m1 Tcf7  Mm00493445_m1 
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Gene name  Assay ID Gene name Assay ID 

Ikzf1  Mm01187882_m1 Tet2  Mm00524395_m1 

Itga2b  Mm00439768_m1 Ubc Mm01201237_m1 

Kit  Mm00445212_m1 Vwf  Mm00550376_m1 

 

2.5.2. Single cell gene expression analysis (single-cell RNA sequencing) 

The protocol for isolating single bone marrow HSPCs is detailed above (Section 2.2.1). scRNA-

seq analysis was performed as described previously (Picelli et al. 2014). All centrifugation steps 

occurred at 8℃ for 1 minute at 700 g. Volumes for all mixtures mentioned are for a single 96-well 

plate, unless otherwise stated. 

2.5.2.1. Single cell lysis 

Single cells were sorted by FACS directly into 96-well PCR plates. Each well contained 2.3 µl 

lysis buffer. The lysis buffer contained 1 µl of SUPERase RNase Inhibitor (Invitrogen) to 19 µl of 

0.2% (vol/vol) Triton X-100 (Sigma). Once the cells were sorted, the plate was vortexed and spun 

down. The plates were stored at -80℃ for up to 6 months. 

2.5.2.2. Reverse transcription and preamplification 

ERCC (External RNA Controls Consortium) RNA Spike-In Mix (Invitrogen) was diluted 

1:300,000 in water containing SUPERase RNAse Inhibitor. 10 µl of the diluted ERCCs were mixed 

with 10 µl of 100 µM oligo-dT (Table 2.14), 100 µl of 10 mM dNTP mix (ThermoFisher), and 80 

µl of water to make up the annealing mixture. Once the plate of sorted cells had thawed on ice, 2 

µl of the annealing mixture was added to each well. The plate was centrifuged before being 

incubated for 3 minutes at 72℃. 

A reverse transcription (RT) mix was prepared with the following reagents: 50 µl of Superscript II 

RT (Invitrogen), 200 µl of 5X Superscript II First Strand Buffer (Invitrogen), 50 µl of 100 mM 

DTT (Invitrogen), 25 µl of SUPERase RNAse Inhibitor, 200 µl of 5M Betaine (Sigma), 6 µl of 1 

M MgCl2 (Ambion), 10 µl of 100 µM TSO (Table 2.14) and 29 µl of water. 5.6 µl of the reverse 

transcription mixture was added to each well and the plate was centrifuged before being transferred 

into the thermocycler. RT was performed using the conditions detailed in Table 2.12. 
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Table 2.12. Thermocycler conditions for reverse transcription (Smart-seq2* protocol). 

Step Temperature (℃) Time (min) Cycles 

RT and template switching 42 90 --- 

Unfolding of RNA secondary structures 50 2 

10 Completion/continuation of RT and template 

switching 
42 2 

Enzyme inactivation 70 15 --- 

Hold 4 ∞ --- 

*(Picelli et al. 2014) 

 

A PCR preamplification mix was made with the following reagents: 1250 µl of 2X KAPA HiFi 

HotStart Ready Mix (KAPA Biosystems), 25 µl of 10 µM IS PCR primer (Table 2.14) and 225 µl 

of water. After reverse transcription, 15 µl of the PCR preamplification mix was added to each 

well. The plate was centrifuged and preamplification was performed using the conditions detailed 

in Table 2.13. 

Table 2.13. Thermocycler conditions for preamplification (Smart-seq2* protocol). 

Step Temperature (℃) Time Cycles 

Denature 
98 3 min --- 

98 20 sec 

21 Anneal 67 15 sec 

Extend 
72 6 min 

72 5 min --- 

Hold 4 ∞ --- 

*(Picelli et al. 2014) 

 

Table 2.14. Oligo sequences. 

Oligo Source Sequence 

TSO (LNA oligo) Exiqon AAGCAGTGGTATCAACGCAGAGTACATrGrG+G 

Oligo-dT30VN Biomers.net AAGCAGTGGTATCAACGCAGAGTAC(T30)VN 

IS PCR Biomers.net AAGCAGTGGTATCAACGCAGAGT 

All oligos are HPLC purified. 

 

After preamplification, the plates of cDNA were stored at -20℃. The cDNA was cleaned up using 

the Beckman Coulter Biomek FXP (Beckman Coulter). A 1:0.8 ratio of sample to Agencourt 

AMPure XP beads was used for PCR purification. After being washed with 80% ethanol, the 

samples were eluted in 22 µl of EB buffer. 20 µl of the supernatant was collected and transferred 

to a new 96-well plate. The cDNA library was then checked for quality and size distribution on the 

BioAnalyzer system using an Agilent High Sensitivity DNA Kit.  
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2.5.2.3. Library preparation 

The following steps were performed using the Nextera XT DNA Library Preparation Kit (Illumina) 

and the Nextera XT 96-Index Kit (384 samples, Illumina). All reagents, unless otherwise 

mentioned, are contained in this kit. The protocol is based on the Tagmentation protocol from 

Fluidigm.  

A pre-mix was made using 264 µl of Tagmentation DNA Buffer (warmed to room temperature) 

and 132 µl Amplicon Tagment Mix. 3.75 µl of the pre-mix was added to each well of a fresh 96-

well plate (“library prep” plate). 1.25 µl of each sample from the cDNA library plate was then 

added to individual wells of the “library prep” plate. The plate was then centrifuged and incubated 

at 55℃ for 10 minutes, after which 1.25 µl of NT buffer was immediately added to each well to 

neutralize the samples.  

Once the plate was centrifuged again, 3.75 µl of the Nextera PCR Master Mix was added to each 

well. 1.25 µl each of Index Primer 1 (N701-N712) and Index Primer 2 (S517, S502-S508) were 

added to each well, creating unique combinations of the indexes in each well. It was essential to 

know the order of the indexes for data analysis. 

After the addition of the indexes, the plate was centrifuged before being transferred into the thermal 

cycler for PCR amplification (Table 2.15). After amplification, the plates could be stored at -20℃ 

long-term. 

Table 2.15. Thermocycler conditions for amplification of cDNA libraries. 

Temperature (℃) Time Cycles 

72 3 min --- 

95 30 sec --- 

95 10 sec 

12 55 30 sec 

72 60 sec 

72 5 min --- 

10 ∞ --- 

 

For clean-up, 2 µl of sample from each well was pooled together into one 1.5 ml Eppendorf tube 

and the total pooled volume was measured. Agencourt AMPure XP beads were added at 0.9% of 

the total pooled library volume. The mixture was incubated at room temperature for 5 minutes and 

then placed on a magnetic stand (Invitrogen) for 2 minutes. The supernatant was then carefully 
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removed, and the beads were washed twice with freshly prepared 80% ethanol. Once the beads 

were dry, 50 µl of EB was added to each tube. The samples were vortexed and incubated at room 

temperature for 2 minutes before being placed on the magnetic stand for 2 minutes. The entire 

volume of supernatant was then transferred to another 1.5 ml Eppendorf tube without disturbing 

the remaining beads. 

The library size distribution was checked using the BioAnalyzer system with an Agilent High 

Sensitivity DNA Kit. The library was then quantified using the KAPA Library Quantification Kit 

and diluted to the appropriate concentration (10 nM). Libraries were sequenced at the Genomics 

Core, CRUK CI (University of Cambridge) using the Illumina HiSeq 2500 or Illumina HiSeq 4000 

system (single-end 125bp reads). 

 

2.6. Computational Analysis 

2.6.1. Single cell gene expression data analysis (Fluidigm BioMark™ HD) 

All analysis of qPCR data from the Fluidigm BioMark™ was performed using R (www.r-

project.org). Most scripts used were written by Fiona Hamey or Victoria Moignard and Fernando 

Calero-Nieto, and Fiona Hamey and Wajid Jawaid helped with some coding aspects. All analyses 

were carried out by Sonia Shaw unless otherwise stated. Fiona Hamey performed the pseudotime 

inference, network construction and stable state analyses. Specific details are provided in Chapters 

5 and 6. 

2.6.1.1. Data processing and filtering 

Single-cell gene expression data was collected using Fluidigm Data Collection software and 

analysis was performed as previously described (Moignard et al. 2013; N. K. Wilson et al. 2015). 

ΔCt values were calculated by normalising mean expression levels to housekeeping genes Ubc and 

Polr2a (G. Guo et al. 2010). Where a gene could not be detected, the maximum ΔCt value for a 

gene/assay was calculated and 3.5 was added.  

2.6.1.2. Downstream analyses 

All housekeeper genes (Ubc, Polr2a, Eif2b1), Cdkn2a, Egfl7, Gfi1, and Spi1 were removed from 

the dataset for downstream analysis. Cdkn2a was not expressed in any of the cell types, and Egfl7, 

Gfi1 and Spi1 were removed due to technical issues. 

http://www.r-project.org/
http://www.r-project.org/
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The data collected for FSR-HSC2, MPP and PreMegE cells in this investigation were projected 

onto a principal component analysis (PCA) plot together with data collected by Wilson et al. for 

the following populations: LMPPs, CMPs, GMPs, MEPs, FSR-HSCs, and HSCs. The data were 

also re-analysed with data from Wilson et al. (N. K. Wilson et al. 2015). Since the projected PCA 

plot and the re-analysed PCA plot showed similar correlations between the cell populations, 

analysis was continued using the re-analysed data set containing all 12 populations.  

Hierarchical clustering was performed using the hclust function and heatmap.2 from the gplots 

package. Spearman rank correlations and ward linkage were used. PCA was performed using the 

default settings for the prcomp() function. T-distributed Stochastic Neighbour Embedding (t-SNE) 

analysis was performed using the tsne package. Diffusion maps dimensionality reductions were 

calculated using the destiny package using centred cosine distance and σ = 0.3 (Angerer et al. 2016). 

Cells were retrospectively coloured based on clusters or the population to which they belonged. 

Subsequent analyses in which MolO cells were projected onto the data were performed using the 

roots package. 

2.6.1.3. Additional information 

Single cell gene expression data were also collected for HoxB8-FL cells. These data were 

processed by Fiona Hamey. All the single cell gene expression data from the Fluidigm BioMark™ 

platform can be downloaded from: 

http://blood.stemcells.cam.ac.uk/single_cell_qpcr.html  

2.6.2. Single cell gene expression data analysis (scRNA-seq) 

All analysis of the scRNA-seq data was performed using R (www.r-project.org) unless otherwise 

stated. The script used for the analysis was written by Fiona Hamey. All analyses were carried out 

by Sonia Shaw unless otherwise stated.  

2.6.2.1. Aligning reads and quality control 

Reads were aligned using G-SNAP (T. D. Wu and Nacu 2010) and the mapped reads were assigned 

to Ensembl genes (release 81) (Zerbino et al. 2018) by HTSeq (Anders, Pyl, and Huber 2015). This 

was done by Evangelia Diamanti.  

Quality control and data normalization was performed by Fiona Hamey. To pass quality control, 

cells had to meet the following requirements: 

http://blood.stemcells.cam.ac.uk/single_cell_qpcr.html
http://www.r-project.org/
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• Cells need to have at least 200,000 reads mapping to nuclear genes 

• Cells need to have at least 4,000 genes detects 

• Less than 10% of mapped reads should map to mitochondrial genes 

• Less than 50% of mapped reads should map to ERCC spike-ins. 

The reads were normalised using the method of Lun et al. (Lun, Bach, and Marioni 2016). 

Technical variance was estimated using ERCC spike-ins, as described by Brennecke et al. 

(Brennecke et al. 2013). The data were normalized in R using flowCore (Hahne et al. 2009) and 

ComBat (Johnson, Li, and Rabinovic 2007). 

2.6.2.2. Assigning population thresholds 

Population thresholds were assigned retrospectively by comparing normalised index data with 

published literature (A. Wilson et al. 2008; Pronk et al. 2007; Pietras et al. 2015; Cabezas-

Wallscheid et al. 2014). The index data was plotted in FlowJo (Treestar) and gated to define HSPC, 

MPP and progenitor populations. CD45 was not available in the index data; therefore, E-SLAM 

cells were gated using the following strategy: EPCR+ CD48- CD150+. The set gates either covered 

all cells (broad gating) or left unclassified cells in between populations to prevent overlap between 

gates (narrow gating). 

2.6.2.3. Downstream analyses 

Hierarchical clustering was performed using the hclust function with average linkage and (1 – 

Spearman’s correlation)/2 distance. Clusters were identified using the cutreeDynamic function 

from the dynamicTreeCut package using a minimum cluster size of 10 and the deepSplit parameter 

set at 1. Wilcoxon rank sum tests with Benjamini-Hochberg correction tested for differential 

expression in genes expressed in at least half of the cells in a cluster. Diffusion maps dimensionality 

reductions were calculated using the destiny package with cosine distance and Gaussian kernel 

width = 0.3 (Angerer et al. 2016). Pseudotime analysis was performed by Fiona Hamey. 

2.6.2.4. Haematopoietic differentiation landscape – Online resource 

An interactive website was designed by Blanca Pijuan-Sala, which allows other researchers to view 

the expression of their genes of interest on the HSPC differentiation landscape. The website also 

contains the surface marker and cell phenotype visualisations. The raw data was also made 

available for others to use the HSPC differentiation atlas in their research. This interactive website 

can be found following this link:  
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http://blood.stemcells.cam.ac.uk/single_cell_atlas.html 

2.6.2.5. STREAM analysis 

STREAM analysis (Single-cell Trajectories Reconstruction, Exploration and Mapping) was 

performed on the scRNA-seq dataset by Huidong Chen from the Pinello lab at Harvard University 

(H. Chen et al. 2018). The data was made available at: 

http://stream.pinellolab.org/ 

Within this online resource, Sonia Shaw visualized the expression of various genes and made 

observations about genes involved in branching and transitioning points in the pseudotime 

ordering. 

2.6.2.6. SPRING analysis 

SPRING analysis was performed on the scRNA-seq dataset by Caleb Weinreb from the Klein lab 

at Harvard University (Weinreb, Wolock, and Klein 2018). The data was made available at: 

https://kleintools.hms.harvard.edu/tools/springViewer.html?cgi-

bin/client_datasets/gottgens_prenorm  

Within this online resource, Sonia Shaw visualized the expression of various genes and proteins 

and made observations about the discernible cell populations. 

2.6.3. Analysis of genotyping data 

Genotyping results were analysed in R studio. The genotyping protocol is described in Section 2.4. 

Evangelia Diamanti mapped the reads to the mouse genome and generated .fastq files for each 

library sequenced using MiSeq Nano. The first 10,000 reads of each .fastq file were aligned to the 

appropriate reference sequence using custom functions created by Iwo Kucinski. The output of the 

script included the fraction of indels and frameshift mutations for each sample, which were 

compared to the empty vector controls to determine whether the CRISPR gRNAs successfully 

targeted the genes of interest. 

 

http://blood.stemcells.cam.ac.uk/single_cell_atlas.html
http://stream.pinellolab.org/
https://kleintools.hms.harvard.edu/tools/springViewer.html?cgi-bin/client_datasets/gottgens_prenorm
https://kleintools.hms.harvard.edu/tools/springViewer.html?cgi-bin/client_datasets/gottgens_prenorm
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Chapter 3: A single-cell atlas of adult murine haematopoiesis 

 

Parts of this section have been modified from Nestorowa et al. (2016). Isolation of primary mouse 

bone marrow cells and scRNA-seq analysis were carried out by Sonia Shaw. Blanca Pijuan-Sala 

performed index data normalisation and designed the interactive website associated with the 

publication (http://blood.stemcells.cam.ac.uk/single_cell_atlas.html). Sonia Shaw performed the 

computational analysis described in this chapter, except for the pseudotime ordering on the 

diffusion map, which was performed by Fiona Hamey. 

 

3.1. Background 

The haematopoietic system is formed through a series of cell-fate decisions, in which 

haematopoietic stem cells (HSCs) differentiate towards multiple mature cell types through dynamic 

gene expression. It is necessary to study populations at various stages of maturation together to 

gain insights into cell-fate decision making. Researchers have developed increasingly pure 

isolation strategies for haematopoietic stem and progenitor cells (HSPCs), providing many 

significant advances for the haematopoietic community (Beerman et al. 2010; D. G. Kent et al. 

2009; Kiel et al. 2005; Morita, Ema, and Nakauchi 2010; Challen et al. 2010). Purification 

protocols require the use of increasingly restrictive gates to optimise purity. These strict gates 

exclude ‘contaminating cells,’ which may in fact be transitional cells moving from one cellular 

state to another. 

Bulk-expression studies have helped improve our understanding of the haematopoietic system; 

however, it is a very heterogeneous system and bulk-expression profiling will only capture average 

expression states within cells, inadequately representing individual cells. Single-cell analysis is 

therefore required to resolve heterogeneity within HSPC populations. Advances in flow cytometry 

have allowed for the collection of surface marker expression data for single-cells during 

fluorescence-activated cell sorting (FACS) (Osborne 2011). The surface marker expression can be 

coupled with single-cell gene expression profiling, making it possible to use broader sorting 

strategies to capture a wider range of cell types while retaining the ability to classify cells into well-

defined haematopoietic populations (Schulte et al. 2015).  

http://blood.stemcells.cam.ac.uk/single_cell_atlas.html
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Recently, over 2,700 cells were profiled using massively parallel single-cell RNA sequencing 

(MARS-seq) coupled with index sorting to investigate heterogeneity within the common myeloid 

progenitor (CMP) population. The investigation spanned CMPs, granulocyte-monocyte 

progenitors (GMPs), and megakaryocyte-erythroid progenitors (MEPs), and collected surface 

marker and gene expression data to create a reference mouse model of haematopoiesis (Paul et al. 

2015). While this study demonstrates the power of index-sorting coupled with FACS, it is restricted 

by sequencing depth, limiting the information gained from the dataset. In fact, although single-cell 

gene expression studies of HSPCs were published prior to this investigation, they were limited by 

inadequate coverage of the haematopoietic hierarchy, or were restricted in the number of genes 

profiled when using quantitative real-time PCR (qRT-PCR) (Grover et al. 2016; Moignard et al. 

2013; Paul et al. 2015; Kowalczyk et al. 2015; Wilson et al. 2011, 2015; Hamey et al. 2016). Where 

the number of genes quantified was restricted, bias would be introduced as the investigator selected 

the genes to profile, potentially missing dynamic genes and limiting the opportunity for discovering 

novel gene expression patterns. As such, at the time of this investigation, a single-cell HSPC 

transcriptomic atlas that covered all cell types in early haematopoiesis was not available, and the 

creation of such an atlas would be a powerful resource for investigating gene expression changes 

during differentiation.  

3.1.1. Aims 

The aims of this chapter were to: 

• Generate a comprehensive atlas of murine HSPC differentiation at the single-cell level 

• Interrogate the HSPC atlas to better understand differentiation trajectories 

These aims were addressed by profiling over 1,600 HSPCs from mouse bone marrow using single-

cell RNA sequencing (scRNA-seq). Cells were isolated using broad sorting strategies to capture 

cells that may represent important transitional stages in haematopoietic differentiation, normally 

excluded by narrow gating strategies. The scRNA-seq profiles were used to visualise 

differentiation from HSCs to more mature haematopoietic progenitor cells. Using various analysis 

methods, the data was interrogated to show gene and surface marker expression trends, as well as 

the breadth of information that can be obtained from transcriptomic profiling. 
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3.2. Isolation of haematopoietic stem and progenitor cells for single-cell analysis 

To comprehensively sample cells across the HSPC transcriptional landscape, cells were isolated 

from mouse bone marrow. The cells were sorted by single-cell FACS coupled with index sorting, 

which collects the surface marker expression data for every cell sorted (Fig. 3.1A). Two broad 

gates based on c-Kit and Sca1 expression were used to capture cells from the HSPC gate (Lin- 

Sca1+ c-Kit+) and Progenitor (Prog) gate (Lin- Sca1- c-Kit+). The HSPC gate encompassed long-

term HSCs (LT-HSCs), finite self-renewal HSCs (FSR-HSCs), multipotent progenitors (MPPs), 

and lymphoid multipotent progenitors (LMPPs), whereas the Prog gate included CMPs, MEPs and 

GMPs (Fig. 3.1B). LT-HSCs are much less frequent than the other cell types in the HSPC gate 

(Fig. 3.1C). LT-HSCs were sorted separately to ensure sufficient coverage of the population, using 

the Lin- Sca1+ c-Kit+ Flk2- CD34- sorting strategy.  

The cells were sorted into twenty 96-well PCR plates with HSPC, Prog and LT-HSC cells 

represented on each plate (Fig 3.1A) for a total of 1,920 cells (840 HSPC cells, 840 Prog cells, and 

240 LT-HSCs). This layout was used to account for possible batch effects that may arise from only 

one cell type being represented per plate, and to decrease the number of cells of a particular cell 

type lost if there was a plate issue. The cells were processed for scRNA-seq as previously described 

(Picelli et al. 2014). Quality control (QC) removed empty wells and low-quality profiles, leaving a 

total of 1,654 cells suitable for further analysis (701 HSPC cells, 798 Prog cells, and 155 LT-

HSCs). A high sequencing depth resulted in a median of over 8,600 genes per cell detected for each 

cell passing QC (Fig 3.1A). Technical variance analysis was performed to remove genes that were 

affected by technical noise or showed low variation across cell types (Brennecke et al. 2013). 

ERCC spike-ins were used to estimate technical variance, finding 4,290 genes with variance 

exceeding the estimated threshold. These highly variable genes were used for downstream analysis. 
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Figure 3.1. Isolation and profiling of HSPCs at the single cell level. (a) Schematic of the experimental design. Bone 

marrow cells isolated from mice were sorted using three broad gates based on surface marker expression. Index sorting 

data was collected during FACS. The cells were processed for scRNA-seq; the table summarises the number of cells 

and median number of genes detected for the three sorted populations after quality control. HSPC: Lin- Sca1+ c-Kit+; 

LT-HSC: Lin- Sca1+ c-Kit+ CD34- Flk2-; Prog: Lin- Sca1- c-Kit+. (b) Breakdown of the populations encompassed 

in the broad sorting gates, indicated by coloured boxes. (c) Flow cytometry plots showing the gating strategy used for 

FACS. Numbers above each gate indicate the percentage of those cells present in its parent population. Gate colours 

correspond to cell/well colour in Fig 3.1A, and box colour in Fig 3.1B. L-S-K+: Lin- Sca1-c-Kit+ (Prog parent gate); 

L-S+K+: Lin- Sca1+ c-Kit+ (LT-HSC and HSPC parent gate). 

 

3.3. Single-cell gene expression analysis reveals distinct HSPC clusters 

Unsupervised hierarchical clustering was performed using the expression of the 4,290 highly 

variable genes to investigate heterogeneity between the cell populations. Clustering allows the data 

to be grouped based solely on gene expression and can be used to gain insights about similarities 

and differences between groups of cells. Unsupervised learning does not require the input of any 

classifications by the investigator, and therefore finds commonalities within the data without the 

investigator’s bias.  
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The clustering partitioned the 1,654 cells into 5 broad clusters (Fig. 3.2). Cell populations were 

retrospectively assigned based on traditional sorting strategies using the index data collected during 

sorting, which is further explained in Section 3.6. The cell types making up each cluster and their 

gene expression patterns can therefore be distinguished on the heatmap. Cluster 1 is made up of 

mainly LT-HSCs and is represented by genes such as Procr, Trim47 and F11r (Sugano et al. 2008; 

Schulte et al. 2015; Gerrits et al. 2009). Cluster 2 contains mostly LT-HSCs and LMPPs, as well 

as a small proportion of FSR-HSCs, MPP3, and CMPs. Clusters 3 and 4 are both composed of all 

the cell types investigated and share expression of many of the representative genes. However, they 

are differentiated by higher expression of certain genes, such as Ccl9, Clec12a, and Tyrobp in 

Cluster 3, or Apoe in Cluster 4. Cluster 5 is mainly made up of MEPs and is characterized by the 

expression of erythroid genes such as alpha-haemoglobin (Hba-a1) (Stadhouders et al. 2015).  
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Figure 3.2. Unbiased hierarchical clustering reveals heterogeneity in the gene expression of HSPC clusters. Heatmap showing gene expression across clustered 

scRNA-seq data. Differential expression ranked genes by fold-change between cells within a cluster versus other clusters. Only the top 10 genes most specific for 

each cluster are displayed. Colour bars indicate the cluster identity and population identity for each cell. Cell types are coloured based on retrospective gating; the 

legend explains the colour-coding of cell populations: LT-HSC – purple; LMPP – blue; MPP1 – brown; MPP2 – pink; MPP3 – yellow; FSR-HSC – orange; MEP 

– red; CMP – light green; GMP – dark green. Grey cells represent cells unassigned to any cell population. Cluster colours: 1 – blue; 2 – turquoise; 3 – yellow; 4 – 

pink; 5 – purple 
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3.4. Transcriptional profiling reveals a differentiation continuum 

Clustering is a useful tool to characterise gene expression patterns within a dataset but forces the 

data into discrete groups, which does not adequately represent the differentiation continuum 

occurring in haematopoiesis. To visualise the data as a continuum, dimensionality-reduction 

methods were implemented. These methods condense the high-dimensionality data into a low-

dimensionality plot and emphasise key differences in the dataset.  

Principal component analysis (PCA) was performed to visualise the distribution of the clusters in 

relation to each other based on their gene expression (Fig. 3.3A). These clusters were previously 

determined by unsupervised hierarchical clustering (Section 3.3). The PCA grouped Clusters 1, 2 

and 4 together and separated Cluster 5 from the rest of the data as a more distinct cluster. The cells 

in Cluster 3 overlapped with Clusters 2 and 4, but also formed a projection in the data, indicating 

some differentiating gene expression patterns, consistent with the pattern seen on the heatmap (Fig. 

3.2). While PCA is an informative method of dimensionality-reduction and pulls out variations in 

the data, it assumes the data has a linear structure and may therefore miss any non-linear patterns 

(Lever, Krzywinski, and Altman 2017). Furthermore, PCA can only take into consideration two or 

three principal components at a time, whereas other methods consider all components and try to 

plot them in two dimensions. As this scRNA-seq dataset has many dimensions and has a complex 

structure, PCA may be unable to capture all the lineage differentiation patterns in the dataset.  

Diffusion maps have been successful as a non-linear dimensionality-reduction method to capture 

continuous differentiation processes from single-cell snapshot data (Coifman et al. 2005; 

Haghverdi, Buettner, and Theis 2015). The diffusion map method was applied to this dataset and 

the plot was visualised in the first three diffusion components after determining these components 

were optimal for showing the continuous nature of the data (Fig. 3.3B). The PCA and diffusion 

map both separated Clusters 3 and 5 from the remaining clusters. However, in the diffusion map, 

Clusters 1 and 2 also form a separate projection together. This gives a better resolution of the 

haematopoietic hierarchy, as Cluster 1 represents the most immature cells, the LT-HSCs, and 

Cluster 2 consists of LT-HSCs and early progenitors. Furthermore, the structure of the diffusion 

map suggests a continuum in which the cells of Cluster 1 give rise to three main trajectories, 

represented by Clusters 2, 3 and 5. The dataset was visualised using the diffusion map for all 

downstream analyses, unless otherwise stated. 
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Figure 3.3. Multidimensional analysis shows a differentiation continuum towards different blood lineages. (a) 

PCA calculated on the expression of 4,290 variable genes measured by scRNA-seq. PC: Principal Component. The 

plot is coloured by the clusters identified in Section 3.3. (b) Diffusion map calculated on the expression of 4,290 

variable genes measured by scRNA-seq. DC: Diffusion Component. The plot is coloured by the clusters identified in 

Section 3.3. Cluster colours: 1 – blue; 2 – turquoise; 3 – yellow; 4 – pink; 5 – purple. 

 

3.5. Visualising gene expression on the HSPC differentiation continuum 

Expression levels of individual genes can be plotted on the diffusion map to show their expression 

across the HSPC differentiation landscape (Fig. 3.4) This can be a useful tool to not only identify 

characteristics of the projections seen on the diffusion map, but also to visualise a gene of interest 

and understand how its expression differs among the HSPC populations.  

Procr and Mpl are known to be important in HSCs and are mainly expressed at the top of the 

diffusion map, corresponding with Clusters 1 and 2 (Balazs et al. 2006; Kimura et al. 1998). 

Additionally, the expression of recently reported LT-HSC markers HoxB5 and Fgd5 is 

concentrated at the top of the diffusion map (J. Y. Chen et al. 2016; Gazit et al. 2014). These genes 

highlight the HSC region. The lymphoid genes Ccl3 and Dntt are highly expressed in Cluster 2, 

highlighting cells of the early lymphoid trajectory (Rothenberg 2014). Cluster 3 consists of cells 

expressing the myeloid marker genes Mpo and Ctsg, representing the myeloid trajectory (Olsson 

et al. 2016). Similarly, the expression of Cebpa, which is involved in cell-fate decisions during 
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myeloid differentiation, is mostly concentrated to Cluster 3 (L. Scott et al. 1992). Gata1, a 

transcription factor important in erythroid and megakaryocytic differentiation, has concentrated 

expression in Cluster 5 (Evans and Felsenfeld 1989). Klf1 and Gypa are also highly expressed in 

cluster 5 but further along in the projection, marking the erythroid trajectory (Dzierzak and 

Philipsen 2013). Therefore, scRNA-seq analysis of cells isolated using broad sorting gates captured 

the transcriptional profiles of cells from HSCs through to erythroid, myeloid, and lymphoid 

trajectories. 
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Figure 3.4. Gene expression in the HSPC differentiation atlas. Diffusion map of all cells coloured based on the 

expression of selected genes. The genes were chosen based on published literature or were identified computationally 

as highly expressed in specific cell populations. The colour corresponds to a log2 scale of expression ranging between 

0 and the maximum value for each gene. The diffusion map coloured by clusters from Figure 3.3B is included for 

reference. Cluster colours: 1 – blue; 2 – turquoise; 3 – yellow; 4 – pink; 5 – purple. DC: Diffusion Component 
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3.6. Linking cell phenotypes with the transcriptome 

Index-sorting data was collected during FACS, meaning that surface marker expression data was 

available for all cells along with the transcriptional profiles made available by scRNA-seq. Surface 

marker expression data could therefore be visualised on the diffusion map (Fig. 3.5). These 

visualisations were performed to confirm that the transcriptome recapitulates the well-

characterised structure of the cell surface phenotypes of haematopoietic differentiation.  

Along with the antibodies required to isolate the HSPC, Prog and LT-HSC populations, all cells 

were also stained with antibodies against CD48, CD150 and EPCR. The surface markers Sca1, 

Flk2, CD34, CD16/32, CD48, CD150, and EPCR marked coherent territories on the diffusion map 

(Fig. 3.5A). These territories were consistent with the separation of HSCs and more mature 

progenitors and matched the gene expression patterns described in Section 3.5. EPCR expression 

was highest at the top of the diffusion map, consistent with the expression pattern of Procr, the 

gene encoding EPCR (Fig. 3.4). The lineage cocktail (Lin) is made up of antibodies against CD5, 

CD11b, CD19, CD45R, Gr-1, TER119, and 7-4, which are markers of mature haematopoietic cells. 

Lin, c-Kit and Sca1 were the main surface markers used for sorting and their expression, as 

visualised on the diffusion map, reflects the sorting strategies used. All cells were sorted as c-Kit 

positive and Lin negative; the colours in Figure 3.5 are normalised between the minimum and 

maximum expression value for each marker, and therefore regions of the c-Kit and Lin expression 

plots may appear varied based on cell marker expression within a defined gate. Overall, c-Kit and 

Lin expression were consistent throughout the landscape (Fig. 3.5B), whereas Sca1 is not expressed 

in the erythroid and myeloid projections (Fig. 3.5A). Forward-scattered light-height (FSC-H), 

which represents cell size, was higher in myeloid and erythroid cells than in the HSCs and early 

lymphoid cells. This is consistent with the larger size of more mature cells compared to immature 

HSCs.  
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Figure 3.5. Surface marker expression on the HSPC differentiation atlas. Diffusion map of all cells coloured based 

on surface marker expression data collected using index-sorting. Surface markers in (a) mark territories on the diffusion 

map, whereas surface markers in (b) do not mark any territories due to their global expression. The colour corresponds 

to normalised expression values ranging between the minimum and maximum value for each marker. Flow cytometry 

data were normalised across two sort days. FSC-H: forward-scattered light-height; Lin: Lineage cocktail (CD5, 

CD11b, CD19, CD45R, Gr-1, TER119, 7-4); DC: Diffusion Component 

 

Three broad sorting strategies were used to isolate the HSPC, Progenitor and LT-HSC populations. 

Using strict gates could limit the information gained for creating a differentiation continuum; they 

are limited by the investigator’s knowledge of existing populations and may miss stepwise 

processes occurring between known HSC and progenitor populations. By using a liberal gating 

strategy, it could be possible to capture cells in the differentiation continuum that would normally 
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be missed by using strict sorting gates. The index sorting data collected during FACS was used to 

retrospectively assign cells into the cell populations outlined in Fig. 3.1B using common sorting 

strategies (Fig. 3.6A). By additionally staining for CD150, CD48 and EPCR, cells could be 

retrospectively assigned to other populations, such as E-SLAM (D. G. Kent et al. 2009) or the MPP 

subpopulations (A. Wilson et al. 2008; Pietras et al. 2015). The index data was visualised on the 

diffusion map to show the cell type distributions (Fig. 3.6B). The expression of marker genes 

correlated with the unsupervised clustering and transcriptional profiling of cells.  

Three sorting strategies were visualised for LT-HSCs using retrospective gating, ordered in Fig. 

3.6B by decreasing stringency: E-SLAM (CD48- CD150+ EPCR+), Lin- Sca1+ c-Kit+ CD34- Flk2- 

CD48- CD150+, and the LT-HSC sorting strategy (Lin- Sca1+ c-Kit+ CD34- Flk2-). The sorting 

strategy stringency has a reverse correlation with heterogeneity, as E-SLAM cells occupy the least 

heterogeneous space at the top of the diffusion map.  
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Figure 3.6. Visualising HSPC populations on the HSPC differentiation atlas. (a) Schematic of the strategies used 

for retrospectively gating the cells using the index-sorting data. The 96-well plate is coloured by a possible distribution 

of cell types sorted. The colours are consistent with those shown in the gating strategy diagram. Purple – LT-HSC; 

grey – MPP; blue – LMPP; red – MEP; light green – CMP; dark green – GMP. (b) Diffusion maps of all cells coloured 

based on cell types assigned by retrospective gating. The population of interest is coloured in purple; all other cells are 

in grey. DC: Diffusion Component. 
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3.7. Capturing changes in gene and protein expression using pseudotime 

ordering 

Pseudotime ordering links cells together to order each transcriptional profile by its progress through 

differentiation (Bendall et al. 2014; Trapnell et al. 2014). Pseudotime analysis assumes gene and 

protein expression constantly change throughout differentiation, and that the dataset includes a 

large sample of cells broadly covering the differentiation process. In pseudotime ordering, the 

position of a cell corresponds to its progress in differentiation.  

Fiona Hamey performed pseudotime ordering on the diffusion map to capture changes in both gene 

and surface marker protein expression during differentiation, and to identify differentiation 

lineages towards mature haematopoietic cells. Differentiation trajectories were identified from 

HSCs towards erythroid (E), granulocyte-macrophage (GM), and lymphoid (L) lineages (Fig. 

3.7A). Changes in index-sorting parameters along these pseudotime trajectories were visualised 

(Fig. 3.7B). The surface markers used for isolating cells showed changes in expression consistent 

with the sorting strategies used. FSC-H increased along all three trajectories, indicating an increase 

in cell size, as seen previously when the index sorting data was visualised on the diffusion map 

(Fig. 3.5). The increase in FSC-H occurred more gradually along the L lineage than along either 

the E or GM lineage. EPCR, which was not used for sorting but was included in the antibody 

staining panel, showed decreased expression along all three trajectories, consistent with EPCR 

being a marker for HSCs (Balazs et al. 2006). 
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Figure 3.7. scRNA-seq profiles can be computationally ordered along pseudotime trajectories. (A) Diffusion map 

highlighting cells in three differentiation trajectories. Cells were ordered from HSCs along erythroid (E), granulocyte-

macrophage (GM) and lymphoid (L) lineages. The pseudotime value for each cell indicates its position in the 

differentiation trajectory, moving from blue to red. DC: Diffusion Component. (B) Surface marker and FSC-H 

dynamics along the pseudotime trajectories. Index data is scaled so that each variable ranges from 0 (low) to 1 (high) 

in each trajectory. The colour bar at the top of each heatmap indicates the cell type. LT-HSC – purple; LMPP – blue; 

MPP1 – brown; MPP2 – pink; MPP3 – yellow; FSR-HSC – orange; MEP – red; CMP – light green; GMP – dark green. 

Grey cells represent cells unassigned to any cell population. Figure was created by Fiona Hamey and modified by 

Sonia Shaw. 

 

Gene set enrichment analysis (GSEA) interrogates a given dataset for biological processes, 

molecular functions, or phenotypes in which the genes are known to be involved. GSEA can be 

used to gain a better understanding of statistically significant biological processes occurring along 

a differentiation trajectory. Gene sets that were up- or down-regulated throughout pseudotime were 

identified for each trajectory (Fig. 3.8A). GSEA revealed enrichment terms for these gene sets that 

corresponded to the relevant trajectory (Fig. 3.8B). The L trajectory showed an increase in genes 

involved in B-cell lineage commitment, genes involved in megakaryocyte-erythrocyte progenitor 

phenotypes were upregulated along the E trajectory, and neutrophil degranulation genes were 

upregulated along the GM trajectory. Both the E and GM trajectories had significant terms related 

to cell-cycle, such as “mitotic cell cycle” and “DNA replication.” However, the L trajectory did 

not show any significant upregulation of genes related to cell cycle, which may be due to the low 

number of genes up- (n=29) and down-regulated (n=23) in this trajectory. 



73  A single-cell atlas of murine haematopoiesis 

 

 

 
Figure 3.8. Pseudotime ordering reveals changes in gene expression during differentiation. (a) Normalised 

expression of genes up- or down-regulated along pseudotime for erythroid (E), granulocyte-macrophage (GM), and 

lymphoid (L) trajectories. Gene expression was smoothed by a sliding window of size 20 along pseudotime. Mean 

normalised expression is shown as a black line ± standard deviation (grey shading). n indicates the number of genes in 

each subset. (b) Gene set enrichment analysis terms for the above gene sets. Adjusted p-value is shown for significant 

terms (Benjamini-Hochberg). Figure was created by Fiona Hamey and modified by Sonia Shaw.  

 

3.8. Ordering cells along differentiation trajectories using STREAM 

The diffusion map is a useful non-linear dimensionality reduction method to visualise continuous 

differentiation processes within the scRNA-seq dataset. The analysis informed on gene and surface 

marker expression throughout the HSPC atlas and was used to identify three differentiation 

trajectories within the data using pseudotime ordering. However, the visualisation lacks 

information about cell density and cell type composition.  

Recently, a new trajectory inference tool called STREAM (Single-cell Trajectories Reconstruction, 

Examination and Mapping) was developed to reconstruct differentiation trajectories and capture 

gene expression changes during differentiation using pseudotime ordering (Trapnell et al. 2014; H. 

Chen et al. 2018). STREAM uses a non-linear dimensionality reduction method called Modified 

Local Linear Embedding (MLLE) and infers trajectories using a novel method called ElPiGraph 
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(Lever, Krzywinski, and Altman 2017; Z. Zhang and Wang 2006). ElPiGraph differs from other 

methods as it does not require drastic dimensionality reduction or pre-clustering to infer 

trajectories. In addition to capturing trajectories within a dataset, STREAM uses a visualisation 

method which includes density information throughout pseudotime. This is a useful tool to track 

cell population composition changes along a trajectory.  

The Pinello lab used our scRNA-seq dataset to demonstrate STREAM and their interactive web-

tool. The online interface allows the user to manipulate the data to interrogate branching and gene 

expression patterns. STREAM is available at the following link: 

http://stream.pinellolab.org/MNoPZ/  

HSCs were selected as the start of the branching structure and the scRNA-seq dataset was 

visualised on a “subway plot” (Fig. 3.9A) and a “stream” plot (Fig. 3.9B). The subway plot orders 

cells according to their pseudotime score and distance from their assigned branch. The purpose of 

the subway plot is to visualise the branching structure of the data to understand the pseudotime 

progression. The stream plot also orders cells based on their pseudotime score but incorporates 

information on the density and composition of cell types along the different trajectories. The stream 

plot visualisation requires the user to input cell type information and is made from the subway plot 

using a sliding window approach. The length of the plot represents a cell’s location along 

pseudotime, whereas the width of the plot is proportional to the number of cells.  

The subway plot showed that STREAM analysis identified three lineages in the data: erythroid, 

myeloid, and lymphoid. The analysis suggests the lymphoid cells entered their trajectory before 

the myeloid and erythroid cells. The stream plot showed that the lymphoid branch was composed 

mostly of LMPPs, the erythroid branch of MEPs, and the myeloid branch of CMPs and GMPs. The 

lymphoid trajectory stopped before the other lineages, which is due to there being fewer lymphoid 

cells in the analysis as more mature lymphoid cells were excluded from the sorting gates. The 

expression of the genes Procr, Klf1, Ctsg and Dntt were visualised on stream plots to represent the 

HSCs, the erythroid, myeloid, and lymphoid lineages, respectively (Fig. 3.9C). The branching and 

gene expression patterns were consistent with the diffusion map visualisation. Dntt expression was 

observed in the lymphoid branch as well as in cells heading towards the erythroid and myeloid 

lineages. The stream plot (Fig. 3.9B) showed LMPPs are present in the trajectory at this stage (S1-

S3 on the subway plot), accounting for the observed Dntt expression pattern. 

http://stream.pinellolab.org/MNoPZ/
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STREAM analysis also detects genes important in defining branching points in the data (Fig. 3.9D). 

The user can identify which branch they want to investigate using the annotations marked on the 

subway plot, and STREAM identifies genes differentially expressed between the diverging 

branches. Cd63 and Hlf were highly expressed on the HSC branch compared to cells after the first 

bifurcation event. Cd63 encodes for an endosome-associated protein that has previously been 

identified as a marker of HSCs in cultured human CD34+ HSCs, and Hlf has recently been shown 

to be a key regulator in HSC quiescence (Komorowska et al. 2017; Beckmann et al. 2007). 

Conversely, Il12a and Cst7 were more highly expressed after the bifurcation event than in HSCs. 

Il12a encodes for a subunit of the IL-12 cytokine, a main activator of natural killer cells, and Cst7 

is involved in normal eosinophil function (Seaman 2000; Halfon et al. 1998). Ltb and Uhrf1 were 

identified as differentially expressed between the lymphoid and erythroid/myeloid lineages, 

respectively. Ltb is involved in the development of normal lymphoid tissue, whereas Uhrf1 is an 

epigenetic regulator required for establishing DNA methylation patterns of erythroid genes (Koni 

et al. 1997; J. Zhao et al. 2017). STREAM also found genes marking the second bifurcation event. 

Gimap6, which encodes a protein required for T-cell maintenance, was more highly expressed in 

cells before the differentiation point (Pascall et al. 2018). Conversely, Sdsl and Rab44, which are 

associated with the erythroid and myeloid lineages, respectively, were more highly expressed in 

their respective lineages (Poczobutt et al. 2016; Khoramian Tusi et al. 2018). Finally, when the 

erythroid and myeloid lineages were directly compared, Mfsd2b and Hk3 were differentially 

expressed in the two trajectories. Mfsd2b is involved in red cell morphology, whereas Hk3 is 

involved with neutrophil differentiation, supporting the notion that these genes may mark a 

branching point between the lineages (Vu et al. 2017; Federzoni et al. 2012).  

STREAM analysis was also used to look for transition genes, defined as genes for which the 

expression correlated with the pseudotime ordering on a given branch (Fig. 3.9E) (H. Chen et al. 

2018). These genes were selected by the STREAM interface based on their differential expression 

across the stream plot. This analysis can also give insight into cell-fate decision making and has 

the potential to discover novel genes. Tgm2 had increasing expression towards the tip of the HSC 

branch, whereas Tespa1 showed increased expression moving away from HSCs. Tgm2 is an 

extracellular matrix protein previously suggested to be a regulator of LT-HSCs (Forsberg et al. 

2005). Tespa1, on the other hand, is a signalling molecule that plays a wide range of roles in more 

differentiated cells, including T-cells and mast cells (Liang et al. 2017; D. Wang et al. 2012). Igsf6, 

which is involved in myeloid differentiation, and Ctla2a were inversely correlated with the myeloid 
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branch (Stein and Baldwin 2013). The expression of Smim1, which encodes an erythroid 

transmembrane protein, marked the tip of the erythroid trajectory, while Coro1a expression was 

higher in the less differentiated cells (Storry et al. 2013). Finally, Tyms, a gene involved in DNA 

replication and repair, was identified as a transition gene moving away from the lymphoid 

trajectory (Ozer et al. 2015). Ltb (Fig. 3.9D), involved in normal lymphoid organogenesis, was the 

transition gene identified towards the lymphoid trajectory (Koni et al. 1997). Except for Ltb, these 

genes were not identified in previous analyses, such as hierarchical clustering, demonstrating that 

STREAM can be used to find novel genes of interest. 
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Figure 3.9. STREAM analysis reveals information about pseudotime ordering in the HSPC differentiation 

landscape. (a) Subway plot of the scRNA-seq data visualised based on its pseudotime ordering. Cells are coloured 

based on cell type. The trajectories are ordered and coloured for the user to easily manipulate the data. S2-S1 (blue) – 

HSC to first branching point; S1-S0 (green) –lymphoid trajectory; S1-S3 (orange) – branch into myeloid and erythroid 

trajectories; S3-S4 (purple) – myeloid trajectory; S3-S5 (red) – erythroid trajectory (b) Stream plot of the scRNA-seq 
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data visualised based on its pseudotime ordering. The width of each branch is proportional to the total number of cells. 

Branches are coloured based on cell type composition. HSCs – turquoise; CMP – red; MEP – blue; MPP – yellow; 

GMP – green; LMPP – brown. (c) Stream plots of all cells coloured based on the expression of selected genes. The 

genes chosen were previously used in Figure 3.4 to mark branches within the diffusion map. (d) Stream plots of genes 

identified to be differentially expressed between erythroid and myeloid branches. (e) Stream plots of genes identified 

to be correlated with the pseudotime ordering on the HSC branch. Genes are ordered based on which branch they are 

associated with (moving from HSCs to erythroid). 

 

3.9. Visualising HSPCs and capturing rare populations using SPRING 

The diffusion map and STREAM analysis both revealed three differentiation trajectories within 

the scRNA-seq dataset. However, neither method is able to capture the full complexity of the data 

in a two-dimensional plot. A new visualisation method, SPRING, uses a force-directed layout of 

k-nearest neighbour graphs to capture long-distance relationships between cells (Weinreb, Wolock, 

and Klein 2018). SPRING brings similar cells together and repels cells which differ based on their 

gene expression while ensuring all cells remain connected via nodes. SPRING can visualise 

continuous expression topologies and could be a useful tool for uncovering biological processes 

that were not captured by previous approaches.  

The Klein lab used our scRNA-seq dataset to demonstrate SPRING using their interactive web-

tool. The online interface allows the user to compare gene expression profiles, focus on 

subpopulations within the data, and potentially discover marker genes. SPRING is available at the 

following link: https://kleintools.hms.harvard.edu/tools/spring.html 

Cell populations, determined by retrospective gating using index-sorting data, were visualised 

using the SPRING web-tool (Fig. 3.10). The SPRING plot recapitulated a similar pattern compared 

to the diffusion map, with LT-HSCs, LMPPs, GMPs and MEPs forming distinct branches. LT-

HSCs and LMPPs were found close together and MEPs formed a long protrusion from the dataset. 

GMPs, however, formed a branch that is more separated and elongated than in the diffusion map. 

Furthermore, the presence of five additional small branches on the SPRING plot suggests that there 

are other lineages represented in the data that were not captured by the diffusion map or STREAM 

(Fig. 3.11). 

https://kleintools.hms.harvard.edu/tools/spring.html
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Figure 3.10. Visualising HSPC populations using the SPRING interface. SPRING plots of all cells coloured based 

on cell types assigned by retrospective gating of the index-data. The population of interest is coloured in purple; all 

other cells are in grey. 
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The expression of the genes Procr, Klf1, Ctsg and Dntt was visualised on SPRING plots to 

represent HSCs, erythroid, myeloid, and lymphoid lineages, respectively (Fig. 3.11A). The cell 

surface marker data and gene expression profiles separate the HSPC populations well. The 

SPRING interface allows the user to select cells of interest to reveal their expression profiles. This 

tool was used to identify the additional branches and to better determine genes involved in 

differentiation towards these lineages. Differential expression analysis was performed on the 

remaining branches and the top differentially expressed gene for each branch was visualised (Fig. 

3.11B). Gb1pp is a gene encoding for part of a platelet complex and may mark the megakaryocyte 

lineage (Savoia et al. 2011). Ltf, which encodes for an iron-binding protein, has been previously 

identified as a late-stage differentiation marker of neutrophils, macrophages, and subtypes of 

dendritic cells (Kovacic et al. 2014). Ltf may therefore be marking a myeloid lineage. Ms4a2 is 

expressed in mast cells and basophils and its presence in a distinct branch on the SPRING plot 

could indicate an early point in the mast cell/basophil lineage (Dwyer et al. 2016). Ly6c2 was 

expressed at the tip of the GMP branch and encodes for Ly6C, a marker for inflammatory 

monocytes (J. Yang et al. 2014). Cd19 is a reliable B-cell marker, which is expressed from pre-B 

cells until differentiation into plasma cells (K. Wang, Wei, and Liu 2012). Its expression was close 

to the LMPP population, and its presence in a distinct branch of the SPRING plot could indicate 

cells differentiating into B-cells. Il7r marks a cell’s entry into the lymphoid lineage and is expressed 

in common lymphoid progenitors (J. Wang et al. 2012). Finally, Ifit3b is an uncharacterised gene 

within the IFIT family, which are induced by interferon and have anti-viral functions (Vladimer, 

Górna, and Superti-Furga 2014). IFIT3 expression is induced in human dendritic cells in response 

to viral infections (Y.-L. Hsu et al. 2013). Therefore, the branch of cells expressing Ifit3b could 

indicate an early point in differentiation towards dendritic cells. 

The genes identified by SPRING analysis to be the top differentially expressed genes in each 

branch were also plotted on the diffusion map for comparison (Fig. 3.11C). Except for Il7r and 

Ly6c2, the expression of the selected genes is more disperse. Gb1pp has concentrated expression 

at the start of the erythroid lineage branch and Ms4a2 is expressed in the CMP/MEP regions. Ltf 

and Cd19 are expressed by few cells and are difficult to identify on the diffusion map. SPRING 

analysis therefore appears to capture more of the biological relationships within the data and reveals 

lineages previously obscured within the bulk of the landscape, allowing for deeper interrogation of 

trajectories along the HSPC differentiation landscape. 
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Figure 3.11. SPRING analysis captures rare populations in the HSPC differentiation atlas. (a) SPRING plot of 

all cells coloured based on the expression of selected genes. The genes chosen were previously used in Figure 3.4 to 

mark branches within the diffusion map. (b) SPRING plot of all cells coloured based on the expression of selected 

genes. The genes chosen were identified by SPRING analysis to be the top differentially expressed gene for each 

branch. (c) Diffusion map of all cells coloured based on the expression of selected genes. The genes chosen were 

identified by SPRING analysis to be the top differentially expressed gene for each branch. The colour corresponds to 

a log2 scale of expression ranging between 0 and the maximum value for each gene. DC: Diffusion Component. 
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3.10. Conclusions 

The main aim of this chapter was to generate a comprehensive atlas of HSPC differentiation. This 

was achieved by isolating individual cells from mouse bone marrow and profiling them by scRNA-

seq. The isolated cells encompassed HSCs and early progenitor populations to create a thorough 

depiction of the transcriptional landscape of early HSPC differentiation. The resulting landscape 

was then interrogated by pseudotime ordering and differential expression analysis to better 

understand the differentiation trajectories captured in the data. 

The cells were isolated using two broad sorting gates and an additional LT-HSC sorting gate. The 

gates used captured HSC and progenitor populations from known sorting strategies without 

specifying narrow restrictions. In doing so, the aim was to capture stepwise processes that may 

exist outside of narrowly defined population gates and may fill in gaps within the differentiation 

continuum. Surface marker and gene expression showed that retrospective gating using the index 

sorting data correctly placed all the HSPC populations. The data was visualised using a diffusion 

map, a recently developed non-linear dimensionality reduction method that was particularly 

designed to capture the branching structure in single-cell data (Haghverdi, Buettner, and Theis 

2015). Previously defined HSPC populations were restricted to distinct regions on the diffusion 

map, with the exception of the CMP population. Unsupervised clustering grouped the data into five 

broad clusters. CMPs were represented mostly in clusters 3 and 4 which consisted of cells of all 

populations, and in total were present in four of the five clusters. The clustering and diffusion map 

visualisation show CMPs are a highly heterogeneous population, and in fact previous investigations 

have also suggested that CMPs are mainly erythroid- or myeloid-committed cells (Paul et al. 2015; 

Perié et al. 2015).  

Pseudotime ordering was performed on the diffusion map, ordering cells during differentiation 

based on their gene expression profiles. The ordering revealed three trajectories through the data 

from stem cells to erythroid, myeloid/granulocyte-macrophage, and lymphoid lineages. Surface 

marker expression was ordered along pseudotime and showed cells increased in cell size as they 

differentiated, particularly in the erythroid and granulocyte-macrophage lineages. This was 

consistent with MEP, CMP and GMP cells representing more mature cells compared to LMPPs, 

which are earlier progenitors along the lymphoid trajectory. GSEA was performed on genes up- 

and down-regulated along the lineages and showed that the erythroid and myeloid lineages had an 

upregulation in cell-cycle related terms, whereas the lymphoid trajectory did not. This suggests that 
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cell-fate specification occurred independently of cell cycling. However, there were few genes 

associated with the lymphoid trajectory. Cell cycle analysis was performed and reported in the 

Nestorowa et al. (2016) publication, in which cells were assigned to G0/G1, S and G2/M cell cycle 

categories (Scialdone et al. 2015). The distribution of cells across these cell cycle categories 

correlated well with the enrichment of cell cycle terms in genes upregulated in the E and GM 

trajectories. The analysis also showed that the large-scale transitioning of cells to S and G2/M 

phases occurred after the divergence of the L trajectory from the E and GM trajectories, supporting 

the evidence presented in this thesis suggesting that the transition to rapid cell cycling is secondary 

to transcriptional diversification (Nestorowa et al. 2016). Overall, the diffusion map was a useful 

tool for visualising the branching structure of the data and identifying differentiation lineages, 

which differ in their cell type composition as well as surface marker and gene expression patterns. 

Since the publication of the paper associated with this chapter, a number of interactive web-tools 

were developed for analysing and visualising scRNA-seq data. One of the great advantages of these 

web-tools is their accessibility for researchers with limited bioinformatics knowledge; on the 

flipside, these tools limit the investigator’s input into the analysis of the data and can be difficult 

to use if issues arise. STREAM and SPRING are two recently developed web-tools which were 

used in this chapter to elucidate more information about the differentiation trajectories (Weinreb, 

Wolock, and Klein 2018; H. Chen et al. 2018). STREAM analysis defined three trajectories within 

the data but suggested that the bifurcation event towards myeloid and erythroid trajectories occurs 

after the lymphoid branch is formed, consistent with the classic view of the haematopoeitic 

hierarchy. Uniquely, STREAM inputs cell composition data into its pseudotime ordering 

visualisation. This clearly represents the cell types present and their density at any given point in 

the pseudotime ordering, which is useful for understanding the structure of the lineages. This is, 

however, limited to the data provided by the user. The data analysed in this chapter was 

precomputed by Chen et al. to demonstrate the use of STREAM (H. Chen et al. 2018). They 

classified the cells into HSCs, LMPPs, CMPs, MEPs and GMPs, leaving out FSR-HSCs and the 

subpopulations of MPPs. It would be useful to see how the density of cell types would be affected 

if the data was fully annotated. Using STREAM, genes involved in branching points within the 

data were identified. Furthermore, genes that correlated with pseudotime along the myeloid, 

erythroid, and lymphoid branches were identified, which may be useful for recognising patterns of 

gene up- and down-regulation that result in particular cell phenotypes. The genes found by 
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STREAM were not identified using the hierarchical clustering or diffusion map, suggesting that 

STREAM has the potential to identify novel markers for HSPC populations. 

STREAM and diffusion map analysis are both informative methods for analysing scRNA-seq data 

but are limited in the dimensions used for capturing the structure of the data. Although using more 

dimensions may increase the power to decipher which genes may be driving lineage decisions, it 

can also introduce noise into the analysis as the high-dimensional space is sparser. As such, neither 

STREAM nor diffusion map analyses are able to fully capture the structure within a dataset. In 

contrast, SPRING captures long-distance relationships in the data. Using a force-directed layout 

algorithm, SPRING can visualise continuous expression topologies within an interactive web 

interface (Weinreb, Wolock, and Klein 2018). SPRING analysis separated the HSPC atlas into 

eight branches. The main erythroid, myeloid and lymphoid trajectories were represented in the 

dataset. Additionally, SPRING identified branches into megakaryocyte, neutrophil, mast 

cell/basophil, and B-cell lineages. These lineages were obscured in the bulk of the HSPC atlas in 

both STREAM and diffusion map visualisations but were captured using SPRING. This tool allows 

for more specificity when looking at the differential expression of genes in a specific lineage, and 

therefore may be superior for interrogating the HSPC differentiation landscape. 

3.10.1. Limitations & future work 

As previously mentioned, the diffusion map and STREAM analyses were unable to fully represent 

the differentiation lineages in the HSPC landscape. This shortcoming was addressed by SPRING, 

which captured five additional trajectories in the data. Future work should include exploring 

pseudotime ordering on the SPRING plot to capture gene expression changes occurring towards 

more specific blood lineages. 

In every visualisation method used to show the HSPC landscape, the lymphoid branch was shorter 

than the myeloid and erythroid branches. This is due to the sorting gates being focused on capturing 

cells of the myeloid and erythroid lineages, only including LMPPs as representatives of the 

lymphoid branch. A lack of lymphoid cells resulted in a limited analysis of transition genes in the 

lymphoid branch using STREAM, where only Ltb was identified as transitioning towards the 

lymphoid trajectory. To full recapitulate the landscape of HSC differentiation into early blood 

progenitors, more cells of the lymphoid lineage would need to be represented. 
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Limitations also exist in the transcriptional profiling method itself. scRNA-seq profiling is 

associated with a substantial cost of sequencing, limiting the number of cells profiled based on 

budget. Furthermore, scRNA-seq has a limited quantitative range and can suffer from dropout 

events which cause technical and biological noise. To investigate the regulatory relationships 

controlling cell-fate decisions, a more directed approach could be taken. High-throughput 

quantitative real-time PCR could be used to further interrogate single cell data and identify dynamic 

gene expression through differentiation within a specific subset of genes. This will be further 

explored in Chapters 5 and 6. 

The HSPC atlas is a great tool for visualising the expression of specific genes to guide in vitro 

investigations. It could be used to interrogate genes important to characteristics of populations of 

interest, such as HSCs. This will be further explored in Chapter 4. 

3.10.2. Summary 

In summary, scRNA-seq analysis of 1,654 HSPCs resulted in a comprehensive atlas of 

haematopoietic differentiation. The investigation showed how single-cell profiling can give insight 

into many aspects of differentiation, identifying genes involved in branch points and transitions 

through pseudotime. Furthermore, SPRING analysis demonstrated the breadth of biological 

relationships present in the HSPC differentiation landscape. 
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Chapter 4: CRISPR screening of HSC-enriched genes 

 

4.1. Background 

Haematopoietic stem cells (HSCs) sit at the apex of the haematopoietic differentiation hierarchy 

and have the capacity to self-renew as well as differentiate into all adult blood cells (Morrison, 

Uchida, and Weissman 1995). For three decades, there have been intense efforts to molecularly 

and functionally characterise HSCs, and researchers have developed protocols to isolate 

increasingly refined haematopoietic stem and progenitor cell (HSPC) populations (Beerman et al. 

2010; Challen et al. 2010; D. G. Kent et al. 2009; Kiel et al. 2005; Morita, Ema, and Nakauchi 

2010). The HSPC atlas described in Chapter 3 contributed to these efforts by providing a 

comprehensive web interface of single-cell transcriptomic data, which can be used to analyse gene 

and surface marker expression in HSPC populations (Nestorowa et al. 2016). 

The HSPC atlas is a great resource to visualise population-specific gene expression trends. Chapter 

3 focused on identifying an appropriate visualisation of the high-dimensionality dataset, as well as 

categorising the differentiation lineages that are captured by the HSPC atlas. The focus of this 

chapter is to identify which genes are important in HSC biology, using the HSPC atlas to identify 

candidate targets specific to long-term HSCs (LT-HSCs).  

In their paper focused on resolving HSC heterogeneity, Wilson et al. identified a subpopulation of 

HSCs that were molecularly similar and included cells isolated by four commonly used sorting 

strategies (N. K. Wilson et al. 2015). This subpopulation was termed the molecularly overlapping 

(MolO) population. Single-cell RNA-sequencing of Lin- Sca1+ c-Kit+ CD34- Flt3- CD48- CD150+ 

HSCs led to the identification of 29 genes that were positively associated with the MolO population 

(Table 4.1). The gene set included Cdkn1c, Ptpn14, and Ifitm1, which are negative regulators of 

cell proliferation, suggesting that the MolO genes are involved in maintaining the HSC state. 

Wilson et al. also performed single-cell transplantation experiments of CD48+ CD150- (SLAM) 

Sca1hi HSCs and recorded the surface marker expression during FACS paired with index sorting. 

This analysis permitted the integration of functional and transcriptional information from cells that 

were sorted on the same day using the same parameters. These cells were compared based on their 

surface phenotype. Cells with similar phenotypes were called SuMO cells (surface marker overlap) 

and analysis of this population revealed 21 genes that were positively associated with repopulating 
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HSCs (Table 4.1) (N. K. Wilson et al. 2015). There was a large degree of overlap between the 

MolO and SuMO gene lists, which gave a high degree of confidence; therefore, the lists were 

combined, resulting in a list of 44 genes associated with functional HSCs.  

Table 4.1. List of all MolO and SuMO genes identified by Wilson et al. (2015). 

MolO Genes SuMO Genes Shared Genes 

Cd82 Cdkn1c Cldn10 Ablim1 Cd74 Ifitm1 

Ctsf Fads3 Fgfr3 Cyp27a1 Gbp6 Ly6a 

Gimap1 Gimap6 Gstm1 Gbp8 Gm4951 Mllt3 

Limd2 Ltb Mettl7a1 Ifitm3 Inhba Procr 

Neil2 Neo1 Pde1b Ly6e Mapk12 Ramp2 

Pdzk1ip1 Ptpn14 Smtnl1 Ndnf Ralgapa1 Sult1a1 

Sox18 Sqrdl Trim47 St8sia4 Tgtp2 
 

Ubl3 Vwf 
 

Wfdc2 
  

 

The Streptococcus pyogenes-derived type II clustered regularly interspaced short palindromic 

repeats (CRISPR)-Cas9 system has become a very successful tool for genome editing (Mali et al. 

2013; Cong et al. 2013). CRISPR sequences, or guide RNAs (gRNA), locate matching target DNA, 

which is cut by Cas9, effectively perturbing the target gene. This tool has been widely used for 

genetic research in many organisms, including genetic screens for essential genes or therapeutic 

targets (T. Wang et al. 2014; Shi et al. 2015; Shalem et al. 2014; Koike-Yusa et al. 2014). Recently, 

Tzelepis et al. used a Cas9 transgenic mouse to interrogate the genomes of acute myeloid leukaemia 

cells for potential therapeutic targets (Tzelepis et al. 2016). The investigation described in this 

chapter uses CRISPR-Cas9 technology to examine whether perturbing the candidate genes 

implicated in HSC biology influences HSC characteristics or function. 

4.1.1. Aims 

The aims of this chapter were to: 

• Identify MolO and SuMO genes uniquely expressed in HSCs using the HSPC atlas 

(Chapter 3) 

• Interrogate the effect of perturbing candidate genes using CRISPR-Cas9 by analysing 

EPCR expression, apoptosis, and differentiation 

These aims were addressed by designing a study that took advantage of CRISPR-Cas9 technology 

and gene profiling previously performed by Wilson et al. (2015). Using flow cytometry and colony-

forming unit (CFU) assays, the impact of perturbing candidate genes on HSPC biology was 

interrogated. 
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4.2. Study design to investigate genes implicated in HSC biology 

To investigate genes implicated in HSC biology, a CRISPR perturbation study was designed (Fig. 

4.1A). Candidate genes were identified from the MolO and SuMO gene sets previously described 

(N. K. Wilson et al. 2015). The list of 44 genes was refined by selecting genes that were more 

highly expressed in LT-HSCs (Section 4.3). First, the expression of each gene was visualised on 

the HSPC scRNA-seq atlas to determine whether it had widespread expression or was concentrated 

in HSCs. Violin plots were drawn for each gene to quantify its expression across all the cell 

populations, only selecting the genes that were most highly expressed in LT-HSCs. Three gRNA 

constructs were designed for each candidate gene using gRNAs from the Brie library or the Broad 

Institute sgRNA designer (Doench et al. 2016). All guides were cloned into a CRISPR gRNA 

expression vector with a GFP marker (pKLV2-U6gRNA5(BbsI)-PGKpuro2AmAG-W). E-SLAM 

HSCs (Lin- CD48- CD150+ CD45+ EPCR+) were isolated from 18-20 week old Cas9 transgenic 

mice, kindly gifted to the Göttgens lab by Dr George Vassiliou (Tzelepis et al. 2016). The E-SLAM 

HSCs were isolated by FACS and aliquots of 250 cells were sorted directly into individual wells 

of a U-bottom 96-well plate containing HSC medium. Cells were transduced with the CRISPR 

gRNA viruses and kept in culture for 10 days; on day 7, approximately half of the cells of each 

well were analysed by flow cytometry for EPCR expression changes (Sections 4.5-4.7). On day 

10, the remaining cells were pooled and sorted for GFP+ Lin- cells, which were put into M3434 

methylcellulose to study colony outputs (Section 4.8). In later experiments, cells were also sorted 

to be used for genotyping analysis (Section 4.9). 

To confirm whether the CRISPR study design was valid, a trial experiment was performed in the 

same conditions as planned for the screen but looking at CD45 expression. CD45 is a 

haematopoietic cell-specific antigen and is expressed in most haematopoietic cell types (Ogata et 

al. 2005). A CRISPR gRNA expression vector with gRNA targeting the Ptprc gene (encoding the 

CD45 antigen) was provided by Iwo Kucinski. The gRNA expression vector was identical to that 

used for the remainder of the study but contained an alternative reporter gene, mCherry, instead of 

GFP. E-SLAM cells were sorted into HSC medium in a 96-well U-bottom plate and kept in culture 

for 7 days, after which they were analysed by flow cytometry (Fig. 4.1C). In the empty vector 

control, all mCherry+ cells were CD45+ (100.00±0.00% of mCherry+ cells). In contrast, cells that 

were mCherry+ after treatment with the Ptprc gRNA expression vector were predominantly CD45- 

(94.70±8.67% of mCherry+ cells). These results demonstrated that the CRISPR gRNA successfully 
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perturbed the Ptprc gene in E-SLAM cells; furthermore, it indicated that the culture conditions 

were suitable for the CRISPR screen. 

 

Figure 4.1. Study design to investigate genes implicated in HSC biology. (A) Schematic of study design. Candidate 

genes were identified from the MolO and SuMO gene sets based of their expression patterns. gRNAs for each candidate 

gene were cloned into a CRISPR gRNA expression construct and transduced into E-SLAM HSCs from Cas9 transgenic 

mice. On day 7, cells were analysed for EPCR expression by flow cytometry. On day 10, cells were placed into CFU 

assays, which were analysed on day 20. (B) CD45 expression in E-SLAM cells treated with empty vector (control) or 

a Ptprc gRNA expression vector, analysed by flow cytometry after 7 days. CD45 is plotted against mCherry to 

distinguish cells that were not successfully infected with the mCherry vectors. A representative plot is shown. Table 

below the flow cytometry plots denotes the percentage of mCherry+ cells expressing CD45 in both samples (n = 3; 

mean ± SD). 

 

4.3. Identifying candidate genes important to HSC characteristics 

To identify potential regulators of the HSC state, candidate genes were selected from the MolO 

and SuMO gene sets identified by Wilson et al., as these represented genes associated with a 

molecularly similar HSC population and repopulating HSCs (N. K. Wilson et al. 2015). Initially, 

the expression of each gene was plotted on the HSPC atlas described in Chapter 3 (Fig. 4.2-4.4). 

The HSPC atlas was structured based on the gene expression of 1,654 single cells describing HSPC 

populations. The LT-HSCs (Lin- Sca1+ c-Kit+ Flk2- CD34-) were found at the top of the branching 
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structure, and the E-SLAM HSCs (Lin- CD48- CD150+ CD45+ EPCR+) formed a more 

homogenous sub-cluster of the LT-HSC population (Fig. 4.2A). Twelve of the 44 genes were 

specifically expressed in the LT-HSCs only (Fig. 4.2B) including the recently suggested HSC 

marker Neo1 (de Haan et al. 2017; Balazs et al. 2006). Seven more genes were most highly 

expressed in LT-HSCs but also expressed in neighbouring populations (Fig. 4.2C). This group of 

genes included the HSC marker Procr, the expression of which minimally extended outside the 

LT-HSCs, and Pdzk1ip1, which was also expressed in MEPs.  

The genes which were also expressed in early progenitor cells were not outright eliminated as 

candidates; instead, their expression in the individual HSPC populations was quantified and 

assessed using violin plots (Fig. 4.3/4.4). All genes had varying expression in the HSPC 

populations; however, all the selected candidate genes had highest expression in LT-HSCs, and 

more specifically, E-SLAM cells (Fig. 4.3/4.4A). Some genes were also expressed in MPPs, 

including Pdzk1ip1 and Trim47, but as their expression was still highest in the HSC populations, 

they were not excluded from the study. Gbp6, Mapk12, and Neil2, on the other hand, appeared to 

have relatively LT-HSC specific expression, yet the violin plots revealed their expression was 

similar across all populations, most likely due to very few cells expressing these genes at high 

levels (Fig. 4.4B). These genes were excluded from the study, along with 25 genes that were 

eliminated outright based on their expression outside the LT-HSC population (Fig. 4.5). 
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Figure 4.2. Expression plots of potential candidate genes for the CRISPR study. (A) Diffusion map of the HSPC 

atlas described in Chapter 3. LT-HSCs (Lin- Sca1+ c-Kit+ Flk2- CD34-) and E-SLAM cells (Lin- CD48- CD150+ CD45+ 

EPCR+) are coloured in purple and were assigned by retrospective gating. (B-C) Diffusion map of all cells coloured 

based on the expression of selected genes from the MolO and SuMO gene sets. Genes in (B) are specifically expressed 

in LT-HSCs, whereas genes in (C) are also expressed outside of the LT-HSC population to a varying extent. The colour 

corresponds to a log2 scale of expression ranging between 0 and the maximum value for each gene. Genes are ordered 

alphabetically. DC: Diffusion Component. 
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Figure 4.3. Violin plots for selected candidate genes. Violin plots detailing the expression of selected genes in 

specific HSPC populations. The width of each bar corresponds to the number of cells expressing the gene at the 

corresponding expression level; the red dot denotes the median expression of the gene in each population. Genes are 

ordered alphabetically.  
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Figure 4.4. Violin plots for selected and discarded candidate genes (continued). Violin plots detailing the 

expression of selected genes in specific HSPC populations. The width of each bar corresponds to the number of cells 

expressing the gene at the corresponding expression level; the red dot denotes the median expression of the gene in 

each population. Genes are ordered alphabetically. (A) Continuation of candidate genes selected for the CRISPR study. 

(B) Expression of Gbp6, Mapk12 and Neil2 in HSPC populations. Although these genes appeared relatively HSC-

specific on the HSPC atlas, they were excluded from further analysis based on their relatively constant expression 

across the atlas. 
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Figure 4.5. Expression plots of MolO and SuMO genes eliminated as candidates for the CRISPR study. Diffusion 

map of all cells coloured based on the expression of selected genes from the MolO and SuMO gene sets. These genes 

had broader expression across the HSPC atlas and were therefore excluded from the study. The colour corresponds to 

a log2 scale of expression ranging between 0 and the maximum value for each gene. DC: Diffusion Component. 
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4.4. CRISPR screen candidate genes 

The gene list was narrowed down to 16 candidates based on their expression across the HSPC atlas. 

These 16 remaining candidates were more highly expressed in LT-HSCs and were therefore a good 

starting point for investigating the effect of perturbing HSC-enriched genes on HSC biology. These 

candidates are described in Table 4.2. As these genes were identified from a scRNA-seq 

experiment, rather than a curated haematopoiesis-specific list, many of the genes are poorly 

characterised and currently do not have a reported functional role in HSC biology. It may therefore 

be possible to discover novel HSC regulator candidates from this gene list. 

 

Table 4.2. Properties of candidate genes selected for the CRISPR screen. Genes are ordered alphabetically. 

Gene Summary 

Cdkn1c • Cyclin dependent kinase inhibitor (p57) 

• Implicated in HSC quiescence 

• HSCs deficient in p57 have deficits in self-renewal and maintenance (Matsumoto et al. 

2011; Zou et al. 2011) 

Fgfr3 • Fibroblast growth factor (FGF) receptor 

• Involved in the negative regulation of definitive haematopoiesis during embryonic 

development (Pouget et al. 2014) 

• FGF signalling positively regulates adult HSCs (de Haan et al. 2003; Yeoh et al. 2006) 

Gbp8 • Guanylate binding protein 

• Induced by interferon (Olszewski, Gray, and Vestal 2006) 

• Highly expressed in HSCs compared to the progenitor compartment (Ali et al. 2017) 

Gm4951 • Interferon-gamma inducible GTPase 

• Higher expression in HSCs than progenitors 

• Induced by macrophages (Gautier et al. 2012) 

Inhba • Inhibin beta A 

• Differentially expressed in megakaryopoiesis during human HSC differentiation 

(Komor et al. 2005) 

Ndnf • Neuron-derived neurotrophic factor 

• Downregulated during differentiation towards MPP1 (Cabezas-Wallscheid et al. 2014) 

Neo1 • Neogenin-1 

• Recently identified as a marker and key regulator of HSC function (de Haan et al. 

2017) 

• Regulates HSC quiescence and maintenance (Renders et al. 2017) 

Pde1b • Phosphodiesterase in the PDE1 family 

• Downregulated during differentiation towards MPP1 (Cabezas-Wallscheid et al. 2014) 

• The splice isoform PDE1B2 is upregulated after monocyte to macrophage 

differentiation (Lerner and Epstein 2006) 

Pdzk1ip1 • PDZK1-interacting protein 1/Map17 

• Expressed in HSCs but reduced in more differentiated cells (Cabezas-Wallscheid et al. 

2014) 

• Preferentially expressed in HSCs with the most undifferentiated phenotype and lowest 

proliferation rate (Sawai et al. 2016) 
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Gene Summary 

Procr • Endothelial protein C receptor (EPCR) 

• Marker of haematopoietic stem cells (Balazs et al. 2006) 

Ramp2 • Receptor activity modifying protein 

• Essential in vasculogenesis (Ichikawa-Shindo et al. 2008) 

Smtnl1 • Smoothelin-like 1 

• Modulates smooth muscle contraction and relaxation (Borman, MacDonald, and 

Haystead 2004) 

Sox18 • SRY-box 18 transcription factor 

• Upregulated in LT-HSCs compared to MPPs (Forsberg et al. 2005) 

• Implicated in vascular development (Hosking et al. 2004) 

Sult1a1 • Sulfotransferase 

• Knockout mice are viable and have normal HSC function (Gazit et al. 2014) 

Trim47 • Tripartite motif containing protein (GOA) 

• Trim47 is not functionally described in HSCs but has been identified as a candidate 

HSC gene (Gerrits et al. 2009; N. K. Wilson et al. 2015) 

Wfdc2 • WAP four-disulphide core domain protein (HE4) 

• Protease inhibitor that may function in innate immunity (Chhikara et al. 2012) 

• Increased expression in ovarian carcinomas (Drapkin et al. 2005) 
 

4.5. Isolation and analysis of E-SLAM HSCs using flow cytometry 

Flow cytometry was used throughout this investigation to both isolate and analyse HSCs before 

and after treatment with gRNA expression vectors. Cells were isolated directly into a 96-well U-

bottom plate using FACS (Fig. 4.6A). E-SLAM HSCs (Lin- CD48- CD150+ CD45+ EPCR+) were 

sorted as this isolation strategy enriches for cells that have multilineage and self-renewal potential 

at a high purity (D. G. Kent et al. 2009). Cells were isolated from both female and male Cas9 

transgenic mice between 18 and 20 weeks old; 250 cells were sorted per well directly into HSC 

medium. Three replicate wells for each construct, including empty vector and cell-only controls, 

were obtained for each experiment. Once the cells were transduced with the individual gRNA 

expression vectors, they were kept in culture for 10 days with regular medium changes. 

On day 7, approximately half of the cells in each well were stained with antibodies for flow 

cytometric analysis (Fig. 4.6B). Many surface makers change their expression in in vitro culture 

due to the culturing process as well as biological changes occurring to the cells; therefore, the full 

panel of stem cell and progenitor markers could not be used. The study focused on EPCR 

expression as it is an established marker of functional HSCs; a change in EPCR expression would 

suggest than the gene perturbations affected the proportion of cells in a primitive HSC state in 

culture. To determine whether treatment with the various gRNA expression vectors influenced 

EPCR expression, cells were first gated based on GFP expression. The percentage of EPCR+ 
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Sca1+ cells (EPCR+) in the GFP+ Lin- population was initially recorded. However, gating on the 

EPCR+ population is subjective as the investigator decides where to set the gates. Furthermore, 

there is only a small number of EPCR+ cells in culture, and integration of the different experiments 

across different days is challenging due to the differences in the intensity of fluorescent markers. 

Therefore, median EPCR expression in GFP+ Lin- cells was also recorded for a more objective 

measure of the effect of perturbing genes implicated in HSC biology. 

Later in the experiment, Annexin V BUV395 was added to the day 7 staining panel. Annexin V is 

a Ca2+-dependent phospholipid binding protein that binds membrane phosphatidylserine that has 

translocated to the cell surface, an early event occurring during cell apoptosis (Hingorani et al. 

2011). Annexin V was included to determine whether the CRISPR gRNAs caused apoptosis in the 

perturbed cells. To determine whether the cells were dying or already dead, 7-AAD was also used: 

apoptosing cells were Annexin V positive but 7-AAD negative, whereas dead cells were positive 

for both markers (Fig. 4.6C).  

The cells that were not analysed on day 7 were pooled for each replicate and kept in culture for 

three more days to be sorted for CFU assays and genotyping (Section 4.8-4.9). On day 10, cells 

were sorted based on GFP expression only. For CFU assays, 100, 200 or 400 cells were sorted into 

HSC medium, transferred into M3434 methylcellulose, and plated in 6-well SmartDishTM plates, 

to be kept in culture for an additional 10 days. Where possible, the remaining cells were sorted into 

FACS buffer (2%FBS/PBS) to be used for genotyping analysis. 
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Figure 4.6. Flow cytometry sorting and analysis strategies for E-SLAM cells. (A) Sorting strategy for isolating E-

SLAM cells (Lin- CD48- CD150+ CD45+ EPCR+) (B) Gating strategy for analysing EPCR expression on day 7 after 

treatment of E-SLAM cells with gRNA expression vectors. Cells were gated based on GFP, Lineage marker (Lin), 

EPCR and Sca1 expression. The percentage of EPCR+ Sca1+ cells in the Lin- and GFP+ gates was recorded, along with 

the median EPCR expression of Lin- cells. (C) Gating strategy for analysing apoptosis on day 7 after treatment of E-

SLAM cells with gRNA expression vectors. Cells were gated on GFP, 7-AAD and Annexin V expression. Apoptosing 

cells were negative for 7-AAD and positive for Annexin V. 
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4.6. Effect of candidate gene perturbations on EPCR expression in E-SLAM 

cells 

To investigate the effect of perturbing the candidate genes on HSC characteristics, EPCR 

expression was analysed by flow cytometry after culturing the cells for seven days. EPCR has been 

shown to be representative of HSC activity even after in vitro culture, and was therefore the focus 

of this investigation (Balazs et al. 2006).  

The investigation was performed over twelve separate screens due to the rarity of E-SLAM cells, 

as well as limitations in the numbers of mice and FACS time available. The percentage of 

EPCR+ cells in the GFP+ Lin- population was recorded for each gRNA used and normalised to the 

empty vector control (Fig. 4.7A). The percentage of EPCR+ cells does not significantly change 

compared to the empty vector for the majority of candidate genes. Two Ramp2 gRNAs, Ramp2_g1 

and Ramp2_g2, appeared to cause a significant increase in EPCR+ cells (p<0.0001). In one screen, 

there were technical issues with the empty vector, but the cell-only control, which was a sample of 

EPCR+ cells that was not treated with any gRNAs, was consistent with the cell-only controls and 

empty vector controls in the other eleven screens. The samples from this screen were therefore 

normalised against the cell-only control (denoted with a ^ in Fig. 4.6A). All Pdzk1ip1 gRNAs and 

one Wfdc2 gRNA caused a significant increase in the percentage of EPCR+ cells.  

However, it is difficult to have confidence in these percentages when gating on small numbers of 

cells. Visualising the flow cytometry results showed that large differences in percentages could 

actually be caused by very small changes in cell numbers (Fig. 4.7B). All gRNAs targeting 

Pdzk1ip1 caused a significant increase in the percentage of EPCR+ cells compared to the cell-only 

control. However, the figures clearly show that the cell-only control had more cells than any of the 

Pdzk1ip1 samples. Furthermore, the numbers of cells that contribute to the EPCR+ population 

varies greatly between replicates for each individual gRNA: for the Pdzk1ip1_g1 samples, the 

EPCR+ population includes 10, 2 and 4 cells in the individual replicates (an average of 5.33±4.16 

EPCR+ cells overall). Therefore, it is difficult to draw conclusions from these percentages and be 

confident that the statistical significance reflects biologically significant results. 
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Figure 4.7. Changes in the percentage of EPCR+ cells after candidate gene perturbation. (A) EPCR expression 

after candidate gene perturbation, represented by the normalised percentage of EPCR+ cells. All results are normalised 

to the empty vector, except for those marked with a ^, which were normalised against the cell-only control due to a 

technical issue with the empty vector. Samples are shown according to the gRNA with which they were treated. The 

dotted line marks the normalised EPCR expression of the empty vector for easy comparison. Flow analysis was 

performed seven days after E-SLAM cells were transduced with CRISPR gRNAs targeting HSC candidate genes. 

Significance was determined using a one-way ANOVA and Dunnett’s multiple comparisons test. Mean ± SD (n = 3); 

* p<0.05; ** p<0.01; *** p<0.001; ****p<0.0001 (B) Example flow cytometry plots of the percentage of EPCR+ cells 

present in culture seven days after candidate gene perturbation. The gating strategy for these cells was: GFP+ Lin- 

EPCR+ Sca1+, as described in Fig. 4.6. The numbers in each plot denote the percentage of EPCR+ Sca1+ cells in the 

GFP+ Lin- population. 

 

Compared to measuring expression changes using percentages, median fluorescence intensity 

measurement is a more objective approach to visualising changes in surface marker expression that 

is also less affected by fluctuations in cell numbers. Within a selected gate, the median fluorescence 

of any fluorophore used in the antibody-staining panel can be calculated. The results can then be 

compared to an empty vector or untreated control to determine whether there was a shift in surface 

marker expression.  

Median EPCR expression was measured for GFP+ Lin- cells in the perturbed samples. Normalising 

the median EPCR expression to the empty vector showed that the perturbations did not significantly 

affect EPCR expression for most candidates, and previous candidates, identified from the 

percentages of EPCR+ cells, are no longer valid (Fig. 4.8A). Procr encodes the EPCR protein and 
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was included as this gene is highly expressed in HSCs and serves as a control as perturbation of 

Procr should significantly reduce EPCR expression. Two Procr guides, Procr_g1(p<0.0001) and 

Procr_g2 (p<0.01) showed decreased median expression. The Ramp2 guide Ramp2_g1 caused a 

significant increase in median expression (p<0.01), as did the Wfdc2 guide, Wfdc2_g2 (p<0.0001). 

Wfdc2_g3 (p<0.01), on the other hand, significantly decreased EPCR expression in GFP+ Lin- 

cells. The significant increase in EPCR+ cells caused by perturbing Pdzk1ip1 was not reflected in 

the median EPCR expression. 

The significant results observed were caused by only one or two gRNAs for each gene. In the case 

of Wfdc2, the gRNAs caused opposing results. The median EPCR expression caused by each gRNA 

was pooled for each gene to determine whether their effects remained significant (Fig. 4.8B). Only 

Procr caused a significant perturbation and reduced the median EPCR expression by 33% 

compared to the empty vector (0.67±0.28, p<0.0001). The results obtained by pooling the 

individual gRNA results demonstrate that overall, the candidate gene perturbations did not impact 

EPCR expression and that the effect caused by one gRNA is not enough to draw a conclusion, as 

it could be caused by an off-target effect and may not accurately represent the perturbed phenotype. 
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Figure 4.8. Changes in median EPCR expression after candidate gene perturbation. (A) EPCR expression after 

candidate gene perturbation, represented by the median EPCR expression in GFP+
 Lin- cells. All results are normalised 

to the empty vector, except for those marked with a ^, which were normalised against the cell-only control due to a 

technical issue with the empty vector. Samples are shown according to the gRNA with which they were treated. The 

dotted line marks the normalised EPCR expression of the empty vector for easy comparison. Flow analysis was 

performed seven days after E-SLAM cells were transduced with gRNAs targeting HSC candidate genes. Mean ± SD 

(n = 3) (B) Median EPCR expression after candidate gene perturbation, grouped by target gene. The results from 

perturbing cells using three gRNAs for each target gene were pooled. The dotted line marks the normalised EPCR 

expression of the empty vector for easy comparison. Significance was determined using a one-way ANOVA and 

Dunnett’s multiple comparisons test. Mean ± SD (n = 9); * p<0.05; ** p<0.01; *** p<0.001; ****p<0.0001 

 

4.7. Candidate gene perturbation does not influence apoptosis in E-SLAM cells 

All wells started with 250 sorted E-SLAM HSCs; however, on day 7, it was often observed that 

the cells treated with CRISPR gRNAs had variable cell counts. To determine whether the candidate 

gene perturbations were causing apoptosis, which could also contribute to the lack of significant 

change in EPCR expression, Annexin V was added to the staining panel. Annexin V staining 

detects cells in the early stages of apoptosis by binding to membrane phosphatidylserines that have 
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translocated to the cell surface (Hingorani et al. 2011). As it was added to the panel in later screens, 

not all candidate gene perturbations have recorded results for apoptosis (Fig. 4.9). 

Apoptosing cells were marked by a negative 7-AAD and positive Annexin V profile. The 

percentage of live, dead, or apoptosing cells were normalised to the empty vector control in each 

case. No significant differences were observed in all categories (Fig. 4.9A). The number of cells 

that were dead or dying in all samples was variable and contributed to by small cell numbers, 

resulting in large standard deviations for each sample.  

The cells that were perturbed with gRNAs targeting Gbp8 are shown separately due to the great 

amount of variation in the percentage of dead cells in these samples (Fig. 4.9B). Gbp8_g3 appeared 

to increase cell death 284 times more than the empty vector (283.91±491.74); however, visualising 

the data reveals that very few cells are contributing to these results (Fig. 4C). The Gbp8_g3 gRNA 

only had 0.53% efficiency, effectively transducing 77 cells, most of which were live cells. The 

dead cell counts for the Gbp8_g3 replicates show that only one repeat is contributing to the large 

number of dead cells observed (Fig. 4D).  

Overall, there is a great degree of variation in the number of dead and dying cells in the perturbed 

samples; however, this variation appears to be the result of very few cells contributing to these 

populations. Based on these observations, perturbing the candidate genes did not cause a reliably 

detectable change in apoptosis, and therefore an increase in cell death or apoptosis is not the main 

reason for a lack of significant changes in EPCR expression. 
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Figure 4.9. Candidate gene perturbation does not influence apoptosis in E-SLAM cells. (A) Normalised 

percentage of live (left), apoptosing (middle), and dead (right) cells after candidate gene perturbation in E-SLAM cells, 

recorded after seven days in culture. All results are normalised to the empty vector. The dotted line marks the 

percentage of each cell population in the empty vector sample for easy comparison. Mean ± SD (n = 3). (B) Normalised 

percentage of live (left), apoptosing (middle), and dead (right) cells after Gbp8 perturbation in E-SLAM cells, recorded 

after seven days in culture. The percentage of cells in each gate is normalised to the empty vector. These results are 

pictured separately due to the variation in dead cells after Gbp8 perturbation. Mean ± SD (n = 3). (C) Flow cytometry 

plots of the percentage of GFP+ live/apoptosing/dead cells after Gbp8 perturbation with Gbp8_g1 and Gbp8_g2. These 

results are compared to the empty vector. (D) Table showing the number of cells contributing to the dead cell gate in 

the three Gbp8_g3 replicates compared to the empty vector. 
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4.8. Changes in lineage output after candidate gene perturbation in E-SLAM 

cells 

Although significant changes in EPCR expression were not observed for most candidate genes, it 

was still possible that the perturbations may cause a change in colony output due to changes in 

transcriptional networks governing differentiation lineages.  

After E-SLAM HSCs were sorted into 96-well U-bottom plates, they were transduced with 

CRISPR gRNAs targeting the candidate genes and kept in culture for 10 days. On day 10, GFP+ 

cells were sorted from the perturbed samples and cultured in MethoCultTM GF M3434 

(StemCellTechnologies). Either 100, 200 or 400 cells were sorted, resuspended in MethoCult, and 

split between two wells for culturing. On average, these starting cell counts represented 5.5%, 11%, 

and 22% of all GFP+ cells in each sample, respectively. The methylcellulose is supplemented with 

cytokines which support the growth of primitive erythroid progenitors (BFU-E), granulocyte-

macrophage progenitor cells (CFU-G/M/GM), and multi-potential granulocyte, erythroid, 

macrophage, megakaryocyte progenitor cells (CFU-GEMM) (C. L. Miller and Lai 2005). The 

cultures were analysed after 10 days using the STEMvisionTM system, which automatically images 

and counts colonies in haematopoietic CFU assays.  

As CFU assays were added to the protocol for later screens, not all candidate gene perturbations 

have recorded results for colony output (Fig. 4.10). Low cell numbers in the GFP+ Lin- gate and 

limitations in the initial sort (i.e. number of mice available and length of sorting time) meant that 

the assays could not be repeated. The empty vector and cell-only controls were included in every 

screen (n=3). Furthermore, Procr_g1 and Gbp8_g1 were included in two screens (n=2) and give an 

indication of whether the colony output results are reliable. Due to low cell numbers, a 400 starting 

cell culture was not included for Sult1a1 and two Trim47 gRNAs. 

Although all three colony types were measured, there were very few CFU-GEMM and BFU-E 

colonies in all samples, with little variation observed between the perturbations (Fig. 4.10A). The 

predominant colony type was CFU-G/M/GM. The remaining analyses looked at the total colony 

counts only. Visualising the total number of colonies demonstrated a proportional increase in 

colonies produced from increasing numbers of starting cells in all perturbation samples (Fig 

4.10B). This was consistent among the individual gRNAs targeting each candidate gene. Therefore, 

the colony counts for the gRNAs were pooled to compare the lineage output in perturbed samples 
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versus the empty vector control (Fig. 4.10C). These results were collected in three separate 

experiments and the colony counts were normalised against the relevant empty vector for each 

individual screen. Pooling the results for each gRNA made it possible to perform statistical 

analyses, which showed that there were no statistically significant differences in colony output in 

all perturbed samples compared to the empty vector. Therefore, it appears that perturbing the 

candidate genes had no effect on lineage output. 
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Figure 4.10. Changes in lineage output after candidate gene perturbation. GFP+ cells were sorted 10 days after 

infection of E-SLAM HSCs with CRISPR gRNA expression vectors against candidate genes. The cells were sorted at 

100, 200 or 400 starting cell densities and cultured for 10 days in MethoCultTM GF M3434. Only Gbp8_g1 was repeated 

(n = 2), as well as cell-only and empty vector controls, which were included in each individual experiment (n = 3). (A) 

Colony count of BFU-E (left) and CFU-GEMM (right) for all perturbations, resulting from 100, 200 or 400 starting 

cell densities. (B) Total colony output for all perturbations from 100, 200 or 400 starting cell densities. (C) Total colony 

counts normalised to empty vector from 100, 200, and 400 starting cell densities. A dotted line shows the normalised 

colony count for the empty vector sample for easy comparison. The results from each individual gRNA perturbations 

were pooled for each candidate gene (n=3; mean ± SD). Statistical analysis was performed using a one-way ANOVA 

and Dunnett’s multiple comparison test. 
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4.9. Genotyping confirms CRISPR gRNAs are correctly targeting the candidate 

genes 

As the flow analysis and colony assays did not yield significant results, genotyping analysis was 

performed on a sample of perturbed candidate genes to confirm whether the CRISPR gRNAs are 

correctly targeting the genes of interest. 

On day 10 post-infection with CRISPR gRNA expression vectors, GFP+ cells were sorted from 

cells treated with Procr, Trim47 and Wfdc2 gRNAs, as well as an empty vector (WT) control. Procr 

was included because it was used as a control for flow analysis, and therefore it was important to 

confirm whether it was correctly perturbed, whereas Trim47 and Wfdc2 were analysed as a random 

subsample of the candidate genes. The genomic DNA (gDNA) was isolated from each sample and 

prepared for genotyping. Briefly, each target sequence was amplified with specifically designed 

primers, one of which was designed to be 60-100bp away from the 20bp cut site, and the other was 

up to 320bp away, for a total PCR product length of 300-500bp. The sequencing libraries were 

then prepared by adding a unique combination of index primers to each sample. The libraries were 

then pooled and cleaned up, after which they were sent for sequencing on the MiSeq Nano. 

The sequencing results were analysed against a reference sequence for the correct starting 

sequence, perfect matches with the reference sequence, indels and frameshift mutations (Fig. 4.11). 

All samples had at least 60% reads with the correct starting sequence. In the WT samples, at least 

47% of the reads starting with the correct sequence were a perfect match to the reference sequence, 

whereas less than 10% of reads in all CRISPR perturbations (CRISPR KO) matched the reference. 

The CRISPR KOs all had a higher fraction of indels and frameshift mutations than the WT, 

indicating that the genes were successfully targeted by the gRNAs. It was expected that roughly 

two-thirds of the indels would cause frameshift mutations, which is reflected in the results. The 

WT Wfdc2 sample had a relatively high fraction of indels and frameshift mutations, at 31% and 

21%, respectively, which may be due to PCR clean-up issues as well as a high GC content in the 

sequence that may have caused sporadic PCR amplification errors. Overall, it appears that the 

gRNAs designed to perturb the HSC candidate genes were correctly targeting the genes of interest. 
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Figure 4.11. Genotyping analysis indicates the CRISPR gRNAs are correctly targeting the candidate genes.  

Results from genotype sequencing of three candidate gene perturbations samples (CRISPR KO/grey) and a control 

sample (WT/black). (A) Percentage of indels in sequenced samples. (B) Percentage of frameshift mutations in 

sequenced samples. 10,000 reads were analysed for each sample.  

 

4.10. Conclusions 

The main aim of this chapter was to investigate the effect of perturbing genes that were implicated 

in HSC biology. This was attempted by designing a CRISPR screen for a curated gene list and 

assessing changes in HSC characteristics using flow cytometry and CFU-assay analysis.  

Chapter 3, in which the single-cell HSPC atlas was introduced, focused on using different 

dimensionality-reduction methods to best represent the data, as well as ordering cells through 

pseudotime to elucidate lineage trajectories. However, the HSPC atlas could be further used to 

guide in vitro investigations into genes of interest. Gene expression can be visualised across the 

entire HSPC trajectory to determine whether a gene is specific to an HSPC population or expressed 

throughout the entire HSPC compartment; doing so can identify genes from an existing list that 

may be interesting to investigate further. 

To study HSC-specific genes, the gene list used for this investigation was defined from the MolO 

and SuMO gene lists previously described (N. K. Wilson et al. 2015). These genes were positively 

associated with an HSC subpopulation with similar gene expression and in vivo repopulation 

activity, respectively, and were therefore an ideal dataset for investigating genes involved in HSC 
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characteristics. The 16 candidate genes were perturbed in primary E-SLAM cells from Cas9 

transgenic mice using CRISPR gRNA expression vectors with GFP markers. The treated cells were 

cultured and analysed by flow cytometry for changes in EPCR expression and induction of 

apoptosis. CFU-assays were performed to determine whether the gene perturbations influenced 

colony output. 

EPCR is a well-established marker of HSCs and its expression in HSC marks cells with long-term 

bone marrow reconstitution potential (Balazs et al. 2006; Hiroko Iwasaki et al. 2010). To determine 

whether the gene perturbations influenced HSC function, the study focused on changes in EPCR 

expression. EPCR retention in culture is indicative of a more primitive cell that should not express 

lineage markers and should be less proliferate; therefore, a decrease in EPCR positive cells could 

indicate a loss of cells that are in a primitive HSC state and a potential skewing towards more 

mature progenitor populations. Changes in EPCR expression were assessed as both a percentage 

of GFP+ Lin- cells, as well as the median EPCR expression in the same population. The number of 

EPCR+ cells after seven days in culture was variable but generally very low, and therefore 

percentages were determined by a small number of cells and difficult to compare between 

experiments. Median EPCR expression was considered a more objective measure, as it did not 

require any gate setting by the investigator and was a more accurate representation of EPCR 

expression in the perturbed cells. Interestingly, no significant decreases in EPCR expression were 

noted, except for in the Procr treated cells. Procr encodes the EPCR protein; therefore, it was 

reassuring to see that perturbing this gene significantly reduced EPCR expression in this study 

design. 

The effect of candidate gene perturbation on apoptosis was also interrogated to determine whether 

an increase in apoptosis influenced the lack of significant results observed. Apoptosing cells were 

marked by positive Annexin V and negative 7-AAD expression; however, none of the perturbations 

caused a significant change in the percentage of live, dead, or apoptosing cells. Overall, it appears 

that after 10 days in culture, the gene perturbations did not impact EPCR expression nor apoptosis.  

Although there was a lack of significant changes in surface marker expression, it was possible that 

the candidate gene perturbations do not influence EPCR expression but may impact the overall 

colony output of GFP+ cells. CFU assays cultured over 10 days were used to investigate whether 

there was a shift in differentiation potential after perturbing the genes, demonstrated by changes in 

total colony count. The CFU assays were performed using 100, 200, and 400 starting cell densities, 
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which showed a proportional increase in the number of colonies. The results from the gRNAs 

targeting each gene were pooled, allowing for statistical analysis, which showed that the gene 

perturbations did not influence lineage output.  

Due to the lack of significant results observed during flow cytometry and CFU-assay analysis, 

genotyping analysis was performed on a small sample of perturbed candidate genes and confirmed 

that the designed gRNAs were successfully causing indels and frameshift mutations in the treated 

cells.  

The results suggest that while the CRISPR gRNAs were effectively targeting the candidate genes, 

their perturbation did not significantly impact HSC biology when assayed with the in vitro tests 

used in this investigation. Loss of function of a single gene may not necessarily influence the 

overall function of a cell due to genetic compensation or gene redundancies (El-Brolosy and 

Stainier 2017; Velten et al. 2017). However, the lack of significant results also suggests that there 

are weaknesses in the study design, which are discussed below.  

4.10.1. Limitations 

Flow analysis and CFU assays were performed seven and ten days after the initial perturbation, 

respectively. Due to low cell numbers in the Sult1a1 and Trim47 samples, a 400 starting cell culture 

was not included. The reduced cell count may suggest that the gRNAs were killing the cells, which 

may have occurred during an earlier time point and therefore the cells that managed to survive to 

day 10 were less effected. Furthermore, it is possible that analysing the cells at day 7 or day 10 is 

too late and the perturbations may have exerted their effect at an earlier point in the culture. 

However, earlier time points were not measured, and therefore it is not possible to determine 

whether the analyses were performed on the optimal day.  

In analysing the data, it was determined that gating on the EPCR+ population was too subjective, 

as the investigator decided where to set the gates. A Fluorescence Minus One (FMO) control for 

EPCR should have been included to accurately determine the EPCR+ gate. This would have made 

the analysis of the gated population more reliable. 

In each well, 250 cells were transduced with the CRISPR gRNA expression vectors to analyse the 

different perturbations using flow cytometry and CFU assays. Doing bulk studies with HSCs makes 

analysis of changes in surface marker protein expression and colony outputs difficult, as it is 

unclear which HSC gives rise to which cells, and only records the effect of candidate gene 
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perturbations on the population average. Redesigning the study to instead culture single-cells and 

optimise flow cytometry protocols for low cell number analysis may reveal trends in the data that 

were indiscernible at bulk level. Smaller bulk cultures of 10-50 cells may have also helped to make 

out differences in the perturbations. However, a problem with both of these approaches is that the 

perturbation efficiencies would have been greatly reduced. An alternative approach could be to re-

sort the cells into individual wells after the infection, making it possible to efficiently perturb the 

cells and study the effect on HSC function in single cells or small bulk populations. 

The study focused on the loss of EPCR expression, a protein that is already rarely expressed. 

Investigating a negative outcome is always challenging, whereas looking for retention of EPCR 

expression or the gain of a different HSPC marker may have been easier to score. A previous study 

showed that EPCR+ cells lose their long-term repopulation potential and have significantly reduced 

Procr expression after two days in culture (Hiroko Iwasaki et al. 2010). The cells used in this study 

were cultured in different medium conditions, but still call into question whether the study needs 

to be redesigned to interrogate genes important in HSC biology differently.  

Possible suggestions for redesigning the study will be further explored in the thesis discussion 

(Chapter 7). 

4.10.2. Summary 

This chapter aimed to study genes implicated in HSC biology by perturbing them in primary E-

SLAM cells using CRISPR/Cas9 technology. Flow cytometry was used to analyse changes in 

EPCR expression and apoptosis, and CFU-assays interrogated changes in differentiation output. 

Genotyping analysis confirmed that the CRISPR gRNAs were successfully targeting the candidate 

genes and causing indels and frameshift mutations; however, EPCR expression and lineage output 

were not significantly affected by the perturbations. These results suggest that a single gene 

perturbation may not influence a cell’s phenotype due to compensatory mechanisms, or that the 

study design was flawed and requires improvement.  
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Chapter 5: Resolving heterogeneity in HSPC populations 

 

Parts of this chapter have been modified from Hamey et al. (2017). Isolation of HSPCs was 

performed by Sonia Shaw, David Kent and Nicola Wilson. Sonia Shaw and Nicola Wilson 

processed the single cells using the Fluidigm BioMarkTM platform. Sonia Shaw performed the 

quality control and normalisation of single-cell data, as well as all analyses described in this chapter 

unless otherwise stated. Fiona Hamey carried out the pseudotime ordering analysis. 

 

5.1. Background 

In the adult mammalian blood system, haematopoietic stem cells (HSCs) differentiate into all 

mature blood cell types and self-renew to maintain the HSC pool. Individual cells make fate 

choices, but the overall balance of cell types is regulated at the population level. An imbalance in 

the regulation processes can cause biased production of cell types and result in severe blood 

disorders. It is therefore important to understand cell fate decision making and its regulation during 

normal blood cell development. 

Transcriptional regulation is a key process in cell fate decision making, in which the primary 

players are transcription factors that function in complex networks of interactions to regulate gene 

expression (Gottgens 2015; Peter and Davidson 2015). Many existing studies use bulk expression 

data to study transcriptional regulation within the haematopoietic system; however, it is a highly 

heterogeneous system and the intricacies of cell fate regulation may be missed at the population 

level. Recent developments in high-throughput single-cell technologies make it possible to 

investigate how heterogeneity in haematopoietic stem and progenitor cell (HSPC) populations is 

related to fate choices (Paul et al. 2015; N. K. Wilson et al. 2015). Gene expression profiles can be 

obtained at the single-cell level using methods such as scRNA-seq and quantitative real-time PCR 

(qRT-PCR) (Hamey et al. 2016). 

This chapter investigates how HSPC fate decisions are controlled by exploring HSPC heterogeneity 

and using pseudotime ordering to order cells through differentiation (Bendall et al. 2014; Trapnell 

et al. 2014). To provide a sufficient number of cells for this investigation and to ensure that the 

haematopoietic hierarchy is represented comprehensively, a previously published dataset was 
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extended. Wilson et al. used the Fluidigm BioMarkTM platform to profile single HSPCs using qRT-

PCR (N. K. Wilson et al. 2015). They aimed to design an unbiased sorting strategy that enriched 

for functional HSCs at a higher purity, which at the time hovered around 50% for existing strategies 

(Beerman et al. 2010; Morita, Ema, and Nakauchi 2010; Dykstra et al. 2007; Goodell et al. 1996). 

They isolated long-term HSCs using four common sorting strategies, as well as a finite self-renewal 

HSC (FSR-HSC) fraction, lymphoid-primed multipotent progenitors (LMPP), common myeloid 

progenitors (CMP), megakaryocyte-erythroid progenitors (MEP), and granulocyte-monocyte 

progenitors (GMP) (Adolfsson et al. 2005, 2001; D. G. Kent et al. 2009; Kiel, Radice, and Morrison 

2007; Weksberg et al. 2008; Akashi et al. 2000). The expression of 48 genes involved in HSPC 

biology was quantified using single-cell qRT-PCR. The analysis was extended in this investigation 

to include three intermediate progenitor populations to obtain a comprehensive coverage of the 

haematopoietic hierarchy. FSR-HSCs were isolated from murine bone marrow using an alternative 

sorting strategy by fluorescence activated cell sorting (FACS), in addition to multipotent 

progenitors (MPP) and pre-megakaryocyte-erythroid progenitors (PreMegE) (Pronk et al. 2007). 

These populations were profiled using the same single-cell qRT-PCR assays and combined with 

the earlier profiles to provide extensive coverage of murine HSC populations.  

5.1.1. Aims 

The aims of this chapter were to: 

• Isolate intermediate progenitor populations at the single-cell level to compliment the qRT-

PCR data generated by Wilson et al. (2015) and extend coverage of the haematopoietic 

hierarchy 

• Interrogate the qRT-PCR data to better understand heterogeneity and regulatory 

relationships in HSPC populations  

These aims were addressed by profiling FSR-HSCs, PreMegEs, and MPPs from mouse bone 

marrow using qRT-PCR on the Fluidigm BioMarkTM platform. The gene expression profiles 

generated were analysed together with qRT-PCR HSPC data previously generated and published 

by the lab. Using various dimensionality reduction methods and computational analyses, regulatory 

relationships and heterogeneity were explored in the HSPC dataset. 

5.2. Isolation of haematopoietic stem and progenitor cell populations 

To study the transcriptional control of HSPC differentiation, a dataset previously published by the 

Göttgens lab was used as a starting point for this investigation. Wilson et al. used single-cell FACS 
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paired with index sorting to resolve heterogeneity within four LT-HSC populations (N. K. Wilson 

et al. 2015). They isolated 1,975 cells from HSC, FSR-HSC, LMPP, CMP, MEP and GMP 

populations and profiled their gene expression using the Fluidigm BioMarkTM platform (Fig. 5.1A). 

The focus of this study was to identify an enriched HSC population by pairing single-cell functional 

assays with gene expression analysis. As such, most cells collected were part of different HSC 

isolation strategies and the dataset did not provide comprehensive coverage of intermediate 

progenitor populations.  

The results of Chapter 3 demonstrated the value of including intermediate progenitor populations 

to study differentiation trajectories. Additional populations were isolated in this chapter to 

supplement the Wilson et al. dataset and to be able to explore regulatory networks within the 

haematopoietic hierarchy, specifically focused on known regulators of the stem cell compartment. 

205 cells from each of the following populations were isolated using single-cell FACS: FSR-HSC2 

(Lin- Sca1+ c-Kit+ Il7Ra- CD34+ Flk2-), MPP (Lin- Sca1+ c-Kit+ Il7Ra- CD34+ Flk2+) (Fig. 5.1B), 

PreMegE (Lin- Sca1- c-Kit+ CD41- CD150+ FcγRII/IIIlow) (Fig. 5.1C). Each population was isolated 

during separate FACS experiments due to time restrictions and complexity of the antibody panels 

(Pronk et al. 2007). Single cells were sorted directly into a 96-well PCR plate containing 10 µl of 

reaction mixture (Section 2.5) and profiled by Fluidigm BioMarkTM analysis (Moignard et al. 

2013). 



116  Resolving heterogeneity in HSPC populations 

 

 

 
Figure 5.1. Isolation of HSPCs for single-cell gene expression analysis. (A) Schematic of the haematopoietic 

hierarchy and the different sorting strategies used to isolate HSPCs. Nine populations were previously isolated and 

published (N. K. Wilson et al. 2015). * indicates the populations sorted specifically for this investigation: FSR-HSC2, 

MPP, and PreMegE. (B) Flow cytometry plots of the sorting strategies used to isolate MPP (Lin- Sca1+ c-Kit+ Il7Ra- 

CD34+ Flk2+) and FSR-HSC2 (Lin- Sca1+ c-Kit+ Il7Ra- CD34+ Flk2-) populations. Both pseudocolour and contour 

plots are shown for the final isolated populations; the gates are coloured according to the colour scheme in Fig. 5.1A. 

Green – FSR-HSC2; turquoise – MPP. (C) Flow cytometry plots of the sorting strategy used to isolate PreMegEs (Lin- 

Sca1- c-Kit+ CD41- CD150+ FcγRII/IIIlow). The gate is coloured according to the colour scheme in Fig. 5.1A (brown).  
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5.3. Selection of a gene set for HSPC analysis 

As Fluidigm BioMarkTM is a qRT-PCR approach for single-cell gene expression analysis, it was 

necessary to select genes to investigate. The gene-set includes 48 genes and is identical to that used 

by Wilson et al. in their published analysis, and builds upon the gene-set used by Moignard et al., 

which included 18 transcription factors (N. K. Wilson et al. 2015; Moignard et al. 2013). The 

Wilson et al. gene set was designed to investigate HSC heterogeneity and transcriptional networks. 

It included 33 transcription factors important for HSCs and haematopoiesis, 12 additional genes 

that are involved in HSC biology, and three housekeeping genes (Table 5.1). The housekeeping 

genes (Eif2b1, Polr2a and Ubc) were included for normalisation purposes and are used as a 

reference to control for differences in cell size and RNA quantities (G. Guo et al. 2010; Pina et al. 

2012). The cell surface marker c-Kit, which was used to isolate all the populations, was also 

included. 

Table 5.1. Properties of genes selected for single-cell gene expression analysis. Genes are ordered alphabetically. 

Gene Summary 

Bptf • Bromodomain PHD finger transcription factor 

• Regulates thymocyte maturation (Landry et al. 2011) 

• Involved in the maintenance and function of regulatory T-cells (B. Wu et al. 2016) 

Cbfa2t3h • Encodes the repressor ETO2 

• Functions in protein complexes to recruit histone deacetylases and repress gene 

expression 

• Regulates cell proliferation and differentiation to determine terminal erythroid 

maturation (Goardon et al. 2006) 

• Involved in repressing megakaryocyte differentiation (Hamlett et al. 2008) 

Cdkn2a • Tumour suppressor gene encoding for p16INK4a 

• Cell cycle gene 

• Inactivation of p16INK4a has been observed in various cancers (R. Zhao et al. 2016), 

including B-cell lymphomas (Jardin et al. 2010) and childhood acute lymphoblastic 

leukaemia (ALL) (Sulong et al. 2009) 

Csf1r • Receptor for colony-stimulating factor 1 

• Regulates the development of macrophages 

• Expressed at low levels in HSCs (Sarrazin et al. 2009; Mossadegh-Keller et al. 2013) 

• Expressed at higher levels in monocytes and macrophages (Guilbert and Stanley 1980; 

Byrne, Guilbert, and Stanley 1981) 

• High levels of CSF1R are associated with poor survival in acute myeloid leukaemia 

(AML) (Rashid et al. 2016) 

Dnmt3a • Encodes DNA methyltransferase 3 alpha 

• Important for HSC differentiation (Challen et al. 2011) 
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Gene Summary 

• Loss of murine Dnmt3a is associated with haematological malignancies, including 

myelodysplastic syndromes (Walter et al. 2011) and AML (Ley et al. 2010) 

Egfl7 • Epidermal growth factor-domain gene 

• Expressed in endothelial cells (Fitch et al. 2004) 

• Regulates the migration of endothelial cells and is involved in vasculogenesis (Schmidt 

et al. 2007) 

• EGFL7 protein and mRNA expression is increased in AML and is associated with worse 

outcome (Rashid et al. 2016) 

Eif2b1 • Encodes a subunit of the translation initiation factor eIF2B 

• Housekeeping gene (Pfister, Tatabiga, and Roser 2011) 

Erg • Transcription factor belonging to the ETS family 

• Potent oncogene through chromosomal translocation (Salek-Ardakani et al. 2009) 

• Required for HSC function and maintenance 

• Involved in late-stage megakaryocyte maturation (Loughran et al. 2008) 

• Causally related to Down syndrome-associated megakaryocytic leukaemia (Rainis et al. 

2005) 

• Involved in oncogenesis in AML and Ewing sarcoma (H. Ichikawa et al. 1994; Sorensen 

et al. 1994) 

Ets1 and 

Ets2 

• Transcription factors belonging to the ETS family 

• Reciprocal activity during T-cell activation (Bhat et al. 1990) 

• ETS1: maintains T-cell quiescence 

• ETS2: T-cell activation and proliferation 

• ETS1 is upregulated in chronic myeloid leukaemia (CML) (Rashid et al. 2016) 

• High ETS2 expression is associated with a worse outcome in AML (L. Fu et al. 2017) 

Etv6 • Transcription factor belonging to the ETS family (Tel) 

• Transcriptional repressor 

• Controls the survival of HSCs and is required for late-stage megakaryopoiesis (Hock, 

Meade, et al. 2004) 

• ETV6-RUNX1 fusion is common in childhood ALL and enhances the self-renewal of B-

lineage progenitor cells (Rashid et al. 2016) 

Fli1 • Transcription factor in the ETS family 

• Highly expressed in HSCs and endothelial cells (Klemszs et al. 1993; Melet et al. 1996; 

Ben-David et al. 1991) 

• Abnormal expression of FLI1 is associated with poor prognosis in AML (Kornblau et al. 

2011) 

Gata1 • Transcription factor in the GATA family 

• Essential for normal erythropoiesis 

• Expressed in erythroid cells, megakaryocytes, eosinophils, and mast cells (Leonard et al. 

1993; Martin et al. 1990; Zon et al. 1993) 

• GATA1 mutations are seen in Down’s syndrome-associated AML and transient abnormal 

myelopoiesis (Hitzler et al. 2003) 

Gata2 • Transcription factor in the GATA family 

• Required for the expansion of multipotent haematopoietic progenitors 
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Gene Summary 

• Required for the generation of mast cells (Tsai and Orkin 1997) 

• Mutated in paediatric AML and a subset of adult CML (S.-J. Zhang et al. 2008; Luesink 

et al. 2012) 

Gata3 • Transcription factor in the GATA family 

• Contributes to the development of T-lymphocytes (Pandolfi et al. 1995; Vicente et al. 

2011) 

• GATA3 polymorphisms are significantly associated with susceptibility to B-lineage 

ALL (Q. Hou et al. 2017) 

Gfi1 • Transcriptional repressor 

• Involved in the development of HSCs, B- and T-cells, dendritic cells, granulocytes, and 

macrophages (Karsunky et al. 2002; Zeng et al. 2004; Rathinam et al. 2005) 

• Preserves HSC quiescence (Zeng et al. 2004; Hock, Hamblen, et al. 2004) 

• Gfi1 is frequently mutated in T-cell lymphomas and T-cell ALL (Q. Hou et al. 2017) 

Gfi1b • Transcriptional repressor 

• Essential in megakaryocytic and erythroid development (Saleque, Cameron, and Orkin 

2002; Osawa et al. 2002; Vassen, Okayama, and Möröy 2007; Vassen et al. 2014) 

Hhex • Haematopoietically expressed homeobox 

• Expressed in B-lymphocyte and myeloid lineages and MPPs (Bedford et al. 1993) 

• Overexpressed in AML cells and essential for their propagation (Shields et al. 2016) 

Hoxa5 • Transcription factor in the HOX family 

• Preferentially expressed in expanding HSCs; key regulator of HSC cell cycle (D. Yang 

et al. 2015) 

• Constitutive expression inhibits erythropoiesis and causes a shift towards myeloid 

differentiation (Crooks et al. 1999; Fuller et al. 1999) 

• Hypermethylated in AML; associated with progression to blast crisis in CML (Kim et al. 

2010) 

Hoxa9 • Transcription factor in the HOX family 

• Preferentially expressed in early HSCs (Sauvageau et al. 1994; Pineault et al. 2002) 

• Important in differentiation of myeloid, lymphoid, and erythroid lineages (Lawrence et 

al. 1997) 

• Loss of function perturbs early T-cell development (Izon et al. 1998) 

• Overexpressed in AML; associated with poor prognosis (Collins and Hess 2016) 

Hoxb4 • Transcription factor in the HOX family 

• Predominantly expressed in HSCs 

• Essential to HSC expansion (Sauvageau et al. 1995) 

• Significantly overexpressed in bone marrow of de novo AML patients and inversely 

correlated with the expression of the multidrug-resistance gene ABCB1 (Umeda et al. 

2012) 

Ikzf1 • Transcription factor in the IKAROS family (Ikaros) 

• Regulator of lymphoid differentiation (Georgopoulos et al. 1994) 

• Frequently deleted or mutated in B-cell precursor ALL (Mullighan et al. 2009) 

Itga2b • Encodes CD41, part of the CD41/CD61 integrin complex 

• Upregulated during megakaryopoiesis 
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Gene Summary 

• Required for platelet aggregation and clotting (Ginsberg et al. 1995; Emambokus and 

Frampton 2003) 

• Its expression marks myeloid-biased HSCs (Gekas and Graf 2013) 

Kit • Encodes a receptor tyrosine kinase (Yarden et al. 1987) 

• Key in regulating HSC function 

• Critical for proliferation, survival and differentiation (Edling and Hallberg 2007) 

• Aberrant activity is associated with AML pathogenesis (Malaise, Steinbach, and 

Corbacioglu 2009) 

Ldb1 • Encodes the LIM-domain binding protein LDB1; closely related to SCL (Visvader et al. 

1997) 

• Expressed in HSCs, with lower levels in myeloid and megakaryocyte progenitor cells 

• Expressed at all stages of erythroid development (L. Li et al. 2010) 

• Interacts with LMO1 and LMO2 in human T-cell ALL (Valge-Archer, Forster, and 

Rabbitts 1998; Layer et al. 2016) 

Lmo2 • Encodes the LIM-domain protein LMO2 

• Discovered by its association with chromosomal translocations in T-cell leukaemia 

(Boehm et al. 1991). 

• Activates an erythroid-specific gene expression program  

• Lmo2 downregulation is essential for terminal erythroid differentiation (Kornblau et al. 

2011)  

Lyl1 • Basic helix-loop-helix transcription factor 

• A Lyl1-deficient mouse is viable but has impaired LT-HSC reconstitution and a reduced 

number of B-cells (Capron et al. 2006) 

• Required for HSC function and maintenance of early T-cell lineage progenitors (Zohren 

et al. 2012; Souroullas et al. 2009) 

• Involved in adult angiogenesis (Pirot et al. 2010) 

• Overexpressed in AML (Meng et al. 2005) 

Mecom • Zinc finger transcription factor (Evi1) 

• Associated with myeloid leukaemia (Russell et al. 1993; Morishita et al. 1992) 

• Predominantly expressed in HSCs and regulates HSC proliferation (Goyama et al. 2008) 

Meis1 • Encodes a homeobox protein 

• Loss of Meis1 is embryonic lethal (Azcoitia et al. 2005) 

• Required for HSC maintenance and self-renewal (Ariki et al. 2014; Kocabas et al. 2012; 

Unnisa et al. 2012; M. E. Miller et al. 2016) 

• Co-expressed with HOXA9 in human myeloid leukaemia (Lawrence et al. 1999)  

Mitf • Basic helix-loop-helix transcription factor 

• Expressed in mast cells 

• Mutations in Mitf result in phenotypic abnormalities and a decrease in mast cells 

(Kitamura et al. 2002) 

Mpl • Encodes the receptor for thrombopoietin (Kaushansky 1995) 

• Involved in regulation of HSC production and function (Kimura et al. 1998; Solar et al. 

1998)  

• Involved in maintenance of HSC quiescence (Yoshihara et al. 2007) 
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Gene Summary 

• Important in differentiation towards megakaryocytes and platelets (Plo et al. 2017) 

• Mutations occur in myeloproliferative neoplasms (MPN) (Plo et al. 2017) 

Myb • Transcription factor in the MYB family 

• Required for B-cell and T-cell development (Thomas et al. 2005; Lieu et al. 2004) 

• Regulator of HSC quiescence and self-renewal (Cooke, Sutton, and Parker 2010; Lieu 

and Reddy 2009) 

• Driver of leukemogenesis in birds and mice; expressed at high levels in AML and ALL 

(Pattabiraman and Gonda 2013)  

Nfe2 • Basic-leucine zipper transcription factor 

• Expressed in HSCs and erythroid and megakaryocytic lineages (Andrews et al. 1993) 

• Important for megakaryocyte maturation and platelet production (Shivdasani et al. 1995) 

Nkx2-3 • Transcription factor in the NKX family 

• Important in lymphoid tissue development (Pabst, Zweigerdt, and Arnold 1999; Pabst et 

al. 2000) 

Notch1 • Encodes a transmembrane receptor 

• Important in cell fate decision making in haematopoiesis (Radtke et al. 2004)  

• Influences B versus T-cell differentiation (Pui et al. 1999) 

• Mutations causing continuous activation of Notch signalling occur frequently in T-cell 

ALL (Liu, Zhang, and Ji 2013) 

Pbx1 • Transcription factor in the PBX family 

• Important in B-cell lineage commitment (Sanyal et al. 2007) 

• Discovered in pre-B cell ALL in a reciprocal translocation between chromosomes 1 

(Pbx1) and 19 (E2A); causes AML in mice (A. J. Carroll et al. 1984; Kamps and 

Baltimore 1993) 

Polr2a • Encodes a subunit of RNA polymerase II 

• Housekeeping gene (Radonić et al. 2004) 

Prdm16 • Zinc finger transcription factor 

• Involved in HSC renewal, quiescence, apoptosis, and differentiation (Aguilo et al. 2011) 

• Frequently involved in translocations in AML (Corrigan et al. 2018) 

Procr • Encodes endothelial protein C receptor (EPCR) 

• Marker of haematopoietic stem cells (Balazs et al. 2006) 

Runx1 • Transcription factor in the RUNX family 

• Expressed in HSCs, myeloid, and lymphoid cells 

• Downregulated during erythroid differentiation (North et al. 2004) 

• Involved in translocations in AML and paediatric ALL (Sood, Kamikubo, and Liu 2017) 

Spi1 • Encodes the transcription factor PU.1 (ETS family transcription factor) 

• Expressed in HSCs, CLPs and CMPs (Nutt et al. 2005) 

• Required for the generation of both myeloid and lymphoid lineages (E. W. Scott et al. 

1994; McKercher et al. 1996) 

• Decreased PU.1 expression is linked to AML in mice and humans (Verbiest et al. 2015) 

Sh2b3 • Encodes lymphocyte adaptor protein (LNK) 

• Negative regulator of normal haematopoiesis 
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Gene Summary 

• Expressed in HSCs, myeloid and lymphoid progenitors (Takaki et al. 2000; Velazquez 

et al. 2002) 

• Controls HSC quiescence and self-renewal through Mpl (Bersenev et al. 2008) 

• Recently identified as a possible genetic predisposition gene to B-precursor ALL 

• Genetic variations identified in MPN and lymphoid leukaemia (Perez-Garcia et al. 2013; 

Maslah et al. 2017) 

Smarcc1 • Encodes a subunit of the SWI/SNF remodelling complex 

• Involved in HSC activity through chromatic modification (Deneault et al. 2009) 

• Important in murine embryonic stem cell differentiation (Schaniel et al. 2009) 

Tal1 • Encodes the transcription factor stem cell leukaemia (SCL) 

• Important in HSC specification (Porcher et al. 1996; Robb et al. 1996) 

• Expressed in normal HSCs and along erythroid, mast cell and megakaryocytic lineages 

(Gottgens et al. 1997) 

• Gain of function mutation in T-cell ALL (O’Neil et al. 2004) 

Tcf7 • Essential for normal T-cell development (Weber et al. 2011) 

• Expressed in naïve T-cells and memory T-cells, but downregulated in effector T-cells 

(D. M. Zhao et al. 2010)  

• Key regulator of the switch between self-renewal and differentiation in HSCs (Choi et 

al. 2017) 

Tet2 • Enzyme in the TET family 

• Involved in DNA methylation: converts 5-methylcytosine to 5-hydroxymethylcytosine 

(Pastor, Aravind, and Rao 2013) 

• Regulator of HSC homeostasis (Nakajima and Kunimoto 2014) 

• Frequently mutated in haematopoietic malignancies; loss of TET2 leads to induction of 

leukemogenesis by DNA hypermethylation of active enhancers (Rasmussen et al. 2015)  

Ubc • Encodes polyubiquitin-C 

• Housekeeping gene (Silver et al. 2008; Chua et al. 2011) 

Vwf • Encodes Von Willebrand factor (vWF) 

• Mediates platelet adhesion and platelet aggregation (Peyvandi, Garagiola, and 

Baronciani 2011) 

• vWF expression marks HSCs with durable self-renewal capacity (D. G. Kent et al. 2009) 

• vWF expression selects for platelet-biased HSCs (Sanjuan-Pla et al. 2013) 

 

5.4. Processing single cells using the Fluidigm BioMarkTM platform 

The Fluidigm BioMarkTM platform was used to investigate gene expression in HSPC populations. 

Fluidigm BioMarkTM is a qRT-PCR approach that is sensitive at the single-cell level. In addition 

to single cells, 10-cell controls and empty well controls were collected for each experiment. Cells 

were processed as previously described and the single-cell expression data was collected using the 

Fluidigm Data Collection software. Cells were normalised against the housekeeper genes Ubc and 
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Pol2ra. The expression of all three housekeeper genes was analysed and showed that most cells 

expressed Ubc and Polr2a, whereas Eif2b1 expression was more variable and therefore excluded 

from normalisation. After filtering and normalising the data, only retaining cells that expressed at 

least 23 genes as well as both housekeeper genes, a total of 2,167 cells remained that were 

representative of the 8 cell types sorted (Table 5.2). All housekeepers (Ubc, Polr2a and Eif2b1) 

were removed from the dataset for downstream analysis. Wilson et al. also removed Cdkn2a and 

Egfl7 from their downstream analysis due to a lack of expression and technical issues, respectively 

(N. K. Wilson et al. 2015). This was carried forward in this investigation for consistency. In 

addition, Gfi1 and Spi1 were expressed in the empty well controls for the PreMegE, FSR-HSC2 

and MPP populations. As this expression was visible on all integrated fluidics circuits (IFCs) run 

through the Fluidigm BioMarkTM for this experiment, it indicated a technical issue and these genes 

were also removed from downstream analysis. After quality control, the expression of 41 genes, 

including 31 transcription factor genes, was retained. 

 

Table 5.2. Table indicating number of cells included in this study. 

Cell Type 
Cell Count 

Cells Lost % Cells Used 
Before filtering After filtering 

HSC1 210 198 12 94 

HSC2 210 166 44 79 

HSC3 210 197 13 94 

HSC4 210 198 12 94 

FSR-HSC1 294 233 61 79 

FSR-HSC2* 205 199 6 97 

MPP* 205 188 17 92 

PreMegE* 205 154 51 75 

LMPP 210 178 32 85 

CMP 210 147 63 70 

MEP 211 124 87 59 

GMP 210 185 25 88 

Total 2590 2167 423 84 

* indicates the populations sorted specifically for this investigation: FSR-HSC2, MPP, PreMegE. 

5.5. Resolving populations using multidimensionality analysis 

Dimensionality reduction was required to investigate how the cell populations related to each other 

based on their gene expression. Dimensionality reduction methods are useful for visualising large 

datasets in a lower dimensionality space. In this investigation, they were used to evaluate the 
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heterogeneity and structure of the haematopoietic bone marrow compartment in an unsupervised 

fashion. 

Principal component analysis (PCA) was used to visualise relationships between cell populations 

(Fig. 5.2). PCA is a linear dimensionality method in which principal component (PC) 1 has the 

largest variance, followed by PC2. Therefore, the data was plotted in the first two components to 

demonstrate the variance between the cell populations. The new data collected for this investigation 

was integrated into the Wilson et al. dataset and analysed together (Fig. 5.2A). PreMegEs, MPPs 

and FSR-HSC2 cells are intermediate populations in the haematopoietic hierarchy, which is 

recapitulated by their location on the PCA plot. 

The four HSC populations were clustered together at the top of the graph (Fig. 5.2B). HSC1 showed 

the most dispersed expression; however, the four strategies enriched for cells with an overall 

similar expression profile. The FSR-HSC populations were located between the HSCs, MPPs and 

LMPPs, consistent with the classical view of the haematopoietic hierarchy. For greater visual 

clarity, the four HSC populations and the two FSR-HSC populations were coloured together (Fig. 

5.2C). Although there were no clear projections in the PCA visualisation, the HSCs, MEPs and 

LMPPs were found at distinct edges of the structure, indicating these populations were the most 

different from one another. PreMegEs clustered closely to the MEPs whereas the GMPs were in 

between MEP and LMPP populations, albeit more concentrated near the LMPPs. The CMPs were 

disperse among the progenitor populations, consistent with previous observations about their 

heterogeneity (Paul et al. 2015).  

The PCA loadings show which genes contributed to the separation of the data (Fig. 5.2D). At the 

top of the PCA plot, Mpl, Mecom and Procr contributed to the variance that separated HSCs from 

the other populations, consistent with these genes being important to HSC characteristics (Table 

5.1). Gata1 and Gfi1b contributed to the separation on the left side of the PCA plot, and Notch and 

Csf1r contributed to the variance on the right, consistent with these regions of the PCA plot being 

made up of MEPs, LMPPs and GMPs, respectively. 
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Figure 5.2. Visualisation of single-cell qRT-PCR data using principal component analysis. (A) PCA plot showing 

the integration of the new data with the data from Wilson et al. (2015). New data – black; Wilson et al. data – grey. 

(B) PCA plot of all populations, calculated on the expression of 41 genes measured by qRT-PCR. The plot is coloured 

by sorting gate. HSC1 – purple, HSC2 – dark purple, HSC3 – pink, HSC4 – cyan, FSR-HSC1 – forest green, FSR-

HSC2 – olive green; MPP – yellow green; PreMegE – dark brown; LMPP – blue; CMP – orange; MEP – red; GMP – 

yellow. (C) PCA plot of all populations, coloured by cell type. The four HSC populations are grouped together (purple) 

and the two FSR-HSC populations are grouped together (olive green). MPP – light blue, PreMegE – dark brown, 

LMPP – blue, CMP – yellow green; MEP – red; GMP – orange. (D) PCA loading plots, showing genes that contribute 

to the variance in PC1 and PC2. PC: Principal Component. 

 

Although PCA is an informative dimensionality-reduction method, it can only capture linear 

structures in the data. More recently, non-linear dimensionality reduction methods such as t-

distributed stochastic neighbour embedding (t-SNE) and diffusion maps have been applied to 

single-cell data (Maaten and Hinton 2008; Haghverdi, Buettner, and Theis 2015). These methods 

are able to capture more complex structures in the data. t-SNE aims to conserve the local distances 
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of the high-dimensionality data in a low-dimensionality structure, so that cells with similar gene 

expression are nearby on the plot.  

The qRT-PCR data was visualised using t-SNE (Fig. 5.3), which recapitulated the structure seen 

using PCA. The HSCs were located at the top of the landscape. The HSC1 cells showed the most 

heterogeneity and the HSC4 population appeared more molecularly different from the other HSC 

sorting strategies than seen in the PCA plot (Fig. 5.3A). As the sorting strategies were different, it 

was assumed that the functional HSCs would be similar, and each strategy would differ in the 

phenotype of contaminating cells that it captured. The t-SNE separated the data into two distinct 

branches, separating MEPs and LMPPs, which is clearly shown when the four HSC populations 

and two FSR-HSC populations are coloured together (Fig. 5.3B). The CMPs and GMPs were both 

dispersed among the progenitor cells; on the LMPP branch, GMPs were at the tip of the branch, 

but in between MEPs and HSCs on the MEP branch.  

 
Figure 5.3. Visualisation of single-cell qRT-PCR data using t-distributed stochastic neighbour embedding. (A) 

t-SNE plot of all populations, calculated on the expression of 41 genes measured by qRT-PCR. The plot is coloured 

by sorting gate. HSC1 – purple, HSC2 – dark purple, HSC3 – pink, HSC4 – cyan, FSR-HSC1 – forest green, FSR-

HSC2 – olive green; MPP – yellow green; PreMegE – dark brown; LMPP – blue; CMP – orange; MEP – red; GMP – 

yellow. (B) t-SNE plot of all populations, coloured by cell type. The four HSC populations are grouped together 

(purple) and the two FSR-HSC populations are grouped together (olive green). MPP – light blue, PreMegE – dark 

brown, LMPP – blue, CMP – yellow green; MEP – red; GMP – orange.  

 

A disadvantage of t-SNE analysis is that it is a stochastic model, which means that while the overall 

conclusions from the analysis do not change, the t-SNE visualisation will be altered every time it 

is generated. It is therefore necessary to generate t-SNE plots multiple times to confirm that 

structure of the dataset is reproducible, and then set the seed parameter to be able to reproduce the 

same figure every time. Furthermore, both PCA and t-SNE dimensionality reduction methods are 
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designed to detect differences in the data rather than continuous relationships (Haghverdi, Buettner, 

and Theis 2015). As haematopoiesis involves the differentiation of an HSC towards a mature cell 

fate while passing through intermediate progenitor phenotypes, it would be beneficial to visualise 

the data using a dimensionality-reduction method that is better able to determine more complex 

structures in the data. Diffusion maps use the length of diffusion-like random walks through the 

data in high-dimensional space to determine a projection of the cells, and have been adapted to 

successfully display single-cell data (Coifman et al. 2005). 

The qRT-PCR data was visualised on a diffusion map (Fig. 5.4). As in the PCA and t-SNE plots, 

the HSCs sat at the top of the structure and HSC1 showed the most disperse expression pattern of 

the four HSC sorting strategies. Furthermore, the diffusion map recapitulated the pattern seen in 

the t-SNE plot, in which HSC4 was most distinct from the four HSC sorting strategies (Fig. 5.4A). 

When the HSC and FSR-HSC populations are coloured together, it is easier to visualise that the 

structure roughly segregated the cells into two projections, separating MEPs and LMPPs (Fig. 

5.4B). The LMPPs were located closer to the FSR-HSCs than the MEPs, suggesting their gene 

expression was closer to that of the early progenitors. The distinct gene expression of PreMegEs 

and MEPs was more clearly visualised in the diffusion map than using the other methods.  

 

 
Figure 5.4. Visualisation of single-cell qRT-PCR data using diffusion maps. (A) Diffusion map of all populations 

calculated on the expression of 41 genes measured by qRT-PCR. The plot is coloured by sorting gate. HSC1 – purple, 

HSC2 – dark purple, HSC3 – pink, HSC4 – cyan, FSR-HSC1 – forest green, FSR-HSC2 – olive green; MPP – yellow 

green; PreMegE – dark brown; LMPP – blue; CMP – orange; MEP – red; GMP – yellow. (B) Diffusion map of all 

populations coloured by cell type. The four HSC populations are grouped together (purple) and the two FSR-HSC 

populations are grouped together (olive green). MPP – light blue, PreMegE – dark brown, LMPP – blue, CMP – yellow 

green; MEP – red; GMP – orange. DC: Diffusion Component. 

 



128  Resolving heterogeneity in HSPC populations 

 

 

5.6. Single-cell gene expression analysis reveals cell population clusters 

Unsupervised hierarchical clustering was performed to investigate heterogeneity between cell 

populations using the expression of the 41 genes that passed quality control. Clustering analysis 

can be used to gain insights about groups of cells, which are clustered based on their gene 

expression patterns without the input of any classifications by the investigator. 

The clustering partitioned the cells into two broad clusters, both of which had multiple sub-clusters 

(Fig. 5.5). Roughly, Cluster 1 included HSCs and the earliest progenitor populations, whereas 

Cluster 2 was made up of the later progenitor populations. These clusters were differentiated by 

the expression of HSC-specific genes such as Mpl, Mecom, and Procr (Yoshihara et al. 2007; 

Goyama et al. 2008; Balazs et al. 2006). Further sub-clustering Cluster 1 divided it based on the 

four sorting strategies used to isolate HSCs. HSC4 made up the majority of Cluster 1F and was 

characterised by the expression of Gata3, indicating these cells may contribute to a lymphoid 

lineage (Pandolfi et al. 1995; Vicente et al. 2011). Cluster 1E was a mixture of cell types, but 

predominantly contained HSC2 and HSC3 cells, similar to Cluster 1C. However, Cluster 1C also 

included CMP and GMP populations, whereas Cluster 1E contained FSR-HSCs, MPPs, and 

PreMegEs. Procr was expressed in more cells of Cluster 1E, whereas Cluster 1C contained cells 

expressing Itga2b and Gata1, possibly indicating a myeloid-erythroid bias (Gekas and Graf 2013; 

Leonard et al. 1993). Cluster 1D was made up of mostly LMPPs, as well as a mixture of FSR-

HSCs, GMPs, and MPPs, whereas Clusters 1A and 1B were the most heterogeneous and included 

all cell types in varying proportions. The separations in the sub-clusters of Cluster 2 were clearer. 

Cluster 2A was made up of predominantly PreMegEs and MEPs and was characterised by the 

expression of Gata1, Gata2, Tal1 and Gf1b, which are all genes involved in myeloid and erythroid 

differentiation (Leonard et al. 1993; Tsai and Orkin 1997; Osawa et al. 2002; Gottgens et al. 1997). 

Cluster 2B predominantly contained GMPs, but also included LMPPs and FSR-HSCs. Csf1r was 

most highly expressed in this cluster, consistent with it having a major GMP component (Guilbert 

and Stanley 1980). As expected, Kit was expressed in all cells as it was used to sort all populations. 

The clustering analysis shows that the 2,167 cells can be subdivided into distinct clusters that 

correspond with their sorted identities, based solely on their gene expression. Furthermore, the four 

HSC populations generally overlap with each other, although individual patterns can be observed, 

which may indicate lineage biases and/or the presence of “contaminating” cells in the sorting 

strategy. 
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Figure 5.5. Unsupervised clustering of HSPC populations reveals clusters in single-cell gene expression data. 

Heatmap showing unsupervised clustering of 2,167 cells profiled by qRT-PCR according to the expression of 41 genes. 

The distances of the population dendrogram are not proportional to the dissimilarity. The bar above the dendrogram 

indicates the clusters to which the cells belong. Cluster 1 – green; Cluster 2 – blue. The colour bar indicates the 

population/sorting gates of origin. Sorting gate colours: HSC1 – purple; HSC2 – dark purple; HSC3 – pink; HSC4 – 

cyan; FSR-HSC1 – forest green; FSR-HSC2 – olive green; MPP – yellow green; LMPP – blue; PreMegE – dark brown; 

MEP – red; CMP – orange; GMP – yellow.  

 

5.7. Pairwise correlation analysis reveals putative relationships between genes 

The dimensionality reduction and clustering analyses indicate that the HSPC populations are 

characterised by different gene expression patterns, with some overlap between populations. Genes 

that share regulatory mechanisms may have similar expression patterns, whereas genes that have 
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very different expression profiles may have unrelated mechanisms governing their expression 

(Ståhlberg and Bengtsson 2010). Correlation analysis can be used to gain insight into these 

mechanisms, where a positive correlation suggests a factor may activate another, and negative 

correlation suggests antagonism.  

Pairwise correlation analysis was performed across all 2,167 HSPCs by hierarchical clustering of 

Spearman Rank correlations between pairs of transcription factors. The analysis revealed both 

positive and negative correlations between pairs of transcription factors (Fig. 5.6). A positive 

correlation was observed between Gata2, Gf1b, Tal1, and Gata1. This is consistent with literature 

as positive interactions have previously been described between Scl and Gata2, as well as between 

Gata2 and Gf1b (Moignard et al. 2013; J. E. Pimanda et al. 2007). A negative correlation was 

observed between Gata1, a key regulator of erythropoiesis, and Nkx2.3 and Notch, both of which 

are important in lymphoid tissue development (Pabst et al. 2000; Pabst, Zweigerdt, and Arnold 

1999; Martin et al. 1990). A strong positive correlation was observed between Myb and Runx1. A 

recent study observed that RUNX1 regulates Myb in mouse T-cell ALL, in which a RUNX1 

deficiency reduced transcription factor binding at the Myb +15kb enhancer (Choi et al. 2017). In 

normal haematopoiesis, Myb and Runx1 cooperate to induce expression of lineage-specific genes 

in HSPCs; however, a direct regulatory relationship between these two genes has not been reported, 

suggesting their interaction may be mediated by coactivating proteins (Friedman 2002).  
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Figure 5.6. Pairwise correlations reveal regulatory relationships between transcription factors. Hierarchical 

clustering of Spearman Rank correlations between pairs of transcription factors for all 2,167 HSPCs. Positive 

correlations are shown in red and negative correlations are shown in blue.  

 

To establish whether the identified regulatory relationships changed during differentiation, the 

correlation analysis was repeated for the eight cell types separately (Fig. 5.7). The HSC and FSR-

HSC cells from different sorting strategies were analysed together to see which relationships were 

strongly shared between the strategies, revealing the correlations of true HSCs or FSR-HSCs rather 

than the contaminating cells. The correlations observed in HSC and FSR-HSC populations were 

most consistent to those seen when analysing all cells together (Fig. 5.6). This reflects the greater 

number of these cells included in the dataset, as well as the bias of the gene set towards genes 

involved in HSC biology. Many of the strong positive correlations identified in the whole dataset 

remained stable; in particular, a positive correlation between Fli1, Etv6, Meis1, Erg, and Lmo2 was 

observed in all populations. More negative correlations were seen in progenitor populations 

compared to the whole dataset, suggesting that repressive relationships may be particularly 

important in more differentiated populations. 



132  Resolving heterogeneity in HSPC populations 

 

 

The HSC and FSR-HSC populations generally had similar pairwise correlation patterns. A key 

difference between the two cell types was that Tcf7 was involved in many negative relationships 

in HSCs, but mainly had a positive role, if any, in FSR-HSCs. Tcf7 has been implicated in HSC 

quiescence and self-renewal; therefore, it may attribute to the long-term self-renewal potential that 

is specific to the stem cell compartment (J. Q. Wu et al. 2012). Interestingly, Gata2 and Runx1 

were positively correlated in HSCs, but negatively correlated in FSR-HSCs. MPPs had similar 

relationships to FSR-HSCs, but had a positive correlation cluster between Hoxb4, Tcf7, Hoxa5, 

Prdm16, and Gata3. This cluster also included Nkx2.3, Hoxa9, Notch, and Ets1 in the PreMegE 

population only. Compared to the other populations, MEPs, GMPs, and CMPs displayed many 

negative correlations. Hoxa5 was generally involved in negative relationships in MEPs, and 

positive in CMPs and GMPs. Conversely, Notch was negatively correlated with erythroid genes 

such as Gata1 and Gf1b in CMPs and GMPs; Ets1 was also negatively correlated with these 

erythroid genes in CMPs, but not in GMPs. Finally, LMPPs displayed the same relationships that 

were shared among all populations, but lacked correlations with most genes, reflecting the myeloid-

erythroid bias of the gene set. While Ets1 and Notch, genes important in lymphoid lineage, were 

positively correlated with each other, they were negatively correlated with megakaryopoiesis genes 

Etv6 and Nfe2 (Andrews et al. 1993; Hock, Meade, et al. 2004). Ets1 and Ets2 were negatively 

correlated, as previously described (Bhat et al. 1990).  
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Figure 5.7. Pairwise correlations for each HSPC population. Hierarchical clustering of Spearman Rank correlations 

between pairs of transcription factors for individual HSPC populations. Cells are grouped based on cell type. Positive 

correlations are shown in red and negative correlations are shown in blue. Genes are ordered according to the clustering 

in Fig 5.6. 

 

5.8. Reconstructing differentiation trajectories from single-cell gene expression 

profiles 

The diffusion map representation described in Section 5.6. demonstrates that the HSPC dataset 

recapitulates the structure of the haematopoietic hierarchy. To confirm the apex of the hierarchy, 

molecular overlap cells (MolO cells) were projected onto the atlas (Fig. 5.8A). Wilson et al. 
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identified the MolO cells during their investigation for a sorting strategy that enriches for functional 

LT-HSCs with high purity (N. K. Wilson et al. 2015). The MolO cells are HSCs that share a 

transcriptional profile and have increased probability of long-term multilineage repopulation 

potential upon single-cell transplantation. When projected onto the landscape, MolO cells sit at the 

top of the structure with the most primitive cells, as expected. Cells belonging to MEP and LMPP 

populations are at the end of the landscape, and intermediate populations such as MPPs and 

PreMegEs were present between the highlighted cell types.  

In Chapter 3, the diffusion map was used to capture cells on differentiation trajectories towards 

mature cell types. Motivated by the structure of the hierarchy described by the qRT-PCR data, 

pseudotime analysis was performed to better understand the transcriptional changes occurring 

throughout differentiation. Pseudotime orders cells based on their gene expression profiles to infer 

their position in differentiation, which can be used to construct differentiation trajectories through 

single-cell expression data (Ocone et al. 2015). Coordinates on the diffusion map were used to 

identify cells on trajectories from HSCs to MEPs and LMPPs (Fig. 5.8B). Cells were assigned to 

two broad branches and were ordered in pseudotime using the Wanderlust algorithm (Bendall et 

al. 2014).  

The expression of transcription factors was visualised through the pseudotime progression for both 

MEP and LMPP trajectories (Fig. 5.8C). Distinct expression patterns were noted between the two 

trajectories. On the MEP trajectory, Nkx2.3, Meis1 and Pbx1 expression decreased as Gata1, Gfi1b 

and Ikzf1 expression increased, consistent with the negative correlation seen between these genes 

in Fig. 5.6. Along the LMPP trajectory, genes important in lymphoid development, such as Notch 

and Ets1, increased, whereas genes important in HSC characteristics, such as Prdm16 and Hoxb4, 

decreased early in the trajectory and the key erythroid gene Gata1 was not expressed at all. Overall, 

fewer genes showed increased expression compared to the MEP trajectory, once again reflecting 

the myeloid-erythroid bias of the gene set. Pseudotime ordering demonstrates the gene expression 

dynamics occurring in haematopoiesis and suggests that the data could be further used to 

investigate regulatory networks along the trajectories. 
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Figure 5.8. Pseudotime ordering reveals two differentiation trajectories in the single-cell HSPC data. (A) 

Projection of MolO cells onto the qRT-PCR dataset using a diffusion plot visualisation. MEPs and LMPPs are 

highlighted. MolO cells – purple; MEP – red; LMPP – blue. (B) Differentiation trajectories from stem cells to MEPs 

or LMPPs. Cells are coloured by their pseudotime value, moving from blue (early in pseudotime) to red (late in 

pseudotime). Cells not in the trajectory are grey. (C) Heatmaps showing the expression of transcription factor encoding 

genes. Cells are ordered along the pseudotime trajectories towards MEP or LMPP fates. The colour bar at the top of 

each heatmap indicated the cell types along each trajectory. HSC – purple; FSR-HSC – forest green; MPP – light blue; 

CMP – yellow green; LMPP – blue; PreMegE – brown, MEP – red, GMP – yellow. Figure was generated by Fiona 

Hamey and modified by Sonia Shaw. 
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5.9. Conclusions 

In this chapter, single cell gene expression profiles were generated using the Fluidigm BioMarkTM 

platform to explore heterogeneity and regulatory relationships within the haematopoietic hierarchy. 

A qRT-PCR dataset of 2,167 cells was generated, spanning HSCs and early progenitors. The 

dataset was then explored using dimensionality-reduction methods, correlation analysis and 

pseudotime ordering. 

This investigation built on a pre-existing dataset which included HSCs, FSR-HSCs, and four 

additional progenitor populations: CMPs, GMPs, MEPs and LMPPs (N. K. Wilson et al. 2015). 

The gene set was handpicked to include 33 transcription factor encoding genes important in HSPC 

biology, as well as 12 other genes implicated in HSC function. While this was already a large 

dataset with good coverage of early haematopoiesis, it did not include intermediate progenitor 

populations that occur during the differentiation process. Including these intermediate populations 

gave a more complete picture of early haematopoietic differentiation, which proved to be useful 

for inferring differentiation trajectories and regulatory networks. The three additional populations 

isolated were FSR-HSCs, MPPs, and PreMegEs. These populations were chosen because FSR-

HSCs and MPPs should have multi-lineage potential without the capability of reconstituting a 

mouse long-term, and PreMegEs are an early precursor of megakaryocytic, erythroid, or mixed 

colonies (Pronk et al. 2007; Cabezas-Wallscheid et al. 2014).  

The HSPCs were visualised using three dimensionality-reduction methods: PCA, t-SNE, and 

diffusion maps. All three methods recapitulated the haematopoietic hierarchy but gave varying 

levels of resolution in terms of heterogeneity and gene expression relationships. The PCA plots 

showed little separation of the four HSC isolation strategies, whereas HSC4 was more separated 

from the other strategies in both the t-SNE and diffusion map plots. As PCA only recognises linear 

relationships in the data, it will miss any non-linear relationships and therefore may not provide 

the most suitable visualisation for more complex structures, such as single-cell data. t-SNE is useful 

for visualising highly heterogeneous data and positions cells with similar expression profiles close 

together. In this HSPC dataset, the t-SNE plot positioned the MEPs and LMPPs further away from 

each other. However, while t-SNEs are often used to represent heterogeneous datasets, they are 

stochastic and may struggle to display continuous processes such as differentiation. Diffusion maps 

have been adapted to specifically deal with single-cell expression data (Coifman et al. 2005; 

Haghverdi, Buettner, and Theis 2015). When this dataset was visualised using diffusion maps, the 
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LMPPs were clearly separated from PreMegEs and MEPs. Based on the structure of the data, the 

diffusion map was the best method for recapitulating the structure of the haematopoietic hierarchy. 

Unsupervised hierarchical clustering was used to group cells based on their gene expression and 

clearly separated the more mature progenitors and HSC populations into two distinct clusters. 

However, within the HSC cluster, there was a great amount of heterogeneity and overlap with FSR-

HSC, LMPP, CMP and GMP populations. The clustering showed that the four isolation strategies 

used for HSCs do overlap but vary in their functional purity. The four strategies capture different 

“contaminating” cells, i.e. non-HSC cells, and the frequency and nature of these contaminating 

cells depends on the sorting strategy used. Correlation analysis was performed on all 2,167 cells 

together as well as the individual populations to examine regulatory relationships between the 

different populations. Previously published positive interactions were observed between Scl and 

Gata2 and between Gata2 and Gfi1b, corroborating the accuracy of this dataset (Moignard et al. 

2013; J. E. Pimanda et al. 2007). Furthermore, negative correlations were observed between genes 

involved in opposing branches of haematopoietic differentiation, such as Notch and Gata1, which 

are genes involved in the lymphoid and erythroid lineages, respectively (Pui et al. 1999; Hamlett 

et al. 2008).  

The correlation analysis for individual populations showed that many positive correlations were 

stable among the HSPC populations, but key differences were observed in their negative 

correlations. MEPs, GMPs, and CMPs in particular had the most negative correlations between 

genes. A multipotent phenotype may therefore be more associated with positive relationships, 

while repression, or lack of it, becomes more important in increasingly differentiated populations. 

CMPs and GMPs had similar regulatory relationships, in which Notch was negatively correlated 

with many erythroid genes. Current research suggests that CMPs may actually be a heterogeneous 

population primed towards erythroid and myeloid fates (Perié et al. 2015; Jaitin et al. 2014). Indeed, 

this investigation suggests that CMPs and GMPs are very similar, based on the visualisation of 

their transcriptional structures, clustering of the cells, and correlation analyses. 

The cells were ordered along differentiation using pseudotime ordering, which identified two 

trajectories in the data from HSCs towards MEPs and LMPPs. Visualising the expression of 

transcription factor encoding genes along the trajectories showed that the genes had both static and 

dynamic expression patterns. Gata1 was differentially expressed along the two trajectories and was 

associated with the MEP trajectory, while Notch and Ets1 increased along the LMPP trajectory but 
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were only expressed in the HSC component of the MEP trajectory. Conversely, Bptf, Smarcc1 and 

Myb, which were positively correlated in the analysis of all 2,167 cells, were constitutively 

expressed in both trajectories. The complexity of correlations observed, as well as the gene 

expression changes occurring along pseudotime, imply that it may be a useful dataset for inferring 

regulatory network models along the two trajectories, explored in Chapter 6. 

5.9.1. Limitations 

Although pairwise correlations were identified for all populations, fewer relationships could be 

identified for LMPPs as the gene set was biased towards myeloid-erythroid genes and focused on 

HSCs rather than the progenitor populations. A limitation of qRT-PCR is that the number of genes 

profiled is limited and chosen by the investigator, which may hinder discovery of novel regulators, 

and, in the context of this work, may miss key regulators of haematopoietic differentiation. 

Furthermore, the limited gene set fails to capture the full transcriptional heterogeneity of the 

different cell types. Visualisations of this dataset have suggested a significant overlap between 

GMP and LMPP populations; however, the work in Chapter 3 shows these populations can be 

separated based on the full transcriptome, where LMPPs and GMPs occupy separate territories on 

the transcriptional landscape. These populations could potentially be separated better if specific 

lymphoid genes were included in the gene set, such as Dntt, Il7r, or Cd19. 

Another limitation of this work arose due to technical issues in the processing of samples, which 

resulted in key regulators such as Gfi1 and Spi1 being excluded from the analysis. Spi1 would have 

been a valuable addition to the analysis due to its proposed antagonistic relationship with Gata1 in 

megakaryocytic-erythroid versus granulocytic-monocytic lineage decision making (Burda, Laslo, 

and Stopka 2010). Recent research from continuous live cell imaging and reporter mouse lines 

suggest that these two genes do not initiate the megakaryocytic-erythroid versus granulocytic-

monocytic lineage switch, but rather reinforce the lineage choices once made (Hoppe et al. 2016). 

It would have been interesting to see if these recent findings could be seen in this single cell qRT-

PCR dataset. Gfi1 was previously identified to be part of a regulatory triad with Gata2 and Gfi1b, 

and would have been a useful addition to compare the work to previous literature (Moignard et al. 

2013). Missing these key regulators renders the findings from hierarchical clustering and pairwise 

correlation analysis incomplete, although the dataset does accomplish its original goal of 

distinguishing between HSC sorting strategies. 
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5.9.2. Further work 

In this chapter, a qRT-PCR dataset of HSPC expression profiles was generated and interrogated 

for heterogeneity and regulatory relationships. The results indicate that there are complex 

relationships occurring between genes during differentiation, and that HSC regulators are not only 

involved in HSC maintenance but play a role in differentiation decisions as well. Genes that have 

similar expression profiles may also share regulatory mechanisms, whereas genes that don’t have 

similar expression profiles are likely to have unrelated regulatory mechanisms (Ståhlberg and 

Bengtsson 2010). It would be interesting to try to infer regulatory networks of transcription factors 

along the MEP and LMPP trajectories to further explore their unique regulatory mechanisms as 

well as those shared between them. Furthermore, these networks can be validated using functional 

assays. The regulatory networks and their validation will be explored in Chapter 6. 

5.9.3. Summary 

Single-cell expression profiling of HSPC populations using qRT-PCR demonstrated the 

heterogeneity present within populations of the haematopoietic hierarchy. Pairwise correlations of 

the different haematopoietic lineages identified regulatory relationships in individual populations 

and across the HSPC compartment. Pseudotime analysis ordered the cells in two trajectories from 

HSC to MEP or LMPP fates and was used to compare the dynamics of transcription factor 

expression along these trajectories. 
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Chapter 6: Validating regulatory networks models 

 

Parts of this chapter have been modified from Hamey et al. (2017). Fiona Hamey developed the 

network inference method and carried out the in-silico modelling of networks. Nicola Wilson 

profiled HoxB8-FL cells by qRT-PCR and generated the ChIP-seq data. Rebecca Hannah aligned 

the ChIP-seq data. Sonia Shaw analysed the ChIP-seq data and performed luciferase assays. 

 

6.1. Background 

The haematopoietic differentiation system consists of individual cells making cell fate decisions 

that influence the balance of mature cell type output at the population level; any dysregulation in 

fate choices can cause an imbalance that leads to serious blood disorders, such as leukaemia. 

Therefore, it is important to study the regulation of fate decisions during blood development.  

Cell fate decision making is heavily influenced by transcription factors, which work together in a 

transcriptional regulatory network (Peter and Davidson 2015). It is challenging to identify 

functional relationships between genes as experimental validation does not readily scale to a 

system-wide approach; therefore, computational network inference methods are used to predict 

these functional relationships. Attempts at modelling transcriptional regulation in blood have 

included using literature-curated regulatory relationships to construct networks, which limit 

discovery as they rely on prior knowledge of the system (Krumsiek et al. 2011; Narula et al. 2010; 

Chickarmane, Enver, and Peterson 2009; Swiers, Patient, and Loose 2006). Most network 

construction methods have been restricted to bulk expression data. Using single-cell data is 

becoming an increasingly recognised method for uncovering regulatory relationships (Pina et al. 

2015; Moignard et al. 2013).  

In Chapter 5, a single-cell HSPC dataset was established by combining quantitative real-time PCR 

(qRT-PCR) data from Wilson et al. with three intermediate progenitor populations to extend the 

coverage of the murine bone marrow HSPC compartment (N. K. Wilson et al. 2015). The chapter 

showed that haematopoietic stem and progenitor cell (HSPC) populations are highly heterogeneous 

and gene expression is dynamic across differentiation trajectories towards megakaryocytic-

erythroid progenitor (MEP) and lymphoid multipotent progenitor (LMPP) cell fates. Fiona Hamey 
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used this qRT-PCR dataset of 2,167 HSPCs to identify transcriptional regulatory networks as this 

dataset profiles a large number of cells at different stages across haematopoietic differentiation. A 

hybrid network inference method was developed based on information about continuous gene 

expression levels obtained through pseudotime ordering (Ocone et al. 2015). The hybrid method 

took advantage of Boolean abstraction, which has previously been used to model transcriptional 

regulatory networks in HSCs, embryonic stem cells, and embryonic blood development (Bonzanni 

et al. 2013; Dunn et al. 2014; Xu et al. 2014; Moignard et al. 2015). Boolean abstraction converts 

gene expression to binary functions, where gene expression is either “on” or “off”. These functions 

then form part of a Boolean network to describe gene interactions (Fig. 6.1A). The pseudotime 

trajectories were used to identify the most suitable Boolean functions. Cells were ordered based on 

continuous expression data and converted to binary expression profiles. Pairs of cells were treated 

as input-output pairs for Boolean function to identify which functions best fitted the data (Fig. 

6.1B) (Hamey et al. 2017).  

 
 

Figure 6.1. Single-cell molecular profiles allow inference of regulatory network models. (A) Boolean logic 

functions. Four different scenarios may explain a regulatory relationship where A and B activate D, but C does not. (i) 

A and B act together to activate D, described by the AND function; (ii) either A or B can activate D alone, described 

by the OR function; (iii) C does not activate D, described by the NOT function; (iv) A is required to activate D but C 

is not, but this must occur in combination. This is described by the AND NOT function (B) Schematic of the network 

inference method starting from gene expression profiling using single-cell qRT-PCR data. 

 

When this method was applied to the single-cell qRT-PCR dataset, Boolean network models were 

reconstructed to describe the HSC to MEP trajectory and HSC to LMPP trajectory. These models 

were found to have complex structures, with each gene receiving inputs from multiple regulators 

and often as a composite of the Boolean functions described in Fig. 6.1A (e.g. (Notch AND Tcf7) 
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AND NOT Etv6 activates Ets1). A simplified graphical representation of the networks illustrates 

the highly connected nature of the networks (Fig. 6.2). 

 

 
Figure 6.2. Transcriptional regulatory network models for differentiation from HSCs to MEPs or LMPPs. 

Activation is indicated by a red pointed arrow, and repression by a blue flat-headed arrow. Figure generated by Fiona 

Hamey for publication (Hamey et al. 2017). 

 

Experimental validation was required to confirm the accuracy of the hybrid network inference 

method. In this chapter, the work done to validate the regulatory networks from HSCs to MEPs 

(MEP network) and HSCs to LMPPs (LMPP network) will be presented. 

6.1.1. Aims 

The aims of this chapter were to: 

• Correlate the identified network rules to transcription factor binding patterns 

• Experimentally validate regulatory relationships identified from the proposed network 

model 

To address these aims, previously published Chromatin Immunoprecipitation Sequencing (ChIP-

seq) data was interrogated in erythroid and myeloid-lymphoid model cell lines (Schütte et al. 2016; 

Hamey et al. 2017). Comparing the ChIP-seq data with the network rules identified a regulatory 

relationship which could be validated in vitro using luciferase assays. 
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6.2. Boolean network modelling reveals regulatory relationships within MEP 

and LMPP differentiation networks 

Boolean abstraction was used to model transcriptional regulatory networks along the two 

differentiation trajectories identified in the qRT-PCR data described in Chapter 5. Modelling the 

transcriptional networks was performed to gain insight into the regulatory relationships governing 

the differentiation process. Boolean functions were abstracted for each gene based on pairwise 

correlations across the data (Hamey et al. 2017). These functions are simplified to activating or 

repressing relationships in Table 6.1 and Table 6.2, respectively. The genes had rules, or Boolean 

functions, that were specific to one or both networks, or shared between the two. A previously 

described and experimentally validated regulatory relationship was present in both regulatory 

networks, in which Gata2 activated Gfi1b (Moignard et al. 2013). In the LMPP network, several 

genes inhibited the expression of Gata1, which is important in erythroid development (Leonard et 

al. 1993; Martin et al. 1990; Zon et al. 1993). Conversely, Nkx2.3 and Notch were inhibited in the 

MEP network; both these genes are involved in the lymphoid lineage, influencing lymphoid tissue 

development and commitment towards lymphoid fates (Pabst, Zweigerdt, and Arnold 1999; Pabst 

et al. 2000; Pui et al. 1999). 

 

Table 6.1. Simplified rules: activating relationships in MEP and LMPP networks. Activation between 

transcription factors in the MEP and LMPP network models, identified through Boolean abstraction. The activation of 

genes may also be shared between networks. The activating gene is the first column, and its targets are in the MEP 

network, LMPP network, or Shared Rules columns. 

Gene MEP network LMPP network Shared Rules 

Bptf Gata2 Erg 

Smarcc1 

Nfe2 

Lmo2 

Ikzf1 

Cbfa2t3h Gata2 

Gata1 Nfe2 

Fli1 Ikzf1 

Meis1  

Erg Erg 
Lyl1 Meis1 

Fli1 Bptf 

Ets1 Notch 
Hoxa9 

Tcf7 
Ets1 

Ets2 Gfi1b Ets2 Smarcc1 

Etv6 --- 
Fli1 Smarcc1 

Meis1  

Fli1 

Mitf Etv6 Runx1 

Prdm16 Meis1 Cbfa2t3h 

Ets2 Erg Smarcc1 
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Gene MEP network LMPP network Shared Rules 

Fli1  Nfe2 

Gata1 

Myb --- Tcf7 

Tal1   

Gfi1b   

Gata2   

Gata1   

Cbfa2t3h   

Smarcc1   

Gata2 

Cbfa2t3h Pbx1 
Tal1 

Gfi1b 
Nfe2 Gata1 

Bptf Gata2 

Gata3 
  Gata3 

  Tcf7 

Gfi1b 

Tal1 Gata1 

--- Gata2 Gfi1b 

Ets2  

Hhex Nfe2 Hhex --- 

Hoxa5 --- 

Hoxa9 

Tcf7 Gata1 

Prdm16 

Hoxa9 --- 
Meis1 Lyl1 

Nkx2.3 Ikzf1 

Hoxba4 --- --- Tcf7 

Ikzf1 --- --- 

Ldb1 

Hoxa9 

Cbfa2t3h 

Smarcc1 

Bptf 

Ldb1 --- 
Myb Smarcc1 

 Lmo2 

Lmo2 Tal1 
Nkx2.3 

Meis1 

Ldb1 

Lyl1 

Notch 

Nfe2 

Bptf 

Lyl1 --- 
Hoxa9 

Nkx2.3 

Smarcc1 

Nfe2 

Lmo2 

Meis1 

Pbx1 

Gata2 

Meis1 

Nkx2.3 

Etv6 

Hoxa9 

Runx1 

Fli1 

Erg 

Cbfa2t3h 

Nfe2 

Lmo2 

Mitf --- --- Mitf 

Myb 
Runx1 

Cbfa2t3h 

Myb 

Gata1 

Ikzf1 

Ldb1 

Lyl1 

Smarcc1 

Nfe2 

Bptf 
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Gene MEP network LMPP network Shared Rules 

Nfe2 

Hhex Fli1 Lyl1 

Gata2 Meis1 Cbfa2t3h 

  Lmo2 

  Bptf 

Nkx2.3 Nkx2.3 

Hoxa9 

Tcf7 Meis1 

Lmo2 

Notch --- Lmo2 
Tcf7 

Ets1 

Pbx1 Gata2 --- --- 

Prdm16 --- Hoxa5 --- 

Runx1 Myb 

Pbx1 

--- 
Fli1 

Tcf7 

Meis1 

Smarcc1 
Etv6 

Ets2 

Gata1 

Fli1 

Ldb1 

Lyl1 

Ikzf1 

Bptf 

Tal1 Gfi1b 

Gata3 

--- 
Tal1 

Gata1 

Lmo2 

Tcf7 
Notch 

Gata1 
Hoxb4 

Ets1 Hoxa5 

 

Table 6.2. Simplified rules: repressive relationships in MEP and LMPP networks. Repression between 

transcription factors in the MEP and LMPP network models, identified through Boolean abstraction. The repression 

of genes may also be shared between networks. The repressing gene is the first column, and its targets are in the MEP 

network, LMPP network, or Shared Rules columns.  

Gene MEP only LMPP only Shared Rules 

Erg --- Gata1 --- 

Etv6 Ets1 --- --- 

Fli1 --- Gata1 --- 

Gata1 Nkx2.3 --- --- 

Gata2 --- --- Notch 

Gata3 --- --- Myb 

Gfi1b --- --- Notch 

Hoxa9 --- Gata1 --- 

Ikzf1 --- --- Tcf7 

Lyl1 --- Gata1 --- 

Myb Gata3 --- Prdm16 

Nfe2 Notch --- --- 

Nkx2.3 Myb Gata1 --- 

Notch --- Gfi1b --- 

Prdm16 --- Myb --- 
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6.3. Linking ChIP-seq data and regulatory rules to identify relationships to 

validate in vitro  

To understand which rules could be validated in vitro, ChIP-seq data for 416B and HoxB8-FL cell 

lines was analysed for binding patterns at genes of interest. ChIP-seq identifies genome-wide 

binding profiles for transcription factors and other proteins and can be visualised using the UCSC 

genome browser (W. J. Kent et al. 2002). The 416B cell line is a murine cell line with 

megakaryocytic potential, whereas the HoxB8-FL cell line was established to investigate myeloid 

and lymphoid cell differentiation (Dexter et al. 1979; Redecke et al. 2013). Validating regulatory 

relationships using primary cells would be challenging due to the very limited availability of 

material. Moreover, in vitro cell lines ensure a more homogenous cell population; therefore, these 

model cell lines were used instead. The 416B cell line is supposed to be transcriptionally similar 

to MEPs, while the HoxB8-FL cell line should resemble LMPPs and GMPs. Previously, single-

cell qRT-PCR data was collected for 416B and HoxB8-FL cells using the same gene set; the data 

was projected onto the diffusion map described in Chapter 5 (Fig. 6.3A). This confirmed that 416B 

cells occupied a territory that forms part of the MEP trajectory, and the expression state of HoxB8-

FL cells resembled that of primary bone marrow cells from the LMPP trajectory. Therefore, 416B 

could be used to represent the MEP trajectory, and that the LMPP trajectory could be represented 

by HoxB8-FL cells (Fig. 6.3B).  

 

 
 

Figure 6.3. Transcriptional profiles of model haematopoietic cell lines occupy territories on MEP and LMPP 

trajectories on the HSPC qRT-PCR dataset. (A) Diffusion map of qRT-PCR data collected for 2,167 HSPC single 

cells. The MolO cells are highlighted to represent HSCs (purple); LMPPs (blue) and MEPs (red) are highlighted and 

represent the end points for the identified differentiation trajectories. (B) Diffusion map of qRT-PCR data collected 

for 2,167 HSPC single cells with projected cell line data. 416B cells – green; HoxB8-FL cells – blue. The primary 

HSPC cells are shown in grey.  
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In addition to qRT-PCR data, ChIP-seq data was previously collected for these cell lines (Schütte 

et al. 2016; Hamey et al. 2017). However, ChIP-seq data was only available for ERG, FLI1, 

GATA2, GFI1B, LMO2, LYL1, RUNX1, and SCL. The binding patterns for each of these proteins 

were analysed for all transcription factor-encoding genes included in the gene set (an example is 

shown in Fig. 6.4). The presence of peaks indicated that the transcription factor was bound within 

a specific genomic region. The transcription factor may be differentially bound between the two 

cell lines or show similar binding patterns in both. For example, Bptf is bound by LYL1 in HoxB8-

FL cells, but not in 416B cells. Bptf is also bound by FLI1 in both cell lines but at distinct genomic 

regions and is not bound by GATA2 in either cell line. The binding profile may be influenced by 

the behaviour and expression of the transcription factor as well as the expression of the target gene 

in the cell line.  
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Figure 6.4. ChIP-seq data reveals transcription factor binding patterns in 416B and HoxB8-FL cell lines. ChIP-

seq analysis of transcription factor binding in 416B and HoxB8-FL cell lines. Bptf was chosen as an example of how 

the raw data and binding peaks are visualised in the UCSC genome browser. Bars above each track indicate a binding 

event that was called as a peak.  
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The network rules for MEP and LMPP trajectories were integrated with the ChIP-seq data for 416B 

and HoxB8-FL cells to determine which regulatory network rules could be validated in the model 

cell lines (Fig. 6.5). Transcription factor binding to each gene was recorded in a binary matter (i.e. 

“yes” or “no”) and did not take into account the expression level of the gene in the cell line, which 

would potentially impact on the binding intensity. Most genes, except for Prdm16 and Hoxa5, were 

bound by most proteins in either 416B or HoxB8-FL cells lines, or both (Fig.6.5A). However, not 

all network rules correlated with the binding peaks observed (Fig. 6.5B). By linking these analyses, 

it was possible to select potential candidates to validate in vitro. 

 
Figure 6.5. Integrating transcription factor binding with network rules to identify regulatory relationships to 

validate in vitro. (A) Figure showing where transcription factor binding (columns) was observed in transcription 

factor-encoding genes (rows) in 416B and HoxB8-FL cell lines. Squares are coloured by transcription factor binding: 

No binding – white; HoxB8 binding only – light green; 416B binding only – light blue; 416B and HoxB8 binding – 

peach. (B) Figure showing network rules observed in the MEP and LMPP trajectories, and the agreement of the binding 

patterns with network rules. Squares are coloured by the presence of network rules. No rules – white; LMPP network 

rule only (no binding in HoxB8-FL cells) – pale green; MEP network rule only (no binding in 416B cells) – pale blue; 

MEP and LMPP network rule (no binding in either cell line) – pale peach; HoxB8 binding and LMPP rule –green; 

416B binding and MEP rule – dark blue; All (shared rules; binding in both cell lines) – orange. 
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In the MEP network model, GATA2 positively regulated Cbfa2t3h and Nfe2, which was not seen 

in the LMPP network model (Fig. 6.6A). Interrogating the ChIP-Seq data for GATA2 showed that 

GATA2 bound to both Cbfa2t3h and Nfe2 loci in 416B cells. Whilst binding could be seen in the 

Hoxb8 cells, these binding events were minor compared with regions bound elsewhere in the 

genome, and therefore not recognised as peaks by the computational algorithm (Fig. 6.6B and C). 

At the Cbfa2t3h locus, two prominent binding peaks were identified at the promoter region in 416B 

cells. The two peaks represent the previously identified minimal and full promoter; the minimal 

promoter represents the most conserved region. At the Nfe2 locus, a prominent peak was identified 

at the -7kb enhancer region in 416B cells. Single-cell profiling previously performed in our lab 

showed that Gata2 is not highly expressed in HoxB8-FL cells, which is consistent with primary 

bone marrow LMPP cells (Hamey et al. 2017). The ChIP-seq data was in accordance with the 

single-cell profiling data, as GATA2 binding at both Cbfa2t3h and Nfe2 loci was limited in HoxB8-

FL cells. The ChIP-seq data therefore corroborates the Gata2-activates-Cbfa2t3h and Gata2-

activates-Nfe2 rules found only in the MEP network model. 
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Figure 6.6. Regulatory relationships unique to the MEP network model are supported by transcription factor 

binding. (A) Diagram of the MEP network model zoomed into the trio of genes with a regulatory pattern identified as 

unique to the MEP network. The diagram shows the trio within the network model and alone for clarity. (B) ChIP-seq 

analysis of GATA2 binding in 416B and HoxB8-FL cell lines at the Cbfa2t3h locus. The minimal and full promoters 

are highlighted. The bars above the tracks indicate a binding event that was called as a peak. (C) ChIP-seq analysis of 

GATA2 binding in 416B and HoxB8-FL cell lines at the Nfe2 locus. The -7kb enhancer region is highlighted. The bars 

above the tracks indicate a binding event that was called as a peak.  
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6.4. In vitro validation supports differences in network model connectivity  

To validate whether GATA2 binding contributes to the transcriptional activation of Cbfa2t3h and 

Nfe2 in 416B cells, as predicted by the network model, reporter constructs were generated for the 

Cbfa2t3h minimal and full promoter as well as the Nfe2 enhancer. The constructs were generated 

as wild-type versions (WT) or with GATA2 binding site mutations. Luciferase reporter assays were 

performed to determine the activation of Cbfa2t3h and Nfe2 constructs with and without mutated 

GATA2 binding sites (n=3 biological replicates). A construct that lacked the promoter/enhancer 

was included as an empty vector control (pGL2-Basic vector for Cbfa2t3h and pGL2-Promoter 

vector for Nfe2). The level of luciferase activity directly corresponded to the activity of the 

Cbfa2t3h promoter or Nfe2 enhancer (Fig. 6.7). Luciferase assays were performed in 416B cells 

only as the interrogated rules were specific to the MEP network model. 

Luciferase assays showed that the Cbfa2t3h promoter and Nfe2 enhancer regions are active in 416B 

cells, with the Cbfa2t3h promoter being more active than the Nfe2 enhancer (Fig. 6.7A/B). 

Mutation of the GATA2 binding sites decreases their activity, as seen by a decrease in luciferase 

activity normalised against the empty vector control. The GATA2 mutants show a significant fold 

reduction in luciferase activity compared to the WT control (Fig. 6.7C/D). Specifically, GATA2 

mutations caused a 0.48±0.05-fold change in activity at the Cbfa2t3h promoter (p<0.001), a 

0.58±0.05-fold change in activity at the Cbfa2t3h minimal promoter ( p<0.001), and a 0.46±0.03-

fold change in activity at the Nfe2 enhancer (p<0.05). These results are consistent with GATA2 

activating Cbfa2t3h and Nfe2 during MEP differentiation, as suggested by the network model. 

Therefore, the luciferase assays validated the regulatory relationships proposed in silico between 

GATA2 and Cbfa2t3h, and between GATA2 and Nfe2, which was also supported by transcription 

factor binding. 
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Figure 6.7. In vitro validation of MEP regulatory network rules. Normalised luciferase activity at the (A) Cbfa2t3h 

promoter and (B) Nfe2 enhancer, comparing the wild-type and GATA2 mutant regulatory regions. Results are 

normalised to the empty vector (A: pGL2-Basic vector; B: pGL2-Promoter vector). Fold change in luciferase activity 

at the (C) Cbfa2t3h promoter and (D) Nfe2 enhancer, comparing the wild-type and GATA2 mutant regulatory regions. 

WT: wild-type; *P <0.05, **P<0.01, ***P<0.001; two-tailed unpaired t-Test, n=3 ± SD 

 

6.5. Conclusions 

This chapter focused on validating the hybrid inference method used to identify transcriptional 

regulatory networks describing HSC differentiation to MEP and LMPP cell fates. The regulatory 

network inference methods were constructed using qRT-PCR data which profiled 2,167 single cells 

and included HSCs and early progenitors. Both ChIP-seq and luciferase assays served to validate 

regulatory relationships predicted by the network model. 
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Boolean modelling has been used to infer regulatory networks in many studies, including the stem 

cell field (Dunn et al. 2014; Moignard et al. 2015). However, these studies were either limited by 

the use of bulk expression data, which obscures heterogeneity in cell fate decisions, or only 

considered binary gene expression. In doing so, the continuous data is not considered and therefore 

the accuracy of a model describing how cells transition across differentiation may be affected. To 

overcome this problem, a hybrid Boolean network inference model, which considers pseudotime 

ordering of single cells, was developed. Although the model is restricted to binary expression 

states, it does not exclude cyclical relationships and does not computationally limit the number of 

genes in the network model, unlike other existing methods (Ocone et al. 2015; Schütte et al. 2016).  

Examining the regulatory relationships identified by the network model revealed previously 

identified relationships, such as the activation of Gfi1b by Gata2, as well as expected expression 

patterns in which erythroid genes were inhibited along the lymphoid trajectory, and vice versa 

(Moignard et al. 2013). The identified MEP network-specific relationships, in which Gata2 

positively regulates Nfe2 and Cbfa2t3h, are consistent with known biological functions of these 

genes. Gata2 is a regulator of HSPC function and involved in HSC maintenance and expansion, as 

well as early haematopoietic cell formation (Rodrigues et al. 2005; K.-C. Lim et al. 2012; Tsai and 

Orkin 1997). Gata2 mouse models demonstrate that a homozygous mutation in Gata2 is embryonic 

lethal, and knockout models show defects in primary haematopoiesis (Tsai et al. 1994). Cbfa2t3h 

is a component of a transcription factor complex that regulates erythroid and megakaryocytic 

programs (Goardon et al. 2006; Fujiwara et al. 2010; Hamlett et al. 2008). The gene encodes for 

ETO2, a corepressor in complex with SCL (encoded by Tal1) (Schuh et al. 2005). During 

differentiation, GATA2 binds and activates Cbfa2t3h, causing ETO2 to repress its own promoter, 

leading to erythroid maturation and a GATA1-driven transcriptional program (Fujiwara et al. 

2009). Nfe2 was originally discovered as an upstream regulator of globin gene expression (Ney et 

al. 1993). It is expressed in HSCs and erythroid and megakaryocytic lineages, and is required for 

megakaryocyte maturation and platelet production (Andrews et al. 1993; Shivdasani et al. 1995). 

To validate the MEP network specific rule, transcription factor binding patterns were investigated 

in 416B and HoxB8-FL cell lines, which represent erythroid and myeloid-lymphoid lineages, 

respectively (Dexter et al. 1979; Redecke et al. 2013). Gene expression profiles for these cell lines 

were previously obtained by interrogating the same gene set using qRT-PCR. ChIP-seq data 

showed prominent binding peaks at the Cbfa2t3h minimal and full promoter, and the -7kb Nfe2 

enhancer region, in 416B cells; while binding was also observed in HoxB9-FL cells, it was very 
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limited. Luciferase reporter constructs were generated to experimentally validate GATA2 

transcriptional activation and showed that the wild-type constructs had significantly higher activity 

than constructs without the promoter/enhancer region or with mutated GATA2 binding sites. 

Therefore, transcription factor binding and luciferase assays validated regulatory relationships 

proposed in silico by the inferred network model. Furthermore, linking regulatory relationships to 

the MEP regulatory network but not the LMPP network model illustrates how network topology 

guides interactions between HSPC regulators such as Gata2 and lineage-restricted genes like 

Cbfa2t3h and Nfe2. Identifying and validating simple rules in the network models demonstrates 

how in-silico investigations can drive in vitro and in vivo studies. 

6.5.1. Limitations and future work 

Single-cell qRT-PCR is a sensitive method of measuring gene expression but limits the focus of 

any study to the genes selected by the investigator. In this study, the gene set was myeloid-biased 

and focused on regulators of stem cell maintenance, limiting discovery of regulatory relationships 

along the LMPP trajectory. However, a handpicked gene set also results in incomplete network 

models, as it is not possible to discovery relationships involving novel genes. Our model suggests 

that Cbfa2t3h activates several genes in the network; however, it has been traditionally identified 

as a corepressor with SCL (Schuh et al. 2005). The described relationships could therefore be 

explained by the direct function of Cbfa2t3h or a double repressive link, but it is not possible to 

verify this activity without expanding the gene set used. It would be interesting to identify and 

validate regulatory relationships with a larger, unbiased gene set to uncover more of the complex 

interactions involved in HSPC differentiation. Furthermore, identifying mechanisms that direct 

stem cells into specific differentiation trajectories would be a valuable investigation for improving 

our understanding of the haematopoietic system, as well as our understanding of the genes involved 

in cell fate and the perturbations that occur in disease. 

6.5.2. Summary 

In summary, a computational network inference method was applied to single-cell gene expression 

profiles and identified differences in transcriptional regulatory programs between cells 

differentiating towards erythroid and lymphoid lineages. Regulatory network rules were validated 

using transcription factor binding patterns and in vitro assays, demonstrating the value of in silico 

network inference for driving further investigation into processes governing differentiation. 
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Chapter 7: Discussion 

7.1. Thesis Overview 

The purpose of this thesis was to interrogate the transcriptional landscape of haematopoietic stem 

and progenitor cell (HSPC) differentiation using single-cell techniques and genome editing 

technologies. Specifically, single-cell RNA-sequencing (scRNA-seq) and quantitative real-time 

PCR (qRT-PCR) were used to investigate the structure of the haematopoietic hierarchy. The 

scRNA-seq dataset formed the basis of an investigation into genes implicated in HSC biology using 

CRISPR genome editing. The qRT-PCR dataset was used to infer regulatory networks for cell fates 

and identify regulatory relationships that could be experimentally validated. An overview of this 

work, as well as its implications for HSPC biology, will be discussed here. 

7.1.1. Characterising the haematopoietic transcriptional landscape using single-cell 

technologies 

Two single-cell profiling techniques were used in this thesis to measure gene expression in 

individual HSPCs: scRNA-seq (Chapter 3) and qRT-PCR (Chapter 5). Interrogation of both 

datasets revealed they were able to generate structures of the transcriptional landscape that 

recapitulated known aspects the haematopoietic hierarchy. 

A previously published dataset was the basis of the qRT-PCR investigation (N. K. Wilson et al. 

2015). This dataset isolated discrete populations of LT-HSCs using four commonly used sorting 

strategies, as well as discrete progenitor populations: FSR-HSCs, LMPPs, MEPs, CMPs and 

GMPs. The focus of the study was to resolve heterogeneity within the LT-HSC compartment and 

therefore the gene set consisted of genes important in HSC biology, skewed towards the myeloid-

erythroid lineages. In the work presented in Chapter 5, this dataset was supplemented with 

intermediate progenitor populations to more comprehensively interrogate the HSPC compartment. 

The three additional populations were FSR-HSCs, MPPs, and PreMegEs, and were chosen as they 

are defined populations within the HSPC compartment that should have multi-lineage potential 

whilst lacking the long-term potential of reconstituting the haematopoietic system in an irradiated 

mouse (Pronk et al. 2007; Cabezas-Wallscheid et al. 2014). 

The four HSC sorting strategies were generally similar in their gene expression, but also 

demonstrated key differences which may reflect properties of the HSCs themselves or that of 
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‘contaminating’ cells present in the impure HSC fractions. HSC4 in particular was the most 

transcriptionally unique of the four LT-HSC populations, as seen in the dimensionality-reduction 

visualisations and clustering analysis. It was characterised by less Cbfa2t3h-expressing cells and 

higher Gata3 expression relative to the other LT-HSC populations, together suggesting that HSC4 

cells have less erythroid potential and are instead biased towards the lymphoid lineage (Pandolfi et 

al. 1995; Goardon et al. 2006). Studies show that Gata3, which is essential to T-lymphocyte 

differentiation, is present in LT-HSCs and involved in regulating their self-renewal and entry into 

the cell cycle (Ku et al. 2012; Frelin et al. 2013; D. G. Kent et al. 2009). Together with the reduced 

Cbfa2t3h expression, this suggests that the expression pattern seen in HSC4 cells can in fact be 

attributed to the functional HSCs and that this sorting strategy may enrich for lymphoid-primed 

HSCs. 

Clustering and correlation analysis demonstrated that the transcriptional profiles of these HSPC 

populations were in line with known biology. Correlation analysis measures the strength of 

relationships between sets of genes; if two genes are positively correlated, their expression 

increases simultaneously, whereas a negative correlation describes a situation where the expression 

of one gene decreases while the expression of another increases. While correlation analysis does 

not describe cause-and-effect relationships, it can give insights into functional relationships 

between genes. In the qRT-PCR data described in Chapter 5, a cluster of positive correlations was 

observed between Gata2, Gfi1b, and Tal1, which is consistent with literature that describes positive 

Gata2-Tal1 and Gata2-Gfi1b relationships (Moignard et al. 2013; Bloor et al. 2002; J. E. Pimanda 

et al. 2007). Furthermore, negative correlations were apparent between erythroid and lymphoid 

genes, such as Gata1-Nkx2.3 and Gata1-Notch (Pabst et al. 2000; Pabst, Zweigerdt, and Arnold 

1999). Overall, this demonstrates that the qRT-PCR dataset accurately depicted relationships in 

haematopoiesis and could be used to further study transcriptional regulation in these populations.  

Interestingly, the functional and fate-output properties of CMPs have been increasingly challenged, 

with studies suggesting that CMPs are not a bipotent population, but rather a heterogeneous 

population of committed myeloid or erythroid/megakaryocyte progenitors (Paul et al. 2015). The 

CMP phenotype was further challenged in this study, which showed that CMPs generally clustered 

with GMPs and had similar correlations between pairs of genes. Clustering of GMPs and CMPs 

was also described by Wilson et al. (2015). In particular, genes such as Hoxa9 and Notch were 

involved in similar, predominantly negative relationships in CMPs and GMPs, whereas these genes 

have positive correlations with other transcription factors in MEPs. This suggests that CMPs are in 



158  Discussion 

 

 

fact already committed towards a cell fate lineage, and the sorting strategy used in this experiment 

isolated cells moving towards a myeloid fate. Importantly, bulk analysis may not have captured the 

similarities between these populations, demonstrating the value of single-cell expression analysis. 

Pseudotime analysis identified two differentiation trajectories in the dataset, which described the 

differentiation of HSCs towards MEPs and LMPPs. The high number of transcription factor genes 

measured made it possible to construct a regulatory network model for differentiation along these 

two trajectories. The regulatory rules Gata2-activates-Cbfa2t3h and Gata2-activates-Nfe2 were 

specific to the MEP trajectory and confirmed in vitro, validating the in-silico model. Interestingly, 

while the progenitor populations were associated with more negative correlations, the trajectories 

involved mainly activating relationships, and very few inhibiting relationships. A possible 

explanation is that while repression may be important in defining progenitor cell phenotypes, 

activating relationships are key in driving differentiation towards these cell fates. 

The qRT-PCR dataset was useful for identifying regulatory networks within haematopoiesis but 

was limited in its gene set and cell sampling method. In the MEP trajectory, there is a large gap 

between the HSCs and MEPs, suggesting cells that have transcriptional profiles representing an 

intermediate state between these two phenotypes are still missing, despite the additional sampling 

of MPPs, PreMegEs, and MEPs. Alternatively, the gene set used may not have been sufficient to 

differentiate these intermediate populations and order them on the pseudotime trajectory. 

Furthermore, considerable overlap was seen between GMPs and LMPPs, which separate in the 

scRNA-seq data based on their transcriptional profiles, highlighting the disadvantages of a limited 

gene set for discriminating between cell-fates. The scRNA-seq experiment in Chapter 3 describes 

a transcriptome-wide approach to gene expression profiling, and samples cells using broad, 

inclusive gates. 

Broad gates were used to capture cells outside of conventional, strict sorting gates, which are 

normally considered ‘contaminating’ cells. This approach was used to see whether the 

contaminating cells represented intermediates between cell states and could contribute towards a 

continuous picture of the haematopoietic hierarchy. Index sorting made it possible to 

retrospectively assign cells to HSPC populations. Dimensionality reduction methods confirmed 

that the scRNA-seq data recapitulated the haematopoietic hierarchy. The diffusion map method 

was particularly successful for visualising continuous data and clearly separated three trajectories: 

erythroid, myeloid, and lymphoid. This separation was also seen using STREAM analysis. 
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However, SPRING analysis revealed that the scRNA-seq atlas was capturing early differentiation 

into specific trajectories, for example towards megakaryocytes or B-cells. When the top 

differentially expressed genes for each branch were plotted on the diffusion map, it showed that 

the diffusion map method was unable to separate out these early, specific branches. This 

demonstrates that SPRING was the superior method for capturing the full scope of the 

differentiation events in the scRNA-seq dataset. Furthermore, the results highlight early lineage 

choices occurring in HSPCs that were not observed at the population level, in line with other studies 

that suggest cell-fate restricted cells arise from HSPCs without major transitions through 

intermediate stages (Laurenti and Göttgens 2018; Notta et al. 2015; Paul et al. 2015; Grün et al. 

2016; Velten et al. 2017). 

Gene expression analysis using scRNA-seq has more scope for discovering novel population 

markers and gene regulation trends; however, it is limited by a high dropout rate. Dropout events 

occur when the expression of a gene is moderate in one cell and undetected in another, usually due 

to low mRNA in individual cells. The low starting amounts of mRNA in single-cells compared to 

bulk populations make it more likely that a transcript may not be transcribed and/or amplified 

during cell processing and therefore goes undetected during sequencing, resulting in a dropout 

event (Kharchenko, Silberstein, and Scadden 2014; W. V. Li and Li 2018). Furthermore, scRNA-

seq analysis only considers highly variable genes, meaning that genes that did not demonstrate 

changes in expression between different samples or conditions were excluded from further 

analysis. Overall, scRNA-seq suffers from high technical and biological noise, which make it 

difficult to accurately infer transcriptional regulatory networks using these gene measurements.  

Ultimately, the method of choice for gene expression analysis depends on the question being 

asked—while scRNA-seq gives a transcriptome-wide overview of the transcriptional landscape, is 

beneficial for novel marker discovery and offers better discrimination between cell-fates and their 

differentiation trajectories, it is costly and suffers from dropouts. On the other hand, qRT-PCR is 

limited to a curated gene set but allows for a deeper analysis of specific sets of genes and confers 

fewer challenges for studying regulatory networks with currently available computational methods.  

7.1.2. Genome editing to interrogate HSC biology 

Genome editing using the CRISPR/Cas9 system was used in Chapter 4 to investigate genes 

implicated in HSC biology. This technology has been applied to investigations of the 

haematopoietic system to create leukaemic mouse models and CRISPR screening platforms to 
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identify potential therapeutic targets (overview in Section 1.4.1.1) (Heckl et al. 2014; Tzelepis et 

al. 2016). In this thesis, a CRISPR screen was designed to determine the effect of perturbing the 

previously identified MolO (molecularly overlapping) and SuMO (surface marker overlap) genes, 

using changes in EPCR expression as the primary outcome, and changes in apoptosis and colony 

output as secondary experiments (N. K. Wilson et al. 2015). The MolO and SuMO genes are 

associated with a molecularly similar subpopulation of HSCs and repopulating HSCs, respectively; 

the curated candidate gene list included 16 genes that were most highly expressed in LT-HSCs. 

Genotyping analysis performed in this investigation suggests that CRISPR gRNAs were 

successfully targeting the candidate genes, but the results indicate that the gene perturbations had 

no significant effect on EPCR expression, apoptosis, nor lineage output. Significant changes in 

EPCR expression based on the percentage of EPCR+ cells or median EPCR expression after seven 

days in culture were generally caused by one gRNA out of three for the candidate gene. 

CRISPR/Cas9 technology has been associated with off-target mutations that may cause genomic 

instability and disrupt the normal function of genes other than the intended target; therefore, 

drawing conclusions about the effect of perturbing candidate genes based on one gRNA may 

incorrectly represent their function (Pattanayak et al. 2013; Cho et al. 2014; Y. Fu et al. 2013; X.-

H. Zhang et al. 2015). Pooling the results from individual gRNAs for each perturbation together 

showed that only Procr significantly decreased median EPCR expression in cultured E-SLAM 

cells. 

The loss of function of a single gene may not influence the overall function of cells due to genetic 

compensation, where related genes are upregulated as a consequence of gene knockout in order to 

maintain normal function (El-Brolosy and Stainier 2017). Furthermore, possible gene redundancies 

may mean that perturbing a single gene would have no effect on the biological phenotype as another 

gene would perform the same function (Nowak et al. 1997). Another possible approach for this 

CRISPR screen would be to transduce cells with CRISPR gRNAs for multiple genes and include 

a unique barcode for each gRNA. The transduced cells could then be sequenced to reveal which 

gRNAs contributed to the phenotype (Dixit et al. 2016). This type of analysis may produce more 

significant results, as multiple genes would be simultaneously perturbed. 

However, the overall lack of significant results in this investigation suggest that there are several 

weaknesses in the study design. These weaknesses concern the medium conditions used and the 
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parameters investigated. A further explanation and possible solution for each is offered in the list 

below: 

• Medium conditions. The conditions in which the HSCs are cultured are optimal for their 

expansion. It was hypothesized that the gene perturbations would decrease properties such 

as HSC maintenance and may therefore increase differentiation and mature cell output. 

However, any effects of the candidate gene perturbations could be masked by the culture 

conditions used, because factors such as cell proliferation and differentiation are already 

being encouraged. It would be interesting to see how the results would be affected if the 

HSCs were cultured in medium that instead discouraged cell expansion, and whether the 

gene perturbations could result in increased differentiation in HSC maintenance conditions. 

• Investigating changes in EPCR expression. EPCR is a well-established marker of HSCs but 

is also a rarely expressed protein. The hypothesis in this investigation was that perturbing 

the candidate genes would decrease cells that remain in the primitive HSC state, and would 

therefore decrease EPCR expression. However, assaying the loss of an already lowly 

expressed protein is difficult and unreliable to quantify. The study could be strengthened 

by focusing on surface marker expression that is gained after treatment with the various 

CRISPR gRNAs. As cells are dividing and differentiating, the more mature cells will 

express different lineage markers. A lineage cocktail was used in this investigation and 

therefore obscured any interpretation of the more mature cells. Analysing the individual 

mature lineages separately may reveal more apparent changes in differentiation towards the 

diverse lineages. Mature cells will also occur more frequently in culture as they have a 

higher proliferation rate than HSCs, and therefore could be assayed more reliably. 

• Repopulation potential. The SuMO genes defined in the Wilson et al. study were associated 

with functional HSCs and it was predicted that their perturbation may cause a change in 

HSC characteristics (N. K. Wilson et al. 2015). The true measure of a real stem cell is to 

test its ability to repopulate a mouse. Therefore, transplanting the treated cells into 

irradiated mice could show whether the gene perturbations prevent reconstitution of the 

haematopoietic system, as well as their impact on lineage output. 

A couple other issues, however, call into question whether the study should be improved, or 

completely redesigned. HSCs are a rare population in the adult bone marrow, estimated at 1 in 

10,000 cells (Szilvassy et al. 1990). As 250 E-SLAM cells were sorted into each well in triplicate 
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for each gene, the number of genes that could be assayed in each individual screen was severely 

restricted. Furthermore, the Cas9-transgenic mice also had to be specifically bred for this study, 

limiting the number of individual screens and repetitions possible based on age and litter size. 

Instead of using Cas9-transgenic mice, more readily available mice could be used, such as 

C57BL/6, and transduced with Cas9 vector together with the CRISPR gRNA vector. This would 

make it much more feasible to obtain repeats for all experiments.  

A possible redesign for this study would also assay a more abundant cell type. As the MolO and 

SuMO genes are associated with HSC maintenance and repopulation capacity, it would be 

interesting to see whether overexpressing these genes in other populations would restore self-

renewal and an HSC state. Specifically, the candidate genes could be overexpressed in multipotent 

populations with finite or no self-renewal, such as MPPs and FSR-HSCs. These cell types are more 

abundant in the bone marrow and therefore individual screens could include more candidate genes 

and could be done more frequently. As this experiment design would be investigating a gain of 

HSC characteristics, assaying HSC markers such as SLAM (CD48- CD150+) and EPCR would be 

appropriate, as their expression should increase and therefore any changes would be easier to 

detect. This proposed design could address the original aim of the CRISPR screen, which was to 

identify genes important in HSC biology; furthermore, identifying genes that are able to restore 

self-renewal and an HSC state could have major implications for stem cell therapies. 

7.1.3. Implications of this thesis for HSPC biology 

The single-cell gene expression analyses performed in this thesis confirm the known structure of 

the haematopoietic hierarchy, in which HSCs differentiate into mature cell-fates, a process which 

is regulated by diverse interactions in complex transcriptional networks. The use of single-cell 

technologies made several observations possible: 

• SPRING analysis of the scRNA-seq dataset revealed early lineage branching that was 

previously undetected in smaller datasets and bulk expression experiments 

• Heterogeneity in HSC populations was demonstrated in the qRT-PCR dataset, revealing 

possible lymphoid-priming in the HSC4 population 

• Clustering and correlation analysis showed that the isolated CMP population was most 

similar to GMPs and most likely represents cells primed towards a myeloid lineage, rather 

than a bipotent population 



163  Discussion 

 

 

• Single-cell analysis can be used to construct transcriptional networks of differentiation 

processes based on pseudotime ordering, which were validated in vivo. 

The scRNA-seq dataset is the first of its kind to describe the whole haematopoietic hierarchy and 

provides a powerful reference dataset for biologists. The interactive website allows researchers to 

interrogate gene expression on the HSPC landscape. Several groups have used the dataset to 

demonstrate the computational algorithms they developed to analyse single-cell gene expression 

data (Griffiths et al. 2018; H. Chen et al. 2018). Furthermore, researchers can project their single-

cell datasets onto our dataset to interrogate changes in gene expression caused by their particular 

phenotype of interest. In our paper describing the scRNA-seq dataset, we projected young and old 

HSCs from C57BL/6, DBA/2, and Vwf-EGFP mice to show both types of HSCs cluster with the 

LT-HSCs from our dataset, but old HSCs form a tighter, more molecularly homogenous population 

(Kowalczyk et al. 2015; Grover et al. 2016; Nestorowa et al. 2016). This type of analysis could 

also be performed with disease models, leading to potential discoveries about differences in gene 

regulation in normal versus leukaemic cells that could inform future therapies. 

 

7.2. Future directions for single-cell biology 

This thesis described the use of single cell RNA-sequencing and qRT-PCR to further our 

knowledge of the transcriptional landscape of HSPC differentiation. Numerous techniques have 

since been developed that offer a different approach to gene expression analysis or enable it to be 

paired with perturbation or epigenetic research. This section describes these technologies and their 

implications for cell-fate research. 

7.2.1. Advances in single cell gene expression analysis 

Single-cell RNA-sequencing is a powerful approach to collect gene expression measurements for 

the whole transcriptome of individual cells. However, it is associated with a high cost per cell, 

especially in plate-based methods that require high volumes of reagents (Picelli et al. 2014).  

Microwell technologies such as CytoSeq and Microwell-Seq are plate-based methods designed to 

decrease costs by reducing the reagents required (Fan, Fu, and Fodor 2015; Han et al. 2018). Single 

cells are deposited into individual wells together with a library of barcoded beads; after cell lysis, 

the mRNA is able to hybridize to the beads, making it possible to pool the cells before reverse 
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transcription, amplification and sequencing (Fan, Fu, and Fodor 2015). Microwell-Seq has recently 

been used to analyse more than 400,000 single cells from major mouse tissues to construct a mouse 

cell atlas (Han et al. 2018). The Genesis system (Celsee) and SMARTer ICELL8 Single-Cell 

System (Takara) are commercially available platforms that use microwell technology for single-

cell analysis. 

Another recent high-throughput scRNA-seq method is SPLiT-seq (Split Pool Ligation-based 

Transcriptome sequencing), which can be used to transcriptionally profile thousands of 

formaldehyde fixed cells (Rosenberg et al. 2018). Individual transcriptomes go through multiple 

rounds of combinatorial barcoding, which append well-specific barcodes, unique molecular 

identifiers, and sequencing barcodes. Prior to sequencing, this method does not require any 

complex instruments or expensive reagents. SPLiT-seq was used to analyse more than 150,000 

transcriptomes from mouse brains and spinal cords, identifying over 100 different cell types 

(Rosenberg et al. 2018). 

Droplet-based microfluidic methods have been used widely as they successfully reduce the cost 

per cell while also increasing throughput (Hamey et al. 2016). These technologies encapsulate 

single cells in nanolitre droplets with barcoded beads. Within each droplet, the single cell is lysed 

and the bead dissolves to release barcoded reverse transcription oligonucleotides into solution. 

Reverse transcription of the polyadenylated mRNA can then occur, barcoding all the cDNA from 

a single cell with the same barcode. The cells are then pooled and sequenced together. Gene 

expression profiles can be simultaneously generated for thousands of cells, drastically reducing the 

cost per cell. The first high-throughput droplet-based methods to be published were Drop-Seq and 

InDrop (Macosko et al. 2015; Allon M. Klein et al. 2015). The 10x Chromium™ system is a 

commercially available platform from 10x Genomics that allows researchers to perform droplet-

based scRNA-seq without having to generate their own microfluidic devices and reagents (Zheng 

et al. 2017).  

Dahlin et al. recently used the 10x Chromium™ system to resolve eight lineage trajectories in 

mouse bone marrow HSPCs: lymphoid, megakaryocyte, erythroid, neutrophil, monocyte, 

eosinophil, mast cell, and basophil lineages (Dahlin et al. 2018). Furthermore, they observed 

reduced Myc expression and proliferative defects in a c-Kit mutant mouse model (W41/W41), in 

which transcriptional profiling revealed the lack of a mast cell lineage entry point. This study 

profiled 44,802 wild-type HSPCs and 13,815 W41/W41 HSPCs, demonstrating how droplet-based 
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methods can be used to perform informative, large-scale transcriptomic studies at a fraction of the 

cost of plate-based scRNA-seq (Dahlin et al. 2018). 

7.2.2. Combining single-cell gene and protein expression measurements 

In this thesis, scRNA-seq was combined with index sorting to record surface marker expression 

data for all the individual cells sorted. This made it possible to use surface marker protein 

expression to differentiate between cells and retrospectively assign them to HSPC cell types. 

Wilson et al. also used index sorting to link molecular characterisation of single cells by qRT-PCR 

with functional studies (N. K. Wilson et al. 2015).  

Analysing the proteome can elucidate which proteins are involved in defining cell phenotype and 

function. However, it is not possible to collect index sorting data using droplet-based approaches 

as they are incompatible with cytometry. Researchers have therefore developed methods to 

combine transcriptome profiling with protein expression measurements. CITE-seq (Cellular 

Indexing of Transcriptomes and Epitopes by Sequencing) and REAP-seq (RNA expression and 

protein sequencing) use antibodies conjugated to DNA barcodes instead of fluorophores to label 

cells (Peterson et al. 2017; Stoeckius et al. 2017). In CITE-seq, the antibodies are conjugated to 

streptavidin, which is bound to the biotinylated DNA barcodes, whereas in REAP-seq, the antibody 

and DNA barcode are covalently bound (Todorovic 2017). Droplet-based scRNA-seq approaches 

can then be applied to these DNA-barcode labelled cells to generate both mRNA and protein 

expression data.  

The application of CITE-seq was demonstrated on 8,000 individual cord blood cells, which 

produced cell profiles consistent with established flow cytometry profiles and improved 

characterisation of natural killer cells based on protein expression (Stoeckius et al. 2017). REAP-

seq was first used to study human naïve CD8+ T-cells using a panel of 80 barcoded antibodies. 

Peterson et al. investigated the activation of these T-cells after treatment with a CD27 agonist and 

characterised differentially expressed genes and proteins in untreated versus treated cells, 

demonstrating how this technology can be used to enhance preclinical studies (Peterson et al. 

2017). Both these methods are compatible with the 10x Chromium™ platform and therefore can 

be widely used to simultaneously study gene and protein expression in a high-throughput manner. 

Both methods are currently limited to measuring surface marker protein expression, but may be 

extended in the future to measure intracellular proteins as well (Todorovic 2017). 



166  Discussion 

 

 

7.2.3. Genome and transcriptome sequencing 

New single-cell technologies have been developed to sequence the genomic DNA and mRNA from 

the same cell. These methods pair established scRNA-seq technologies with whole genome 

amplification methods. DR-seq (gDNA-mRNA sequencing) first amplifies the nucleic acids prior 

to physical separation to minimise sample loss (Dey et al. 2015). However, it uses CEL-seq to 

sequence the transcriptome, which only targets the 3’ end of mRNAs (Hashimshony et al. 2012). 

The cells are also manually selected, preventing high throughput application. An alternative 

method is G&T-seq (genome and transcriptome sequencing), which captures RNA using 

biotinylated primers and separates it from DNA using streptavidin-coated magnetic beads; the 

RNA is processed using the Smart-seq2 protocol and multiple displacement amplification is used 

to amplify DNA (Macaulay et al. 2015, 2016). Sequencing both the genome and transcriptome 

from a single cell makes it possible to link genomic and transcriptomic heterogeneity. These 

technologies have not been applied to the haematopoietic system yet, but could be particularly 

useful in studying blood disorders where acquired mutations are linked to aberrant function 

(Hamey et al. 2016). 

7.2.4. Combining single-cell transcriptomic and epigenomic measurements 

While this thesis focused on transcriptional heterogeneity and regulation of HSPC differentiation, 

the transcriptome is not the only factor that impacts cell fate decision making. Epigenetic regulation 

plays an important role during HSC maintenance and differentiation. Chromatin modifications are 

involved in programming gene expression changes in undifferentiated HSCs as well as 

differentiating cells (Cui et al. 2009). Several single-cell methods have been designed to interrogate 

the epigenome (Table 7.1). 
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Table 7.1. Single-cell methods interrogating the epigenome. Methods are grouped by the target of interest. 

Target Methods 

DNA 

methylation 
• Single-cell Reduced Representation Bisulfite Sequencing (scRRBS) (H. Guo et al. 

2013) 

• Single-cell Bisulfite Sequencing (scBS) (Smallwood et al. 2014) 

Histone 

modifications 
• Drop-ChIP: combines microfluidics, DNA barcoding and next-generation 

sequencing to assess the chromatin state of single cells (Rotem et al. 2015)  

Chromatin 

accessibility 
• Single-cell Assay for Transposase-Accessible Chromatin (scATAC-seq)  

• Cusanovich et al.: based on cellular indexing (Cusanovich et al. 2015) 

• Buenrostro et al.: based on microfluidics (Buenrostro et al. 2015) 

Chromatin 

arrangement 
• Single-cell Hi-C (Nagano et al. 2013) 

Combined 

approaches 
• Single-cell genome-wide methylome and transcriptome profiling 

• scM&T-seq (Angermueller et al. 2016) 

• scMT-seq (Hu et al. 2016) 

• Single-cell Nucleosome, Methylation and Transcription Sequencing (scNMT-seq) 

(Clark et al. 2018) 

• Single-cell Trio-seq (Y. Hou et al. 2016) 

• Single-cell analysis of genotype, expression and methylation (sc-GEM) (Cheow et 

al. 2016) 

 

Buenrostro et al. used scATAC-seq to interrogate the chromatin accessibility of 10 HSPC 

populations and recapitulated the haematopoietic hierarchy (Buenrostro et al. 2018). They also 

performed scRNA-seq separately and associated the transcriptomic and epigenomic data using 

computational methods. Recently, new methods have been developed that simultaneously profile 

the transcriptome and features of the epigenome. Angermueller et al. and Hu et al. both published 

methods that combined single-cell genome-wide methylome and transcriptome profiling, called 

scM&T-seq and scMT-seq, respectively (Angermueller et al. 2016; Hu et al. 2016). Single-cell 

NMT-seq is a recent method that simultaneously profiles chromatin accessibility, DNA 

methylation, and the transcriptome (Clark et al. 2018). New technologies are also combining 

measurements of genomic, transcriptomic, and epigenomic data. Hou et al. combined scRNA-seq 

with scRRBS to create scTrio-seq, which is a single-cell triple-omics approach that simultaneously 

captures information of genomic copy-number variations, the DNA methylome, and the 

transcriptome (Y. Hou et al. 2016). An alternative method is sc-GEM, which combines a 

methylation assay with single-cell qRT-PCR and single-cell genotyping (Cheow et al. 2016).  

These methods provide a new single-cell approach for studying heterogeneity during 

differentiation processes whilst combining the analysis of multiple factors that influence cell fate 

decision making. Many of these methods require the separation of cellular components of the 

individual analyses, reducing sensitivity, and may be restricted by the cost of performing the multi-
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omics approach. The continued growth of the single-cell field is likely to yield solutions to the 

current issues facing multi-omics approaches, leading to new insights into HSPC biology. 

7.2.5. High-throughput CRISPR screening with gene expression analysis 

Genome editing is a powerful approach for studying the roles of particular genes and how 

perturbing their function affects the system in which they act. This approach can provide insights 

into gene functions in a normal state but is also important for understanding the effect of gene 

perturbations in disease states. 

In the work described in Chapter 4, a low-throughput approach was used to perturb genes 

implicated in HSC biology to study their effect on cell phenotype and differentiation. Specifically, 

genes were targeted using CRISPR gRNAs, which guided the Cas9 nuclease to the gene of interest 

to cut the double stranded DNA, leading to loss of function mutations. This CRISPR screen was 

performed in bulk populations and measured changes in surface marker expression and colony 

output. Researchers have also used CRISPR/Cas9 technology to perform genome-wide knockout 

screens in individual cells, but these screens required follow-up investigations to dissect gene 

functions and their effect on the transcriptional network (Shalem et al. 2014; T. Wang et al. 2014).  

Advances in single-cell and CRISPR/Cas9 technologies have made it possible to perform high-

throughput, genome-wide knockout screens that show how the perturbations influence a cell’s 

molecular profile. CRISP-Seq and Perturb-Seq use a library of barcoded gRNAs to target different 

genes; these barcodes can then identify the gRNAs present within a cell (Adamson et al. 2016; 

Dixit et al. 2016; Jaitin et al. 2016). While both approaches pair scRNA-seq with the CRISPR-

based perturbations, CRISP-seq was developed on the massively parallel RNA-seq (MARS-seq) 

platform, whereas Perturb-seq uses a droplet-based approach. Jaitin et al. used CRISP-seq to 

interrogate gene regulation and heterogeneity in the immune system using a pool of gRNAs 

targeting 22 genes. The responses to the various perturbations were heterogeneous across different 

cell types, highlighting the need for single-cell analysis (Jaitin et al. 2016). Dixit et al. used Perturb-

seq to interrogate the consequences of perturbing 24 different transcription factors in the immune 

system, either alone or in combination (Dixit et al. 2016). In their coordinating study, Adamson et 

al. performed CRISPR interference screens using the Perturb-seq platform to investigate the effect 

of repressing target genes on the mammalian unfolded protein response (Adamson et al. 2016). 

Typical gRNAs lack a polyadenylated tail and thus are not detectable by scRNAseq; an alternative 

approach, CROP-seq, redesigned a CRISPR vector to include the gRNA in a polyadenylated 
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mRNA transcript (Datlinger et al. 2017). This design makes it possible for the gRNA to be detected 

by scRNA-seq, circumventing the need for a barcoded gRNA library. Importantly, all these 

approaches were developed with accompanying computational methods capable of handling the 

complexity of the resultant data sets. These combined CRISPR perturbation and scRNA-seq 

methods are powerful tools for gaining functional and molecular insights into biological systems, 

including haematopoiesis. 

7.2.6. Lineage tracing and “real time” cell dynamics 

In this thesis, lineage trajectories were inferred from single-cell gene expression data using 

pseudotime ordering. Single-cell gene expression data represents a snapshot of each cell in a 

particular gene expression state, and pseudotime trajectory inference methods order these snapshots 

to reconstruct possible differentiation pathways, describing the gene expression changes occurring 

along the trajectory (Trapnell et al. 2014; Setty et al. 2016; Haghverdi et al. 2016). However, as 

these methods rely on snapshots, they lack temporal resolution, missing information such as the 

length of time a cell resides in a particular molecular state and how many cell divisions occur before 

developmental processes are observed. Furthermore, snapshot data may miss some of the gene 

expression dynamics that occur between the captured cell states, potentially leading to 

misrepresentation of the fate decision making processes (Etzrodt and Schroeder 2017). 

Quantitative time-lapse imaging technologies offer an alternative approach to studying 

transcriptional regulation in single cells. Continuous single-cell imaging that is uninterrupted over 

several cell divisions provides temporal information about molecular dynamics (Skylaki, 

Hilsenbeck, and Schroeder 2016). This method was applied to investigate the relationship between 

GATA1 and PU.1 during differentiation towards megakaryocytic-erythroid and granulocytic-

monocytic lineages (Hoppe et al. 2016). Traditionally, it was thought that these transcription factors 

inhibit each other’s expression and can reprogram cells towards their respective lineages. However, 

this was not detected in live cell imaging; instead, the transcription factors were independently 

regulated at the start of megakaryocytic-erythroid or granulocytic-monocytic differentiation, and 

they were reinforcing lineage choices rather than initiating them (Hoppe et al. 2016). These 

findings show how live-cell imaging can reveal biological relationships that are contrary to 

snapshot gene expression data. Relating live-cell imaging to pseudotime ordering could add a new 

dimension to transcriptional regulation research, leading to an improved understanding of how a 

single HSC can differentiate into multiple distinct mature blood cell types. 
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Continuous live-cell imaging is a non-invasive technique that preserves information about the past 

and future of a single-cell. The observed molecular dynamics can therefore be used to identify past 

cell states and predict future fate decisions (Skylaki, Hilsenbeck, and Schroeder 2016). However, 

it is a very low-throughput method due to the intensive imaging and computational power required 

to track a single cell through differentiation. Recently, new methods have been developed that 

interrogate past and future cell states, which could offer meaningful insights into the structure of 

the haematopoietic tree.  

Single-cell gene expression has been combined with genetic labelling of single cells to reconstruct 

lineage hierarchies in three related technologies: LINNAEUS (lineage tracing by nuclease-

activated editing of ubiquitous sequences), scGESTALT (single cell genome editing of synthetic 

target arrays for lineage tracing) and ScarTrace (Spanjaard et al. 2017; Raj et al. 2018; Alemany et 

al. 2018). These technologies use CRISPR/Cas9 technology to randomly cause indels in target 

genes, called genomic scars, which produce somatic mutations that are heritable through cell 

divisions (Shapiro 2018). Paired with single-cell transcriptome sequencing, cell type and lineage 

information are recorded and used to reconstruct lineage trees. LINNAEUS and scGESTALT only 

use scRNA-seq to quantify the genomic scars, whereas ScarTrace also detects the scars from 

genomic DNA. These methods have been used in zebrafish to study fate decisions governing 

embryogenesis, brain development, haematopoiesis, and fin regeneration (Spanjaard et al. 2017; 

Alemany et al. 2018; Raj et al. 2018). It is challenging to implement these methods in more 

complex organisms; only very recently has a new technology been suggested for a ‘molecular 

recorder’ that characterises mammalian fate maps (Chan et al. 2018). Undoubtedly, these lineage 

tracing methods will continue to be optimised and further developed, as they confer a unique 

opportunity to characterise the molecular identities and lineage histories of cells. In contrast, a 

recent publication describes a computational method used to predict a cell’s future from scRNA-

seq data. RNA velocity uses information about the ratios of unspliced and spliced mRNA to model 

the direction in which a cell is moving in the transcriptional space (La Manno et al. 2018). This 

method can be applied to datasets generated with commonly used single-cell plate- and droplet-

based RNA-seq platforms, meaning it could be used to study cell dynamics in already existing 

datasets. Together, these technologies that look to the past and future of cell fate decisions could 

be particularly useful in HSPC biology, where many questions are raised about the structure of the 

haematopoietic hierarchy.  
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7.3. Concluding remarks 

This thesis focused on improving our understanding of the transcriptional regulation underpinning 

haematopoietic stem and progenitor cell differentiation. Advances in single-cell technologies made 

in-depth study of transcriptional regulation and heterogeneity in HSPC populations possible, using 

single-cell gene expression techniques to reconstruct lineage trajectories and regulatory networks. 

The transcriptional landscape generated in this thesis using scRNA-seq has been made publicly 

available, providing a powerful resource for the haematopoietic community. The methods 

described in this thesis should be widely applicable to study haematopoiesis in normal and 

perturbed cells, furthering our knowledge of haematological diseases with implications for future 

therapies. 
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