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ABSTRACT

The Upper Zone of the Rustenburg Layered Suite of the Bushveld Complex contains the world’s

largest Fe–Ti–V 6 P deposit and formed from the last major injection of magma into the chamber.

Quantitative textural analysis of Upper Zone rocks was undertaken to constrain the processes oper-

ating during mush formation and solidification, focussing on horizons with the greatest density
contrast to isolate the effects of gravitational loading. We examined three magnetitite layers, to-

gether with their underlying and overlying anorthosites. The similarity of microstructures in anor-

thosites above and below the dense magnetitite layers suggests that the rocks were not affected by

viscous compaction driven by gravitational loading. The magnetitite cumulate layers formed by

crystal accumulation from a mobile crystal slurry dominated by the Fe-rich conjugate of an un-

mixed immiscible liquid. We suggest a new mechanism of crystal nucleation in deforming crystal-
rich systems, driven by undercooling caused by cavitation as grains slide past each other during

simple shear. We propose that the super-solidus deformation recorded in these rocks was caused

by prolonged regional subsidence of the magma chamber at Upper Zone times.

Key words: anorthosite; magnetitite; Bushveld Complex; crystal mush; cavitation creep; sub-
solidus deformation; microstructure

INTRODUCTION

The fluid dynamical processes that occur in magma

chambers are not well understood. Of particular import-

ance is the physical behaviour of the solidifying

magma. We still do not have a clear understanding of

the mechanisms by which crystal mushes may form,

with a variety of possibilities including: in situ nucle-

ation and growth in the thermal boundary layers of

cooling magma bodies (Hunter, 1996; Namur et al.,

2015); crystal settling from a liquid-rich magma body

(Woods & Stock, 2019); the accumulation of material

derived from the redistribution of crystals grown else-

where in the chamber (Holness et al., 2017b); or by set-

tling from intruding batches of crystal-laden magma

(Marsh, 1988; Hunter, 1996; Namur et al., 2015). The

subsequent behaviour of such crystal mushes is also

poorly constrained, in particular the extent to which

gravitational loading results in expulsion of interstitial

liquid. Such compaction affects the extent of fraction-

ation in the bulk magma and has been invoked to ex-

plain the genesis of some magmatic ore deposits (e.g.

Mathez et al., 1997; Boudreau & Meurer, 1999; Meurer

et al., 1999; Barnes & Maier, 2002;) and the accumula-

tion of large volumes of erupted crystal-poor magma

necessary to feed volcanic eruptions (e.g. Bachmann &

Bergantz, 2004).

Here we report the results of a microstructural study

of cumulates from the Bushveld Complex, South Africa,

combining electron backscatter diffraction (EBSD) ana-

lysis with mineral chemistry to address the extent to

which gravitational loading by dense magnetite-rich

layers affected their underlying low-density plagioclase-

rich footwall. We demonstrate that these cumulates
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preserve evidence of super-solidus deformation by dis-

location creep: this cannot be attributed to internally-

generated gravitational loading and most likely

occurred in response to regional-scale events. We pre-

sent evidence to support the concept of cavitation-

driven nucleation in deforming crystal mushes and

argue that cumulate microstructures may preserve evi-

dence of whole-scale slumping of crystal-rich mushy

layers.

GEOLOGICAL BACKGROUND

The Bushveld Complex
The Bushveld Complex was emplaced at 2�06 Ga into

sedimentary host rocks of the Transvaal Supergroup,

with its floor at �12 km depth (Buick et al., 2001; Zeh

et al., 2015), though some studies suggest that the floor

might have been shallower at �1–3 km (Wallmach et al.,

1985). The Bushveld Complex comprises the mafic

rocks of the Rustenburg Layered Suite (forming the

largest layered intrusion on Earth, Fig. 1) which are

capped by the Rooiberg volcanic suite, the Rashoop

granophyres and the c.4000 m thick Lebowa Granite

(South African Committee for Stratigraphy &

Geological Survey (South Africa), 1980). The mafic

magmas of the Bushveld Complex are thought to have

been emplaced during regional extension (Carr &

Groves, 1994). Extension-related subsidence was ampli-

fied by loading by the dense mafic magma, resulting in

syn-magmatic deformation that continued into the sub-

solidus (Carr & Groves, 1994; Holness et al., 2017a).

The Rustenburg Layered Suite is subdivided into five

major zones (Fig. 1): the Marginal, Lower, Critical, Main

and Upper Zones (Hall, 1932). The Marginal Zone forms

the base of the complex and is dominated by heteroge-

neous noritic rocks (Engelbrecht, 1985; Wilson, 2012,

2015). The Lower Zone (LZ) is mainly composed of cyc-

lic units comprising dunite, orthopyroxenite and harz-

burgite (Wilson, 2015). The Critical Zone (CZ) has been

sub-divided into the pyroxenitic Lower Critical Zone and

noritic Upper Critical Zone, both of which include major

chromitite layers (Cameron, 1976; Eales & Cawthorn,

1996). Similarly, the chromite-free Main Zone (MZ) is

sub-divided into the norite-dominated Lower Main

Zone and gabbronorite-dominated Upper Main Zone.

The two are locally separated in the Western Limb by a

metre-thick pyroxenite layer (the Pyroxenite Marker),

and are considered to have crystallized from a hybrid

melt during magma chamber replenishment (Von

Gruenewaldt, 1973; Cawthorn et al., 1991a; Mitchell,

1996; VanTongeren & Mathez, 2013). The Upper Zone

(UZ) has been divided into three sub-zones based on

the primocryst assemblage (Von Gruenewaldt, 1973;

Tegner et al., 2006): UZa contains cumulus magnetitite;

Fig. 1. (a) A simplified geological map of the Rustenburg Layered Suite of the Bushveld Complex. (b) Schematic stratigraphy
through the Rustenburg Layered Suite (after Pebane & Latypov, 2017), showing the location of the MZ sample SL12-1395.77, to-
gether with a sketch of the parts of the BK3 core used in this study. The abbreviation pmi denotes a plagioclase–magnetite–ilmenite
cumulate. Depths in the core are shown in metres, with the suffix of the labels on the right of the core log showing the number of
the magnetitite layer (numbers increase upwards stratigraphically). The positions of the samples studied by EBSD are shown by
the yellow lines. See Supplementary Data Table S2 for the stratigraphic location of all BK3 samples examined for this study.
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UZb additionally contains cumulus olivine; and the ap-

pearance of apatite defines UZc. UZa and UZb are domi-

nated by magnetite gabbronorite (6 olivine), whereas

UZc comprises magnetite gabbros, magnetite troctolite

and ferrodiorite, together with near-monomineralic

magnetite layers and anorthosites. The UZ includes

about 30 distinct magnetitite and nelsonite layers

(Cawthorn & Molyneux, 1986; Von Gruenewaldt, 1993;

Lee et al., 1996; Cawthorn et al., 2005). Apatite-hosted

melt inclusions, trace element geochemistry and mass

balance calculations have been used to argue for a sig-

nificant role of liquid immiscibility in the differentiation

of UZ (VanTongeren & Mathez, 2012; Fischer et al.,

2016; Yuan et al., 2017).

Together with the Upper Main Zone, the UZ is

thought to have formed from the last major melt injec-

tion in the Bushveld magma chamber (Cawthorn et al.,

1991b; VanTongeren & Mathez, 2013). The upward min-

eralogical and chemical evolution in this part of the

stratigraphy has been interpreted as a product of

closed-system fractional crystallization (Wager &

Brown, 1968; Kruger et al., 1987; Tegner et al., 2006;

VanTongeren et al., 2010). However, detailed examin-

ation of single borehole cores has shown reversals in

mineral compositions and density in the UZ, which

have been argued to result from replenishment by

either primitive melts (Ashwal et al., 2005) or

plagioclase-laden magmas (Yuan et al., 2017).

Additionally, a regional examination of 5 boreholes

showed variable mineralogy and chemistry along

strike, which is inconsistent with closed-system frac-

tionation (Scoon & Mitchell, 2012).

The world-class deposits of platinum group ele-

ments, vanadium and chromium in the Bushveld

Complex have provided the impetus for extensive re-

search over the last century (see Cawthorn (2015) for a

review). However, the majority of this research is

focussed on geochemistry, with little corresponding

work on microstructures (e.g. Boorman et al., 2004;

Williams et al., 2006; Vukmanovic et al., 2013; Holness

et al., 2017a; Kaufmann et al., 2018). The existing micro-

structural work demonstrates ample evidence for dis-

location creep (Vukmanovic et al., 2013; Holness et al.,

2017a), with undeformed interstitial quartz in rocks con-

taining strongly deformed plagioclase primocrysts

attesting to the syn-magmatic nature of this deform-

ation (Holness et al., 2017a).

Plagioclase microstructures formed during
deformation
In this contribution, we rely on quantitative microstruc-

tural interpretations in order to understand the behav-

iour of the crystal mush in the UZ chamber and its

sub-solidus history. We focus particularly on plagio-

clase deformation microstructures, which are well

understood (e.g. Rybacki & Dresen, 2004). Dislocation

creep of plagioclase at high temperatures is most com-

monly achieved by slip on (010)[001] and (001)[110],

with partial recovery leading to the creation of low

angle boundaries (Passchier & Trouw, 2005). Whether a

boundary represents a twist or a tilt in the crystal struc-

ture can be determined by analysis of the misorienta-

tion across it, which, for a tilt boundary, is a function of

the slip system responsible (see the Supplementary

Data; supplementary data are available for download-

ing at http://www.petrology.oxfordjournals.org for the

method of determining slip systems).

The three main mechanisms involved in dynamic re-

crystallization of plagioclase undergoing dislocation

creep are bulging recrystallization (BLG), subgrain rota-

tion (SGR) and high-temperature grain boundary migra-

tion recrystallization (GBM) (Gerald & Stünitz, 1993).

Which of these mechanisms is dominant can be used to

constrain the conditions of deformation (Passchier &

Trouw, 2005). BLG and SGR are generally associated

with deformation at lower temperatures than GBM and

may operate in the subsolidus, whereas GBM may be

associated with higher strain regimes (e.g. during

regional deformation). Both SGR and, at lower tempera-

tures, BLG, create neoblasts that are crystallographical-

ly closely related to their parent. GBM recrystallization

is harder to recognise (Drury & Urai, 1990; Ji &

Mainprice, 1990; Kruse et al., 2001), but is usually asso-

ciated with the formation of serrated grain boundaries

and strain-free grains (Ji & Mainprice, 1990). In the ab-

sence of melt or fluid, neoblast compositions will be

indistinguishable from their parent grains, but if melt

or fluid were present at the time of deformation,

the two grain populations may be chemically distinct

(Rosenberg & Stünitz, 2003).

Chemical disequilibrium is known to significantly

contribute to, or even drive, feldspar recrystallization

(Vernon, 1975; White, 1975; Stünitz, 1998; Rosenberg &

Stünitz, 2003). In the presence of melt and at tempera-

tures >850 �C, recrystallization by grain boundary mi-

gration is driven by internal strain energy related to

differences in chemical potential (Lafrance et al., 1996,

1998; Rosenberg & Stünitz, 2003). Microstructures

resulting from this process are characterised by strain-

free grains separated by lobate grain boundaries and

residual grains (Passchier & Trouw, 2005).

METHODOLOGY

Electron backscatter diffraction analysis
Samples were prepared using the EBSD preparation

routine described by Prior et al. (1999). Most EBSD anal-

yses were performed using an FEI sFEG XL30 SEM in

the Department of Physics, University of Cambridge,

and one sample was analysed at the School of

Environmental Sciences at the University of Liverpool.

Collection of electron backscatter diffraction patterns

(EBSDPs) was undertaken using AZtecHKL 2�2 acquisi-

tion software. EBSD maps and pole figures were con-

structed using the Oxford Channel 5 software and the

MTex MatLab toolbox (Hielscher & Schaeben, 2008).
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For details of acquisition parameters see the

Supplementary Data Table S1.

Pole figures were constructed using a lower hemi-

sphere, equal area projection. The fabric strength and

type were determined by calculating the J-index, pole

figure J-indices (PfJ), M-index and BA-index of the

orientation distribution function (ODF) using the MTex

MatLab toolbox. We calculated the J- and M-index

using the de la Vallée Pousin kernel, and a half-width of

10�, which corresponds to a series expansion of 28. The

J–index has a value of one for a random distribution

and a value of infinity for a single crystal (Wenk et al.,

1998). While the J-index can be used to assess the over-

all fabric strength, pole figure J-indices (PfJ) describe

the characteristics of an individual pole figure. The

value of the M-index increases with the strength of the

fabric from 0 (random fabric) to 1 (single crystal)

(Skemer et al., 2005). We also calculated the BA index

which ranges from 0 to 1. The meaning of the BA index

is illustrated by values for the three plagioclase fabric

types defined by Satsukawa et al. (2013): an axial A fab-

ric is defined by a strong point maximum concentration

of [100] with parallel girdle distributions of (010) and

(001); axial B is defined by a strong point alignment of

(010) with a girdle distribution of [100]; and type P is

defined by point maxima of [100], (010) and (001). The

axial A fabric is associated with high values of BA index

(>0�7), an axial B fabric is characterised by a low value

of BA index (�0�2), and the P-type fabric has intermedi-

ate values. Axial B fabrics are characteristic of magmat-

ic processes (e.g. crystal settling), type P fabrics are

formed as a result of deformation or magmatic flow,

whereas axial A fabrics form by deformation.

Electron microprobe
Plagioclase was analysed using a 5WDS Cameca SX-

100 Electron Microprobe in the Department of Earth

Sciences, University of Cambridge. All major and trace

elements were analysed with a 15 kV, 10 nA, defocussed

(5mm diameter) beam. Peak counting times were 10 s

for major elements (Si, Al, Na, K, Ca), 60 s for minor (Fe,

Mg), and 90 s for trace elements (Ti), with Si and Na

analysed first to mitigate the effects of electron beam-

induced sample damage. All EPMA data and associated

representative uncertainties are given in the

Supplementary Data Table S1.

SAMPLES

We chose our sample suite to enable us to focus on the

drivers for deformation. We examined a leucogabbro

from the lower MZ, previously described by Holness

et al. (2017a). In the borehole-core SL12 (drilled by

Lonplats Mining Company at Mooinooi in the Western

Limb; Fig. 1), the base of the Giant Mottled Anorthosite

(a marker used to designate the base of the MZ) occurs

at a depth of 1546�45 m The borehole-core is dominated

by plagioclase-rich norite and is notable for the abrupt

appearance of evidence for significant dislocation creep

at around 1540 m depth, and the gradual reduction in

the intensity of deformation above �1300 m depth:

rocks above �1000 m are apparently undeformed. We

examined an MZ sample from 1395�77 m depth in

borehole-core SL12, within the most strongly deformed
part of the stratigraphy. Although clinopyroxene first

appears in the liquidus assemblage in the strongly

deformed region (stratigraphically below our sample),

there is no major change in the modal mineralogy (and,

therefore, mush density) associated with the onset or

cessation of deformation and, critically, the mushy layer

was only a few metres thick (Holness et al., 2017a): our

chosen MZ sample, therefore, provides an example of

deformation that cannot be attributed to gravitationally-
driven compaction.

Since the mushy layer through much of the

Bushveld stratigraphy was only a few metres thick

(Holness et al., 2017a), any effects of compaction must

have been on only a local (metric) scale: therefore, to

focus on identifying the microstructural record of com-

paction, we chose a suite of samples in which the dens-

ity of the crystal mush changes significantly over length
scales of a few metres. The many magnetitite layers in

plagioclase-rich regions of the UZ present the ideal op-

portunity to constrain the role of compaction as they re-

sult in the greatest possible loading on underlying

plagioclase-rich cumulates.

We chose 54 samples from the UZ, focussing on

magnetitite layers and their plagioclase-rich footwall

and hanging-wall. We sampled the Bierkraal borehole
BK3, drilled in the western limb of the RLS (Fig. 1) in a

region of stratigraphy containing multiple magnetitite

layers (21 in total). These cores have been extensively

described by Yuan et al. (2017). The sample suite

includes three magnetitite layers ranging in thickness

from 25 to 113 cm (Supplementary Data Table S2), to-

gether with the plagioclase-rich cumulates (either an-

orthosite or leucogabbro) from both �25–50 cm above
and �10–150 cm below the magnetite layer (Table 1;

Supplementary Data Table S2). A sub-set of 14 samples

from this suite was analysed by EBSD, including one

sample from the each of the three magnetitite layers; a

sample of the lower contacts of each of the three mag-

netitite layers; five samples of footwall; and three sam-

ples of hanging-wall (Fig. 1). The thickest magnetitite

layer (BK3-13, 113 cm thick) contains a thin (�10cm)

horizon of leucogabbro (Fig. 1b), but can be considered
to have acted as a single layer during any

gravitationally-driven compaction, since the mush

thickness was of the order several metres (Holness

et al., 2017a). The lower contacts of the magnetitite

layers are generally sharp at the outcrop scale, but the

upper contacts are commonly gradational over tens of

centimetres (Supplementary Data Table S2). The min-

eral modes of all examined samples are shown in
Table 1. Plagioclase compositions were determined in a

suite of samples associated with one of the three mag-

netitite layers, including three footwall samples, one
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hanging-wall sample, two samples from the lower con-

tact, and one from the magnetitite layer itself

(Supplementary Data Table S3). None of the samples

were oriented, although the direction of the paleoverti-

cal orientation is known relative to the drillcore.

PETROGRAPHY

Main Zone
The MZ leucogabbro is characterised by large (apparent

size: �2500 mm long axis) plagioclase grains that define

a strong fabric. These large crystals commonly show

evidence of lattice distortion (Fig. 2a) and stepped and

irregular grain boundaries. They are typically sur-

rounded by abundant smaller plagioclase grains <

500mm across (Fig. 2b–d). The large plagioclase crystals

show evidence of lattice distortion at their margins

(Fig. 2c) adjacent to the fine plagioclase grains (Fig. 2d).

Other cumulus phases, such as pyroxene and interstitial

quartz, are undeformed (Fig. 2a, b).

Upper Zone
Plagioclase-rich cumulates
The anorthosites or leucogabbros stratigraphically

above and below the magnetite layers are characterised

by bimodal plagioclase grain size distributions (Fig. 3a–

d; Fig. 4d–f). The larger crystals (apparent size:

>1000mm long axis) are euhedral to subhedral and ap-

pear elongate in thin section, with an average apparent

aspect ratio between 1�8 and 2�4 (Table 1). The euhedral

large grains have straight grain boundaries parallel to

the growth faces but are often stepped on a small scale

(Fig. 3a, c, d). Some subhedral large grains show slight-

ly serrated grain boundaries (Fig. 3b, Fig. 4e black dot-

ted line). The larger crystals contain deformation twins

(Fig. 3), low angle boundaries (Fig. 3d) and often show

undulatory extinction (Figs 3b, d; Figs 4b, e). In contrast,

the smaller grains (apparent size: <1000 mm long axis)

are equant (average apparent aspect ratio of �1�4,

Table 1), and preserve less evidence of intra-grain de-

formation (Figs 3a–d, 4d, e). These smaller grains are

generally distributed along the grain boundaries of

larger grains (Figs 4d, e). The smaller grains commonly

contain growth twins, but deformation twins are also

present (Figs 3a, c). The thin leucogabbro horizon within

the thick magnetitite layer BK3-13 does not show any

observable differences to those above and below the

magnetitites.

In leucogabbros, clinopyroxene is typically intersti-

tial (Fig. 3d) and generally contains orthopyroxene ex-

solution lamellae (Fig. 4f). A few pyroxene crystals

show undulatory extinction or rare low angle bounda-

ries. Despite being part of the primocryst assemblage,

interstitial overgrowth on oxides resulted in a subhedral

habit (Fig. 3c). Rare interstitial quartz (<100 mm) is pre-

sent and appears strain-free (Fig. 3f). Reactive symplec-

tites composed of plagioclase and augite are common

in both anorthosites and leucogabbros, replacing

plagioclase primocrysts and commonly spatially associ-

ated with undeformed, euhedral biotite (Fig. 3e, f).

Following Holness et al. (2010), we interpret them as a

product of reaction between an iron-rich immiscible

conjugate liquid and the surrounding primocrysts, fol-

lowing the loss of the Si-rich conjugate.

Magnetitite layers
Magnetitite layers contain �60 vol. % magnetite, with

subsidiary plagioclase (�30–35 vol. %) and ilmenite (5–

10 vol. %). On a thin section scale, the apparently sharp

lower contact is revealed to be highly undulatory, with

Table 1: Plagioclase grain shape and mineral mode of MZ and UZ samples. The average apparent aspect ratio, AR, of plagioclase is
calculated based on a perfect fit of an ellipsoid, and two values are given: one for small grains and the other for large grains. The
minimum number of grains used to calculate AR (for large grains in sample BK3-13–12) is 70: all other values of AR are based on
populations of more than 100 grains. Mineral modes were obtained using point counting

zone sample depth in core (m) layer AR mineral mode (vol.%)

large small Pl Mt Il Px Ol/Qtz

MZ SL12-1395.77 1395�77 A 90 5 5
UZ BK3-1-2 1833�35 underlying A 1�8 1�43 87�89 9�01 2�01 1�09

BK3-1-9b 1832�11 contact 31�87 59�92 2�58 4�30 1�30
BK3-1-11 1831�91 magnetitite 2�53 1�3 32�91 63�16 3�93
BK3-1-15 1831�17 overlying A 1�98 1�41 87�94 11�07 0�99
BK3-13-1 1744�58 underlying LG 2�19 1�35 75�34 10�91 1�72 12�03
BK3-13-5b 1743�61 contact 70�12 4�76 0�05 25�08
BK3-13-8a 1743�17 pmi 48�11 49�76 2�12
BK3-13-12 1742�3 overlying A 2�42 1�47 81�35 17�92 0�73
BK3-14-2 1740�82 underlying LG 2�17 1�41 81�12 6�12 0�87 11�89
BK3-14-4 1740�36 underlying LG 2�4 1�41 86�12 10�23 0�68 2�97
BK3-14-7d 1739�96 contact 51�18 44�70 0�38 3�74
BK3-14-8a 1739�81 magnetitite 52�76 44�49 2�75
BK3-14-10a 1739�23 overlying A 2�05 1�43 72�31 26�76 0�94

Abbreviations: A, anorthosite; LG, leucogabbro; pmi, plagioclase–magnetite–ilmenite cumulate (pmi nomenclature following Irvine
1982; Yuan et al., 2017). Pl, plagioclase; Mt, magnetite; Il, ilmenite; Px, pyroxenes; Ol, olivine; Qtz, quartz. Values for Ol/Qtz in SL12-
1395.77 are referring to Qtz %. Values for Ol/Qrtz in BK3-1–9 are referring to Ol %.
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mm-scale extension of oxides into the silicate footwall,

outlined by abundant fine polycrystalline olivine

(Fig. 4a).
Plagioclase within the oxide layer is commonly

aligned, forming a foliation (Fig. 4b). It is generally sepa-

rated from the surrounding oxide by a thin film of poly-

crystalline biotite or olivine, and/or is partially replaced

by reactive symplectites (Fig. 4b, c). Some plagioclase

grains appear entirely recrystallized to form aggregates

of randomly oriented grains that preserve the elongated

shape of the original grain (Fig. 4b, c), such recrystal-

lization is best developed where several of the original

large grains are in close proximity (Fig. 4c). While most

plagioclase grains within magnetitite layers are elon-

gated tabular crystals or part of a recrystallized cluster

(replacing either single isolated laths or clusters of ori-

ginal laths), some are much smaller and form isolated

rounded grains (Fig. 4c). Magnetite grain size

inversely correlates with plagioclase mode, with

relatively fine-grained magnetite (<500 mm in dia

meter, compared to the usual 5000mm diameter) in

samples with >20 vol. % plagioclase (Supplementary

Data Fig. S1).

QUANTIFICATION OF PLAGIOCLASE FABRICS

Main Zone
The foliation defined by larger plagioclase crystals in

the MZ leucogabbro is parallel to the floor of the

magma chamber (Fig. 5) and is defined by a preferred

grain orientation with [100] and (010) planes parallel,

and (001) perpendicular to the foliation (Fig. 5). The rela-

tionship between the (010) and (001) planes attests to a

predominantly tabular plagioclase grain shape

(Morales et al., 2011, Holness et al., 2017b). A preferred

orientation of the small plagioclase crystals (<800mm)

defines the same crystallographic fabric (Fig. 5b). In

both cases, the fabric BA index (e.g. 0.17, Table 2)

attests to its magmatic origin. The misorientation axes

are parallel to foliation and correspond to the [100] axis

(Fig. 5b).

The small plagioclase grains that surround the larger

grains form groups with a very similar crystallographic

orientation, but with an angular difference of �40˚ com-

pared to the adjacent large grain (Figs 2c, 6). The large

grains commonly show evidence for lattice distortion

(�15–20�) and contain low angle boundaries, as well as

subgrains (Supplementary Data Fig. S2). Of the 15 low

Fig. 2. Photomicrographs of the plagioclase-rich sample (SL12-1395.77) from the Upper Main Zone. (a) A general view showing
bent plagioclase (pl), primocrystic orthopyroxene (opx) and interstitial clinopyroxene (cpx). Scale bar: 2 mm. (b) Undeformed inter-
stitial quartz (qtz) fills the space between plagioclase primocrysts. Plagioclase crystals contain discontinuous (deformation) twins.
Scale bar: 2 mm. (c) Fine-grained plagioclase crystals along the boundaries of two larger plagioclase grains. The crystallographic
orientations of grains in the region outlined by the red box are shown in Fig. 6. Scale bar: 2 mm. (d) Evidence for grain boundary
bulging (red arrow) in large plagioclase crystal. Scale bar: 2 mm.
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angle boundaries analysed in this sample, more than

half are tilt boundaries created by slip on (010)[001].

Upper Zone
The orientation of the plagioclase crystals in the UZ

samples that we examined partly correlates with their

grain size (Figs 7a, b). The orientation of large

(>1000 mm) and small (<1000 mm) grains is almost iden-

tical (Fig. 7c, f), with [100] and poles to the (010) plane

parallel to foliation, whereas poles to the (001) plane are

randomly distributed (Fig. 7c, d). The relationship be-

tween the (010) and (001) planes attests to a

predominantly tabular grain shape (Morales et al., 2011;

Holness et al., 2017b). However, both M- and J-indices

show that the fabric defined by the larger grains is

stronger than that defined by the smaller grains (see

Supplementary Data Figs S3, S4). The BA index is with-

in the range 0�17 to 0�64 (Table 2). Our UZ samples re-

cord three types of fabric: P, axial B and axial A

(Satsukawa et al., 2013). Most samples record a P-type

fabric (e.g. defined by point maxima for all three axes),

indicative of crystal lineation (Table 2, Supplementary

Data Figs S3, S4). This is most strongly defined by the

smaller grains. In other samples, the second most abun-

dant fabric is axial B-type (e.g. a foliation defined by

Fig. 3. Photomicrographs of the anorthosite cumulates underlying magnetitite layers. (a) Fine-grained plagioclase crystals distrib-
uted between large plagioclase crystals. Red line indicates stepped grain boundaries of the large grains. (b) Large anhedral plagio-
clase with stepped grain boundaries (blue arrow) is surrounded on one side with small, apparently randomly orientated,
plagioclase crystals (red arrow), and on the opposite side with euhedral crystals with parallel grain boundaries. (c) Small plagio-
clase grains distributed between two large plagioclase crystals. The small plagioclase crystals show some undulatory extinction,
whereas the large crystals contain wedged (deformation) twins. Red lines highlight the location of small plagioclase crystals be-
tween large crystals. (d) Interstitial clinopyroxene between plagioclase grains. Note that plagioclase has curved boundaries even
when in contact with another phase (i.e. clinopyroxene); (blue arrow). (e) Reactive symplectite and biotite on plagioclase grain
boundaries. (f) Undeformed interstitial quartz is present within the pore space of plagioclase cumulate. Abbreviations: pl, plagio-
clase; cpx, clinopyroxene; symp, symplectite; bt, biotite; ox, magnetite. Scale bars: 1 mm.
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alignment of (010) planes), which is typical of un-

deformed layered intrusions (e.g. Holness et al., 2017b)

and ophiolites (Morales et al., 2011; Satsukawa et al.,

2013; VanTongeren et al., 2015). This fabric is most

strongly defined by large grains (Table 2, Fig. 7,

Supplementary Data Figs S3, S4). Axial B and P-type

fabrics are not systematically confined to either hanging

wall or footwall layers (Table 2). A small number of

samples, mainly those dominated by magnetite, con-

tain plagioclase with an axial A-type fabric, characteris-

tic of deformation (Table 2, Supplementary Data Figs

S3, S4). Misorientation axes for the bulk samples (i.e.

for both grain size populations) show that misorienta-

tion axes coincide with [100] axes (i.e. in the same plane

as the foliation; Fig. 7c, f).

The most common microstructure shows no crystal-

lographic relationship between neighbouring plagio-

clase grains of different size (Fig. 8a, b). The pole

figures of the larger grains generally show unambigu-

ous evidence for crystal deformation, with strong dis-

persion of the orientation of (010) and (001) around the

[100] axis (Fig. 8b). The nearby small grains are either

only weakly deformed or undeformed, with clustered

orientations of the [100] axis and (010) planes (Fig. 8b).

Fig. 4. (a) Photomicrograph of the contact between underlying anorthosite and overlying magnetitite layer. Polycrystalline olivine
is present along the contact. (b)–(c) Photomicrographs of the magnetitite layer. (b) Aligned plagioclase crystals within the magneti-
tite layer. (c) Within the magnetite layer are numerous isolated rounded grains and polycrystalline aggregates of plagioclase. The
polycrystalline aggregates are likely to be the result of complete recrystallization of original single grains, since many of the remain-
ing large single grains have recrystallized margins (red arrows). Fine-grained biotite and reactive symplectites are present along
boundaries between plagioclase and magnetite grains. (d)–(f) Photomicrographs of anorthosites overlying the magnetitite layers.
(d) Fine-grained plagioclase present along the grain boundaries of large plagioclase. (e) Irregular boundary separating large plagio-
clase crystals. (f) Plagioclase–clinopyroxene symplectites along the plagioclase–magnetite grain boundary, replacing the plagio-
clase primocrysts. Red lines highlight the location of small plagioclase crystals between large crystals. Abbreviations: pl,
plagioclase; ox, magnetite; polycryst ol, polycrystalline olivine; opx, orthopyroxene; bt, biotite; symp, symplectite. Scale bars:
1 mm.
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The few small grains in clusters have a close orientation

to the neighbouring large grains (Fig. 8c, Supplemen-

tary Data Fig. S5). In rare cases, we observe very similar

crystallographic orientations in neighbouring grains of

different size. An example is shown in Fig. 8c, where a

gradual increase in crystallographic misorientation is

observed across a low angle boundary associated with

a subgrain along the profile A–A’. Dispersion of (010)

and (001) occurs around the [100] axis, consistent with

operation of the (010)[001] slip system during disloca-

tion creep (Supplementary Data Fig. S6). The smaller

crystals were, therefore, produced by either BLG or

SGR recrystallization, both of which produce neoblasts

with a similar orientation to their parent (Rosenberg &

Stünitz, 2003; Passchier & Trouw, 2005; Svahnberg &

Piazolo, 2010).

Fig. 5. (a) Plagioclase EBSD grain size map of the SL12-1395.77 MZ sample. The map is constructed using an equivalent circle diam-
eter (ECD) of plagioclase grains. Rock foliation is parallel to the X direction of the map (Y is the pole to foliation) (b) Pole figures for
the large plagioclase grains (>1000mm ECD), small plagioclase grains (<1000mm ECD) and density contour diagram of plagioclase
misorientation axes. Abbreviations: mrd, multiples of a random distribution; PfJ, J- index of individual pole figures; n, number of
grains; J, J-index; M, M-index; BA, BA- index.
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The extent of crystallographic misorientation within

large plagioclase crystals can vary from �10� to >35�

(Fig. 8c, Supplementary Data Fig. S4a). Low angle boun-

daries are often parallel within a single crystal and the

predominant slip system is (010)[001]. There is no sys-

tematic variation in the amount of crystal plasticity rela-

tive to the position of magnetite layers (Supplementary

Data Fig. S6a).

Clinopyroxene primocrysts commonly contain low

angle boundaries, with lattice distortion of <25�.

Interstitial clinopyroxene is generally less deformed

than the associated primocrysts, with no low angle

boundaries (Supplementary Data Fig. S6b). Both plagio-

clase and clinopyroxene crystals within the late reactive

symplectites show no evidence of crystal plasticity

(Fig. 9).

PLAGIOCLASE MICROSTRUCTURE IN THE
MAGNETITITE LAYERS

Plagioclase crystals within the magnetitite layers show

a different microstructure to those in anorthosites and

leucogabbros, falling into four types: (1) isolated round

grains (Fig. 4c); (2) isolated, subhedral, elongate, grains

that record evidence of minor plastic deformation (�10�

of crystal distortion) with only minor marginal recrystal-

lization (Fig. 10a); (3) grains that preserve their original

shape but with extensive recrystallization along grain

boundaries with other plagioclase grains (Fig. 10b), the

orientation of these neoblasts progressively changes

from that of the adjacent larger crystal with increasing

distance from the latter; and (4) completely recrystal-

lized grains, comprising neoblasts with no evidence for

a retained magmatic CPO (Fig. 10c). The third and

fourth categories of grains are most common in

plagioclase-rich zones (Fig. 10b, c), suggesting that re-

crystallization is most common where the original large

laths formed clusters.

PLAGIOCLASE MINERAL CHEMISTRY

Plagioclase compositions (core and rim) were meas-

ured in large and small grains from six UZ samples

(both above, below and within, a magnetitite layer;

Supplementary Data Table S3). The plagioclase anorth-

ite number (An# ¼ Ca/(CaþNa) x 100) varies between 55

and 77 (Fig. 11a) and correlates with grain size (quanti-

fied using the Feret diameter). The small crystals

(<1000 mm) have An# in the range 55–77 (mean �60)

and include the most primitive (i.e. highest An#) crys-

tals (Fig. 11a). Coarser plagioclase grains (>1000 mm)

typically have more evolved compositions (i.e. lower

An#) that fall in a narrow range with An# typically 50–62

(mean �58; Fig. 11a). Individual crystals have homoge-

neous anorthite contents, with An# varying by <2 be-

tween the cores and rims of single large grains

(Supplementary Data Table S3).

Table 2: CPO characteristics of the anorthosites studied here

sample layer grain size N BA J-index PfJ 100 PfJ 010 PfJ 001 M-index CPO

SL12-1395.77 A large 289 0�17 4�49 1�29 1�62 1�09 0�11 B
small 1269 0�10 3�80 1�26 1�70 1�13 0�11 B

BK3-1-2 underlying A small 272 0�48 2�47 1�09 1�04 1�04 0�02 P
large 733 0�31 1�90 1�08 1�06 1�04 0�02 B

BK3-1-9b contact large 240 0�50 5�14 1�30 1�32 1�07 0�06 P
small 183 0�55 5�29 1�32 1�25 1�09 0�06 P

BK3-1-11 magnetitite large 85 0�25 1�03 1�40 1�37 1�13 0�00 B
small 237 0�64 4�21 1�21 1�11 1�09 0�03 A

BK3-1-15 overlying A large 162 0�33 6�54 1�35 1�36 1�11 0�08 B
small 488 0�35 2�15 1�07 1�08 1�03 0�02 B

BK3-13-1 underlying LG large 135 0�41 6�91 1�49 1�49 1�15 0�09 P
small 465 0�43 4�17 1�30 1�33 1�09 0�08 P

BK3-13-5b contact large 364 0�14 2�83 1�12 1�12 1�05 0�04 B
small 535 0�42 2�12 1�09 1�06 1�04 0�02 P

BK3-13-8a pmi large 58 0�75 1�03 1�43 1�33 1�24 0�00 A
small 882 0�49 1�67 1�03 1�04 1�01 0�01 P

BK3-13-12 overlying A large 209 0�45 3�32 1�16 1�14 1�06 0�03 P
small 1038 0�57 1�93 1�11 1�06 1�04 0�03 P

BK3-14-2 underlying LG large 167 0�37 5�21 1�29 1�26 1�08 0�06 B
small 584 0�38 2�10 1�11 1�08 1�02 0�03 B

BK3-14-4 underlying LG large 164 0�57 5�93 1�36 1�29 1�13 0�07 P
small 904 0�44 1�75 1�06 1�05 1�03 0�02 P

BK3-14-7d contact large 154 0�37 6�05 1�17 1�20 1�09 0�05 B
small 284 0�40 2�71 1�07 1�11 1�04 0�03 P

BK3-14-8a magnetitite large 272 0�60 2�45 1�08 1�05 1�03 0�02 A
small 3292 0�50 1�23 1�03 1�01 1�01 0�01 P

BK3-14-10a overlying A large 206 0�46 3�36 1�17 1�10 1�06 0�04 P
small 571 0�43 2�04 1�09 1�03 1�05 0�03 P

N, number of grains measured; BA, index; PfJ, pole figure index for three main axes; type of CPO shown are axial–B, type P and
axial–A fabrics (see text for detailed explanation of CPO types). Other abbreviations as in Table 1.
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DISCUSSION

Chemical differences between the two
populations of plagioclase grains
According to Yuan et al. (2017), ilmenite first crystallizes

in the UZ when the plagioclase An# is �58. Although

some grains in our UZ samples have high An# (<77)

and likely crystallized before ilmenite joined the

liquidus, most of our feldspar measurements have An#

within analytical uncertainty of ilmenite saturation (i.e.

�58; Fig. 11a), consistent with their proximity to the

magnetitite layers. The smaller plagioclase grains are

often more anorthitic than larger grains, suggesting

that they either crystallized from a more primitive liquid

or record more extensive reaction with an interstitial

(chemically isolated) Fe-rich conjugate liquid (which

would contain abundant Ca and P) than the larger

grains (e.g. Humphreys, 2011). The latter hypothesis is

supported by the spatial association between small

anorthite-rich plagioclase grains and reactive symplec-

tites (Fig. 9d). However, a more detailed study of the

plagioclase chemistry (e.g. zoning and precise trace

element measurements) is required to fully understand

the An# relationship with grain size.

The cause of plastic deformation in the
leucogabbros and anorthosites
Both the MZ leucogabbro and the UZ anorthosites and

leucogabbros preserve abundant evidence of deform-

ation by dislocation creep. The misorientation axes in

all samples are uniformly parallel to the foliation, sug-

gesting that each of our samples experienced a single

deformation event (cf. Reddy & Buchan, 2005; Michels

et al., 2015; Vukmanovic et al., 2018b). Furthermore, the

absence of plastic deformation recorded by interstitial

Fig. 6. (a) The grain size EBSD map of the region shown in Fig. 2c. The grain size map is constructed using the ECD of plagioclase
grains, with grain size shown as different colours from red (0 mm) to teal (1�5 mm). The inset shows the selected small grains and
their neighbouring large grains that are plotted on the pole figures in (b). (b) Pole figures show the crystallographic orientation of
the small and two large plagioclase grains. Red arrows show orientation difference between large and small grains (�40�). The
number of points on the pole figures is 2760.
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quartz and the reactive symplectites, and only weak de-

formation of interstitial clinopyroxene, suggests that

this single deformation episode was confined to the

super-solidus, when a significant volume of melt was

present in the crystal mush (in agreement with Holness

et al., 2017a).

Drivers for super-solidus deformation are either

internally-generated, such as gravitational loading by

the overlying mush (Sparks et al., 1985; Meurer &

Boudreau, 1998; McKenzie, 2011; Holness et al., 2017b),

or externally-generated and related to regional tecton-

ics (Carr & Groves, 1994). We consider it unlikely that

Fig. 7. (a) EBSD grain size map for a plagioclase-rich cumulate layer overlying magnetitite, with the grain sizes ranging from
0–3�5 mm, shown by colours from red to teal. (b) Photomicrograph of the area shown in (a). (c) Pole figures for the large plagioclase
grains (>1000mm ECD), small plagioclase grains (<1000mm ECD) and density contour diagram of plagioclase misorientation axes.
(d) EBSD grain size map for the underlying plagioclase-rich cumulate layer. (e) Photomicrograph showing the area analysed in (d).
The red line in a white ellipsoid represents the foliation (24� to horizontal). In both (b) and (e), the distribution of the small plagio-
clase grains is highlighted by white-red overlay.
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gravitationally-driven compaction was the main cause

of the deformation observed in the MZ leucogabbro, be-

cause dislocation creep is confined to a particular strati-

graphic horizon in the SL12 drill core, with no

correlation between the strength of deformation and

the modal mineralogy of the crystal mush (Holness

et al., 2017a).
Our comparison of both the footwall and hanging-

wall of the UZ magnetitite layers leads us to the same

conclusion. Critically, our results show that the amount

of plastic deformation experienced by plagioclase-rich

cumulates is the same both above and below magneti-

tite layers, regardless of the thickness of the magneti-

tite. Hence, if compaction had occurred it cannot have

involved dislocation creep. Furthermore, if the footwall

had been affected by viscous compaction by pressure-

solution processes we might expect to see smaller

modal proportions of interstitial phases compared to

the hanging-wall, but this is generally not observed

(Table 1). There is no consistent relationship between

fabric strength and stratigraphic position relative to the

magnetitite layers; footwall samples may have a weaker

fabric than those above (Table 2), inconsistent with the

fabrics forming by pressure-solution (c.f. Meurer &

Boudreau, 1998).

As our microstructural data are inconsistent with

internally-driven deformation by viscous compaction

by either dislocation creep or pressure-solution, we in-

stead suggest that the high-temperature deformation

recorded by our MZ and UZ leucogabbros and anortho-

sites is related to external, progressive and long-lasting

regional subsidence of the magma chamber (e.g. Carr

& Groves, 1994; Maier et al., 2013). Interestingly, the ab-

sence of evidence of deformation in grains formed dur-

ing the last stages of solidification (i.e. the reactive

symplectites and the interstitial quartz) suggests that

such subsidence only affected the crystal mush while it

contained more than a few vol. % liquid.

Fig. 8. (a) Photomicrograph and grain size map, using ECD, of two large plagioclase grains and their fine-grained neighbours. (b)
Pole figure data for the two large grains (teal) and their fine-grained (red) neighbours. (c) Misorientation map of a large plagioclase
grain and two smaller neighbours. The map is coloured using the inverse pole figure (IPF) key referenced to the mean orientation
of a grain. The colour scale (top left) is adjusted so that white represents 0˚ and black represents 10˚ of misorientation.
Misorientation profile A–A’ showing an increase of misorientation towards two small neighbouring grains. Pole figure data for the
large grain and its neighbours, shows that the dispersion axis (i.e. axis that experienced a minimum of dispersion) is [100], whereas
dispersion between the small grains and the large grain is � 20�.
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The cause of plagioclase deformation in the
magnetitite layers
Plagioclase grains in the UZ magnetitite layers experi-

enced a different deformation history to those in the

over- and underlying anorthosites and leucogabbros.

Of particular importance is the observation that the de-

gree of deformation recorded by each plagioclase grain

correlates with the local plagioclase mode. Isolated

crystals surrounded by magnetite record only minor lat-

tice distortion (Fig. 10a), whereas nearby groups and

clusters of plagioclase grains are either partially or fully

recrystallized (Fig. 4b, c; Fig. 10b, c). The greater extent

of deformation for clustered compared to isolated

plagioclase grains suggests that the deformation took

place in an essentially liquid environment, in which iso-

lated grains were able to move freely while clustered

grains experienced local jamming (e.g. Bergantz et al.,

2017). In this case, the magnetitite layers must have ori-

ginally been very liquid-rich, rather than representing

crystal accumulations. Such a liquid would necessarily

be the Fe-rich immiscible conjugate of a fully-unmixed

immiscible magma. This interpretation is consistent

with the suggestion of Maier et al. (2013) that the mag-

netitite layers formed from liquid-rich slurries, contain-

ing plagioclase and magnetite grains in an Fe-

dominated liquid. It is also consistent with the presence

of abundant reactive symplectites that partially replace

the plagioclase grains, both within the magnetitite layer

and at its base, indicating reaction with an Fe-rich liquid

(e.g. Holness et al., 2010). The numerous small,

rounded plagioclase grains may have originally formed

part of recrystallized laths that subsequently disinte-

grated during flow of the liquid-rich mush. The general-

ly sharp and planar lower contact of the magnetitite

layers is consistent with a generally thin (�1 m) mushy

layer in the Bushveld (Holness et al., 2017a); we envis-

age these mobile slurries moved across an almost com-

pletely solidified plagioclase-rich floor into which

interstitial (and reactive) liquid locally percolated only a

few centimetres (Fig. 4a).

A new phenomenon: cavitation-driven
nucleation?
Microstructures in the MZ leucogabbro are a result of

super-solidus dislocation creep accompanied by dy-

namic recrystallization, creating neoblasts on grain

boundaries between the larger grains, regardless of

boundary orientation. There are also bimodal crystal

size populations in the UZ leucogabbros and anortho-

sites, but there are key microstructural differences be-

tween these UZ samples and the dynamically

recrystallized MZ sample, suggesting a different mode

of super-solidus deformation. Critically, in contrast to

the homogeneous spatial distribution expected for dy-

namic recrystallization, the UZ samples show a pre-

ferred distribution of the smaller grains on grain

boundaries parallel to the plane of foliation (Fig. 3a–c;

Fig. 4d, e; Fig. 7b, e). The small crystals often have a

very different crystallographic orientation (misoriented

by more than 60˚) to their immediate larger neighbours,

without the progressive change in orientation with

increasing distance from the large grain that would be

expected if the small crystals formed during dynamic

recrystallization (Fig. 8b, d). Additionally, the small

grains in the UZ samples are euhedral, in contrast to the

rounded irregular shapes expected for dynamic recrys-

tallization (Table 1, Fig. 3a–c, Fig. 4d–e). There is also a

compositional difference between large and small

plagioclase grains in the UZ, with the small crystals

Fig. 9. (a) Photomicrograph of reactive symplectites surround-
ing clinopyroxene (cpx) and magnetite (mt) and replacing
plagioclase (pl). EBSD maps showing average misorientation
within clinopyroxene (b) and plagioclase (c) within the sym-
plectite and the corresponding pole figures. The absence of the
spread in pole figures confirms the grains comprising the sym-
plectite are undeformed.
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typically less evolved (higher An#) than the larger

grains (Fig. 11). We would not expect small grains to

form during slow, uninterrupted, cooling of a partially

solidified mush, since it is energetically more favour-

able for the interstitial liquid to form overgrowths on

existing grains than to nucleate new ones (Vernon,

2004). We suggest instead that the small crystals in the

UZ samples formed during an episode of enhanced

undercooling related to deformation of the mush, trig-

gering a burst of nucleation in the interstitial liquid. We

term this process ‘cavitation-driven nucleation’.

Deformation by diffusion creep is always accompa-

nied by grain boundary sliding (Passchier & Trouw,

2005). Where deformation is sufficiently rapid to create

an imbalance between grain boundary sliding and the

necessary crystal plasticity or diffusional mass trans-

port to accommodate it, micro-cavities open along grain

boundaries. This process is called ‘creep cavitation’

(Kassner & Hayes, 2003; Dimanov et al., 2007).

Précigout & Stünitz, (2016) showed that olivine can nu-

cleate in such micro-cavities during sub-solidus

deformation. We suggest that the rapid localised de-

compression accompanying creep cavitation in super-

solidus crystal mushes may also create sufficient under-

cooling (i.e. departures from chemical equilibrium) to

promote nucleation in the newly-formed cavities.

Although the localised reduction in pore pressure asso-

ciated with dilatation is strain-dependent (i.e. Reynolds

dilatancy) and we might, therefore, expect only minor

pore pressure reduction in slowly-deforming mushes in

a regionally-subsiding magma chamber, John & Stünitz

(1997) showed that fracturing parallel to foliation

requires very small effective stress. The predominant

localisation of the smaller plagioclase crystals parallel

to the foliation defined by large plagioclase grains is

consistent with this, suggesting that cavitation-driven

nucleation was confined to cavities formed by separ-

ation of plagioclase grains within the foliation during

deformation at low strain rates. The newly-formed

plagioclase grains nucleated as a result of cavitation in

a deforming mush are likely to be rotated into align-

ment with the shear direction, consistent with the

Fig. 10. Three types of plagioclase microstructure observed within magnetitite layers. (a) Photomicrograph, EBSD map and pole
figure data for a single plagioclase crystal within the magnetitite layer. The EBSD map is coloured using the inverse pole figure
(IPF) key referenced to the mean orientation of a grain. The colour scale is adjusted so that white represents 0˚ and black represents
10˚ of misorientation. Red lines on the EBSD map represent low-angle boundaries (<10 ˚) and black lines are high-angle boundaries
(>10˚). (b) Photomicrograph, inverse pole figure orientation map, and pole figure data for plagioclase partially recrystallized along
the grain boundaries. The teal arrow shows the dispersion of pole figures indicative of dislocation creep deformation. White lines
on the EBSD map represent low-angle boundaries. (c) Photomicrograph, inverse pole figure orientation map and pole figure data
for completely recrystallized plagioclase replacing original single euhedral laths. Pole figure data show that the grains within the
recrystallized aggregate are randomly oriented.
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foliation and weak lineations recorded by the small

plagioclase grains in our UZ magnetitite layer (Fig. 8b;

Table 2). The low aspect ratio of these small grains

(Table 1) suggests that post-nucleation crystal growth

occurred in a slow-cooling environment (Holness,

2014).
The driver for shearing of the UZ mush, in common

with that of the MZ sample investigated here, is likely to

be gravitational instability of the floor mush, perhaps

induced by regional-scale deformation (e.g. Maier et al.,

2013). That we see significant differences in the micro-

structures formed during super-solidus, deformation of

the MZ and UZ plagioclase-rich cumulates may be

linked to differences in the amount of liquid present in

the deforming mush (with higher liquid content in the

UZ cumulates) or to differences in the strain rate during

deformation.

The thickness of the plagioclase-rich mushy layer

undergoing shearing in the UZ is not well-constrained,

as the method of Holness et al. (2017a) only provides a

precise measure of mush thickness at points in the stra-

tigraphy where the liquidus assemblage changes.

While the sharp lower boundaries of the magnetitite

layers suggest that the Fe-rich liquid slurry flowed

across an essentially rigid, low-permeability floor with a

very thin mush, it is possible that a plagioclase-

dominated mush may have reached several metres in

thickness. Future work should focus on finding strati-

graphic horizons containing both evidence of our

newly-proposed cavitation-driven nucleation and field

or microstructural evidence that can be used to precise-

ly constrain mush thickness.

CONCLUSIONS

Despite a focussed examination of regions of the

Bushveld stratigraphy containing mineralogical con-

trasts providing the greatest possible driver for

internally-generated gravitationally-driven compaction

of a crystal mush (i.e. thick, dense magnetitite layers),

we found no convincing evidence that the deformation

preserved in these rocks was a consequence of com-

paction. The thickest magnetitite layer we examined

(113 cm) did not provide sufficient gravitational load to

drive plastic deformation by dislocation creep, or to re-

duce the amount of interstitial liquid in the plagioclase-

rich footwall compared to the hanging-wall. Instead, we

suggest that the abundant evidence for super-solidus

deformation in these rocks was a consequence of

regional-scale events such as slumping and subsidence

of the crystal mush.
Our microstructural examination of the UZ cumu-

lates supports a history of mush mobility and a signifi-

cant role of Fe-rich immiscible liquids in the formation

of the magnetitite layers. Our microstructural observa-

tions of abundant fine-grained plagioclase grains in the

UZ leucogabbros and anorthosites points to the possi-

bility that shearing of a relatively liquid-rich crystal

mush may drive crystal nucleation by localised under-

cooling within the cavities that form as the grains slide

Fig. 11. (a) Feret diameter (the longest distance between any two points along the selection boundary measured by ImageJ) vs mol
% anorthite. The inset in (a) is the normal distribution of An# for large (red) and small (blue) grains. (b) Plagioclase grains labelled
with their composition (red for large grains and blue for small grains). Abbreviations: symp, symplectites; ox, magnetite. Detailed
mineral chemical data are provided in Supplementary Data Table S3.
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past each other. This suggestion requires further

detailed work (e.g. experiments and numerical model-

ling) to test this hypothesis and to place tight con-

straints on the relationship between strain rate,

cavitation and localised departures from chemical

equilibrium.
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