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Summary

Slipping into Sleep: neurodynamics of alertness transitions in humans and fruit flies
Sridhar R. Jagannathan

The ability to react to events in the external world determines the fate of every living or-

ganism. Such ability corresponds to the general state of readiness often referred to as

’alertness’. Every night we slip into the realm of sleep while our alertness fades away.

What happens to the neural machinery in the brain when alertness fades away? How do

such transitions of alertness affect behaviour? These questions have important implica-

tions ranging from understanding the organizing principles in the brain to the functions

of sleep itself. This dissertation aims to explore the dynamics of behaviour during such

alertness transitions and to identify the dynamics of the neural machinery responsible for

generating such behaviour.

To answer the above questions, I choose organisms that are at the opposite ends of spec-

trum of complexity. On one hand, I use the richness in behaviour and complexity of the

human brain to understand how alertness transitions affects cognitive processes like at-

tention. And on the other, I use fruit flies that display complex behaviour yet have simpler

neural dynamics to understand the effect of alertness on the neural machinery over longer

time intervals.

First, in order to probe the dynamics of alertness transitions, we must be able to measure

the alertness levels in an accurate manner. I argue that a major problem in psychology

and physiology experiments is drowsiness (fluctuating levels of alertness). I first show

the existing methods (manual) to control for alertness levels are either subjective or too

error prone by using inter-rater reliability. I then develop an objective method (micro-

measures algorithm) to track alertness levels in a trial-by-trial manner under eyes-closed

settings using Electroencephalography(EEG)1. I further validate the method in an inde-

pendent dataset to test its generalisability (Chapter 2). Thus, I provide a unique tool for
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probing alertness transitions which can also be used a control method by the cognitive

neuroscience community.

Second, I investigate the dynamics of behaviour in alertness transitions. I use a spatial

attention task where participants (right-handers) are asked to localize the direction of au-

ditory tones (left or right side) while falling asleep (Chapter 3). I further classify parts of the

experiment into ’alert’ or ’drowsy’ based on the micro-measures algorithm. Then, I use

multilevel modelling to show that the proportion of errors in the tones originating from

the left direction increases in drowsy conditions (compared to alert). However the error

proportion remains unchanged in the tones originating from the right side in the drowsy

condition (compared to alert states). Next, I use psychophysics to quantify the subjective

mid-line in both alert and drowsy condition and show that the mid-line shifts to the left

side (more left errors). Finally I use a hierarchical drift diffusion model (HDDM) to quan-

tify innate bias (starting point) and drift-rate (evidence accumulation rate) and show that

differences in behaviour can be explained by drift-rate alone.

Third, I explore the dynamics of neural activity in alertness transitions. For this purpose,

I use the same dataset of right-handers as mentioned above. I further use decoding

techniques over time (multivariate pattern analysis - MVPA) to identify patterns in the EEG

data that discriminate between conditions (Chapter 4). Then, I project these patterns in

the source space to identify the locations in the brain that are critically different across

conditions. Next, I use variations in the drift rate (computed above) to regress against

variations in event related potential (ERP) data. Finally, the patterns of regression are

again projected in the source space, revealing convergent patterns similar to theMVPA.

Fourth, I explore the handedness aspect of alertness transitions. For this purpose, I use

the spatial attention task as above where participants (now left-handers) perform the tone

localisation task while falling asleep. I perform the behavioural analysis as above to show

how the performance of left and right-handers are similar under alert conditions while

differing under drowsy conditions. I show that different brain regions are involved in per-

forming the same task under alert condition in left and right-handers by presenting evi-

1EEG is a technique for recording electrical activity of the brain using electrodes on the scalp.
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dence from decoding analysis. Further I show that under drowsy conditions brain regions

are differently affected in left and right-handers distinctly mapping to performance. Next,

I use the drift rate regression with ERP data to provide converging evidence for the brain

regions. This highlights a powerful utility of the alertness transitions that it can be used to

identify causal mechanisms (Chapter 5) involved in a particular task. Thus, I highlight the

issue regarding the majority of neuroscience studies that exclude left-handers neglect-

ing important understanding of the variability of the cognitive function(s) associated with

handedness.

To approach the question of alertness transitions in a system amenable to causal manip-

ulation and reduced neural complexity, I chose the fruit fly (Drosophila melanogaster).

In the fruit fly, I investigated the dynamics of alertness transition by using behaviour and

local field potentials (LFP) (Chapter 6). For this purpose, I use the two-channel differential

LFP data collected for 24-hour period from flies falling asleep. I then develop an algo-

rithm (similar to the micro-measures algorithm) that can detect fly sleep based on the LFP

data and validate it against gold-standard behavioural data. I further show that transition

into sleep can be detected using probabilistic classifiers even before the fly actually falls

asleep. Next, I collect multi-channel (half-brain probe) data for a 12-hour period from flies

falling asleep. I perform spectrum analysis to show how different parts of the fly brain are

affected distinctly across awake and sleep conditions. Finally, I show converging evidence

from causal experiments with full-brain probe to validate the brain regions and frequency

elements detected by the spectrum analysis.

Chapter 7 discusses the significance of the alertness transitions. I discuss how the map-

ping of alertness transitions - under natural conditions can help us understand some of

the unsolved fundamental questions in neuroscience like functions of sleep and mecha-

nisms of general anaesthesia. I also provide a broad overview of how alertness transitions

can help understand mechanisms underlying spatial attention.

Finally, in Chapter 8 I draw attention to some of the major limitations of the studies con-

ducted above. I further propose future experiments/analysis techniques that could re-

solve these issues while adding strength to the theoretical and experimental framework.
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Note on Dissertation structure

This thesis is based on a combination of traditional chapter based structure and article-

based format recently introduced in the University of Cambridge. The Chapters 2,5 take

the form of peer-reviewed and preprint journal articles which are either published, sub-

mitted or under review during the preparation of this dissertation. In these article-based

chapters, I have added a brief introductory statement followed by statements that detail

the contribution made by the co-authors in these papers. Next, I have appended the

manuscript itself. Finally, I have added a concluding summary that helps to provide an

overall context to the manuscript in this thesis.

The other chapters like Chapters (1,3,4 and 6) are written in the traditional format of the

dissertation structure. Chapter 7 provides a broad overview and summary of the research

questions that were answered in this thesis. Finally, Chapter 8 provides an overview on

the future directions of each element of the research question and also provides sugges-

tions on future experiments and analyses that could be carried out to extend the existing-

knowledge in this domain.
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General Introduction

Figure 1.1: ”Noon rest” 1

1A painting from Vincent Van Gogh depicting an afternoon siesta. Here Van Gogh symbolizes a restful
scene set in the rural France of 1860’s.
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1 General Introduction

Short Summary

In this chapter, I will first provide a brief introduction to the concept of alertness (using

wakefulness) and develop an operational definition of alertness based on the theoretical

and experimental framework of attention. I further provide an overview of alertness tran-

sitions and introduce both natural and induced forms of transitions. Then, I show how

such alertness transitions can be studied from a neurodynamical point of view in humans.

Finally I provide a brief overview and motivation of studying alertness fluctuations with

fruit flies.

1.1 Alertness

1.1.1 Concept of Wakefulness

Every morning people wake up from the slumber of the previous night (Brown 1970; Dy-

lan 1970). We regain consciousness and often start snoozing the alarm that is blaring at a

distance. It is interesting to note that regaining consciousness is only an end point of the

waking up process but not a starting stage as it seems. Several other physiological pro-

cesses like core body temperature and hormones like cortisol level changes precede and

trigger the process of waking up itself. Hence it is necessary to differentiate the distinct

sub-processes within wakefulness. Wakefulness (Bekinschtein, Cologan, et al. 2009) can

be considered to be composed of:

(a) arousal/responsiveness.

(b) circadian rhythms.

(c) sleep cycle.

(d) homoeostasis.

Arousal refers to arousability which is the capacity to respond to (consciously or not) ex-
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1.1 Alertness

ternal stimuli. Circadian rhythms consist of a set of processes that synchronizes the phys-

iological functions to cyclical changes in the environment (Bekinschtein, Cologan, et al.

2009). Sleep cycle refers to sleep patterns of the organism. Homoeostasis refers to the

capacity of the body to regulate its internal state in order to maintain a stable condition

in the body (Bekinschtein, Cologan, et al. 2009).

Thus the word alertness is used in this thesis in this general context of arousal and the

inherent capacity of the system to respond to the external environment.

1.1.2 Framework of Attention

The word Alertness originates from the Italian word all’erta, which means to be ’on the

watch’ (Alertness Etymology 1714). Traditionally alertness is considered to be one of the

processes of attention. Hence to define alertness it is first necessary to understand the

concept of attention. Attention is generally referred to as any process that selectively

enhances processing of a subset of stimuli or in general any specific information in the

environment.

1.1.3 Types of attentional processes

The process of attention is usually divided into selective and non-selective components

(Robertson, Mattingley, et al. 1998). Selective attention denotes the differential process-

ing of sensory information. It can further be subdivided into Orienting and Executive

control. While non-selective attention refers to general state of readiness of the system

(which is same as the arousal defined earlier).

The following sections provide a brief overview on the types of attention and the various

brain networks involved in the corresponding processes.
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1 General Introduction

1.1.3.1 Orienting

Orienting refers to prioritizing a particular sensory input through selecting a particular

modality or location (Petersen&Posner 2012). Imagine the response of a dog to a loud

sound. The animal immediately turns its head towards the direction of sound and tries

to process the information occurring from that direction with priority. Such a response is

called an orienting reflex.

Orienting process could be driven by external factors in the environment (bottom-up)

such as saliency produced due to any physical property of the stimulus, which is called as

stimulus-driven orienting. It could also be driven by internal factors (top-down), which is

called as goal-directed orienting.

For example, consider the process of picking out a green ’T’ in a crowd of red ’T’s (Fig-

ure 1.2a). The visual features of the stimuli immediately allows the brain to ’pop out’ the

green ’T’ from the crowd of red ’T’s without having to perform a serial item by item search

ormatch. This is referred to as orienting driven by bottom-up processes or stimulus-driven

orienting.

On the other hand, consider the task of picking out a green ’T’ that is rotated 90 degrees

from a crowd of red ’T’s and green ’T’s (Figure 1.2b). In this case, the colour alone is

not useful, as we need to filter out the green ’T’s from the target rotated green ’T’. This

requires integration of the features of colour and shape to detect the green ’T’. This pro-

cess of feature integration prevents the pop out of the stimulus and forces us to direct

our attention on a particular target (green ’T’). Hence it is referred to as orienting driven

by top-down processes or goal-directed orienting.
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1.1 Alertness

(a) Bottom-up attention (b) Top-down attention

Figure 1.2: Types of Selective attention2.Bottom-up attention refers to attention primarily
driven by the properties of the stimulus. Top down attention refers to attention
primarily driven by internal state of the participant.

Similarly, orienting could also be directed to a particular location in space either by cues

generated from the environment (exogenous) or internally (endogenous). For example,

think of a target detection task where a cue precedes the appearance of the target in

the left or right side. The cue can indicate the direction of the target and hence increase

the speed of response. In this case attention is directed to a particular location in space

and hence referred to as spatial attention. Deficits in certain brain regions can cause

individuals unable to direct attention to a particular location in space (typically left side),

which is usually referred to as neglect.

The next section deals with the brain networks involved in mediating the orienting aspect

of attention.

Brain networks:

The influence of fronto-parietal networks in orienting of attention is well established, par-

ticularly for visual modality. Several studies with humans (Corbetta, Akbudak, et al. 1998)

and primates (Thompson, Biscoe, et al. 2005) have also highlighted the role played by the

frontal eye fields (FEF) in mediating the orienting aspect of attention.

The orienting system is divided into dorsal and ventral systems (Figure 1.3). The dorsal

system consists of FEF and the intraparietal sulcus, while the ventral system consists of

ventral frontal cortex (VFC) and temporoparietal junction (TPJ). Consider a target detec-

2https://ocw.mit.edu/courses/brain-and-cognitive-sciences/9-00sc-introduction-to-psychology-fall-
2011/attention/discussion-attention/
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tion task preceded by a cue that has information about the target. Whenever the target is

correctly cued, the activity in the dorsal system of FEF and intraparietal sulcus is increased.

In case of incorrect cues, the activity in the ventral system allows the participant to switch

to the correct target. Specifically, activity in the TPJ of the ventral system is involved in

performing the actual switch to the target. In general, the activity in the TPJ is highly right

lateralised and deficits in the TPJ interact with the more frontal and dorsal regions to pro-

duce neglect (lack of attention to the left side of space) syndrome (Corbetta&Shulman

2011).

The mechanism of action of the networks can be analysed (in a causal manner) through

pharmacological studies. It has been shown that neuromodulator acetylcholine (Ach)

seemed to directly affect the orienting network. For example, studies in monkeys (David-

son&Marrocco 2000) have shown that injecting scopolamine (which is anticholinergic) into

the lateral intraparietal region (analogous to the human superior parietal lobe) reduces

the ability to orient attention towards a target stimulus.

Figure 1.3: Orienting network in humans: Dorsal and Ventral systems 3. Dorsal attention net-
work is composed of regions in FEF and intraparietal sulcus, while ventral attention
network is composed of TPJ and VFC.

To summarise, the dorsal and ventral part of orienting network interact with each other

and exert influence on the bottom-up signals to improve the sensitivity of the sensory sys-

3modified from (Petersen&Posner 2012)
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tem, thereby producing faster responses and accurate target detection and thus creating

the orienting aspect of attention.

1.1.3.2 Executive Control

Executive control refers to the cluster of the processes comprising of conscious detection

of target, response inhibition and conflict monitoring. Detailed explanation for each of

these processes is illustrated with examples given below.

Figure 1.4: Go-NoGo task. Participants need to respond to the task when they see a cue for
the ’go’ condition (here ’g’) and they would need to withhold a response when they
see a cue for the ’no-go’ condition (here ’k’).

Consider the classicalGo-NoGo task (Figure 1.4), which demonstrates response inhibitory

processing. Here participants are asked to respond to the task when they see the ’Go’

cue and they are asked to withhold the respond when they see the ’NoGo’ cue. This type

of task involves withholding a ’habitual’ response, that requires executive control. On the

other hand, conflict monitoring and resolution refers to the ability to analyse and adjust

behaviour in the context of incompatible representations (Hussey&Novick 2012). For ex-

ample consider the classical stroop task, here participants have to identify the colour of

a word displayed on the screen. In some cases though, the words themselves represent

another colour. The word ’RED’ could be displayed in blue colour, wherein the partic-

ipants need to identify the colour of the word as blue. Thus the meaning of the word

would interfere with the colour being presented on the screen, thereby interfering with

the response of the participants. This interference requires resolution of informational

conflicts which is provided by executive control.
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1 General Introduction

The next section deals with the brain networks involved inmediating the executive control

aspect of attention.

Brain networks:

Studies designed to test for signals involved in top-down task control have revealed two

different parts of the executive control network (Figure 1.5). In the first part, these signals

reveal a network involved in processing task related instructions that occur in the begin-

ning of the task block. In particular, such signals have been found to reliably activate the

fronto-parietal cortex. In the second part, they reveal a network that sustains across the

duration of the task. In particular, such signals are found to occur in the cingulo-opercular

regions.

Figure 1.5: Executive control network in humans 4is composed of two distinct regions. The fron-
toparietal system is mainly involved in the beginning of the task, while the activity
in the cingulo-opercular system is sustained across the duration of the task.

Furthermore, several other studies involved in exploring conscious target detection have

reported activation in Medial frontal cortex (MFC), Anterior cingulate cortex (ACC). How-

ever the same regions have also been reliably activated in many other tasks associated

with cognition, emotion (Botvinick, Braver, et al. 2001),pain and reward processing (Hamp-

ton&O’Doherty 2007) which raises the question over specificity of these regions.

4modified from (Petersen&Posner 2012)
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1.1.3.3 Alertness

A more general (non-selective) aspect of attention that allows for enhanced processing of

stimuli irrespective of their location or salience is defined as alertness. Alertness is further

subdivided into tonic and phasic alertness.

Tonic Alertness:

Tonic alertness (also called as ’intrinsic alertness’ or ’sustained vigilance’) refers to wake-

fulness or arousal in the absence of any external cue in the environment i.e. the ability

to maintain a ’ready-to-respond’ state (Robertson, Mattingley, et al. 1998). This aspect of

alertness is usually influenced by factors such as circadian rhythm, body temperature and

cortisol levels etc. (Petersen&Posner 2012). This could explain why reaction times (in hu-

man studies) usually peak in morning and decrease during the day time and peak again in

the night time (showing typical diurnal variation). In laboratory settings, it is often studied

with a long uninteresting task where the target occurrence probability is low. Here, the

participant could be shown a sequence of stimuli one after the other on a screen. The

stimuli could be composed of different geometrical shapes like circle, rectangle, square

etc. Correspondingly, there is also a colour associated with the stimuli like red, blue,

green etc. A target is said to occur only if two stimuli follow each other that have the

same shape but different colour. For example, a red circle followed by a green circle is

a target. Whereas, a red circle followed by a red triangle is not a target. Whenever the

target appears the participants should indicate with a button press. This example task

measures the continuous deployment of attention by the participant over a long range

of time. Hence such a kind of alertness is also referred to as sustained attention or vigi-

lance.

Real world examples for tasks requiring tonic alertness could be radar operators scanning

the sky for near-threshold changes to detect oncoming objects or security operators in

the airports scanning the luggage passing through conveyor belts.

Phasic Alertness:
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Phasic alertness refers to the temporary enhancement of alertness due to an external cue

in the environment. For example, in a target detection task a warning cue preceding the

target can reduce the reaction time compared to a target without a warning cue. The

warning cue in essence does not add more information about the incoming target signal,

but rather changes the speed with which the orienting aspect of attention can respond.

Thus thewarning cue typicallymodulates the resting state prior to the target with an active

preparation state that results in faster responses to the target.

The next section deals with the brain networks involved in mediating phasic and tonic

alertness.

Brain networks:

In humans, the ability to maintain tonic alertness is dependent on right fronto-parietal

systems whereas, the ability to produce phasic alertness is dependent on ascending

thalamic-mesencephalic projections (Robertson, Mattingley, et al. 1998). Lesion data from

patients with deficits in tonic alertness have confirmed the involvement of the right fronto-

parietal systems. Phasic alertness on the other hand has been shown to depend on the

neuromodulator norepinephrine (NE). Specifically, whenever a warning cue is presented,

activity increases in the locus coeruleus (which is a source of NE in the brain). The lo-

cus coeruleus of a macaque brain is shown in Figure 1.6 which indicates the location of

NE pathways. It is crucial to note that in humans, NE pathway traverses the frontal and

parietal cortices in the dorsal side but not on the ventral visual pathway, indicating the

influence of dorsal fronto-parietal systems on the phasic alerting system.

Several studies have reported differences between tonic and phasic alerting networks. In

particular (Coull, Frith, et al. 2000; Fan, McCandliss, Fossella, et al. 2005; Lamb 1998) have

found that phasic alerting (triggered by warning cue) relates more to the left cerebral

cortex, while tonic alerting is related more with the right cerebral cortex as mentioned

above.

In terms of electrophysiological correlates, EEG studies in humans have shown that con-

tingent negative variation (CNV)5has been shown to increase (Walter 1964). In general,
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the source of the CNV (which is related to NE systems) is found across the anterior cingu-

late and neighbouring brain regions.

Figure 1.6: Alerting network in a macaque brain 6. The locus coeruleus projections are shown
on the macaque brain. The diffuse connections of the alerting systems are known
to modulate the more localized connections of other systems.

1.2 Transitions of alertness

The fluctuations or transitions in alertness can usually be divided into two different types

based on their triggering cause. Examples of natural transitions include the process of

falling asleep. While unnatural transitions include those induced by anaesthetic drugs

like propofol etc. Such drugs are used to alleviate pain and sedate patients for surgery.

The process of falling asleep produces many interesting neural and behavioural dynamics

that provides us with a window to see how the brain reconfigures and prepares itself for

reaching deeper sleep states.

The following is a brief introduction to behavioural and physiological changes associated

with both transitions to sleep and anaesthesia, after which much more of the focus will be

on transitions to sleep.

5CNV is a slow negative potential in EEG that occurs between a warning cue and an oncoming stimulus
which is known to be modulated by NE systems.

6modified from (Petersen&Posner 2012)
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1.2.1 Transitions to sleep

To understand the transition to sleep, it is first pertinent to define sleep. Sleep is usually

defined as the state of reduced or lack of activity. Behaviourally, sleep should satisfy the

following criteria (Goupil&Bekinschtein 2012):

(a) state of inactivity.

(b) reduced response to stimulus or increased arousal threshold.

(c) specific posture (like lying down in humans).

(d) reversible (ability to come out of sleep naturally).

Sleep is driven by two interacting processes namely homoeostatic and circadian (Borbély

1982). The homoeostatic process refers to the drive to sleep that is mainly triggered

by the accumulations of sleep-inducing chemicals in the brain. The circadian process

on the other hand controls the timing of sleep, which in turn corresponds to the light-

dark cycle. For example, when someone is sleep deprived today, the total sleep duration

tomorrow would compensate for the duration of sleep lost today. This compensation is

mainly driven by the sleep-wake homoeostasis process. Whereas, the trigger to sleep at

night is determined by the circadian process. The central clock that controls this circadian

process is located in the anterior hypothalamus. While the sleep onset itself is triggered

bymutual inhibition of arousal system in the brainstem, posterior hypothalamus and basal

forebrain (Goupil&Bekinschtein 2012).

The physiological aspects of sleep onset include the following activities. Core body tem-

perature gets reduced while the peripheral temperature gets increased (Van den Heuvel,

Noone, et al. 1998). Slow rolling eye movements occurring at the sleep onset is also re-

flected in the changes in the EEG activity (Tanaka, Hayashi, et al. 1996; Ogilvie 2001). The

respiratory activity also gets reduced, followed by decreased heart rate (Baharav, Kota-

gal, et al. 1995; Pivik&Busby 1996). Several studies have also observed decrease in skin

potential negativity (Tanaka, Hayashi, et al. 1996; Šušmáková&Krakovská 2008).
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1.2.2 Transitions with anaesthesia

Anaesthesia is usually defined as the state of loss of consciousness. Behaviourally, Anaes-

thesia encompasses the following aspects (Kopp Lugli, Yost, et al. 2009):

(a) immobility.

(b) amnesia or loss of memory.

(c) unconsciousness.

(d) reversible (ability to come out of anaesthesia).

The above-mentioned change in behaviour is created by various changes in the physiol-

ogy is mentioned below.

Immobility is produced by the interaction of the anaesthetics with the spinal cord. The

evidence for this includes studies (Antognini&Schwartz 1993; Rampil, Mason, et al. 1993;

King&Rampil 1994; Rampil&M.S. 1994) wherein they showed the effect of anaesthetics

on sub-cortical structures to inhibit the motor responses, which would otherwise be pro-

duced for painful stimuli. Amnesia is produced by the effect of anaesthetics on several

regions (Kandel 2001) like hippocampus, amygdala, prefrontal cortex etc. Different types

of memory are also affected in distinct ways. Explicit memory (consciously acquired in-

formation) is affected in clinical levels of anaesthesia. However implicit memory (uncon-

sciously acquired) seems to be less affected under clinical concentrations (Alkire, Gruver,

et al. 2008; Bennett, Davis, et al. 1985; Ali, Ghoneim, et al. 1991; Biebuyck, Ghoneim, et

al. 1992; Iselin-Chaves, Willems, et al. 2005). Hence several tools based on EEG such as

the Bi-spectral index (BIS), entropy level monitoring, auditory evoked potential measure-

ments have been developed to explicitly quantify the effect of the anaesthetic.

In the following sections we cover the behavioural and neural dynamics of natural transi-

tions i.e. transition into sleep in a detailed manner.
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1.3 Behavioural aspects of transitions

As participants transition into sleep, they lose the ability to respond to stimuli in the ex-

ternal environment. This loss of response could be measured by two kinds of paradigms.

Active paradigms, where the participant has to respond with a button press after every

stimuli (for e.g. auditory tone). Passive paradigms, where participants exert a continuous

pressure on a button box. In the case of active paradigms, sleep onset can be measured

with the lack of responses to the stimuli. For the passive task, the release of pressure

corresponds to sleep onset. While there has been debate about the choice of task to

measure the transition (active or passive), the active tasks offer much more flexibility and

variety (in terms of stimuli and responses) while being a bit more intrusive (Ogilvie 2001)

to the participant.

For example, consider a typical EEG experiment wherein a participant responds to an

auditory stimulus while falling asleep (Kouider, Andrillon, et al. 2014). In the start of the

experiment (wherein the participant has high alertness level), they respond reliably to the

stimulus as shown by green dots in Figure 1.7. As time elapses, the participant starts to

fall asleep (wherein the alertness levels drop) and intermittently fails to respond as shown

by red dots. The mechanism behind the cessation of responses is thought to be interplay

between stimuli perception and response production. When this behavioural transition

starts to happen we can also notice changes in the spectral profile of the EEG collected

from occipital sites. The frequency spectrum of the pre-trial periods shows that power

in the alpha range (8-12 Hz) reduce and the power in the theta range (6-8 Hz) increases.

More detailed description of these spectral changes are described in the next section.

In another study (Noreika, Canales-Johnson, et al. 2017), a target sound was presented

which was followed by a masking noise. Participants were asked to indicate via button

press if they detected the target sound. They were also allowed to fall asleep as above

and EEG data was again collected to measure changes in the spectral profile. Psychome-

tric fitting indicated that threshold of detection of stimuli was not modulated by alertness

while the slope of hit rate (which indicates variability in neural processes) changed in a sig-
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nificant manner. These results point to the fact that different aspects of decision making

are modulated by transition to sleep in a distinct manner.

Figure 1.7: Transitions of Alertness7. Example of a participant falling asleep, which shows
changes in frequency profile and variability in reaction times. (A) depicts changes in
spectral power over the occipital sites in the pre-trial period. (B) Reaction times for
trials presented at different time points in the same experiment. Red dots indicate
cessation of response, while green dots indicate responses.

To summarise, the transition to sleep is followed by increased variability in reaction times

(Ogilvie 2001) whereas in more complex tasks the accuracy of responses is also compro-

mised. In the next section we try and understand how specific aspects of selective atten-

tion (spatial attention) is modulated by such variation in alertness levels.

1.3.1 Spatial attention & alertness

A recent study (Bareham, Manly, et al. 2014) has provided first evidence (by using direct

physiological measures of alertness) that variation in alertness levels produces a modu-

lation of behaviour in a auditory spatial attention task. In this study, right-handed indi-

viduals under eyes closed condition performed an auditory tone localization task while

falling asleep. The participants showed very little bias (misclassification of tones) when

7adapted from (Jagannathan, Ezquerro-Nassar, et al. 2018)

17



1 General Introduction

they were fully alert. But when they began to fall asleep they produced more misclassifi-

cation of tones from the left direction (left-errors) compared to the right direction tones

(right-errors).

In order to contextualize this spatial attention task and to understand the behavioural

dynamics of this task across varying alertness levels, we need to first review the effect of

alertness on spatial attention both from clinical and cognitive perspectives.

1.3.2 Unilateral Spatial neglect

Some patients that have cerebral lesions face difficulties in detecting and localising infor-

mation coming from the side of the space opposite to the lesion (Brain 1941). This de-

bilitating condition is called as unilateral spatial neglect. Several studies(Bisiach&Luzzatti

1978; Marshall&Halligan 1988; Karnath, Christ, et al. 1993) have considered neglect to

be a deficit of attention and not a primary sensory dysfunction. This is mainly because

such deficits can be reduced by presenting salient sensory stimuli (Robertson, Matting-

ley, et al. 1998). It has been further shown (Bowen, McKenna, et al. 1999) that patients

with damage in the right hemisphere (hence left inattention) is markedly more persistent

than those with damage in the left hemisphere (right inattention).

Neglect patients most of the time are impaired in shifting their attention to one half of

the space and also claim that they are unaware of the presence of stimuli on that side

of space. Hence it would be pertinent here to understand the important theoretical dif-

ferences between attention and awareness. Consider the case of change-blindness in

healthy individuals, here observers fail to notice changes in visual scenes when the change

happens too fast or if the change co-occurs with a distracting stimulus (even though the

changes are obvious). It was argued that observers do not detect changes as they are not

paying attention to the changed object. Hence, it may seem intuitive to us that attend-

ing to an object and being aware of the object are the same thing. However, consider

the case of blind-sight, here patients that have lesions in the primary visual cortex (V1)

can respond to stimuli (detect, localize and discriminate aspects of stimuli) even though
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they claim to be not aware of them. Furthermore, recent evidence using psychophysics in

healthy populations has shown that attention and awareness are distinct entities that can

be modulated separately. While attention boosts neural signals (measured with Blood

Oxygen Level Dependent - BOLD imaging) in the primary visual cortex, awareness does

not seem to modulate the same (Watanabe, Cheng, et al. 2011). In this thesis the main fo-

cus is on attention with awareness (as in the case of the auditory spatial attention task from

(Bareham, Manly, et al. 2014)). Spatial neglect also falls under this category and hence it is

a suitable model from the cognitive perspective of both attention and awareness absent

together and as well as from the behavioural perspective of lack of attention to one side

of space.

Translation/Rotation of subjective mid-line

Several neuropsychological studies have aimed to quantify the lack of attention in

the contralesional side. Most of these studies have aimed at quantifying the subjective

mid-line and its corresponding shift from the veridical center. Studies (Vallar, Guariglia,

et al. 1995) led by Vallar first investigated whether spatial bias in neglect patients involved

a translation of the subjective mid-line or rotation of the body’s vertical axis both in the

front and back coordinates of space. Using an auditory localization task on patients with

right hemisphere damage, they showed the existence of rightward bias in both the front

and back space. Thus indicating evidence for translation of subjective mid-line. On the

other hand, studies (Karnath 1997) led by Karnath asked patients to direct an LED light to

the subjective mid-line and showed that the mid-line is rotated in the earth-vertical body

axis. However both studies agree that the mid-line in the front space of the subject is

shifted to the right (for which both a translation and rotation explanation hold good).

Alertness & Spatial bias

As mentioned before, it has been shown that left inattention (neglect) following right

hemisphere damage is much more persistent than right inattention following left hemi-

sphere damage. One of themain explanations given to this is that, the right hemisphere is

specialized for spatial attention. Consequently, when the left hemisphere is affected, the

right hemisphere can compensate for the spatial function. However, when the right hemi-

sphere is affected, the left hemisphere cannot compensate, thus producing left-neglect.
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However in patients with spatial neglect the location of the lesions is heterogeneous

and also affects a variety of cortical and sub-cortical structures. Thus the lesion evidence

points to a more diffuse set of processes causing left neglect. Neuropsychological stud-

ies (Robertson, Manly, et al. 1997) showed that performance in sustained attention task

(that require alertness) predicted persistent neglect bias. Further (Robertson, Mattingley,

et al. 1998) showed that phasic alerting (increase in alertness levels) reduced the neglect.

All of these studies point to an increasing body of evidence linking alertness with spatial

neglect.

To summarise, we have so far established a link between spatial bias (left neglect) and

alertness in patients with right hemispheric damage. However, in these studies we could

not compare the performance of individuals before and after lesion to establish the causal

nature of the link. This leads us to the question, if this link can be probed in healthy

populations. In the next section we take the cognitive perspective to try and understand

the phenomenon of spatial bias in healthy populations.

1.3.3 Pseudoneglect

When healthy adults participate in a line bisection task, they are asked to judge the mid-

dle of a horizontal line. In these cases they tend to show a small bias towards the left side

of the actual mid-line (Jewell&McCourt 2000). The right hemisphere dominance in visu-

ospatial attention is thought to be the main factor in this phenomenon. Further the two

hemispheres produce two competing attentional gradients on their contra-lateral side of

space (Kinsbourne 1970). In such cases pseudoneglect is simply produced by greater ac-

tivation in the right hemisphere thereby directing attention towards the left side of the

line, which makes the mid-line appear to the left of the actual centre (Fink, Marshall, et al.

2001). Apart from attention, there is a range of other factors like hand used in bisection

task (Chokron&Imbert 1993; Dellatolas, Coutin, et al. 1996), gaze direction (Chokron&De

Agostini 1995) etc. that influence andmodulate activity in one or both the hemispheres.

In this context, (Bareham, Manly, et al. 2014) was one of the first study (by using direct
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measures of alertness levels) to establish the existence of alertness induced spatial bias

in healthy right-handed participants. In this task attention was modulated by changing

levels of alertness by allowing participants to fall asleep while localizing tones coming

from left and right side of the mid-line. Alertness levels of individual participants were

measured using EEG based techniques like alpha-theta ratio and Hori scoring, it was

shown (Figure 1.8) that error rate on left tones became higher as the participants became

drowsier.

Figure 1.8: Error rates in auditory spatial attention task 8. Under alert conditions, the error rates
of participants are similar across left and right tone. Under drowsy conditions, the
error rates of left tonewere significantly higher than right tones. Error bars represent
standard error of the means.

However, there were several shortcomings associated with this study. First, the method

for measuring alertness in this task was based on alpha-theta ratio or Hori scoring. Alpha-

theta ratio method (see next section) assumes equal number of trial as ’alert’, ’drowsy’

(per participant). We know that this is not true, as different participants fall asleep differ-

ently (some more drowsy, some less drowsy). Hori scoring (see next section) suffers from

the subjective nature of the scorer and hence it has high degree of variability between

different scorers. Second, there was no separate baseline task to measure the bias of the

individual participant before the experiment. if such a bias was measured before hand,

then it could be compared with the bias in the drowsy session to measure the change

in bias. Third, some tones (1.86◦ to 35◦) were presented more times than others (40◦ to

60◦), which could potentially bias the results. Fourth, the methods used to analyse the re-

lationship between bias and alertness (repeated measures ANOVA -rmANOVA) assume
8adapted from (Bareham, Manly, et al. 2014)
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individual participants had equal number of trials in ’alert’ and ’drowsy’ condition, which

is not true as different participants fell asleep in different ways. Fifth, the quantification

of subjective mid-line as proportion of left tone errors versus right tone errors ignores

the variability afforded by tones from -60◦ to +60◦. Such variability could be captured by

psychometric fitting in individual participants. Sixth, distribution of reaction times could

be used in a much more prudent way to capture the decision making process using se-

quential sampling models like drift diffusion modelling.

1.3.4 Research Question

The above mentioned reasons led us to our first research question.

Does variation in alertness levels systematically produce bias in spatial attention?

The above question can be further subdivided as:

(a) Can a more objective method be used to measure alertness levels lead to same

spatial bias?

(b) Would the spatial bias change if there was a separate baseline session to measure

alertness prior to the drowsiness session?

(c) Can we utilize methods like multi-level modelling that take advantage of uneven

trial numbers per participant per condition? Would the spatial bias results still hold

good?

(d) Can the shift in subjective mid-line be estimated systematically using psychometric

fits? Would the subjective mid-lines shift with drowsiness?

(e) Can we use measures that capture the process of evidence accumulation (like drift-

diffusion modelling)? Would that show any systematic change in response bias? or

evidence accumulation rate?

(f) Can these behavioural dynamics be used to understand the underpinning mecha-

nisms of alertness induced spatial bias in these right-handed participants?
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To summarise, so far we have explored the behavioural aspects of transitions into sleep

that led us to our first research question of understanding the behavioural dynamics of

alertness induced spatial bias. In the next section we briefly review the neural aspects of

transitions to sleep that would lead us to our second research question.

1.4 Neural aspects of transitions

The changes in neural activity in the transition to sleep can be explored with neuroimag-

ing. The above mentioned variability in reaction times when a participant transitions into

sleep is produced due to an interplay between the thalamus (the thalamus is the hub

that transmits information from the sensory systems to the cortex) and fronto-parietal re-

gions (Noreika, Kamke, et al. 2017). The reduced ability to perceive stimuli during this

transition is created by thalamic deactivation as evidenced by (Magnin, Rey, et al. 2010).

This was again verified by the ability to detect a target which is measured using the re-

sponse of P3009. When a participant moves into lower stages of alertness it was shown

that P300 evoked by a deviant stimulus gradually reduced (Cote, de Lugt, et al. 2002). The

evidence for impairment of higher cognitive processes (decision making, motor action

execution etc.) comes from the reduced activity in prefrontal cortex and locus coerulus

(Usher, Cohen, et al. 1999; Kaufmann, Wehrle, et al. 2005; Magnin, Rey, et al. 2010). While

results from (Noreika, Kamke, et al. 2017) has shown that it is the rapid re-organization of

fronto-parietal networks which results in impairment in decision making. The variability

in anatomical locations could be possibly due to the variation in the cognitive demands

elicited by the different tasks across these studies.

As explained in the previous section the variability in reaction times when a participant

transitions into sleep is also reflected in the EEG spectrum. Classically EEG data was

studied using sleep stages, which were defined on the basis of 20-30 seconds of data,

however changes in the EEG happen in a much finer range which is also reflected from

the timing of the cognitive processes (Tanaka, Hayashi, et al. 1996). Hence, this has led

9P300 is a positive deflection in event related potential (ERP) recorded with EEG, which occurs after 250-
500ms of stimulus presentation.
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to the formulation of a new system by Hori and collaborators that resulted in more fine-

grained measure of alertness compared to the classical N1/N2/REM system. The Hori

scale is based on elements like alpha and theta waves, vertex sharp waves, spindles etc.

The Figure 1.9 depicts different elements found in EEG across Hori stages. The validity of

these different Hori stages has been verified by an ordinal relationship between the reac-

tion times and the corresponding stages. The mean reaction time was found to increase

with the 9 stages in a linear manner (Ogilvie 2001).

Figure 1.9: Modified Hori stages 10. (A) Modified Hori scale for detecting differing alertness
levels using EEG. Graphoelements of Hori scale in detail (B) Vertex sharp waves are
either Biphasic or Monophasic. (C) Spindles are transient patterns with frequency
(12 to 16 Hz). (D) K-complex elements are sharp positive deflection followed by a
larger negative one.

10adapted from (Jagannathan, Ezquerro-Nassar, et al. 2018)

24



1.4 Neural aspects of transitions

The classical Hori scale were limited to 9 stages and the rationale behind addition of the

10th stage is explained in the next chapter.

The classical sleep stage N1 corresponds to the stages 3-8 in the Hori scale, while the

stage N2 corresponds to the stage 9 in the Hori system. Though Hori stages are cate-

gorized from 1 to 9 rarely participants pass through these stages in an orderly manner.

Some subjects that have suppressed alpha (due to structural differences in the occipital

cortex) do not usually show the Hori stages 1-3. While some subjects do not show Hori

stages 4-6 (Tanaka, Hayashi, et al. 1996; Oken, Salinsky, et al. 2006).

So far we have seen the use of Hori scale to systematically measure the neural dynamics

of transition to sleep. In the next step, I establish a framework to understand the neural

dynamics behind the alertness induced spatial bias mentioned in the previous section.

In order to contextualize the neurodynamics involved in the alertness modulated spatial

attention task, we need to first review the existing neuroanatomical models on neglect,

spatial attention, alertness, pseudoneglect.

1.4.1 Neuroanatomical models on neglect

Studies with stroke patients have supported that damage to the following areas in the

brain to be involved in neglect: anterior, posterior cortical regions (Vallar&Perani 1986)

caused by middle cerebral artery stroke (Bartolomeo, Thiebaut de Schotten, et al. 2007),

basal ganglia and thalamus (Vallar 2003) caused by posterior artery stroke (Bartolomeo,

Thiebaut de Schotten, et al. 2007). These results point to regions that could be consid-

ered as ’critical’ to generate neglect. This prompted large scale studies to be conducted

to identify such ’neglect critical’ areas. Findings from (Mort, Malhotra, et al. 2003) point

to common areas in the TPJ and Inferior parietal lobule(IPL). However findings from (Kar-

nath, Fruhmann Berger, et al. 2004) showed common areas in the superior temporal gyrus

(STG). Perfusion studies from (Hillis, Newhart, et al. 2005) have implicated right STG in al-

locentric neglect (where left side of objects are ignored, even when they are located in

both sides of space). While egocentric neglect (neglect of stimuli located to the left side)
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was implicated (Hillis, Newhart, et al. 2005) to right angular gyrus. While personal neglect

(supramarginal gyrus in the parietal lobe), extrapersonal neglect (STG and inferior frontal

gyrus (IFG)) were implicated by (Committeri, Pitzalis, et al. 2007).

An alternative approach developed by (Corbetta, Kincade, et al. 2005) focussed on the

dorsal and ventral systems of attentional processing systems (mentioned before). The

dorsal pathway (involving FEF and IPS) consisting of fronto-parietal areas were responsi-

ble for spatial orienting and visuomotor control (hand-eye coordination), tasks which are

chiefly affected in neglect. However Corbetta and colleagues argue that brain regions

typically affected in neglect belong to the ventral processing system (IPL, STG, MFG, and

anterior insula). These ventral system regions (associated with alertness, vigilance) feed

dorsal systems with potentially important signals. Thus, damage to the ventral system can

produce impairment in functional connectivity in the fronto-parietal regions that could

cause a bias in spatial attention (He, Snyder, et al. 2007). Further a region near IFG was

identified (He, Snyder, et al. 2007) as a key connecting point between ventral and dor-

sal systems. Similarly, functional connectivity between frontal and parietal regions was

found to be disrupted in studies (Thiebaut de Schotten, Urbanski, et al. 2005) leading to

neglect-like effects. Similarly lesions in sub-cortical areas like superior longitudinal fas-

ciculus (Doricchi&Tomaiuolo 2003) were also found to be affected in neglect patients.

This lead them to think that neglect produces disconnection between frontal and parietal

regions and hence coined the term ’disconnection syndrome’ for neglect.

1.4.2 Neuroanatomical models on spatial attention

Studies by (Corbetta&Shulman 2002) have shown that two distinct types of attention (top-

down, bottom up as mentioned before) map onto distinct regions in the brain that inter-

act with each other to direct attention. Top-down or goal oriented attention activates

regions in superior frontal cortex and intra-parietal cortex. While bottom up attention

(exogenous; detection of relevant stimuli) activate regions in right hemisphere like infe-

rior frontal cortex and temporo-parietal cortex. Studies from (Silver&Kastner 2009) using
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topographical maps in fMRI have shown that right superior parietal lobe (SPL), IPS, sup-

plementary and FEF were involved in attentional processing.

Again Studies by (Corbetta&Shulman 2002) have shown that TPJ was activated when at-

tending to behaviourally relevant stimuli. They showed that the right TPJ was activated

in both directions of attentional shift. While STG was found to be activated in studies

(Danckert&Ferber 2006) involving spatial memory. Further studies by Corbetta and col-

leagues (Shulman, Pope, et al. 2010) have shown that activation in the ventral stream

(TPJ) was required to shift attention. Further studies by (Szczepanski&Kastner 2013) using

transcranial magnetic stimulation (TMS) have shown that when activating the right or left

posterior parietal lobule, attention shifted to the ipsilateral direction.

To summarise, the capacity to shift attention relies on areas that are both bilateral in the

dorsal stream (fronto-parietal regions) while primarily right lateralised in the ventral stream

(TPJ, IPL etc.)

1.4.3 Neuroanatomical models on alertness

One of the first studies (Kinomura, Larsson, et al. 1996) that investigated the brain regions

involved in alertness used Positron Emission Tomography (PET). In short, participants were

asked to perform an attentionally demanding visual and somatosensory detection task

which was compared to the activity of brain at rest. Compared to rest, activity in right tha-

lamic nuclei and midbrain reticular formation system was found to be increased. Further

studies by (Sturm, de Simone, et al. 1999) showed that intrinsic alertness (ready to respond

state) was associated with increase in brain activity of a number of right hemispheric re-

gions like anterior cingulate, MFG, MTG and STG, brainstem and thalamic regions. This

led Sturm and colleagues (Sturm, de Simone, et al. 1999) to propose a network of brain

regions composed of frontal-parietal-thamalus-brainstem involved in the deployment of

intrinsic alertness. Further studies by (Fan, McCandliss, Sommer, et al. 2002) attempted to

disentangle brain regions involved in alerting, orienting, executive control network. They

found that distinct brain regions were involved in the above mentioned processes. The
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orienting process activates the FEFs and some parietal locations. While executive con-

trol process activates several cortical regions indicating the complex nature of processing.

While, alerting process involved thalamus and fronto-parietal regions (mainly right TPJ).

To summarise, neglect seems to involve a variety of brain regions mainly TPJ, IPL, STG

etc. While spatial attention seems to involve a set of bilateral dorsal (IPS, FEF) regions,

right lateralised ventral (TPJ, IPL) regions. Alertness seems to involve mainly regions in

thalamus, fronto-parietal regions like right TPJ.

1.4.4 Neuroanatomical models on pseudoneglect

The following are the potential candidatemodels that could be considered for pseudone-

glect (occurring in healthy participants) based on the neglect based studies (conducted

with patients) mentioned earlier.

Right hemisphere specialization

Studies from (Vallar&Perani 1986) propose that attention is a right hemisphere spe-

cialized function. This is conceptually similar to how aspects of language production is

now proposed to be a left hemisphere lateralised function (Ojemann 1991). Further, as

discussed earlier alertness is also considered a right hemisphere lateralised system. This

makes the right hemisphere highly active in the spatial attention task, whereby directing

attention more to the left side of the space. Hence any damage to the right hemisphere

would produce co morbid deficits in alertness and attention (Corbetta&Shulman 2011;

Robertson, Mattingley, et al. 1998).

Inter-hemispheric competition

Studies from (Kinsbourne 1977; Cohen, Romero, et al. 1994) propose that both the

hemispheres compete with each other for attention directed to the contra-lateral space.

This finely balanced system allocates attention on the basis of mutual inhibition. The

right hemisphere pulling attention to left side of space, while the left hemisphere pulling

attention to the right. Hence any damage to the right hemisphere results in the system
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being unbalanced and tilts the balance in favour of the left hemisphere, thus directing

attention disproportionately to the right side of space (Mesulam 1981).

In both the models, as the participants lose alertness, the right-hemisphere activity gets

reduced thereby leading the left-hemisphere to take over. This potentially pulls attention

attention to the contra-lateral space (right side), thereby attending more to the right side

and not to the left side.

In this context, (Bareham, Manly, et al. 2014) (detailed in the previous section) where par-

ticipants show spatial bias while falling sleep provides a healthy model to understand the

neural mechanisms underlying spatial neglect.

Before we try and understand the neural mechanisms behind neglect, we need to define

the characteristics of analysis methods that are best suited to tackle this problem. First,

the neural machinery involved in spatial attention, alertness, neglect is composed of a

variety of regions that are heavily dependent on the corresponding task being performed

by the participant. Hence we need a technique that doesn’t depend on a-priori defini-

tions of regions involved. Techniques like multivariate pattern analysis (MVPA) satisfy this

requirement by involving a data-driven approach that can further be used to identify the

temporal and spatial signatures involved in spatial bias induced by low alertness. Sec-

ond, as we have established in the previous section, we need a computational model of

decision making that can explain the behaviour of participants in a trial-by-trial manner.

Drift-diffusion model (in previous section) can be used to estimate parameters like evi-

dence accumulation rate (v) and response bias (z) in a trial-by-trial manner. But the crucial

aspect would be to connect this decision making model with the neural markers. This

would establish converging evidence between the MVPA based analysis and behaviour

based drift-diffusion model.
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1.4.5 Research Question

The above mentioned framework sets up our quest to investigate the neural dynamics

involved with spatial biases during sleep onset, which can be summarised in our second

research question.

What changes in neural dynamics (that occur due to variation in alertness levels) can

systematically lead to bias in spatial attention?

The above question can be further subdivided as:

(a) What are the neural patterns that are crucial for performing the spatial attention task

when participants are alert?

(b) How does these neural patterns change when the participants become drowsy?

(c) What are the neural patterns that are involved in generation of spatial bias when

participants become drowsy?

(d) Can we estimate the spatial and temporal signatures that encode parameters in a

decision making model like drift-diffusion?

(e) Would these spatial and temporal signatures generated with the computational

model on behaviour concur with our neural patterns identified earlier?

(f) What neuroanatomical model of spatial bias would these patterns support: Inter-

hemispheric competition or Right hemisphere specialization?

1.5 Handedness aspects of transitions

It is crucial to note that the majority of patients suffering from neglect (and fail to recover)

have damage in the right hemisphere (Bowen, McKenna, et al. 1999; Farne, Buxbaum,

et al. 2004; Karnath 2007). Hence it was interesting to understand how the models of

pseudoneglect in healthy participants (Right hemisphere specialization,Inter-hemispheric
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competition ) could explain the left neglect suffered by patients. However the main con-

founding factor in these models of neglect is that majority of patients that suffer neglect

are right handed individuals. This leads to an interesting question on whether handed-

ness plays an important role in biasing spatial attention. Before we try and understand

how handedness influences spatial attention, it would be prudent to understand the def-

inition and origin of handedness in humans.

1.5.1 Handedness

Approximately 10% of the population in the world is left-handed (Hardyck&Petrinovich

1977) while the rest identify themselves as right-handers. Theories of handedness can be

divided into environmental and genetic factors that are chiefly responsible for its origin. It

is important to understand the origin of handedness so that it can also later be connected

to the differences in neuroanatomy between left and right-handed individuals.

Environmental factors

One line of thought is that handedness is mainly caused by evolutionary adaptation.

This could explain why the proportion of ambidextrous people are low in the general

population, however it fails to explain the highly disproportionate number of right-

handers compared to left-handers (Bishop 1990). Another potential explanation is that

handedness is a learned behaviour that is created due to cultural and societal pressures.

However, this argument also fails to explain why right-handers are prevalent everywhere

irrespective of geographical and cultural factors (Connolly&Bishop 1992; Marchant, Mc-

grew, et al. 1995). Thus the abundance of right handers crossing cultural and geographical

diversity points to potential biological factors influencing it (Bishop 1990).

Genetic factors

Studies using twins (both monozygotic, dizygotic) have investigated the heritability of

handedness as a trait. Some reports have argued that Left handedness is more prevalent

in twins than singletons (indicating genetic factors), however evidence from (McManus

1980) have questioned the measures on which both twins and singletons were evaluated.
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A higher prevalence of left handedness in twins may be related to common pre-natal and

environmental factors rather than genetic factors. (Bishop 1990) also point to the fact

that incidence of one of the twins being left and other being right handed is high and

equally common across mono and dizygotic twins, thus challenging the idea of simple

genetic factors. Another influential theory accounting for handedness is right-shift theory

developed by Annett (Annett 1975). According to this theory, handedness genotypes

are usually biased to the right or unbiased. Though handedness is influenced by chance,

the right-shift provides an advantage to the right hand. Also, for individuals born with no

preference of hands, the cultural factors play a role in making them more right-handed.

Further as handedness is influenced by right-shift allele, this would also mean lateralisa-

tion (left hemisphere specialization) of language function. However this argument fails

when individuals that are right handed present with lateralisation in language in the right

hemisphere itself.

Overall it is interesting to note that both the environmental and genetic factors on their

own cannot explain the origin of handedness and the abundance of right-handed indi-

viduals in the general population. In the next section, I aim to understand how hand-

edness could influence hemispheric lateralisation in the brain. This is highly relevant to

understand the potential behavioural differences (if any) between right and left-handed

individuals in the spatial attention task modulated by alertness. Thereby enabling us to

understand how handedness influences alertness induced spatial bias.

1.5.2 Handedness & hemispheric lateralisation

Oneof the first functions tested for laterality in the brainwas language. Studies from (Alek-

oumbides 1978) used data from 29 patients with aphasia (language impairment caused

by lesion). These data suggested that the right-handers had language functionality rep-

resented only in one hemisphere, whereas left-handers had language represented more

bilaterally, which provided them with the ability to compensate for unilateral lesion.

In recent years, neuroimaging of healthy volunteers has served to identify regions of the
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brain that are differentially activated, hence enabling to identify functional differences

between right and left-handers. Studies by (Knecht, Drager, et al. 2000) used functional

transcranial doppler sonography (fTCD) in 326 right and left-handers to identify changes in

blood flow while performing a word generation task. They showed that blood flow in right

hemisphere increased in 27% of strong left-handers, 15% of ambidextrous participants.

While only 4% of right-handers demonstrated increase in right hemisphere activity and

96% demonstrated left hemisphere dominance.

Further functional magnetic resonance imaging (fMRI) was used by (Pujol, Deus, et al.

1999) to investigate the cerebral lateralisation in language function. They used 50 healthy

left-handers and 50 right-handers to perform a silent word generation task. In both the

groups, the left hemisphere was activated in the task, while in the left-handers (about 24%

of them) also activated the right hemisphere. They concluded by saying that 14% of left-

handers showed bilateral activation, 10% showed right hemisphere lateralisation, while

only 4% of right-handers showed bilateral activation. Other studies (Whitehouse&Bishop

2008) on language function showed that 95% of right-handers showed activation in left

hemisphere, while only 75% of left-handers showed activation in left hemisphere. In stud-

ies involving spatial memory, it has been shown (Whitehouse&Bishop 2009) that both 75%

of right and left-handers have spatial function lateralised in the right hemisphere.

It has also been (Whitehouse&Bishop 2009) shown that language lateralisation, spatial

function lateralisation compared across groups of left-handed, right-handed, ambidex-

trous individuals are not a result of a common underlying process but occur due to in-

dependent probabilistic biases. This directly follows analysis made by (Bryden, Hecaen,

et al. 1983) in 270 unilateral lesion patients with aphasia and spatial function disorder.

They indicated that both language and visuospatial function could occur within the same

hemisphere for both left and right-handed individuals. Thus suggesting that cerebral

lateralisation exists only as a statistical norm that could be accounted for by individual

differences in cognitive skills.

To understand systematic differences in lateralisation of spatial attention and language

generation, (Floel, Buyx, et al. 2005) investigated this issue in groups of left (N = 37),
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right (N = 38) handers. They used fTCD to monitor blood flow in a word generation task

(language) and line bisection (visuospatial attention). The right-handers, showed a typ-

ical pattern with left hemisphere lateralisation for language (97%) and right hemisphere

lateralisation for spatial attention (95%). The left-handers on the other hand, showed a

pattern with left hemisphere dominance for language (74%) and right hemisphere domi-

nance with spatial attention (81%). They summarised that left-handers are more likely to

show an uncommon pattern of brain organization for these tasks. They conclude that all

combinations of cerebral lateralisation could exist for language and attention in the brain

of healthy individuals. It is also interesting to note that 1/3rd of right hemisphere domi-

nant (language) participants were left hemisphere dominant for spatial attention. Further

2/3rd of right hemisphere dominant (language) participants were right hemisphere dom-

inant for spatial attention. This diverges from the 50/50 prediction of right-shift theory,

which proposes that, individuals with bilateral or right hemisphere language specializa-

tion lack the right-shift factor (allele), hence they would be equally like to have spatial

attention in the left and right hemisphere.

1.5.3 Handedness & neglect

There are few and far between studies investigating the interaction of handedness with

neglect and cerebral lateralisation. Asmentioned before, handedness has shown to affect

the lateralisation of cerebral hemispheres in language and spatial memory and hence it is

crucial to consider its effect on neglect (which is primarily a disorder of spatial attention).

Single case studies (Baxter&Warrington 1986) have reported that language impairment

and left spatial neglect following a right hemisphere lesion. This is contradictory to the

view that if language lateralisation is reversed (itmoves from right hemisphere to left hemi-

sphere), then spatial attention would also reverse (it moves from left hemisphere to right

hemisphere). However many studies (Mosidze, Mkheidze, et al. 1994; Kleinman, Newhart,

et al. 2007; Binder, Marshall, et al. 1992) have excluded left-handed patients in neglect

recovery or they do not report handedness (Farne, Buxbaum, et al. 2004; Becker&Karnath
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2007; McIntosh, Brodie, et al. 1997). Thus making it difficult to conclude the effect of

handedness on neglect.

The lack of evidence for neglect among left-handed individuals could also mean that left-

handers are specifically not vulnerable to neglect. Handedness is known to produce an

impact of allocation on attention in space (Buckingham&Carey 2009). In right-handers, it is

well known that right hemisphere is specialised for functions of spatial attention and alert-

ness (Robertson, Mattingley, et al. 1998; Corbetta&Shulman 2011; Malhotra, Coulthard,

et al. 2006). Hence any lesion occurring in the right hemisphere for right-handers would

produce a triple precipitating factor for neglect. That is being right-handed produces

right lateralisation of attention and alertness, further right lateralisation of attention, alert-

ness makes the right hemisphere focal point in producing (when lesioned) neglect. For

left-handers, this could mean that the severity of the vulnerability to neglect could be

reduced, if such hemispheric laterality is not present or reversed (alertness, attention in

opposite hemispheres etc.). However, such a study in left-handers with clinical neglect

would need to include a large population (at least nine times the usual patients, to match

the number of left handers to other studies with right handers).

1.5.4 Research Question

As we have seen before, in healthy individuals (predominantly right-handed), left inatten-

tion is increased under conditions of low alertness, however no such evidence is available

for whether right-neglect is produced under conditions of low alertness. Evidence for the

left neglect in fact comes from Pseudoneglect occurring under conditions of low alert-

ness in healthy populations as reported by (Bareham, Manly, et al. 2014; Manly, Cornish,

et al. 2005; Fimm, Willmes, et al. 2006). This leads us to ask if healthy left-handers also

display such neglect like behaviours and if they do, would they demonstrated left inatten-

tion or right inattention? To generalise, this leads us to ask the next question on whether

handedness produces a modulation in the direction of effect of spatial bias.

In this context, (Bareham, Bekinschtein, et al. 2015) was one of the first study to establish
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the existence of rightward bias with low alertness in healthy left-handed participants. The

participants performed the same auditory spatial attention task as (Bareham, Manly, et

al. 2014) while falling asleep. Further alertness levels were measured using EEG based

techniques like alpha-theta ratio and Hori scoring, it was shown (Figure 1.10) that error

rate on left tones became lower, as the error rates in right tones became higher as the

participants became drowsier. This pattern is opposite to that of the results from right-

handers performing the same task.

Figure 1.10: Error rates in auditory spatial attention task in left-handers 11. Under alert condi-
tions, the error rates of participants are significantly different across left and right
tone. Under drowsy conditions, the error rates of left tone were similar to right
tones. Error bars represent standard error of the means.

However, the shortcomings of the study (Bareham, Manly, et al. 2014) (mentioned in the

previous section) were also applicable to (Bareham, Bekinschtein, et al. 2015). This sets

us up for the third research question.

(a) Does variation in alertness levels systematically produce bias in spatial attention in

left-handed participants?

11modified from (Bareham, Bekinschtein, et al. 2015)
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(b) What changes in neural dynamics in left-handers (that occur due to variation in alert-

ness levels) can systematically lead to bias (if any) in spatial attention?

(c) How do left and right-handers differ in behavioural and neural dynamics across both

’alert’ and ’drowsy’ periods?

(d) What neuroanatomical model (Inter-hemispheric competition or Right hemisphere

specialization) would these patterns support and how does this model depend on

handedness of the individual?

(e) What does this neuroanatomical model convey about cerebral lateralisation and in-

fluence of handedness on spatial attention and other cognitive functions in general?

1.6 Alertness fluctuations in fruit-flies

To address the question of alertness fluctuations in a system with reduced neural com-

plexity and amenable to causal manipulations, I turn to using the fruit-fly (Drosophila

melanogaster). There are several factors (apart from reduced neural complexity) that

served as a motivation to choose the fruit-fly over other animal models which are detailed

in the upcoming sections.

1.6.1 Animal models

Studying sleep and attention in smaller animal models has the potential to unravel molec-

ular and physiological processes associated with these states, further providing an under-

standing of the functional nature of these states (Kirszenblat&van Swinderen 2015). In

this context research in invertebrates ranging from the nematode Caenorhabditis ele-

gans to the fruit fly Drosophila melanogaster has acquired importance in recent years.

However the choice of the system to study sleep is dependent on several factors. The

most important of these factors is the similarity the animal model exhibits with respect to

mammalian sleep. In the next section, I motivate how the fruit fly satisfies several of these
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requirements and also provides further abilities to dissect themolecular and physiological

processes associated with sleep.

1.6.2 Drosophila Melanogaster

As mentioned in the section before, sleep is considered to be a behaviour that is pro-

duced as an interaction between circadian rhythm and homoeostatic process. The main

elements of sleep or associated processes shares the following characteristics (Ly, Pack,

et al. 2018; Gilestro 2012; Shaw, Cirelli, et al. 2000; Hendricks, Finn, et al. 2000):

(a) specific posture and/or place of rest

(b) periods of immobility.

(c) increased arousal threshold.

(d) homeostatic regulation for sleep deprivation.

(e) reversible to wakefulness or active state.

Several studies have provided evidence for increased arousal threshold in flies following a

period of prolonged immobility (van Alphen, Yap, et al. 2013; Yap, Grabowska, et al. 2017).

Further it has also been shown (Dissel, Angadi, et al. 2015) that sleep deprivation causes

behavioural deficits in learning and restoration of sleep reintroduces behavioural plastic-

ity in flies. However, the nematode Caenorhabditis elegans with only 302 neurons also

displays sleep-like behaviour (quiescence, reduced arousal, homoeostatic regulation etc.)

(Raizen, Zimmerman, et al. 2008). Though in the case ofC. elegans it has been argued that

sleep is merely a state of reduced activity that is needed to cope with the environmental

stress or developmental needs of the organism (Kirszenblat&van Swinderen 2015). Hence

an alternative definition of sleep also includes its ability to support important functions

like attention.

Selective attention (as described before) is an example of such a cognitive function that
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can be probed inmore complex nervous systems (compared toC. elegans) like flies, while

it is difficult to quantify in organisms with a limited behavioural repertoire like C. elegans.

The further advantage of using animals like fruit flies to study sleep and transition to sleep

is its simplicity in neuronal architecture. The fly brain has an approximately 135,000 neu-

rons compared to the human brain that has 86 billion neurons. This allows easier iden-

tification and manipulation of sleep promoting neural circuits (Donlea, Thimgan, et al.

2011; Pimentel, Donlea, et al. 2016) identified by genetics. Further allowing us to probe

the causal mechanisms (using optical and thermal techniques) and understand the func-

tions of sleep and its transition dynamics. For example, sleep induction in flies has been

implicated with learning in mutant flies (Dissel, Angadi, et al. 2015) and altered synaptic

physiology(Liu, Liu, et al. 2016). Further, Drosophila has become an interesting model

for understanding the molecular processes associated with sleep in healthy and diseased

conditions (van Alphen, Yap, et al. 2013).

In the following sections we cover the behavioural and neural dynamics of natural tran-

sitions i.e., transition into sleep in fruit-flies and methods to study them in a detailed

manner.

1.6.3 Behavioural dynamics of sleep in flies

In general, a fly is considered to be asleep if it has been inactive for more than 5 minutes

or more (Shaw, Cirelli, et al. 2000; Huber, Felice Ghilardi, et al. 2004). This inactivity thresh-

old has been verified by increased arousal threshold using a mechanical stimulus after 5

minutes of inactivity (Shaw, Cirelli, et al. 2000). Further this threshold has been useful for

understanding sleep processes and also provided insight on the intensity of sleep in flies

(Huber, Felice Ghilardi, et al. 2004). Evidence from early studies (Andretic&Shaw 2005)

have also indicated that the overall duration of fly inactivity refers to accumulated sleep

processes . Thus fly sleep seems to satisfy most of the definitions of sleep processes like

immobility, increased arousal threshold, homoeostasis etc. Sleep in flies can be studied

at both individual or at population (group of flies) level. Thus in order to study sleep it
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is important to develop methods to analyse behaviour (mainly locomotion or movement)

both at population and at an individual level.

1.6.3.1 Population level

Historically sleep in groups of flies has been studied by using the locomotor activity of

flies in tubes. For example, a device commonly used to study sleep in flies is called as

Drosophila Activity Monitor (DAM). It consists of several tubes each of which house an

individual fly. Flies walk back and forth in the length of the tube as the food is usually

stored in one end of the tube as shown in Figure 1.11. This locomotion results in the

breaking of the infra-red beam (placed in the centre of the tube) on every crossing (Triki-

netics, Waltham, MA). The advantage of this approach is that population level studies can

be performed in groups of flies with very little effort.

Figure 1.11: Infra-red beam detector 12used to study sleep in flies. Here, the dark blue bars
represent infra-red transmitters and light blue bars indicate receivers. Flies move
back and forth in the tube and locomotion activity is measured by the number of
infra-red beam crossings.

However,if we are to measure more information about the fly sleep than just number of

crossing (activity) per hour we need to move to designs that can probe the behavioural

responsiveness and sleep intensity in flies. This has resulted in the development of

Drosophila ARousal Tracking (DART) system (Faville, Kottler, et al. 2015). Here the flies are

hosted individually in glass tubes as before. Video data is recorded continuously through

day and night using a USB-web cam interface as shown in Figure 1.12. Furthermore, to

probe the sleep intensity of the flies, vibration stimuli is delivered every hour at specific

intensities using shaft-less vibrating motors glued underneath to the tray of flies. This

modified design provides us with an ability to measure multiple parameters that include,

12adapted from (Liu, Haynes, et al. 2015)
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positional preferences, behavioural responsiveness, intensity of sleep, homoeostatic ef-

fects, general activity levels etc.

Figure 1.12: Drosophila ARousal Tracking (DART) system 13. Here the activity of flies is recorded
through a web camera. Motor stimuli is periodically applied by using a digital to
analog converter (DAC). Each platform consists of two motors as shown (far right)
above. Further multiple motors (red circles) are connected to the DAC through a
simple circuit board.

1.6.3.2 Individual level

If individual flies are to be studied in much more detail, they are usually tethered to a

tungsten rod attached to the thorax of the fly which is then placed on an air supported

ball as shown in Figure 1.13. The air-supported ball is usually a polystyrene ball painted

with black and white patterns. The ball is allowed to float using a continuous flow of air

through a tube situated at its bottom. The use of such a ball allows the fly to walk with

least resistance mimicking its environment in natural surroundings. In some cases, where

flies are recorded overnight for 24-hr periods, humidified air is also passed through the

bottom of the ball to prevent desiccation which can lead to the death of the fly.

13adapted from (Faville, Kottler, et al. 2015)
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Figure 1.13: Fly on the ball set-up14. Here the fruit-fly is allowed to walk on the ball, while
the motion of the ball can be used to track the movement of the fly including its
walking speed, turning direction etc.

From this set-up, we can measure the walking speed of the fly by tracking the rate of

change of the black and white patterns, direction of fly walk by tracking the rotational

change in the black and white patterns. This set-up also provides for the reliable delivery

of olfactory or mechanical stimuli (vibration etc.) and measurement of the corresponding

behaviour of the fly.

To summarise, so far we have explored the techniques to study the behavioural aspects of

transitions into sleep in fruit-flies. In the next section we briefly review the neuroanatomy

of sleep in flies before understanding the techniques to study neural aspects of transitions

to sleep in fruit-flies.

1.6.4 Neuroanatomy of sleep in flies

One of the main advantages of using small animal models like fruit flies is that the map-

ping of neural circuits responsible for generating specific behaviour is easier due to the

smaller number of cells, cell types and connections compared to other animal models.

In this context it is relevant to study the neurotransmitters involved in wake and sleep

14adapted from https://news.stanford.edu/news/2011/september/reverse-phi-motion-091211.html
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promoting activity for mapping circuits that are involved in maintaining wake and trig-

gering sleep processes. There are seven neurotransmitters involved in sleep and wake

regulation in the fly brain. Dopamine, Octopamine and Histamine are involved in wake-

promoting activity, while Serotonin and γ-Aminobutyric acid(GABA) are involved in sleep-

promoting processes. Further, Acetylcholine (Ach) and Glutamate are involved in both

wake-promoting and sleep-promoting processes. The following is a short summary of

wake and sleep promoting circuits mediated by the above mentioned neurotransmit-

ters.

1.6.4.1 Dopamine mediated circuits

Dopaminergic cells are present in most of the protocerebrum and innervate many neu-

ropils 15in the central nervous system (Friggi-Grelin, Coulom, et al. 2003; Mao&Davis

2009). Further, these cells project to the mushroom body and the central complex which

are important sleep regulating areas in the fly brain (Pitman, McGill, et al. 2006; Joiner,

Crocker, et al. 2006; Donlea, Thimgan, et al. 2011; Liu, Liu, et al. 2016). Mutant flies that di-

rectly interfere with the Dopamine production/uptake have produced causal evidence for

the interference of dopamine in sleep/wake cycle. Studies (Kume, Kume, et al. 2005) have

identified a mutant fly that sleeps less called fumin (Japanese word for ’sleepless’). The

mutation responsible for generating the sleep loss is said to be present in the dopamine

transported (dDAT) gene. dDAT is mainly responsible for dopamine uptake in the pre-

synaptic regions (Porzgen, Park, et al. 2001), hence loss of this gene produces prolonged

dopamine signals in the specific synapses that results in fmn mutants sleeping less. Fur-

ther studies (Makos, Kim, et al. 2009) have directly confirmed the reduction in levels of

dopamine clearance in vivo in fmn mutants.

15area in the nervous system that is mainly composed of un-myelinated axons and dendrites.
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Figure 1.14: Dorsal fan shaped body - Sleep promoting neurons 16. The neurons in the dFSB
are visualized here by green fluorescent protein (GFP) expression using a genetic
driver line (23E10-Gal4).

A part of the circuitry of wake-promoting dopamine signal has been isolated to individual

neurons in the PPL1 and PPM3 clusters in the posterior protocerebrum that in turn inner-

vate the dorsal fan shaped body (dFSB) (shown with green fluorescent label in Figure 1.14)

with dDA1 receptors (Liu, Placais, et al. 2012; Ueno, Tomita, et al. 2012). The location of

this circuitry has further been confirmed by the opto-genetic activation of the dopaminer-

gic cells in conjunction with electrophysiological recording of the dFSB neurons (Pimentel,

Donlea, et al. 2016).

1.6.4.2 Octopamine mediated circuits

Octopamine is a wake-promoting neurotransmitter similar in structure to NE in mammals

(mentioned earlier). In the fly brain approximately 100 octopaminergic cells send pro-

jections to distinct regions in the brain like calyx of mushroom bodies, parts of central

complex, protocerebrum, optic lobes (Sinakevitch&Strausfeld 2006; Busch, Selcho, et al.

2009). The octopaminergic cells are also similar to NE cells in that they have widespread

projections in the central nervous system (of the fly brain).

The arousal promoting effects of octopamine have been verified by pharmacological and

genetic manipulations. The oral administration of octopamine in flies resulted in sig-

nificant reduction of night-time sleep (as it is wake promoting). While mutants carrying

16adapted from (Yap, Grabowska, et al. 2017)
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disruption in key genes in octopamine pathways, slept longer in the day and had reduced

latency to sleep at night (indicating increased sleep pressure) (Crocker&Sehgal 2008). The

circuitry of the octopamine signals have also been isolated to a cluster of neurons in the

medial protocerebrum. These neurons further activate the octopamine receptor in the

mushroom body of the fly brain (Crocker, Shahidullah, et al. 2010).

1.6.4.3 Histamine mediated circuits

Evidence from studies (Oh, Jang, et al. 2013) have suggested that histamine promotes

arousal in drosophila. 18 cell bodies have been identified to be histaminergic using im-

munohistochemistry (Nässel 1999). These cell bodies send projections to the ventral and

lateral protocerebrum in the fly brain. Further evidence from pharmacological studies

have shown that administration of histamine receptor antagonist hydroxyzine decreases

latency to sleep (increased sleep pressure as mentioned before) (Pollack&Hofbauer 1991;

Nässel 1999).

1.6.4.4 Serotonin mediated circuits

Serotonin is known to be widely expressed in the central nervous system of the fly brain

(Nässel 1988; Valles&White 1988; Lundell&Hirsh 1994; Sitaraman, Zars, et al. 2008) and

promotes sleep functions (Yuan, Joiner, et al. 2006). Pharmacological studies have shown

that increase in serotonin levels via treatment with 5-hydroxytryptophan (5-HTP) which is a

precursor to serotonin bio-synthesis is known to increase sleep (Yuan, Joiner, et al. 2006).

Further studies have shown that serotonin acts through multiple receptors and brain re-

gions that acts on both baseline sleep (Yuan, Joiner, et al. 2006; Haynes, Christmann, et al.

2015; Qian, Cao, et al. 2017) and sleep rebound due to homoeostatic pressure (Qian, Cao,

et al. 2017). Mutants that contain a loss of function gene in 5-HT1a receptors show signif-

icant sleep reductions (Yuan, Joiner, et al. 2006). However in the same mutant, transgenic

expression of 5-HT1a in the mushroom bodies reverses the sleep pattern (Qian, Cao, et

al. 2017) in short-sleeping phenotype of 5-HT1a Drosophila null mutants. This indicates
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mushroom bodies as a possible site of action for 5-HT1a sleep regulation. Other studies

(Haynes, Christmann, et al. 2015) have indicated that expression of tryptophan hydroxy-

lase (TRH) RNAi in the dorsal paired medial (DPM) neurons that project to the mushroom

body significantly reduces sleep. Studies (Qian, Cao, et al. 2017) have also implicated the

involvement of 5-HT2b in the dFSB in homoeostatic sleep rebound. To summarise, sero-

tonin mediates sleep and sleep homoeostasis through distinct circuits in the fly brain.

Figure 1.15: Fruit-fly sleep networks 17involved in regulation of sleep and wake activity. The
dashed lines here indicate functional connections between different regions that
have been established in the literature.

1.6.4.5 GABA mediated circuits

γ-Aminobutyric acid (GABA) which is one of the primary inhibitory neurotransmitters in

both vertebrates and invertebrates occurs in small clusters that innervate large number of

cells throughout the fly brain (Enell, Hamasaka, et al. 2007; Okada, Awasaki, et al. 2009).

GABAergic transmission in turn promotes sleep and advances sleep onset (Agosto, Choi,

et al. 2008) by expressing the transgene for hyper-polarising the potassium channel (in

GABAergic neurons). In addition, the administration of THIP (a GABA-A agonist) signif-

icantly increases sleep in wild-type flies (Dissel, Angadi, et al. 2015). Clock cells (Parisky,

17adapted from (Ly, Pack, et al. 2018)
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Agosto, et al. 2008) (that control sleep rhythm; also critical for learning and memory

(Haynes, Christmann, et al. 2015)) are also regulated by GABA for both sleep and sleep

onset.

In the fly brain, the large ventral lateral neurons (l-LNvs) which contain the Resistant to

dieldrin (Rd1) ionotropic GABA-A receptor are composed of a network of 150 neurons

that are critical to the generation of circadian rhythm (Peschel&Helfrich-Förster 2011). l-

LNvs are considered to the principal circadian pacemaker cells in the fly brain with Rd1 as

one of the three GABA-A subunits which are present in the optic lobes, antenna lobes,

mushroom bodies and central complex (Enell, Hamasaka, et al. 2007). Electrophysio-

logical recordings of l-LNvs have also shown that GABA inhibits the activity of l-LNvs,

thus suggesting that inhibition of l-LNvs promotes sleep processes (Chung, Kilman, et al.

2009).

The major sleep promoting neurotransmitter mediated circuits in the drosophila brain

mentioned above are summarised in the Figure 1.15.

To summarise, so far we have seen a brief overview of the neuroanatomy involved in wake

and sleep networks in the fly brain. Next we aim to understand the dynamics of such

networks recorded through electrophysiological methods.

1.6.5 Neural dynamics of sleep in flies

Analysis of brain activity in humans using EEG recordings have revealed distinct sleep pat-

terns (Ogilvie 2001; Moser, Anderer, et al. 2009) that are associated with different arousal

thresholds. Studies (Ogilvie 2001; Moser, Anderer, et al. 2009) have found that during

slowwave sleep (SWS), behavioural responsiveness to stimuli gets reduced, whereas rapid

eye movement (REM) sleep was associated with increased responsiveness. Furthermore,

SWS has been implicated in memory consolidation andmaintaining synaptic homoeosta-

sis (Diekelmann&Born 2010; Tononi&Cirelli 2003; Tononi&Cirelli 2006). These studies have

shown the value of performing electrophysiological recordings on a population of neural

assemblies. Recently studies (van Alphen, Yap, et al. 2013) have shown using local field
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potentials (LFP) recorded from the fly brain, that flies possibly sleep in different stages

associated with distinct electrophysiological patterns and different arousal thresholds.

In this context (Yap, Grabowska, et al. 2017) investigated the process of spontaneous

falling asleep in flies. LFPs were recorded by implanting two glass electrodes into the

two brain hemispheres (Detailed methods in Chapter 6) and an amplified differential volt-

age was extracted from the electrodes. In this set up, the flies were tethered to a pole

and placed on a ball (described before). The behaviour of the flies (mainly locomotion)

was recorded for 24-hours using infra-red enabled camera. If the fly was immobile for a

period of more than 5 minutes, it is considered to be sleep (as mentioned before). Im-

mobility period was quantified using the pixel subtraction technique (van Alphen, Yap,

et al. 2013).Here the change in pixel value between subsequent frames was quantified by

subtracting the adjacent frames in a video to create a difference image (∆ pixels) across

time. The change in pixels is summed to create a movement value. The fly is said to

have moved only if this movement value exceeds a certain threshold. Thus periods of no

movement for more than 5 minutes were considered as sleep (sleep from 5th minute). For

example, consider a fly that stops moving at 0 minutes and moves back again at 15 min-

utes. Here the time period from 0 - 5 minutes is considered as transition and any period

after the 5th minute (till 15th minute) is considered as sleep.

They showed that (Figure 1.16) ’sleep’ and ’awake’ periods were characterised by change

in the frequency spectrum of the LFP. Furthermore, they associated a frequency band

(7-10 Hz) in the central brain as a transitional sleep stage. However, there were several

shortcomings associatedwith the study. First, the transition to sleep (period from 0minute

to 5th minute) was not investigated. Which is co-incidentally one of the prime focus of

this dissertation. Second, the sleep in flies was categorized based on the time of sleep

induction (day or night). However, it is well known that the depth of the sleep (sleep

duration) modulates arousal threshold and hence it would be interesting to dissect the

changes in frequency patterns across sleep of different depths. Third, the changes in

frequency spectrum across awake and sleep periods were not characterised to identify

important elements in the spectrum that can generalise the findings to a new fly (this

could be done by building classifiers based on frequency spectrum to identify ’awake’
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and ’sleep’ periods). Fourth, the two channel differential LFP is not able to provide spatial

information on how regions in the brain differ across ’awake’ and ’sleep periods.

Figure 1.16: Spectogram of 24-hr LFP 18

1.6.6 Research Question

This sets us up for the fourth research question to understand the process of transition to

spontaneous sleep.

(a) Can we build a data driven approach to analyse the LFP data based on elements

of frequency spectrum as done for humans?. For example this could be a classifier

(with features like frequency spectrum) and classify the LFP data across ’awake’ and

’sleep’ periods independent of movement data?

18adapted from (Yap, Grabowska, et al. 2017)
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(b) What happens to the frequency spectrum elements (or classifier patterns) when the

fly is transitioning into sleep (0 to 5 minutes)?

(c) How do the classifier patterns depend on the sleep depth? Does longer sleep du-

ration (deep sleep) differ from smaller sleep duration (light sleep)?

(d) Can we uncover the spatial information in the transition to sleep across awake and

sleep periods using multichannel recordings as used in (Paulk, Zhou, et al. 2013)

or in other words what brain regions change (and in what frequency bands) across

awake and sleep periods?

(e) How does the spontaneous sleep measured with multichannel recordings differ

from artificially inducing sleep. For example thermogenetically activating the dFSB

as in (Yap, Grabowska, et al. 2017)?

1.7 Outline of this dissertation

To summarise, so far we have seen a brief literature overview of alertness, transitions of

alertness and both the behavioural and neural dynamics of such transitions in healthy

adults and patients. Further, we also reviewed the circuits involved in the transition to

spontaneous sleep in flies. We also detailed several unanswered questions and potential

problems that need to overcome to understand the behavioural and neural dynamics of

alertness induced spatial bias. To be able to solve them, first we need to develop an objec-

tive method capable of tracking alertness levels on a fine grained scale (as Hori system of

scoring is highly subjective and time consuming). Second, the tracking of behavioural dy-

namics in attentional biases with low alertness has only been done with simpler measures

(like signal detection theory) based on error proportions etc. However, computational

modelling of behaviour could lead us to uncover much richer dynamics. Third, the neural

dynamics in such alertness induced spatial biases has only been done with univariate anal-

ysis techniques. However, MVPA could lead us in understanding the dynamics between
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different brain regions in a model free manner. Fourth, the neural dynamics in simpler

systems like fruit-flies has not been explored in detail using computational techniques.

Thus, the core aspect of this dissertation consists of addressing the above mentioned

problems. I do this systematically by developing a method to track alertness levels, fol-

lowed by which I use well-established measures for tracking the behavioural and neuro-

dynamics of biases in attention (during alertness transitions). For tracking and quantifying

behaviour across different alertness levels, I use multilevel modelling, psychophysics, drift

diffusion modelling. For tracking and quantifying the neural dynamics across different

alertness levels, I use MVPA to identify patterns in the EEG data. Followed by which I con-

nect the drift diffusion parameters with EEG data by performing trial-by-trial regression,

thus providing convergent evidence for understanding the dynamics across behaviour

and neural data. Finally, I apply machine learning techniques in fruit flies to explore the

neural dynamics of spontaneous falling asleep over longer time periods (12hours).

1.7.1 Measurement of alertness levels

This part of the dissertation mainly deals with developing an alternative method to the

Hori system. The alternative method should be objective and automated to provide for

wide spread application across different domains.

In the first step, I develop a method for tracking levels of alertness in humans with EEG

data. I use machine learning methods based on Support Vector Machines (SVM) to de-

velop tools that can track alertness levels in a trial-by-trial manner. I further validate this

in a primary dataset with 64-channel EEG using gold standard Hori scores (generated by

3 independent scorers) in Chapter 2. Next, I test the generalisability of this tool by using

an independent 128-channel EEG dataset that has been Hori scored by an independent

scorer under the supervision of an experienced scorer. Finally, I conclude by highlighting

the utility of the method to the general cognitive neuroscience community. This tool can

be used to track trial-by-trial alertness levels in their experiments with EEG under eyes

closed settings.
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1.7.2 Behavioural dynamics of transitions

This part of the dissertation mainly answers the first research question of analysing the

behavioural dynamics in spatial bias (across transitions of alertness) using computational

modelling.

In this second step, I investigate the behavioural dynamics in alertness induced spatial

bias across an auditory spatial attention task. This task is based on an augmented ver-

sion of the same spatial attention task published earlier (Bareham, Manly, et al. 2014). In

this task, right-handers localize the direction of tones originating from the left or right

direction (Chapter 3). The participants are also allowed to fall asleep to modulate the

alertness levels. First, I use multi-level modelling to show that the proportion of errors

committed by the participants in the left direction is disproportionately high when they

become drowsy. Second, I use psychophysics to quantify the subjective mid-line by fitting

a psychometric function to the proportion of rightward responses. I show that for majority

of the subjects the mean of the psychometric function shifts to the left, indicating that the

subjects produce more left errors. Third, I use HDDM to quantify the bias (starting point)

and drift-rate (evidence accumulation rate). The prime reason to use drift diffusion model

is to quantify the different elements of the decision-making process using distribution of

reaction time measures, which are independent of the accuracy of the responses. Using

HDDM, I show that between left and right stimuli, the drift rate changes largely when the

participant becomes drowsy while the change in bias is comparatively small, thereby pro-

viding indications of a possible mechanism responsible for the left-side errors (alertness

induced spatial bias). Fourth, I discuss how the possible mechanisms help us provide evi-

dence for or against the different neuronatomical models that can explain the spatial bias

in right-handers.
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1.7.3 Neural dynamics of transitions

This part of the dissertation mainly answers the second research question of analysing the

neural dynamics in spatial bias (across transitions of alertness) using multivariate pattern

analysis.

In this third step, I investigate the neural dynamics of alertness induced spatial bias across

the same auditory spatial attention task as mentioned above. First, I use temporal decod-

ing (MVPA) to identify patterns in data that can discriminate between different conditions

(Chapter 4). For example, I start with the basic decoding of left and right stimuli using

scalp topography under alert conditions. I show that the decoding of the presented stim-

ulus starts at 200 ms, which is well before the average reaction times (about 400-600 ms)

indicating that the neural patterns in the classifier actually capture the process of decision

making. Second, I project these patterns to show that brain regions like parietal and tem-

poral cortex may be involved in performing this task. Third, I use trial-by-trial variations in

the drift-rate and perform regression against the ERP data to compute the discrimination

ability of sensor locations across left and right stimuli. Fourth, I discuss how the different

brain regions help us provide evidence for or against the different neuronatomical models

that can explain the spatial bias in right-handers.

1.7.4 Handedness aspect of pseudoneglect

This part of the dissertation mainly answers the third research question and deals with

understanding the difference in performance (if any) in the auditory spatial attention task

between left and right-handers and the neural mechanisms responsible for generating

this behavioural difference.

In this fourth step, I use the same spatial attention task as above, but now left-handers

perform the tone localization task while falling asleep (Chapter 5). First, I show how the

behavioural dynamics of the left-handers are different from right-handers. Using multi-

level modelling, I show how handedness modulates the proportion of errors, dependent
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on the side of the tone as participants become drowsy. Second, I use MVPA to show that

despite left and right-handers showing same behaviour under alert conditions, different

regions of the brain seemed to be involved in performing the same task. Next, I show

how handedness affects the different regions in the brain involved in performing this task

while under drowsy conditions. Third, I use regression of the drift-rate (computed with

HDDM) with the ERP data to show how different brain regions can distinguish between

left and right tones. Fourth, I show how the evidence from the drift-rate regression con-

verges with the results from MVPA. These results further highlights the mechanisms in

the brain responsible for generating behavioural difference across left and right-handers.

Fifth, I discuss how the different mechanisms of spatial bias across left and right-handers

help us provide evidence for a generic neuronatomical model of alertness induced spa-

tial bias for both left and right-handers. Finally, I also highlight one of the major issues of

neuroscience studies: ignoring left-handers provides only models based on the brain and

behaviour of right-handers, which removes variability in neural processes and generalis-

ability in cerebral lateralisation that can be caused by natural factors like handedness.

1.7.5 Alertness transitions in the fruit-flies

This part of the dissertation mainly answers the fourth research question of exploring

the neural dynamics in the alertness transitions in fruit flies using machine learning tech-

niques.

In this fifth step, I use the fruit fly (Drosophila melanogaster) to probe the questions of

spontaneous falling asleep in a system amenable to causal manipulations. First, I use

single-channel LFP data from flies falling asleep in a 24-hour period (Yap, Grabowska,

et al. 2017). I use wavelet decomposition as features and develop an SVM to classify

segments of data (1 minute in length) into ’awake’ and ’sleep’ periods. Next, I validate

the same against ground truth computed using video data (pixel subtraction technique).

Second, I show that using probabilistic classifier, we can actually detect the probability of

fly sleep in the transition from 0th to 5th minute. Further, the classifier also predicts the

duration of fly sleep (sleep depth) after the 5th minute. More crucially, the fly sleep can

54



1.7 Outline of this dissertation

be actually predicted at -2 minute (before the start of the immobility period). Third, I use

multi-channel LFP data using half-brain probe from flies falling asleep in a 12-hour period.

I perform power spectrum analysis to show the differences in brain regions across awake

and sleep conditions. I further show converging evidence from experiments performed

with thermogeneticmanipulations using full-brain probe in a previously published dataset

(Yap, Grabowska, et al. 2017).
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2
Tracking alertness transitions

2.1 Brief introduction

Before exploring the transitions of alertness in both behaviour and neural dynamics, we

need to develop a method to be able to track the alertness levels in an accurate manner.

As mentioned in the introduction the state of the art methods (like Hori scoring for mea-

suring finer levels of alertness) are subjective and error prone. Hence this necessitates

the development of an automatic method that is objective and measure alertness levels

in an accurate manner.

This manuscript develops such an automated method for tracking alertness levels with

EEG in a trial-by-trial manner. The prime reason for measuring alertness levels (apart from

using it to study alertness transitions) is that drowsiness has proved to be confounding

factor (Tagliazucchi&Laufs 2014) in several cognitive experiments especially in eyes-closed

and resting state settings. Further evidence from studies (Bareham, Manly, et al. 2014;

Chennu&Bekinschtein 2012) have shown that alertness is found to modulate attention

and many other cognitive sub-processes.

The current methods that are used for measuring alertness to track drowsiness has sev-
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eral disadvantages. In task based settings, techniques use pre-trial periods to categorize

data segments into different levels of alertness based on manual or automatic meth-

ods. Manual techniques like sleep scoring (Berry, Budhiraja, et al. 2012) rely on data

segments of 30 seconds in length, however most cognitive experiments have pre-trial

periods ranging from 4-5 seconds which make them unsuitable for our purpose. Auto-

mated techniques developed elsewhere (Tagliazucchi, von Wegner, et al. 2012) also use

American Association of Sleep Medicine (AASM) based sleep stages like wakefulness,

N1, N2 etc. which do not have the sufficient temporal resolution to capture dynamics in

alertness transitions. Other techniques that use continuous measures like alpha-theta ra-

tio (Šušmáková&Krakovská 2008) to capture variations in alertness classify trials into alert

and drowsy based on the assumption that each participant had equal number of alert and

drowsy periods, which is not true.

2.2 Declaration of contribution of co-authors

The following paper was published in 2018 in NeuroImage. The micro-measures algo-

rithm was mainly developed using dataset #1 consisting of 64 channel EEG data which

was already published in (Kouider, Andrillon, et al. 2014). I developed the criteria and

code for the automated algorithm, while the ground truth labels of Hori scores were rated

by 3 experienced scorers. Next, to test the generalisability of the algorithm, I validated

this in another independent dataset #2 consisting of 128 channel EEG data which was

already published in (Noreika, Kamke, et al. 2017). I further developed the methods to

test the algorithm using an independent behavioural measure of Coefficient of variation

in reaction times. The creation of the figures, manuscript were my own work, which un-

derwent revisions based on comments by co-authors and reviewers before its published

form below.

2.3 Manuscript, NeuroImage
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A B S T R A C T

A major problem in psychology and physiology experiments is drowsiness: around a third of participants show
decreased wakefulness despite being instructed to stay alert. In some non-visual experiments participants keep
their eyes closed throughout the task, thus promoting the occurrence of such periods of varying alertness. These
wakefulness changes contribute to systematic noise in data and measures of interest. To account for this omni-
present problem in data acquisition we defined criteria and code to allow researchers to detect and control for
varying alertness in electroencephalography (EEG) experiments under eyes-closed settings. We first revise a
visual-scoring method developed for detection and characterization of the sleep-onset process, and adapt the same
for detection of alertness levels. Furthermore, we show the major issues preventing the practical use of this
method, and overcome these issues by developing an automated method (micro-measures algorithm) based on
frequency and sleep graphoelements, which are capable of detecting micro variations in alertness. The validity of
the micro-measures algorithm was verified by training and testing using a dataset where participants are known
to fall asleep. In addition, we tested generalisability by independent validation on another dataset. The methods
developed constitute a unique tool to assess micro variations in levels of alertness and control trial-by-trial
retrospectively or prospectively in every experiment performed with EEG in cognitive neuroscience under
eyes-closed settings.

Introduction

Electroencephalography (EEG) has played a pivotal role in the non-
invasive study of brain function (Niedermeyer and Silva, 2004). Typi-
cally in an EEG experiment the electrophysiological activity of the brain
is recorded from the scalp of the participant while they are performing a
cognitive task or under task-free conditions (e.g. resting state). In some
task-based experiments, typically in the auditory or tactile domain, the
participant performs the task with eyes-closed. Previous studies have
shown that such eyes-closed settings can create periods of momentary
lapses of alertness (Barry et al., 2007). These periods are usually attrib-
uted to variable and long inter-trial intervals (Hackley and Graham,
1987; Kosslyn and Andersen, 1995). The prevalence of this problem can
be attested by studies mining large databases, which show that about a
third of participants momentarily fall asleep in resting state conditions
(Tagliazucchi and Laufs, 2014). Further, task-free settings such as mind
wandering or simple non-active instructions can also lead to drowsiness

and sleep (Goupil and Bekinschtein, 2012).
The above mentioned variations in alertness can be inferred using

variability in reaction times (Ogilvie, 2001). However, the direct appli-
cation of reaction time measures in detecting alertness in a trial-by-trial
manner is hampered by the following reasons. Firstly, variation in re-
action times are also generated due to varying task difficulty, thus
making it difficult to disentangle task difficulty with alertness. Secondly,
there are no established methods to relate such reaction time measures
among different participants in the same study while overcoming indi-
vidual differences. Thirdly, they cannot be applied for non-active tasks
such as resting state studies. Thus, in most of the cognitive neuroscience
experiments such alertness lapses are ignored (Olbrich et al., 2009;
Tagliazucchi and Laufs, 2014) and data confounded with drowsiness (or
low alertness) are used for studying brain functions like attention and
cognition. However, attention and many other cognitive sub-processes
are known to be directly modulated by lack of alertness in normal
(Bareham et al., 2014; Chennu and Bekinschtein, 2012) as well as clinical
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populations (Dobler et al., 2005). Hence, fluctuations in alertness need to
be measured, to include or exclude trials of low/high alertness to
adequately test predefined hypotheses. This argument is illustrated with
an experiment in Fig. 1.

Fig. 1(B) shows a typical EEG experiment (Kouider et al., 2014) where
the participant responds to auditory stimuli while having their eyes
closed. In the beginning of the experiment the participant responds to the
stimuli in a reliable manner (green dots) by less variation in reaction
times. As time progresses the reaction times become more variable and
the participant intermittently fails to respond (red dots). This variation is
also captured in the frequency profile of the EEG (occipital sites) during
the pre-trial periods of the task as depicted in Fig. 1(A). When the
participant responds reliably, the frequency profile predominantly shows
power in the alpha range (8–12 Hz) and as they become drowsy the alpha
power disappears and low frequency power in the theta range (6–8Hz)
increases. Thus the frequency profile preceding the trial could predict the
variability in the responses. In other words, such spectral changes can be
used to detect the momentary lapses in alertness that causes variability in
the reaction times.

The typical techniques that are used to clean or remove the data from
such drowsiness contaminated episodes can be either manual or auto-
matic. Manual methods tend to score the above mentioned pre-trial pe-
riods using traditional sleep scoring techniques (Berry et al., 2012).
Automatic methods are either continuous (ratio between alpha-theta
frequency range) or discrete, which can further be validated with the
manual labels described earlier. However, both the techniques face
multiple problems. Firstly, sleep scoring techniques rely on having at
least 30 s of data (Berry et al., 2012), whereas in most cognitive experi-
ments the pre-trial periods last at most 4–5 s. Secondly, automated
methods (Tagliazucchi et al., 2012) that are validated using such sleep
scoring techniques classify data into American Association of Sleep
medicine (AASM) based sleep stages like wakefulness, N1, N2 etc. But
such momentary lapses of alertness require more fine grained scoring
techniques that operate on a smaller time range with different features
capable of capturing micro variations in alertness levels. Thirdly,
continuous measures such as alpha-theta ratio (�Su�sm�akov�a and
Krakovsk�a, 2007) divide the entire set of trials into quartiles and label the
trials in the lower quartile (lower alpha-theta ratio) as drowsiest and
upper quartiles as most alert (Bareham et al., 2014). Such measures as-
sume every participant had an equal number of alert and drowsy periods,
thereby implying that the depths of drowsiness attained by each

participant was the same, which is not necessarily true. Finally, some
techniques use the simple variation in reaction times to capture moments
of low alertness. But this suffers from the problem of longer reaction
times being confounded by other factors such as task difficulty as
mentioned earlier (Bareham et al., 2014).

Thus the above mentioned problem of fluctuations in alertness re-
quires a novel solution. Our proposal is to tackle the problem in the
following manner: Firstly, we identify these alertness contaminated ep-
isodes, through the use of the Hori scale (Tanaka et al., 1996) that cap-
tures micro variations in alertness. Though the prime purpose of the Hori
system is to identify and characterise the sleep onset process, it contains
features that enable us to identify variations in levels of alertness in more
fine grained durations (4 s) compared to traditional sleep scoring using
wakefulness, N1 and N2. In particular the strength of the sleep graph-
oelements and other EEG signatures associated with Hori scale have been
shown to be more reliable in capturing the drowsiness substages (Goupil
and Bekinschtein, 2012). Secondly, we use human scorers to identify
different levels of alertness using the Hori scale on a dataset where the
participants are allowed to fall asleep while performing the task. Thirdly,
we show that despite the clarity of the Hori scale, it is impractical to
perform, time consuming and difficult to learn, as elucidated by the low
degree of agreement among human scorers. Fourthly, we produce a
practical solution to this problem using an automated technique
(micro-measures algorithm) that involves using Support Vector Machine
(SVM) and individual graphoelement detectors. Further we computed
performance measures by training and testing the algorithm on a dataset
labelled by gold standard ratings (converging Hori ratings from multiple
scorers). Finally, to estimate the reliability and generalisability of the
micro-measures algorithm, we tested the same in another independent
dataset to show its utility.

As a first step, we introduce the Hori system of scoring and inform the
readers about the augmentations made in the system to suit the current
purpose of measuring changes in alertness levels.

Hori scale

Hori and colleagues subdivided the sleep onset process into 9
different substages (Tanaka et al., 1996). The first two Hori stages (1,2)
correspond to wakefulness. The next six Hori stages (3–8) correspond to
the sleep stage N1. The last stage of Hori (9) corresponds to the beginning
of N2 sleep (Iber et al., 2007).

Here we decided to augment classical Hori stages with another stage
(10) that would correspond to the appearance of K-complexes. The
rationale behind this addition is the appearance of K-complexes defini-
tively mark the entrance to N2 sleep. While spindles can still serve this
purpose, their variability in duration and disagreement among human
raters (Warby et al., 2014) motivates the use of K-complex. The following
is a brief description of the elements in the hori scale based on (Ogilvie,
2001) and are shown in Fig. 2.

Alert elements

Alpha waves. Alpha waves are elements that occur in the range of
8–12 Hz during relaxed wakefulness. They are more pronounced in the
eyes-closed condition, when the participant is transitioning from alert to
relaxed wakefulness (Hori 1–2). Alpha elements are usually more pro-
nounced in EEG from occipital regions.

Hori 1: Epoch is composed of only alpha wave trains (at least 20 μV).
Hori 2: Alpha wave trains occupymore than 50% (but less than 100%)
of the activity in the epoch.

Drowsy elements

Alpha waves. Alpha activity usually decreases when the participant

Fig. 1. Differing alertness levels indicated by frequency profile changes and
reaction time variability during an auditory experiment in a sample participant
falling asleep. (A) Depicts the changes in the power level in different frequency
bands in the Occipital electrodes in the pre-trial period of an auditory experi-
ment at different time points. (B) Reaction times at trials presented along the
different time points in the same experiment, red dots represent failure to
respond and green dots represent responses. The variability in the reaction times
(B) and thus reduction in alertness levels closely follows the change in the
frequency profile (A) from alpha (8–12 Hz) to theta (6–8 Hz).\
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transitions from relaxed wakefulness to drowsy (Hori 3).

Theta waves. Theta waves are elements that occur in the range of 3–8 Hz.
They have relatively higher amplitudes than the alpha elements and
characterise the transition to N1. Theta activity is usually pronounced in
the central and temporal regions (Hori 5).

Hori 3: Alpha wave trains occupy less than 50% of the activity in the
epoch.
Hori 4: Activity flattening without any clear element
(amplitude< 20 μV).
Hori 5: Low voltage theta waves (ripples) with amplitude between
20 μV and 50 μV.

Graphoelements

Vertex sharp waves. Vertex waves are graphoelements that occur in the
beginning of the transition to sleep (Hori 6–8). Appearance of them in-
dicates an altered state of responsiveness in the cerebral cortex (Roden-
beck et al., 2006). The vertex waves can be either monophasic or
biphasic. In both cases there is usually a sharp negative discharge fol-
lowed by a positive one. In the case of biphasic waves, the amplitude of
the positive components should be at least 50% of the negative compo-
nent and at most equal to the level of the negative component. The
amplitude of the vertex sharp waves is found to be maximal in parietal

and frontal regions (Cz based reference).

Hori 6: Epoch containing only one well defined vertex sharp wave.
Hori 7: Epoch containing more than one vertex sharp wave.

Spindles. Spindles are graphoelements that occur in the beginning of the
transition to stage N2 of sleep (Hori 9). They are regarded as transient
patterns of EEG activity with a frequency of 12–16Hz with a minimum
duration of 0.5 s (complete spindles). Spindles in general should be
distinguishable from the background activity. The typical waxing and
waning of spindle shape is vital to distinguish the pattern from high alpha
activity. The spindles were found to be prominent in temporal and frontal
regions (Cz based reference).

Hori 8: Contains at least one vertex wave and an incomplete spindle
(<0.5 s).
Hori 9: Contains one well defined spindle (>0.5 s).

K-complexes. K-complexes are graphoelements that occur in the N2 stage
of sleep (modified Hori 10). It starts with a sharp positive wave followed
by a large negative wave. The duration of the initial negative wave
should be smaller than the positive wave. The overall duration of the K-
complex must be at least 0.5 s. The K-complexes were found to be
prominent in frontal, temporal and parietal regions (Cz based reference).

Fig. 2. (A) Modified Hori scale for detecting differing
alertness levels using EEG. The grey waves indicate back-
ground activity and coloured regions indicate character-
istic elements for respective Hori stages. AASM based sleep
stage classification is also represented for compatibility to
classical sleep scoring. Graphoelements of Hori scale in
detail: (B) Vertex sharp waves: Biphasic consists of a sharp
negative deflection followed by a positive one, whereas
Monophasic consists of only a sharp negative deflection.
(C) Spindles: transient patterns with frequency (12–16 Hz)
and minimum duration of 0.5 s (D) K-complex elements:
sharp positive deflection followed by a larger negative one
with a duration of at least 0.5 s.
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Hori 10: Contains at least one well defined K-complex.

In summary, spectral features based on alpha and theta waves can be
used to discriminate between alert and drowsy states. Graphical elements
such as vertex, spindles and K-complexes can be used to detect deeper
states of drowsiness. These are the candidate elements which both
manual as well as the micro-measures algorithm would be utilizing for
classification.

Materials and methods

Participants and datasets

The first dataset (herein Dataset#1) consisted of 20 native English
speakers (12 males; mean age 25.25; age range 20–33), all right handed,
who performed a semantic categorization task while falling asleep
(Kouider et al., 2014). Participants were screened with the Epworth
Sleepiness scale (Johns, 1991) and only easy sleepers (score � 7) were
recruited. They were asked not to consume stimulants like Coffee/Tea
and to sleep 1–2 h less than usual the night preceding the experiment.
The participants also had no auditory, neurological, psychiatric abnor-
malities. The task consisted of listening to words that belonged to a
particular semantic category (e.g. animals or objects) and classifying
them accordingly using a left or right button press. Each trial consisted of
an auditory stimulus (spoken word: animal or object) presented binau-
rally with an intertrial interval of 6–9 s. The maximal duration of the
experiment was 35min. On average, 163 trials were presented to each
participant (SD¼ 43.77, Min¼ 100, Max¼ 229) resulting in a total of
3269 trials.

The second dataset (herein Dataset#2) consisted of 31 healthy par-
ticipants, all right handed (assessed with Edinburgh Handedness Scale
(Oldfield, 1971)), who performed a auditory masking task while falling
asleep (Noreika et al., 2017a). Participants were screened with the
Epworth Sleepiness scale (Johns, 1991) and only easy sleepers (score �
7) were recruited. They were also asked not to consume stimulants like
Coffee/Tea during the few hours before the experiment. One participant
was excluded as the original trial order could not be recovered from raw
data resulting in 30 participants (8 males; mean age 27.2; age range
20–39). The task consisted of listening to a target sound (e.g. beep) that
was randomly masked by different noise durations. Participants reported
whether they heard the target using a button press. Each trial consisted of
an auditory stimulus (target) sometimes masked by noise, presented
binaurally. The next trial was presented after a pause of 8–12 s after the
response or 13–17 s (in case of no response). The maximal duration of the
experiment was 120min. On average, 543 trials were presented to each
participant (SD¼ 62.77, Min¼ 402, Max¼ 631) resulting in a total of
16289 trials.

In both experiments subjects were seated on a reclining chair in a dark
room and were permitted to fall asleep during the task.

EEG acquisition

Dataset#1: EEG was recorded using 64 Ag/AgCl electrodes (Neuro-
Scan labs) with Cz as reference. The electrode impedances were kept
below 10 KΩ. The signal was acquired at a sampling rate of 500Hz.

Dataset#2: EEG was recorded using 128 Ag/AgCl electrodes (Elec-
trical Geodesics Inc) with Cz as reference. The electrode impedances
were kept below 100 KΩ. The signal was acquired at a sampling rate of
500 Hz. As the input impedance of the amplifier was high (~200MΩ),
the high electrode impedance (100 KΩ) did not affect the signal quality
(Ferree et al., 2001).

Pre-processing

EEG data was pre-processed with custom made scripts in MATLAB
(MathWorks Inc. Natick, MA, USA) using EEGLAB toolbox (Delorme and

Makeig, 2004).
Dataset#1: The data was bandpass filtered with zero phase shift be-

tween 1 and 30Hz using hammingwindowed-sinc FIR filter andwas then
resampled to 250Hz. Further, it was epoched from �4000ms to 0ms to
the onset of the stimuli. Bad channels were then detected using a two-
step fashion: firstly, channels are considered bad if channel variance is
below 0.5 and for the remaining channels normalized power spectrum of
all channels are computed in the range of 1–30Hz. Any channel that
exceeds the mean power spectrum by �4 standard deviations is marked
as bad. The detected bad channels were then interpolated using spherical
interpolation. Finally, the trials that exceed the amplitude threshold of
�250 μV were removed in a semi automatic fashion. The amplitude
threshold was liberal as K-complexes usually exceed �150 μV. The pre-
processing steps resulted in 3201 trials (~2% of trials rejected).

Dataset#2: The first pre-processing step for this dataset was to remove
peripheral channels in the EEG that covered the regions of forehead,
cheeks and neck to minimise eye and muscle related artifacts, thus
retaining only 93 channels that covered the scalp. The rest of the pre-
processing steps are the same as for dataset#1. The pre-processing
steps resulted in 15532 trials (~5% of trials rejected).

Electrode choices

For manual hori-scoring
For the purpose of manually scoring each epoch according to the Hori

scale, the EEG data of both datasets was further low pass filtered below
20 Hz using hamming windowed-sinc FIR filter. Only 21 electrodes
depicted in Fig. 3(A) derived using the standard 10–20 system were used
by the scorers.

For micro-measures algorithm
For the purpose of the micro-measures algorithm, we used the elec-

trodes depicted in Fig. 3(B). The electrodes were chosen in such a way
that we sample the Occipital, Frontal, Central, Parietal, Temporal re-
gions. Furthermore, the choices were motivated for maximising the
signal to noise ratio for the given reference electrode (Cz). This resulted
in using 14 electrodes per dataset for the algorithm. The following are the
electrodes used in the algorithm.

Dataset#1: Occipital: Oz, O1, O2; Frontal¼ F7, F8, Fz; Central¼ C3,
C4; Parietal¼ Pz; Temporal¼ T7, T8, TP8, FT10, TP10

Dataset#2: Occipital: E75, E70, E83; Frontal¼ E33, E122, E11; Cen-
tral¼ E36, E104; Parietal¼ E90; Temporal¼ E45, E108, E102, E115,
E100;

Manual hori-scoring

Dataset#1: Each pre trial epoch (�4000 to 0ms) was rated indepen-
dently by 3 raters. Of which one was an experienced electrophysiologist
(rater C) and 2 of the other raters (A, B) had learnt the technique
immediately prior to scoring them independently. The raters in data-
set#1 scored each trial based on a manual algorithm depicted in
Fig. 3(C). All participants were scored by the 3 raters, except for one
participant that was scored only by raters A and B. As data from all
participants was used based on group consensus rule (details below) this
did not affect the results in anyway.

Group consensus rule: creation of gold standard dataset
In order to create consistency in the labels (manual hori scores) in our

input data (Dataset#1), we decided to create a gold standard label for
each trial that is based on a group consensus rule. For this purpose, we
first subdivided the Hori ratings of each epoch per rater into Alert (Hori:
1,2), Drowsy-mild (Hori: 3,4,5), Drowsy-severe (Hori: 6,7,8,9,10). The
gold standard label was computed using a simple majority among the
raters. If there was no consensus, then the corresponding trials were
ignored from further analysis. This group consensus rule was used in
Dataset#1 and each trial was labelled into ‘Alert’, ‘Drowsy (mild)’,
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Fig. 3. (A) Electrode sites used for manual Hori scoring based on 21 channels of the locations mainly derived from 10 to 20 electrode sites. (B) Electrodes used for
micro-measures algorithm based on sampling from locations in Occipital, Central, Temporal, Parietal, Frontal regions. (C) Step by step technique to manually score
each trial using the Hori scale. The preliminary step involves identifying presence of graphoelements followed by specific identification of K-complexes, spindles and
vertex waves. In the absence of graphoelements, the trials are scored with identification of alpha rhythms. (D) Brief flow chart of the micro-measures algorithm. The
preliminary step involves computation of the predictor variance and coherence features, followed by identification of alert and drowsy trials using SVM (#1). Further,
drowsy trials are identified into specific graphoelements using detectors of elements like vertex, K-complex, spindles. Spindles are further pruned using an SVM (#2).
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‘Drowsy (severe)’. The creation of this gold standard dataset ensured that
the micro-measures algorithm was trained and tested with trials that
were unambiguous and non-spurious.

After the group consensus rule was applied on Dataset#1, the number
of trials in the gold standard dataset in each class were: Alert:478,
Drowsy(mild):1121, Drowsy(severe):281. Thus we had 1880 trials which
had a consensus rating among the 3 scorers (which is about 60% of the
total pre-processed trials of 3201). Thus the gold standard ratings (1880
trials) in dataset#1 were used for training and testing the algorithm.

Dataset#2: Each pre trial epoch (�4000 to 0ms) was rated indepen-
dently by 1 rater and was further verified with another experienced rater.
The rater in dataset#2 scored each trial based on the description pro-
vided in (Ogilvie, 2001). The group consensus rule could not be applied
to Dataset#2 as it only had one rater. Thus the number of trials in each
class were: Alert: 6064, Drowsy(mild): 7229, Drowsy(severe): 481. Thus
the total ratings (13774) were used for independently validating the
algorithm.

Micro-measures algorithm

The micro-measures algorithm was first developed and tested using
Dataset#1 and then independently validated using Dataset#2.

A brief flow chart of the algorithm is shown in Fig. 3(D). The first step
in the algorithm involves the computation of predictor variance and
coherence features. The second step involves using the variance and
coherence features to classify data between alert (Hori:1–2) and Drowsy
(Hori: 3–10) using an SVM (#1). The alert data from the output of
SVM#1 are classed as ‘Alert’. In the third step, the drowsy data from the
output of the SVM#1 is passed onto individual element detectors to
detect vertex, K-complex and spindles. In the fourth step, detected
spindles are further pruned using a separate SVM (#2) to detect true
spindles using the variance and coherence features. In the fifth step, the
vertex, K-complex and true spindles are grouped as ‘Drowsy(severe)’ and
the rest of the Drowsy data are classed into ‘Drowsy(mild)’. Thus a
combination of SVMs (#1, #2) and individual element detectors are used
to produce a multiclass label of Alert, Drowsy(mild), Drowsy(severe).

Support vector machines
The SVMs are used for two tasks: a) SVM#1: To classify data into

‘Alert’ and Drowsy. b) SVM#2: To classify spindles detected by the
spindle detector in the Drowsy data (from SVM#1) into true and
spurious. We decided to use SVMs for the above tasks as the optimization
problem in SVM is convex and hence a global minimum is guaranteed to
be found (Platt, 1998; Tagliazucchi et al., 2012).

SVM are a class of supervised learning models. Formally, SVM con-
sists of building a hyperplane or a set of hyperplanes in a high dimen-
sional space with the criteria to maximise the distance of separation
between the closest data (train-data) point of any class (functional
margin) (Cortes and Vapnik, 1995). The choice of such a functional
margin would lower the generalization error for new data points (test--
data). The motivation to map the data onto higher dimensional space is
driven by the fact that most often the classes are inseparable in the lower
dimensional space (Boser et al., 1992). The mapping to higher dimen-
sional space is achieved by the use of a kernel function. kðx;yÞ:

The kernel function avoids the need to compute individual data
points in the transformed data space (computationally expensive) by
using the euclidean inner product (kernel trick). In our paper, we used
the MATLAB interface of the open source machine learning library
(LIBSVM) (Chang and Lin, 2011) that supports use of kernel SVMs for
nonlinear mappings. We used the Radial Basis Function (RBF) as our
kernel kðx;yÞ ¼ eð�γjjx�yjj2Þ. The choice of the kernels wasmainly based on
those used in previous studies performing similar classification (Taglia-
zucchi et al., 2012).

Parameter space. For training the classifier to produce optimal

performance (accuracy) we need to select the optimal value of hyper-
parameters ðγ;CÞ. γ controls the curvature of the hyperplane and C rep-
resents the penalty parameter for the soft-margin. Parameter selection for
SVM#1 is achieved by performing a grid search in ðγ;CÞ in the space 2�1;

::;225 (Tagliazucchi et al., 2012). For SVM#2, the grid space was nar-
rowed down to 2�1; ::; 25 . The narrower space for SVM#2 was mainly to
prevent overfitting.

Parameter optimization. In order to avoid biasing the tuning of the hyper-
parameters to the training dataset, we performed a 3-fold nested cross
validation for both SVM#1, #2.

SVM#1: In the first step, data from all participants in Dataset#1 was
collated. The gold standard labels are grouped into: Alert and Drowsy
(mild, severe). The main goal of this classifier is to perform binary clas-
sification of Alert, Drowsy. The collated data was then divided into 5
disjoint subsamples, chosen randomly but with equal size. This process
was achieved using the ‘cvpartition’ function in MATLAB. Each sub-
sample consists of four folds grouped into a train set and the fifth fold
considered as the test set. Each of the folds within a subsample was made
using stratified sampling such that the overall representation of sub-
classes remained similar in each fold. This will avoid the problems of
over-representation prevalent while using random-sampling. In the sec-
ond step, one of the subsamples is selected. In the third step, half of the
trails were randomly chosen from the train set of this subsample and
these trials are used for parameter optimization. In the fourth step, we
performed a 3-fold nested cross-validation for choosing the optimal pa-
rameters from the grid space. Nested cross-validation ensures that
parameter selection and validation are independent, thus preventing the
over fit of tuning the parameters to the train set. In the fifth step, the best
parameter pair is now used and the best model is trained based on the
train set. Further a five-fold cross validation is used for estimating the
validation metrics for the train set and the best model is used on the test
set to produce validation metrics on the same. In the sixth step, the same
procedures from the second to the fifth step are repeated on the next
subsample. Thus, 5 different subsamples yield 5 separate test and train
set validation metrics. The detailed trial numbers and parameter opti-
mization and validation procedure for SVM#1 is shown in Fig. 4(A).

SVM#2: Firstly, the first five steps of SVM#1 are executed as
described above. The Drowsy data from the output of SVM#1 was run on
the spindle detector and all the probable spindle trials are collated. The
true spindles from the output of SVM#1 are computed using the gold
standard label of Drowsy (mild). The train set now consists of the
detected spindles (true and spurious spindles). The goal of the SVM#2 is
now to classify data into spindle, and non-spindle. 3-fold nested cross
validation as described in SVM#1 is performed to optimize the hyper-
parameters. Further a five-fold cross validation was performed and
train set validation measures are further computed after running the
vertex and K-complex element detectors. The best model of SVM#2 is
again used on the test set to produce validation metrics on the same. The
same steps are again repeated for the next subsample. Thus, 5 different
subsamples yield 5 separate test and train set validation metrics. The
detailed trial numbers and validation procedure for SVM#2 is shown in
Fig. 4(B). One of the main reasons for using an SVM (#2) to separate true
and spurious spindles is because most spindle detectors are used only in
N2, however our detector is used on data from N1 also and hence this
step is necessary to improve its specificity.

The variation of hyper-parameters in SVM#1, #2 in the grid-search
procedure are shown in Fig. 5.

In both the SVMs the test and train sets are produced by collating data
from all subjects in Dataset#1, however the usual procedure would be to
perform a leave one participant out cross validation for generation of test
sets. We were unable to do this, as this would produce a bias of validation
metrics as different people fell asleep in different ways (proportion of
alert, drowsy(mild), drowsy(severe) trials).

The performance of the classifier is evaluated using sensitivity,
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Fig. 4. (A) Flowchart depicting Parameter optimization, model selection and validation metric generation for SVM#1. Trial numbers are presented in braces for the
relevant steps. (B) Flowchart depicting Parameter optimization, model selection and validation metric generation for SVM#2. Trial numbers are presented in braces
for the relevant steps.
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specificity, f1-score as validation metrics.
The definition of the validation metrics used are as follows:

Accuracy: This is defined as the number of correctly classified data
points divided by the overall number of classifications made.
Sensitivity: This refers to the ability of a classifier to correctly detect
the true class among the classifications made. It is obtained by the
(TP/TP þ FN). It is also known as recall. TP: True Positives, FN: False
Negatives.
Specificity: This refers to the ability of a classifier to correctly ignore
the classes that don't belong to the true condition. It is obtained by
(TN/TN þ FP). TN: True Negatives, FP: False Positives.
F1-score: This is the harmonic mean between precision and recall.
Precision refers to measure of exactness of classifier. It is obtained by
(TP/TP þ FP). Recall refers to the sensitivity of the classifier.

Feature computation
The choice of the features of predictor variance and coherence used in

the SVMs(#1,#2) was mainly motivated by previous studies utilizing
similar features in automatedmethods to characterise sleep onset process
(Ogilvie, 2001).

Predictor variance. The EEG data in the occipital region was first
decomposed into time-frequency for each spatial sample (electrode) per
epoch (�4000 to 0ms pre-trial). Predictors for each epoch were then
generated based on the variations in the spectral power of the frequency
bins A:[2–4Hz], B:[8–10 Hz], C:[10–12 Hz], D:[2–6 Hz] per epoch. The
predictors were then fit to the data per electrode-epoch and the variance
explained is computed per electrode-epoch.

The first step is to transform the data x½n� into time-frequency rep-
resentation (predictors) using the formula below, where n represents
time domain with 1 � k � N

XðkÞ ¼
XN

n¼1

xðnÞe�j2πðk�1Þðn�1Þ
N

The next step is to compute the power in the transformed represen-
tation

Power ¼ XðkÞ:X*ðkÞ
Followed by computing the predictor variance

PredictorVariancei ¼ 100� 100*
VarðPower � XðkiÞÞ

VarðXðkiÞÞ

Where i the frequency band index (A, B,C,D) and Var represents the re-
sidual variance. Intuitively, the predictor variance tries to capture the
variance in the signal explained by different frequency bands.

Coherence. Coherence was computed per trial in the electrodes in the

occipital, frontal, central, temporal regions in the frequency bins:
Delta:[1–4 Hz], Theta:[4–7Hz], Alpha:[7–12Hz], Sigma:[12–16Hz],
Gamma:[16–30 Hz]

Cðt; f Þ ¼
��Sij ðt; f Þj2

Sii ðt; f Þ:Sjj ðt; f Þ

Where Cðt; f Þ represents the coherence value at trial t and frequency
band. f Sij represents cross power spectral density between signal i and j
Sii ; Sjj represents auto power spectral density.

In summary a total of 32 features (12 from predictor variance; 20
from coherence) are used in the first stage detection of alert trials from
drowsy trials. After the drowsy trials are parsed by the element detectors,
the spindle elements are pruned again by a separate SVM (#2) using the
same 32 features as above (depicted in Fig. 3(D)). As the input data
contains different kinds of features, it was scaled using the minimum
value and range before applying the SVM.

Graphoelement detectors

Vertex-wave-detectors. Both monophasic and biphasic waves were
detected using the EEG data from parietal electrodes.

Monophasic waves: In the first step, the data was resampled to a uni-
form rate of 100Hz. In the second step, the data was further filtered from
0.25 to 6 Hz using inverse fast Fourier transform (‘eegfiltfft’ from
EEGLAB). In the third step, the data was further scaled with respect to its
minima. In the fourth step, peaks that are separated by a minimum dis-
tance of 1.5 s are computed. In the fifth step, only peaks above a
threshold of 40 are retained. In the sixth step, the duration of the peaks is
computed and only those below a duration of 1.5 s are retained. In the
final step, only positive peaks greater than absolute amplitude of 30 μV
and corresponding negative peaks of below �15 μV are considered as
monophasic waves.

Biphasic waves: In the first step, the data was resampled to a uniform
rate of 100 Hz. In the second step, the data was further filtered from 2.5
to 6 Hz using inverse fast Fourier transform (‘eegfiltfft’ from EEGLAB). In
the third step, the data was further scaled with respect to its minima. In
the fourth step, peaks that are separated by a minimum distance of 1.5 s
are computed. In the fifth step, only peaks above a threshold of 40 are
retained. In the sixth step, the duration of the peaks is computed and only
those below a duration of 1.5 s are retained. In the final step, only pos-
itive peaks greater than absolute amplitude of 40 μV and corresponding
negative peak (following the positive) of below�40 μV are considered as
monophasic waves.

Further algorithmic and parametric details are described in the sup-
plementary methods.

Spindle detectors. Spindles were detected using the EEG data from tem-
poral electrodes. In the first step, the data was resampled to a uniform
rate of 100Hz. In the second step, a continuous wavelet transform using

Fig. 5. (A) Hyper-parameter grid space ðγ;CÞ and normalized accuracy for parameter search and optimization in SVM#1. (B) Hyper-parameter grid space ðγ;CÞ and
normalized accuracy for parameter search and optimization in SVM#2.
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the morlet function as the mother wavelet was applied. In the third step,
the absolute amplitude of the wavelet transform was computed. In the
fourth step, the coefficients of this transform were normalized using the
sum of the absolute amplitude computed in the previous step. In the fifth
step, the rank of each scale in the wavelet transform was sorted in
ascending order. The rank of the scales belonging to the frequencies
between 12 and 16Hz was summed and normalized by the maximum
possible rank that can be obtained. The normalized rank computed is
regarded as the probability of spindle occurrence at each time point. In
the sixth step, a sliding window of 12 samples were used to compute the
probability of spindle occurrence (sliding window). In the seventh step,
the maximum probability of spindle occurrence is computed by choosing
the greater of the value between the probabilities computed in the sixth
and seventh step. In the eight step, the probable spindle locations are
short listed using a threshold of 0.6 on the maximum probability
computed in the previous step. In the last step, the mean amplitude of the
negative and positive peaks within the probable spindle locations is
computed and only those exceeding 9 μV are retained as spindles.

Further validation details of our rank method are described in sup-
plementary methods.

K-complex detectors. K-complexes were detected using the EEG data from
all the electrode sites in Fig. 3(B). In the first step, the data was resampled
to a uniform rate of 100 Hz. In the second step, the data was further
filtered from 0.25 to 6 Hz using inverse fast Fourier transform (‘eegfiltfft’
from EEGLAB). In the third step, the data was further scaled with respect
to its maxima. In the fourth step, negative peaks that are separated by a
minimum distance of 1.5 s are computed. In the fifth step, only negative
peaks below a threshold of �40 are retained. In the sixth step, the
duration of the negative peaks is computed and only those below a
duration of 1.5 s are retained. In the final step, the following criteria is
used for further refining the detection: a) negative peaks should be lower
than the absolute amplitude of �45 μV b) the corresponding positive
peak associated with this negative peak should be at least half the
amplitude of the negative peak c) the difference between the negative
and positive peak should be at least 100 μV. The approach developed
here is similar (in terms of minima detection) to detectors developed
elsewhere (Lajnef et al., 2015).

Further validation details of our peak method are described in sup-
plementary methods.

The rationale behind choosing specific parameters are validated by
using external databases as described in supplementary methods and sec
External Validation: Spindle, K-complex detectors.

Results

Manual hori-scoring

In order to measure the reliability of scores given by the 3 different
raters on different subjects in Dataset#1 we used two different measures
of inter-rater agreement (Fig. 6).

Firstly, we used Krippendorff's alpha to compute the agreement be-
tween the 3 raters (A, B, C) per subject of Dataset#1. In general alpha
scores of above 0.8 are reliable and those between 0.8 and 0.667 can only
be used to draw tentative conclusions (Giannantonio, 2010). We can
observe from Fig. 6(A) that at least 9 subjects are below 0.667 (mean
0.65) indicating the unreliable nature of scoring each subject among
raters. Secondly, we used Cohen's kappa score (weighted) to measure the
degree of inter-rater agreement between pairs of raters (AB, AC, BC) of
Dataset#1. In general kappa values of above 0.8 are considered strong,
between 0.8 and 0.4 as strong to weak, below 0.4 as poor (McHugh,
2012). We can observe from Fig. 6(B) that at least 12 subjects are below
0.4 in the various scorer pairs again indicating the unreliable nature of
scoring per subject among raters.

In particular the degree of disagreement was high for subjects that

didn't have a dominant alpha, thereby affecting the ability to rate the
Hori scores as (1,2,3). For other subjects the degree of disagreement
mainly arose due to the mislabelling of graphical elements. Examples of
such typical cases of graphoelements are shown in Fig. 6(C, D, E).

Fig. 6. Inter-rater agreement among different scorers (A,B,C). (A) depicts
agreement measured using Krippendorff's alpha. Each data point refers to score
from a single subject. (B) depicts agreement measured using Cohen's kappa.
Each data point refers to kappa scores from a single subject based on a pair of
two different scorers. Inter-rater disagreement is typically caused due to
misclassification of Graphoelements: (C) depicts typical Vertex wave agree-
ment/disagreement among scorers highlighted in red. (D) depicts typical Spin-
dle element agreement/disagreement among scorers highlighted in magenta. (E)
depicts typical K-complex agreement/disagreement among scorers highlighted
in cyan. Full agreement refers to cases where all 3 raters agree, Partial agree-
ment refers to cases where 2 of them agree, and false positives refer to cases
where at least one of the rater misclassifies an element.
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Micro-measures algorithm

External validation: spindle, K-complex detectors
The Spindle, K-complex detectors were validated externally using the

DREAMS database along with other state of the art algorithms (Devuyst
et al., 2011, 2010; Tsanas and Clifford, 2015) (detailed validation
method in supplementary material). The validation results are shown in
Fig. 7. This validation ensured the element detectors perform on par with
the state of the art methods. The parameters used in spindle, K-complex
detectors (like spindle duration, K-complex amplitude etc.) were fixed
with respect to the external databases and the same parameters were
used in the validation of both Dataset #1, #2.

Validation: Dataset#1
The application of the group consensus rule on Dataset#1 resulted in

a total of 1880 trials as mentioned in section Manual Hori-scoring. This
shows that about 40% of the overall trials didn't have any consensus
among the 3 different raters, further adding evidence to the disagreement
among scorers mentioned in section Manual Hori-scoring.

The validation measures like sensitivity, specificity, f-1 scores were
generated as described in Fig. 4 and the results are shown in Fig. 9(A, B,
C).

Independent validation: Dataset#2
We decided to validate the algorithm (trained using dataset#1) on an

independent dataset#2 (participants not seen by the algorithm) to test its
generalisability. This would mean that the hyper parameters ðγ; CÞ,
support vectors trained using dataset#1 were directly applied on the
dataset #2 without retraining.

The total number of trials in dataset#2 were 13774 as mentioned in
section Manual Hori-scoring. Alert: 6064, Drowsy(mild): 7229, Drows-
y(severe): 481. In the first step, the dataset#2 was divided into 5 folds
(A,B,C,D,E) using stratified sampling as before. In the second step, one of
the subsamples (For e.g. A) is selected. In the third step, the first 4 folds of
the selected subsample is merged to create set#1 and set#2 consisted of
the 5th fold. The best model (which was trained using dataset#1) is now
applied on both sets to produce validation measures for set#1(A),
set#2(A). The same procedure is repeated for all the other subsamples as
depicted in Fig. 8. The validation measures like sensitivity, specificity,
and f-1 scores generated are shown in Fig. 9(D, E, F).

The above mentioned validation measures tend to validate the micro-
measures algorithm against the human scorer in Dataset#2. However, to
claim that the micro-measures algorithm out performs the human scorer
and other automated measures like alpha-theta ratio, we decided to
further validate them against an independent measure of drowsiness in

Dataset#2.
Coefficient of variation (Cv) in reaction times has been used previ-

ously to measure drowsiness and is independent of both the observer and
the algorithm's pre-trial information (Bareham et al., 2014). However,
the usage of Cv to directly measure drowsiness is limited by several
factors. Firstly, the Cv is not a single trial measure, hence it can only be
computed on a group of trials. Secondly, Cv cannot be directly used to
separate group of trials based on drowsiness as this would require setting
up of arbitrary thresholds. Thirdly, it suffers from all the limitations of
reaction time based measures as mentioned in the introduction. How-
ever, Cv can be used to validate group of trials already separated by other
methods. We separated the trials among different classes of drowsiness
using the micro-measures algorithm, alpha-theta ratio and the manual
method. For the alpha-theta ratio, we used the methods described in
(Bareham et al., 2014). Furthermore, each trial for each participant was
classed as ‘Alert’ if the ratio was within the highest 33% of all trials in
that participant and Drowsy(mild) if it belonged to middle 33% and
Drowsy(severe) if it belonged to lowest 33%. Cv was computed for the
group of reaction times of trials in each class (Alert, Drowsy(mild),
Drowsy(severe)) in all methods. Further, we performed an asymptotic
test for equality of Cv from k populations based on (Feltz and Miller,
1996) using the package ‘cvequality’ from R (Marwick and Krishna-
moorthy, 2016). The test statistic D’AD produced by the asymptotic test
measures the deviation of each sample Cv from the population Cv.
Accordingly, the micro-measures algorithm produced D’AD of 13.12
(p< 0.005) in comparison with 12.39 (p< 0.005) for the manual method
and 1.97 (p> 0.05) for the alpha-theta based method. These measures
shown in Fig. 9(G), clearly indicate the utility of the micro-measures
algorithm.

Discussions and conclusions

In this paper, we have first described the pervasive problem of
varying levels of alertness during cognitive experiments, particularly
during eyes-closed experiments. Such a scenario is further exacerbated in
resting state EEG recordings. In many cases data from such experiments
are used to compute measures like connectivity etc. that may further be
contaminated by participants falling asleep (Tagliazucchi et al., 2012).
This situation potentially contributes to wider problems faced by the
scientific community such as the replication crisis.

In the past the problem of extreme relaxation and drowsiness has
been sometimes ignored by cognitive scientists, who only take this
confound into account by looking at reaction times and removing the
sections where the participant was not responding or was too slow. Apart
from visible changes in reaction times, there are changes in important
processes like attention and perception as the participant drifts across
varying levels of alertness (Goupil and Bekinschtein, 2012). Hence it is of
paramount importance to control for varying levels of alertness. We have
tried to solve this problem in an objective manner as follows. We first
described the use of Hori scale that has been validated previously to
detect the levels of alertness during the sleep onset process. However, the
Hori scoring with 4 s epochs is impractical to perform as it is highly
subjective and time consuming (Ogilvie, 2001). In a typical experiment
of about 600 trials well trained scorers take at least a day to score a single
subject, and training new scorers takes atleast a month before they can be
used for scoring. Using 3 independent raters on Dataset#1 we further
quantified the inter-rater agreement using Krippendorff's alpha and
Cohen's kappa metrics to show poor levels of agreement among the
raters. This motivated us to develop an algorithmic solution that can be
used to measure the level of alertness in a reliable manner.

Other attempts in the past to detect varying level of alertness using
algorithms have suffered from several disadvantages. Firstly, such rule
based algorithms (Stein, 2007) have validated their system using physi-
ological measures like heart-rate variability etc. This further adds a layer
of confound as measures of alertness need to be related again with
physiological measures. Secondly, other algorithms (Crisler et al., 2008;

Fig. 7. Performance validation of graphoelement detectors with online database
(DREAMS). The spindle detector was validated with state of the art algorithms
from (Devuyst et al., 2011; Tsanas and Clifford, 2015). The rank* algorithm
developed in this paper performs comparably to the above mentioned algo-
rithms. The K-complex detector was validated with state of the art algorithms
from (Devuyst et al., 2010). The peak* algorithm developed in this paper per-
forms comparable to the above mentioned algorithms.
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Gudmundsson et al., 2005; Tagliazucchi et al., 2012) have been devel-
oped using traditional sleep stage based scoring. Such systems suffer from
lack of resolution as they are validated with sleep scoring techniques that
use 30 s epochs. Thus they are unsuitable to match the micro dynamics in
alertness observed during cognitive tasks. To our knowledge this is the
first time an algorithmic solution has been attempted to measure varying
levels of alertness and simultaneously verified using a previously well
validated system like Hori.

In the current work we have shown that the micro-measures algo-
rithm using predictor variance, coherence and graphoelement detectors
allow us to measure the level of alertness. We have constructed a clas-
sifier based on SVM and individual element detectors and have achieved
sensitivity, specificity, f1-score of more than 0.8 in all subclasses (alert,
drowsy (mild), drowsy (severe)) with respect to manual Hori scoring
(gold standard from different raters). We have also validated our algo-
rithm with a second independent dataset using different task conditions
and recording electrode sites (using the same hyper parameters and
support vectors trained using the first dataset). This produced a sensi-
tivity, specificity of more than 0.7 in all subclasses. The main reason the
performance (f1-score) reduces for drowsy (severe) subclass in dataset#2
is due to the lack of a gold standard comparison and fewer trials in this
category. As the dataset#2 is scored only by one person it is prone to
error (in a fashion similar to dataset#1 as depicted by varying levels of
interrater agreement in Fig. 6). This motivated us to use another inde-
pendent measure of drowsiness and show that our algorithm outperforms
the manual scorer as well as other measures like alpha-theta ratio. Hence
we employed a previously established independent behavioural measure
of drowsiness using Cv in reaction times. We further showed that the
micro-measures algorithm captures the variations in Cv better than the
manual scorer and alpha-theta ratio in Fig. 9(G). This stands testament to
the generalisability of our method in detecting alertness levels across new
datasets.

However, the use of Hori scale as validator has some disadvantages.

Firstly, it is difficult to detect Hori stages (1–3) on participants who lack
prominent alpha waves (Ogilvie, 2001). This would make these partici-
pants difficult to score manually, thereby explaining the lower sensitivity
of the algorithm in the Drowsy (mild) subclass compared to the other
classes in some participants. However, this is only a problem for the
human scorer, as the micro-measures algorithm is relatively immune to
this problem, as it operates on relative variances across different bands
rather than raw amplitude. Secondly, it has also been reported that the
Hori stage (4) also doesn't last long and hence is difficult to score
(Ogilvie, 2001). Such samples would have had a high level of disagree-
ment among scorers and hence would have been ignored while
computing the gold standard dataset. Consequently, the difficult trials
would not have been used for training the algorithm and hence it may not
be able to detect any such trials in a new dataset. Thirdly, one of the main
reasons for validating the algorithm with 3 subclasses is mainly due to
lack of consensus in individual graphoelements. In order to truly validate
the graphoelements we would need a dataset rich in those elements and
also scorers who are able to consistently detect the graphoelements in a
correct fashion.

The micro-measures algorithm devised here could be improved in
several ways. Firstly, the current algorithm uses SVM with RBF kernels;
other kernel choices like polynomial functions could be evaluated for
making the optimal choice. Secondly, we performed only basic pre-
processing of the pre trial data. However, it is well known that artifacts
like eyemovement, sweating, andmuscle artifacts can contribute to noise
in the data. Hence the performance of the algorithm would improve if
noise reduction measures are employed. However, we didn't employ such
measures as they are not standardized and we wanted to establish that
the performance of the algorithm is robust under all conditions and hence
performing specific pre-processing steps should not be an impediment for
users of our method. Thirdly, we could also try to reduce the duration of
epochs considered for labeling e.g. we can check the classification ac-
curacies of signal durations of 1, 2, 3 s etc. However, validating the same

Fig. 8. Flowchart depicting generation of validation measures for independent validation of the micro-measures algorithm in Dataset#2. Trial numbers are presented
in braces for the relevant steps.
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would be difficult as we also need to redo the human scoring with the
corresponding reduced length of epochs. Fourthly, the algorithm has
been developed only for eyes-closed condition. But many cognitive ex-
periments have eyes open conditions and participants are also known to
fall asleep under such active paradigms. The algorithm could be adapted
for such paradigms; however detailed validation needs to be performed
with other parallel measures of drowsiness like eye-tracking (as the Hori
scale has not been validated for such purposes). Fifthly, the algorithm

could further be refined to produce stages analogous to individual Hori
stages. This would be helpful for researchers studying the sleep onset
process in an objective manner as many complex non-linear changes in
behaviour are known to occur in individual Hori stages (Noreika et al.,
2017b). Sixthly, for quick paced experiments (short pre-trial periods), the
parameters for detecting certain graphoelements (vertexes, K-complexes)
are flexible to account for the shorter duration of the signal. Finally, the
usage of three scorers for manual hori scoring in dataset#1 achieved only

Fig. 9. Validation measures of the micro-measures algorithm. Validated with Dataset#1 using steps described in Fig. 4(A and B). Results are depicted in the
Figure (A,B,C). The algorithm was validated in an independent manner using Dataset#2 using steps described in Fig. 8. Results are depicted in the Figure (D,E,F). The
distribution of the reactions times (in seconds) are plotted against the different classes obtained using different methods in Dataset#2 is presented in Figure (G).
Asymptotic test for equality of Cv (Coefficient of variation in reaction times) shows the micro-measures algorithm performing better than other methods. D’AD
represents the asymptotic test statistic.
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consensus ratings in close to 60% of the trials. However, the robustness of
the algorithm could be improved if it is trained on large datasets that are
scored by the neuroscience community using consensus achieved among
a large number of scorers.

The applications of the micro-measures algorithm include the
following. Firstly, pre-trial data can be computed from task data
(cognitive experiments) and the non-alert trials can be removed thus
controlling for the effects of change in alertness levels. Secondly, we can
detect and remove non-alert periods of data from resting state EEG ex-
periments in a reliable manner. Thirdly, we can measure alertness as an
independent variable and measure its effect on measures of interest.
Fourthly, the method circumvents the subjective nature of the manual
Hori scoring and thus enables to study the transition to sleep in an
objective way. One of the most interesting aspects is the generalisability
of the SVM classifier and other element detectors to the independent
dataset#2, showing the high degree of transferability of this method,
without having to retrain the classifier. Fifthly, when combined with
online stimulus delivery techniques, the ability of our method to detect
graphoelements (vertex, spindles, K-complexes) also allows us to inves-
tigate the effects of these elements on cognitive processes, for example by
modulating the stimulus delivery according to the occurrence of these
elements. Finally, sleep researchers can use this method for detecting N1
periods in the beginning of the night as well as awakenings and N1 pe-
riods during the full night period; further, they can also validate the
detection of N2 periods by using the appearance of specific graphoele-
ments (spindles, K-complexes).

All of the above mentioned facets make our method a powerful so-
lution that can be used to micro-measure varying alertness levels and
thereby providing a valuable contribution to the study of both cognitive
and resting state EEG experiments at large.

Algorithm & data availability

The micro-measures algorithm and its corresponding code are avail-
able at: https://github.com/SridharJagannathan/microMeasAlertness_
HumanEEG.

The Datasets #1, #2 along with the Hori ratings is available at:
https://doi.org/10.17863/CAM.18707.

Recommended usage steps for any dataset

The GitHub repository mentioned above houses the trained algorithm
and has detailed pre-processing instructions to obtain drowsiness mea-
sures for any EEG dataset. Any potential user needs to perform only 2–3
simple steps to obtain trial by trial drowsiness measures, thereby
avoiding the laborious task of manually scoring the EEG.

Reproducing figures

The code for reproducing the main figures in this paper is available in
the following GitHub repository: https://github.com/
SridharJagannathan/Jagannathan_Neuroimage2018
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2.4 Discussion

2.4 Discussion

In this manuscript, for the first time we have developed an objective method to control for

alertness fluctuations in a trial-by-trail manner and validated the same with an indepen-

dent measure like Hori scale. I have also highlighted the problem of fluctuating alertness

levels in various cognitive experiments, especially during eyes closed settings. Evidence

from mining large datasets (Tagliazucchi&Laufs 2014) have also revealed the wide spread

nature of this problem, particularly under resting state conditions. Further computing

measures of brain activity like connectivity between different brain regions during such

drowsiness contaminated episodes can lead to incorrect inferences, potentially contribut-

ing to larger problems faced by the scientific community like replication crisis etc. Hence

the objective method provided by our micro-measures algorithm to control for such vary-

ing levels of alertness is of paramount importance.

Currently effort is under way in our lab to extend this method to Magnetoencephalog-

raphy (MEG) as well as EEG under eyes open settings. The principle approach being

followed is conceptually similar to the approach used here (process of computing fea-

tures in the data like variance, coherence etc. and using it in a SVM). Apart from this,

the micro-measures algorithm can also be used for other purposes. For example, it can

be combined with online stimulus delivery techniques to detect graphoelements (vertex,

spindles, K-complex etc) and hence to deliver specific stimulus under certain graphoele-

ments. This can be used to probe the effect of these individual elements on specific

cognitive processes. Further, sleep researchers can use this tool to detect periods of

N1 and also validate periods of N2 with the occurrence of graphoelements (spindles, K-

complexes).

The micro-measure algorithm developed here forms an important methodological ad-

vancement in this dissertation. It will first be used (in Chapter 3, Chapter 4, Chapter 5) to

detect trial-by-trial alertness levels in participants performing auditory tone localisation

task. These trial-by-trial measures will further be used to understand the neural mech-

anism responsible for the generation of spatial bias induced by alertness transitions (as

73



2 Tracking alertness transitions

mentioned in the previous chapter). Finally, this principled approach will also be used

later (in Chapter 6) to detect alertness levels in flies undergoing transition to spontaneous

sleep.
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3
Behavioural dynamics of transitions

3.1 Brief Introduction

In this chapter, I investigate the behavioural dynamics in alertness transitions using an

auditory spatial attention task. Briefly, participants hear tones from the left and right of

the mid-line and need to localize the direction of the tone with a button press. Partic-

ipants perform this task with eyes closed condition and are allowed to fall asleep, thus

modulating their levels of alertness.

3.2 Background Information

A recent study (Bareham, Manly, et al. 2014) has provided first evidence (by using direct

physiological measures of alertness) that variation in alertness levels produces a modu-

lation of behaviour in an auditory spatial attention task. In this study, right-handed indi-

viduals under eyes closed condition performed an auditory tone localization task while

falling asleep. The participants showed very little bias (misclassification of tones) when

they were fully alert. But when they began to fall asleep they produced more misclassifi-
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3 Behavioural dynamics of transitions

cation of tones from the left direction (left-errors) compared to the right direction tones

(right-errors). This process of inattention to the left-side space is similar to neglect (where

patients who suffered lesions in right hemisphere lack attention to the left-side space)

and is referred herein as alertness induced spatial bias.

3.3 Shortcomings

Though (Bareham, Manly, et al. 2014) was one of the first studies to provide evidence of

alertness modulated attention in healthy right-handers there were several shortcomings

with the study (as mentioned in the Introduction chapter). First, themethod for measuring

alertness in this task was based on alpha-theta ratio or Hori scoring. Alpha-theta ratio

method assumes equal number of trials as ’alert’, ’drowsy’ per participant which is not true,

as different participants fall asleep differently (somemore drowsy, some less drowsy). Hori

scoring again suffers from the subjective nature of the scorer. Hence the micro-measures

algorithm was developed in the previous chapter, which would provide the best objective

measure of trial-by-trial alertness. Second, therewas no separate baseline task tomeasure

the bias of the individual participant before the experiment. if such a bias is measured

beforehand, then it could be compared with the bias in the drowsy session tomeasure the

change in bias. Third, some tones (1.86◦ to 35◦) were played for more times than others

(40◦ to 60◦), which could potentially bias the results. Fourth, the methods used to analyse

the relationship between bias and alertness (rmANOVA) assume individual participants

had equal number of trials in ’alert’ and ’drowsy’ condition, which is not true as different

participants fall asleep in different ways. Fifth, the quantification of subjective mid-line

as proportion of left tone errors versus right tone errors ignores the variability afforded

by tones from -60◦ to +60◦. Such variability could be captured by psychometric fitting in

individual participants. Sixth, distribution of reaction times could be used in a much more

prudent way to capture the decision making process using sequential sampling models

like drift diffusion modelling.
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3.4 Research Question

3.4 Research Question

The above mentioned shortcomings led us to the following questions which could be

answered by an augmented spatial attention experiment (in the next section).

Does variation in alertness levels systematically produce bias in spatial attention?

The above question can be further subdivided as:

(a) Does using a more objective method like micro-measures algorithm to measure

alertness levels still lead to same spatial bias?

(b) Would the spatial bias change if there was a separate baseline session to measure

alertness prior to the drowsiness session?

(c) Can we utilize methods like multi-level modelling that take advantage of uneven

trial numbers per participant per condition? Would the spatial bias results still hold

good?

(d) Can the shift in subjective mid-line be estimated systematically using psychometric

fits? Would the subjective mid-lines shift with drowsiness?

(e) Can we capture the process of evidence accumulation using methods like drift-

diffusion modelling? Would that show any systematic change in response bias? or

evidence accumulation rate?

(f) Can these behavioural dynamics be used to understand the underpinning mecha-

nisms of alertness induced spatial bias in these right-handed participants?

3.5 Experiment

Stimuli and Protocol

Each participant in this study underwent two sessions: a) Awake b) Drowsy.
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3 Behavioural dynamics of transitions

Awake session:

Participants were presented with 124 complex harmonic tones (created from guitar picks)

that fell on the left or right of their mid-line (0◦) varying from -59.31◦ to +59.31◦ as shown

in Figure 3.1. The tones were recorded previously in free-field using in ear microphones

(Bareham, Manly, et al. 2014). Six tones from -59.31◦ to -39.26◦ were presented two times

each; twelve tones from -35.24◦ to -1.86◦ were presented four times each. The same pat-

tern was repeated on the right side, with twelve tones from 1.86◦ to 35.24◦ were presented

four times each, six tones from 39.26◦ to 59.31◦ presented two times each. The tones in

themid-line (0◦) were presented four times. This resulted in a total of 124 tones. The order

of stimulus presentation was randomized per participant. Participants were instructed to

keep their eyes closed and respond (as quickly and as accurately as possible) with a but-

ton press (by left/right thumb) indicating the direction of the tone (left or right). Each trial

began after a random interval of 2-3 seconds and if the participant did not respond for

5 seconds, the next trial was started. The participants were also instructed to stay awake

throughout the task.

Drowsy session:

Participants were presented with 740 complex harmonic tones (as above) that fell on the

left or right of their mid-line (0◦) varying from -59.31◦ to +59.31◦. Six tones from -59.31◦

to -39.26◦ were presented twenty times each; twelve tones from -35.24◦ to -1.86◦ were

presented twenty times each. The same pattern was repeated on the right side, with

twelve tones from 1.86◦ to 35.24◦ were presented twenty times each, six tones from 39.26◦

to 59.31◦ were presented twenty times each. The tone in the mid-line (0◦) was presented

twenty times. This resulted in a total of 740 tones. The order of stimulus presentation

was randomized per participant as above. Participants were instructed to keep their eyes

closed and respond (as quickly and as accurately as possible) with a button press (by

left/right thumb) indicating the direction of the tone (left or right). Each trial began after

a random interval of 4-5 seconds and if the participant did not respond for 5 seconds, the

next trial was started. The participants were allowed to fall asleep (and become drowsy)

and were woken up if they didn’t respond to more than 3 trials continuously.
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3.5 Experiment

Before the awake and drowsy session, the participants were allowed a practice session to

familiarise with the task.

Figure 3.1: Auditory Spatial attention task. Participants had to localize the direction of auditory
tones coming from left and right side of the mid-line. The tones fell on the left or
right of their mid-line (0◦) varying from -59.31◦ to +59.31◦.

Participant details

Forty-one healthy right-handers were recruited for this study. Data from nine partici-

pants were removed due to a) technical issues with the headphone amplifier that delivers

the auditory stimuli (8). b) Not following instructions (1). This resulted in data from thirty-

two participants (24.46 ± 3.72 years old, 14 males) to be considered for further analysis.

As this study involved participants falling asleep, only self described easy sleepers were

invited to participate in this study. On the day of the experiment, the participants were

administered with the Epworth Sleepiness scale (Johns 1991), Edinburgh Handedness

Scale (Oldfield 1971). Twenty-nine participants had a sleepiness score >= 7 (easy sleep-

ers) and 3 of them had a sleepiness score >=4. All participants had handedness score of

above 0 (right-handed) with mean 80.26 ± 23.59.

All participants had no auditory, neurological, psychiatric abnormalities. They were also

asked not to consume stimulants like Coffee/Tea on the day of the experiment. Further,

they gave written informed consent and were compensated with 30£ for the study.
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3 Behavioural dynamics of transitions

3.6 Methods

3.6.1 Preprocessing

EEG data was acquired using 129 Ag/AgCl electrodes (Electrical Geodesics Inc) with Cz as

reference. The electrode impedances were kept below∼ 100KΩ and signal was acquired

at a sampling rate of 500 Hz. EEG data was pre-processed with custom made scripts in

MATLAB (MathWorks Inc. Natick, MA, USA) using EEGLAB toolbox (Delorme&Makeig

2004). First, the peripheral channels in the EEG that covered the regions of forehead,

cheeks and neck were removed to minimise eye and muscle related artifacts, thus retain-

ing only 92 channels that covered the scalp. Second, the data was bandpass filtered with

zero phase shift between 1 and 40 Hz using hamming windowed-sinc FIR filter and was

then resampled to 250 Hz. Third, pre-trial and post-trial epochs were created as follows.

For the pre-trial epochs, the data was epoched from -4000 ms to 0 ms to the onset of the

stimuli in the Drowsy session. Pre-trial epochs were not created in the Awake session (de-

tails in next section). For the post-trial epochs, the data was epoched from -200 ms to 800

ms to the onset of the stimuli for both the Awake and Drowsy sessions. Fourth, the trials

that exceeded the amplitude threshold of ±250 µV were removed in a semi-automatic

fashion. Fifth, the bad channels were detected in two steps: a) channels are considered

bad if channel variance is below 0.5. b) The normalized power spectrum of the remain-

ing channels was computed and any channel that exceeds the mean power spectrum by

±3 standard deviations was marked bad. Sixth, Independent component analysis (ICA)

was performed on the channels that were not marked as bad in the previous step. ICA

components that correspond to artifacts (eye-blinks, muscle) were rejected by manual in-

spection. Seventh, the bad channels were now interpolated using spherical interpolation.

Eighth, the bad trials detection was performed again (amplitude threshold of ±250 µV)

and bad electrodes in such trials were interpolated in a trial-by-trial fashion. Ninth, the

post-trial epochs were re-referenced to the average of all channels (pre-trial epochs were

maintained with the same Cz reference).
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3.7 Results

3.6.2 Alertness levels

The first step in the analysis involved classifying periods of the experimental session into

’alert’ and ’drowsy’. The pre-trial period before each tone was used in classifying the

corresponding trial as alert or drowsy. However, in the awake session all participants were

explicitly asked to stay alert. Hence the pre-trial epochs were not computed in the awake

session and all 124 trials in the awake session in each participant were classified as ’alert’.

In the drowsy session, the participants were allowed to fall asleep and hence in some trials

they would be alert and in some they would be drowsy. Pre-trial epochs in the drowsy

session (computed from the previous section) were analysed using the micro-measures

algorithm developed in the previous chapter (Jagannathan, Ezquerro-Nassar, et al. 2018)

and each trial was classified was ’alert’, ’drowsy(mild)’, ’drowsy(severe)’. Only trials that

were classified as ’drowsy(mild)’ were used as ’drowsy’ trials. The other trials were ignored

because usually participants don’t respond when under ’drowsy(severe)’ trials and we also

wanted to compare the drowsy trials of the drowsy session to the alert session, so we

ignored the ’alert’ trials in the drowsy session.

3.7 Results

3.7.1 Multi-level modelling

In the next stepwe decided to employ statistical models to understand how the behaviour

of the participants change across different levels of alertness in this spatial attention task.

For this purpose, we decided to use multi-level model (mixed models) wherein the pa-

rameters are made to vary at more than one level. This is in contrast to measures like

rmANOVA where the parameters are only estimated at one level (group). The main ad-

vantages of multi-level models include: a) less strict assumptions: When assumptions of

homogeneity of variances, constant covariances, sphericity are violated we cannot use

rmANOVA, however multi-level model overcomes such violations. b) Missing data can
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be handled directly by multi-level models, however in rmANOVA, subjects with missing

data are usually dropped from the analysis.

We first computed the proportion of errors made by each subject under each condition

(’alert’, ’drowsy’) under each stimulus (’left’, ’right’ to the midline). If the number of trials

for any participant under a particular condition is less than 5 then the corresponding error

proportion is ignored in the analysis. Next, we investigated whether the proportion of er-

ror is influenced by state of the participant (’alert’ or ’drowsy’), stimulus (’left’ or ’right’) or

an interaction of both. For this purpose, we defined 4 models. In the null model, the error

proportion depends only on its mean (fixed effect) and the individual participant (subject

id is used a random effect). In the second model (state model), the error proportion de-

pends only on the state of the participant (’alert’ or ’drowsy’ as fixed effect) and individual

participant (subject id is used as random effect). In the third model (stimulus model), the

error proportion depends only on the stimulus being presented (’left’ or ’right’ as fixed ef-

fect) and individual participant (subject id is used as random effect). In the fourth model

(state-stimulus model), the error proportion depends on a combination (interaction) of

state of participant (’alert’ or ’drowsy’) and the stimulus being presented (’left’ or ’right’),

both used as fixed effects and individual participant (subject id is used as random effect).

These 4 models are fit using the ’lmer’ function in R (Bates, Maechler, et al. 2015b; Bates,

Maechler, et al. 2015a) and the winning model is identified as the one with the highest

log-likelihood by comparing it with the null model and further performing a likelihood

ratio chi-square test (χ2). Finally, the top two winning models are compared against each

other using ’anova’ function in R (Fox&Weisberg 2011), to validate whether the winning

model (if it is more complex) is actually better than the loosing model (if it is simpler). The

models along with log-likelihood values are shown in Table 3.1. The state-stimulus model

emerged as the winning model based on higher log-likelihood score.
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Model comparison

Model Parameters Log-likelihood Pr(>χ2)

Null Fixed: mean, Random: subject id 61.24 -
State Fixed: state, Random: subject id 66.62 <0.001
Stimulus Fixed: stimulus, Random: subject id 68.45 <0.001
State-Stimulus Fixed: state*stimulus, Random: subject id 77.98 <0.001

Table 3.1: Comparison of various multi-level models in right-handers using log-likelihood

As seen above from the winning model, there was a significant effect of state on error-

proportion with F(1, 95.07) = 14.04, p<0.001. Stimulus type also significantly affected

error-proportion with F(1,95.07) = 18.80, p<0.001. The interaction between state and

stimulus also significantly affected error-proportion with F(1,95.07) = 6.88, p<0.05. This

indicates that as right-handers became drowsy the error proportion of some stimulus was

affected more than others. Further estimated marginal means were computed (using

’emmeans’ package in R) for simple contrast of both left and right stimulus through which

error-proportion across alert and drowsy conditions could be compared. This revealed

a significant difference between alert and drowsy conditions for left stimuli with mean =

-0.13 with standard error = 0.03 and t(98.11) = -4.45, p<0.0001, whereas for the right stim-

uli there was no significant difference across alert and drowsy periods with mean = -0.02

with standard error = 0.03 and t(98.68) = -0.77, p>0.05. To summarise, as right-handers

become drowsier they tend to make left errors as shown in Figure 3.2.

3.7.2 Psychophysics

Next, we aimed to quantify the change in the subjective mid-line per participant as they

become drowsier. For this purpose, we decided to fit psychometric functions to the re-

sponses produced by each participant under alert and drowsy conditions. The proportion

of rightward response under each stimulus condition from -60◦ to +60◦ was fitted with a

cumulative normal function using the generalized linearmodel ’glm’ function in R. The link

function used for the fit was ’probit’ which asymptotes to 0 (Knoblauch 2014). The ’probit’

function is in essence is the cumulative Gaussian function and is constrained within the
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3 Behavioural dynamics of transitions

Figure 3.2: Average Proportion of errors committed by right-handers in alert and drowsy pe-
riods across left and right stimuli. Error-proportion depends on stimulus type
(left,right), state of participant (alert,drowsy) and interaction between stimulus and
state. Estimated marginal means (computed for alert and drowsy periods) indicate
the error proportion is significantly different across left stimuli, but is not significant
across right stimuli. *** indicates p<0.001, ns indicates not significant, error bars
indicate standard error of the mean.

range of [0, 1] which is suitable to model the proportion of responses. The mean of the

cumulative normal function (the point where the curve cross 0.5 in the y-axis) is referred

to as the subjective mid-line (’bias’). This is because the subjective mid-line is the stim-

ulus where the participant performs at chance (0.5). The Bias was calculated separately

per participant per condition (alert, drowsy). The standard deviation of the curve (slope

or steepness of the curve) represents the ’sensitivity’ of the system. Increase in standard

deviation reduces the sensitivity of the system. Participants that had a bias point (mean)

of more than 60◦ were ignored in the drowsy condition (this is because overall stimulus

angle varied from -60◦ to +60◦).

Thus Bias (mean of the function), Sensitivity (inverse of standard deviation) was computed

per participant per condition. For some participants, the bias point shifted to the left as

they becomedrowsier (they started pressingmore rightward responses and hencemaking

more left errors). For some other participants, the bias point shifted to the right as they

become drowsier (they started pressingmore leftward responses and hencemakingmore

right errors). If the bias point moved leftwards, the participant is called as ’left-shifters’,

whereas if the bias point moved rightwards, the participant is called as ’right-shifters’. The
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fits of the psychometric functions for example participants who were left and right-shifter

is shown in Figure 3.3.

Figure 3.3: Psychometric fits indicating shifts in subjective mid-line. Data from two sample par-
ticipants (A,B) are shown here. The proportion of right responses were fit across
stimuli from -60◦ to +60◦ in both alert and drowsy periods. The mean of the fitted
function (’probit’) indicates the subjective mid-line (’bias’). A) Bias point shifts to-
wards the left as the participant becomes drowsier. B) Bias point shifts towards the
right as the participant becomes drowsier.

Twenty-four participants were identified as ’left-shifters’ as their subjectivemid-line shifted

to the left when they became drowsy as shown in Figure 3.4. Seven participants were

identified as ’right-shifters’ as their subjective mid-line shifted to the right when they be-

came drowsy. One participant was ignored from the analysis as their bias point in drowsy

condition exceeded ±60◦. This shows that most right-handers make left errors as they be-

come drowsy, which is consistent with the multi-level modelling analysis (in the previous

section).

3.7.3 Hierarchical drift diffusion modelling

Next, we aimed to quantify the different elements of decision-making process using the

drift-diffusion model. The drift-diffusion model captures the optimal procedure involved

in performing a 2-alternative forced choice (2AFC) task. It assumes that the observer

accumulates evidence for one or other alternative in every other time step, until that inte-
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Figure 3.4: Bias points across alert and drowsy periods for right-handers. The bias points move
predominantly towards the left (more negative) compared to the right (more pos-
itive) as participants become drowsier. This indicates that right-handers are pre-
dominantly left-shifters and hence make more left errors as they become drowsier.

grated evidence reaches a threshold to make a decision. This model is known to describe

accuracy and reaction time distributions in 2-choice tasks (Ratcliff, Smith, et al. 2016). The

primary elements of this model are shown in Figure 3.5 which include i) drift-rate - ’v’

which is the evidence accumulation rate ii) bias point - ’z’ indicating the starting point of

the decision making process iii) boundary separation distance - ’a’ which is the distance

between the two decision boundaries. iv) non-decision time - ’Ter’ usually accounting

for processes like stimulus encoding (prior to evidence accumulation), time for response

execution (after evidence accumulation).

It is important to note that as different participants would have differing levels of alert-

ness, this would mean that we have varying number of trials per condition per participant.

Hence it is crucial to use an approach that would provide a robust estimation of model

parameters with the limited amount of trials available (Zhang, Rittman, et al. 2016). Hence,

we decided to use the hierarchical drift diffusion model (HDDM) to provide for a hierar-

chical Bayesian procedure to estimate the model parameters involved in our task (Wiecki,

86



3.7 Results

Figure 3.5: Schematic indicating evidence accumulation expressed by driftdiffusion model.
The model accounts for the reaction time distributions of responses across left and
right stimuli (’Stimulus Coding’). ’V(drift)’ indicates the drift rate (evidence accumu-
lation rate), ’a’ indicates the boundary separation across left and right responses, ’z’
indicates the bias point, usually z = 0.5 for unbiased responses.

Sofer, et al. 2013) (version 0.6.0). For the HDDM we fit the response of each participant

(’left’ or ’right’) instead of accuracy (’correct’ or ’incorrect’). This procedure is referred to

as Stimulus-coding and is critical to uncover response bias (de Gee, Colizoli, et al. 2017)

in the decision making process.

For our purpose, we examined 8 different variants of the drift diffusion models where

each model varies on the following parameters: drift-rate (v) depending on state (’alert’,

’drowsy’) or stimulus (’left’, ’right’) or combination of both. bias-point (z) was also varied

depending on state (’alert’, ’drowsy’) or stimulus (’left’, ’right’) or combination of both.

For individual models, we created 15000 samples from the posterior distribution of the

model parameters using Markov chain Monte Carlo methods. Further 5000 samples were

discarded as burn-in to reduce the effect of initial values on the estimation of the poste-

rior. The winning model in each case was chosen by the lowest deviance information

criterion (DIC). The DIC provides a measure for the accuracy of the model, while penal-

ising for model complexity (Spiegelhalter, Best, et al. 2002). To check the convergence

of the winning model, Gelman-Rubin statistic was compared for 5 model runs and the

winning model was found to have values close to 1 and not larger than 1.2 thus indi-

cating convergence (Gelman 2013). The DIC scores along with model specifications are
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shown in Table 3.2. The winning model composed of: Drift-rate (v) varied according

to state (’alert’,’drowsy’) and stim (’left’,’right’). Bias-point (z) varied according to stim

(’left’,’right’)

Model comparison

Model# Drift-rate(v) Bias-point(z) DIC score

1 ’state’ ’state’ 22515.22
2 ’state’ ’stim’ 22474.04
3 ’state’ ’state’,’stim’ 22274.47
4 ’stim’ ’state’ 24057.05
5 ’stim’ ’stim’ 23903.25
6 ’stim’ ’state’,’stim’ 22112.33
7 ’state’,’stim’ ’state’ 21712.48
8 ’state’,’stim’ ’stim’ 21698.74

Table 3.2: Comparison of various drift-diffusion models in right-handers using DIC scores.
The winning model (8) is composed of: Drift-rate (v) varied according to state
(’alert’,’drowsy’) and stim (’left’,’right’). Bias-point (z) varied according to stim
(’left’,’right’)

In the next step, the winning model (8) was analysed for the comparison of posterior

densities. The traditional way to compare the distribution of population of two groups is

using hull-hypothesis testing (frequentist methods). However, we used Bayesian estimate

which is fundamentally more informative and avoids the arbitrary choices like significance

level, statistical test etc. used by the frequentist based methods (Kruschke 2013).

It was found that the proportion of posterior overlap (between left and right stimuli) in

the bias point was 25.1% (Figure 3.6(A)). It was also found that the proportion of pos-

terior overlap (between left and right stimuli) in the drift rate under alert condition was

14.8%(Figure 3.6(B)) this reduces to 3.4%(Figure 3.6(C)) under drowsy condition. This in-

dicates a change in drift-rate (evidence accumulation) between left and right stimuli as

right-handers become drowsier. To summarise, as right-handers become drowsier the

difference in rates of evidence accumulation between left and right stimuli increases. The

difference in drift-rates provides a potential explanation of why right-handers make dis-

proportionally more left-errors as they become drowsier.
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Figure 3.6: A) Group-level posterior distributions for bias-point (z) across left and right stimuli.
In right-handers, the difference of traces is plotted indicating proportion of overlap
between estimates as 25%. C) Group-level posterior distributions for drift-rate (v)
across left and right stimuli in in alert trials. In right-handers, the difference of the
traces is plotted indicating proportion of overlap between estimates as 14.8%. C)
Group-level posterior distributions for drift-rate (v) across left and right stimuli in
drowsy trials. In right-handers, the difference of the traces is plotted indicating
proportion of overlap between estimates as 3.4%. HPD stands for highest posterior
density representing credible interval for a particular parameter.

3.8 Discussion

In this chapter I decided to investigate the behavioural dynamics of spatial bias induced by

alertness transitions. By using a separate baseline ’alert’ session, I quantified the inherent

bias in individual participants before they become ’drowsy’.
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Next, I used multilevel modelling to understand the relationship between the propor-

tion of errors and the state of participant (’alert,’drowsy’) and location of auditory stimuli

(’left’,’right’) presented. The error proportion was best explained by the model which

contained both state of participant and stimulus being presented and a term involving

interaction of both. Usage of multilevel model allows us to take full advantage of the vari-

ability among participants (number of trials per condition). When, the estimated marginal

means were computed across different states, they show that as right-handers become

drowsy they tend to make more left errors. These results replicate (Bareham, Manly, et al.

2014) and further show evidence for left-neglect as suggested by (Fink, Marshall, et al.

2001; Jewell&McCourt 2000) in other modalities.

Next, I computed the subjective mid-line by fitting the psychometric functions to the pro-

portion of right responses in individual participants per condition (’alert’, ’drowsy’). I have

shown that for majority (24) of the participants the mid-line shifts to the left (more left

errors). Usage of psychometric functions to estimate the mid-line takes full advantage of

the systematic variability afforded by tones from -60◦ to +60◦. These results again repli-

cate the error bias metric (lefterrors−righterrors/totalerrors) computed in (Bareham,

Manly, et al. 2014) and further show evidence for subjective mid-line shift similar to the

observations in patient studies (Vallar, Guariglia, et al. 1995; Karnath 1997).

Finally, I modelled the decision making process by using drift diffusion model. This al-

lowed for the separation of the response bias (z) from evidence accumulation rate (v). I

have shown that the bias point (z) varies with respect to the stimuli (’left’, ’right’) whereas

the drift rate (v) varies with respect to both stimuli (’left’, ’right’) and state (’alert’, ’drowsy’).

Upon analysing the posterior distributions it can be seen that the drift rate between ’right’

and ’left’ stimuli changes in a significant manner. These results point towards a process

of evidence accumulation that can help disentangle whether drowsiness induced spatial

bias is a process of attentional deficit or sensory dysfunction. It has been shown by stud-

ies (Nunez, Vandekerckhove, et al. 2017) that trial to trial variability in speed of evidence

accumulation (v) is directly linked to attentional processes. Thus our results move closer

to the drowsiness induced spatial bias being considered an attentional deficit instead of

sensory dysfunction. This also provides potential candidate locations in the brain that

90



3.8 Discussion

could be responsible for alertness induced spatial bias. As our evidence accumulation

process points to signals that are involved in attention, regions like parietal cortex could

be possibly involved. Also, as the evidence accumulation rate (drift rate) of right stimuli is

different from left stimuli, this could provide support for models that include differential

processing of stimuli from the left and right side. In particular models like Right hemi-

sphere dominance could be potential candidates to explain the alertness induced spatial

bias.

This leads us to the next stage, wherein the behavioural measures could be connected

to neuro-anatomical models of spatial bias by understanding the neural dynamics of the

spatial attention task across alertness transitions.
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4
Neural dynamics of transitions

4.1 Brief introduction

In this chapter, I investigate the neural dynamics in alertness transitions in the same spatial

attention task described in detail in the previous chapter. Further, I evaluate support for

various neuroanatomical models of spatial attention described in the literature based on

our findings.

4.2 Background Information

In the previous chapter I replicated themain behavioural findings of right-handers making

more left errors under drowsy condition while performing the auditory spatial attention

task (Bareham,Manly, et al. 2014). Further, I showed that drowsiness produced a rightward

shift in spatial bias. In the next step I seek to understand the neural mechanisms behind

this spatial bias.
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4.3 Motivation

Before we explore the neural mechanisms behind shifts in spatial attention with reduced

alertness, we need to define the characteristics of analysis methods that are best suited

for this problem (as explained in Chapter 1). First, the neural machinery involved in spatial

attention, alertness, neglect is composed of a variety of regions that are heavily depen-

dent on the corresponding task being performed by the participant. Hence we need a

technique that doesn’t depend on a-priori definitions of regions involved. Techniques like

multivariate pattern analysis (MVPA) satisfy this requirement by involving a data-driven ap-

proach that can further be used to identify the temporal and spatial signatures involved in

spatial bias. Second, as we have established in the previous section, we need a compu-

tational model of decision making that can explain the behaviour of participants in a trial-

by-trial manner. Drift-diffusion model can be used to estimate parameters like evidence

accumulation rate (v) and response bias (z) in a trial-by-trial manner. Changes in drift-

rate (v) are usually associated with attentional processing and modulations of bias-rate

(z) are usually associated with more sensory processing. Hence connecting these model

parameters with neural markers would provide an alternative way of identifying spatial

and temporal signatures in the brain that are associated with these processes. Hence,

this could possibly establish converging evidence between the MVPA based analysis and

behaviour based drift-diffusion model.

4.4 Research Question

The above mentioned framework sets up our quest to investigate the neural dynamics

involved with drowsiness related spatial biases, which can be summarised in the following

research question.

What changes in neural dynamics (that occur due to variation in alertness levels) can

systematically lead to bias in spatial attention?

The above question can be further subdivided as:
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(a) What are the neural patterns that are crucial for performing the spatial attention task

when participants are alert?

(b) How do these neural patterns change when the participants become drowsy?

(c) What are the neural patterns that are involved in generation of spatial biases when

participants become drowsy?

(d) Can we estimate the spatial and temporal signatures that encode parameters in a

decision making model like drift-diffusion?

(e) Would these spatial and temporal signatures generated with the computational

model on behaviour concur with our neural patterns identified earlier?

(f) What neuroanatomical model of neglect and healthy spatial attention would these

patterns support: Interhemispheric competition or Right hemisphere specializa-

tion?

In the following sections we first explore the neural dynamics of spatial bias using MVPA

techniques (temporal decoding) followed by regression of ERP data with behaviour based

drift-diffusion model.

4.5 Methods

4.5.1 Decoding

First, we employed MVPA techniques to probe the divergent patterns in the EEG data

across various conditions. Decoding (MVPA) is considered to be a form of backward

model where the goal is to extract latent factors (hidden variables) from the observed data

(EEG) (Haufe, Meinecke, et al. 2014). Thus, it is a method of analysing patterns of brain

activity in order to predict the experimental condition (or stimuli) responsible for generat-

ing that pattern. This is in contrast to encoding which is a form of forward model wherein
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arbitrary values of experimental variables (or conditions) can be used to predict patterns

of brain activity (Fahrenfort, van Driel, et al. 2018). Conventional Event related potentials

(ERP) analysis rely on using a-priori identified spatial locations or temporal segments in

the data to measure the differences across conditions. However decoding techniques do

not rely on a-priori definitions and perform much better in detecting differences across

experimental conditions (Fahrenfort, van Driel, et al. 2018).

4.5.1.1 Temporal decoding

Temporal decoding involves using EEG data (X) composed of size: [Electrodes x Time

points x Trials] to predict the experimental condition (Y) . The experimental condition for

example could be the stimuli presented (left or right stimuli). The first step in the decoding

analysis consists of fitting an estimator (w) to a subset of the data (X) called Xtrain to predict

a subset of the experimental condition (Y) called Ytrain. The second step involves using

this trained estimator on another subset of the data (X) called Xtest to predict subset of the

experimental condition (Y) called Ytest. The third step involves evaluating the performance

of this estimator using a measure (e.g. accuracy) by comparing the prediction Ŷ test with

the actual label Ytest. The following are the steps that need to be followed in fitting a

temporal decoding model to the data.

Estimator construction:

Before fitting the estimator (w) to the data (X), it needs to be standardised. Firstly, the

EEG data is subjected to a standard scaler (using StandardScaler() from scikit-learn) that

removes the mean of the data and scales it by its variance. This procedure is useful for

normalising data, which is a standard requirement for many machine-learning estimators.

Secondly, we used the logistic regression to estimate the model parameters for finding

the hyperplane that can maximally separate categories in the experimental condition (Y).

Thirdly, we implemented the temporal decoding by using the sliding estimator (SlidingEs-

timator() from scikit-learn) to fit the logistic regression model per time-point.

Cross-validation:
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Next, the EEG data was down sampled to 100 Hz. Further to which we defined the cate-

gories to classify (classes in Y ). For example, we can classify the stimuli that was presented

(’left’ or ’right’) when the participant was ’alert’ (to further refine this, we can only choose

trials where the participant made the correct decision). In this case, the binary classifi-

cation was performed between these two conditions (’left’ and ’right’). Additionally, the

classification was only run if the participant had at least 25 trials under each condition.

This ensured that only participants that had a sufficient number of trials were used for

classification. Further n-fold cross validation was performed such that (n-1)/n th of the

trials were used as training set and 1/n th of the trials were used as testing set. Usually

the number of folds ’n’ was set to 5 unless mentioned otherwise.

Validation measure:

Next, the classifier performance was evaluated using the Area Under the Curve (AUC) of

the receiver-operating characteristic (ROC). The ROC curve is obtained by plotting the

true-positive rate against the false-positive rate. The AUC of this curve represents the de-

gree of separability of the various classes. When AUC is about 0.5 the classifier performs

at chance, while the AUC score of 1 has a very good separability across classes. In our

case, we computed the AUC-ROC score per participant (implemented using ’roc_auc’

in the sliding estimator function in scikit-learn) as the average of the score across all the

cross-validation folds.

Group statistics:

Next, we performed a cluster permutation test on the AUC score of each participant (di-

mensions of Participants x Time points) usingMNE (spatio_temporal_cluster_1samp_test)

(Gramfort, Luessi, et al. 2013). This produces p-values per time point at the group level,

from which we can identify the time points where the AUC score is significantly different

from chance (0.5) at the group level.

Coefficients of patterns:

Next, we need to identify the patterns in the data that is being used by the estimator to

produce reliable classifier performance. The parameters of the decoding model are not

neurophysiologically interpretable in a straightforward way (Haufe, Meinecke, et al. 2014).
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Hence it is necessary to produce a transformation that changes the backward model pa-

rameters into forward model. This is done by obtaining the coefficients of the estimator

model per participant using ’get_coef’ function from MNE(’_patterns’). Further, the coef-

ficients are averaged at the group level to obtain the EEG patterns in the data that help

discriminate between conditions.

Source reconstruction of patterns:

Finally, the coefficients (patterns) created from the estimator model are projected in the

source space as follows. Source reconstruction was done primarily using Freesurfer (Fischl

2012) and MNE (Gramfort, Luessi, et al. 2013) with the following steps. First, we used the

default ICBM152 template for the structural magnetic resonance images (MRIs). We re-

constructed the surface using ’recon-all’ from Freesurfer. We then created the Boundary

element model (BEM) using ’make_watershed_bem’ from MNE. Next, we created scalp

surfaces for the different element boundaries using ’make_scalp_surface’ fromMNE. Sec-

ond, we performed the registration of the scalp surface (generated in the previous step)

with the default EEG channel locations manually using ’coregistration’ from MNE with

the help of fiducials. Third, forward solution was computed using ’make_bem_model’

from MNE with conductivity = [0.3, 0.006, 0.3]. In order to test if the source reconstruc-

tion of the sensor data is accurate we projected the ERP data of a sample participant

into source space and analysed data from different regions of interest to confirm its va-

lidity (See Appendix - I). The classifier patterns (coefficients created above) of each par-

ticipant (32) were used for projecting into source space. Fourth, we computed the noise

covariance using the baseline data from -0.2 to 0 ms. Fifth, we used the forward so-

lution (8196 vertices) and the noise covariance to create inverse operator using ’mini-

mum_norm.make_inverse_operator’ fromMNE (loose=0.2). Sixth, we used the individual

classifier pattern per subject and applied the inverse operator on it (method = dSPM, SNR

= 5, lambda2 = 0.08) to produce the source reconstruction of the classifier patterns per

subject. Seventh, we averaged the source reconstructed patterns per subject to produce

the average pattern in the source space.
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4.6 Results

4.6.1 Neural machinery

Spatial localization across alert and drowsy periods:

First, we were specifically interested in identifying the neural mechanisms involved in per-

forming the spatial attention task during alert conditions and how the mechanisms in-

volved in this task are modulated as participants become drowsy. For this analysis only

those trials wherein the participant had made correct decision was taken into account.

This was mainly done to understand the mechanisms behind spatial attention under con-

ditions of optimal response (where the participant has detected the tone direction accu-

rately), while avoiding noise from erroneous trials (where participant made an incorrect

response).

For the right-handers, when the participant was ’alert’ the decoding of stimuli that was

presented (’left’ or ’right’) started from 160ms after the stimulus was presented and lasted

till 720 ms (reliably significant, p<0.05) as shown in Figure 4.1(A). Peak Area Under Curve

(AUC) of 0.61 was achieved at 280 ms. The average AUC between 200-300ms was 0.58 ±

0.007, p<0.05. The average AUC between 300-400 ms was 0.56 ± 0.002, p<0.05.
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Figure 4.1: Classifier performance across time (temporal decoding) indicated by Area Under
Curve (AUC). A) AUC of right-handers under alert condition, where the classifier was
trained to discriminate between targets of left and right stimuli. B) AUC of right-
handers under drowsy condition, where the classifier was trained to discriminate
between targets of left and right stimuli. C) AUC of right-handers under drowsy con-
dition when left stimuli were presented, where the classifier was trained to discrim-
inate between targets of correct and incorrect responses. D) AUC of right-handers
under drowsy condition when right stimuli were presented, where the classifier was
trained to discriminate between targets of correct and incorrect responses.

Correspondingly we also plotted the coefficients of the classifier patterns in the sensor

spacewhich are neurophysiologically interpretable (Haufe, Meinecke, et al. 2014) for every

40 ms between 180 ms to 500 ms as shown in Figure 4.2(A). The topography between 180-
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220 ms indicates strong response in the fronto-central electrodes. The topography of the

patterns shifts to more posterior regions (centro-parietal electrodes in the right side of

the scalp) between 220 ms to 260 ms. Further, the topography of the patterns shifts to

more parietal and occipital electrodes from 260 ms to 300 ms.

When the right-handers become drowsier, the decoding of the stimuli (reliably significant,

p<0.05) only started from 420 ms and lasted until 740 ms as shown in Figure 4.1(B). This is

very well reflected in the slower average reaction times in drowsy condition (1181.05 ms

in drowsy compared to 695.15 ms in alert). Peak AUC of 0.55 was achieved at 590 ms. The

average AUC between 400-500 ms was 0.53 ± 0.001, p<0.05. The average AUC between

500-600 ms was 0.54 ± 0.003, p<0.05. Correspondingly we also plotted the coefficients

of the classifier patterns in the sensor space for every 40 ms between 180 ms to 500 ms

in Figure 4.2(B). The topography between 180-220 ms indicates the strong response in

the frontal electrodes (though not reliably significant to decode) compared to the more

fronto-central electrodes in the alert condition. Interestingly the topography from 220-

260 ms shifts again to more frontal electrodes (not reliably significant) compared to the

central-parietal electrodes in the alert condition. The topography of the patterns shifts

to more posterior regions (centro-parietal electrodes, reliably significant) from 380 ms

to 420 ms. Further, the topography of the patterns shifts to more parietal and occipital

electrodes between 420 ms to 460 ms.

To summarise, this indicates that when the right-handed participant becomes drowsy,

the decoding shifts later (moves from 160 ms in alert to 420 ms in drowsy). This could

possibly indicate that the process of evidence accumulation to take a decision is slower

under drowsy conditions. Themain reasons for this could be again noise driven by sensory

level processing or noise in evidence accumulation itself (driven by attentional processes).

Further central-parietal electrode pattern, which is visible in alert condition, disappears

in the drowsy condition. In the drowsy condition, the temporal electrodes are activated

more in the 260-300 ms compared to the alert condition; as well the temporal electrode

patterns last till 500 ms. It is also interesting to note that the topography from 180-300 ms

in the drowsy condition is not sufficient to decode the stimuli presented and also different

compared to the alert condition.
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4 Neural dynamics of transitions

Figure 4.2: Coefficients of classifier patterns in right-handers. A) Coefficients of classifier pat-
terns of right-handers under alert condition, where the classifier was trained to dis-
criminate between targets of left and right stimuli. B) Coefficients of classifier pat-
terns of right-handers under drowsy condition, where the classifier was trained to
discriminate between targets of left and right stimuli. C) Coefficients of classifier
patterns of right-handers under drowsy condition when left stimuli were presented,
where the classifier was trained to discriminate between targets of correct and incor-
rect responses. D) Coefficients of classifier patterns of right-handers under drowsy
condition when right stimuli were presented, where the classifier was trained to dis-
criminate between targets of correct and incorrect responses. ** indicates reliably
significant time periods, the topographical plot was averaged between the time
intervals mentioned.

To further confirm the location of the brain regions involved, we decided to project the

classifier patterns from the sensor space to the source space using source reconstruction

techniques (as explained previously). We first found that the decoding pattern under the

alert condition (target decoding of left versus right stimuli) was mainly predominant in the

right hemisphere. Between 300-400 ms the right temporal regions were mainly involved

classifying the stimuli. From 400-500 ms the right inferior parietal regions contribute most

to the classifier patterns and this continues till 500-600 ms as shown in Figure 4.3(A).

Next under the drowsy condition, the decoding of left versus right stimuli was predomi-

nantly in the left hemisphere. Between 300-400 ms the left temporal regions were mainly
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4.6 Results

recruited by the classifier patterns. From 400-500 ms the left inferior parietal cortex along

with left pre and post-central cortex regions and left lateral occipital seem to be involved.

From 500-600 ms the pattern is much more localized in the left inferior parietal cortex

regions as shown in Figure 4.3(B).

To summarise, this shows that for right-handers the right inferior parietal regions were

mostly involved in alert condition, whereas the left inferior parietal regions were mostly

involved in drowsy condition for classifying the left versus right stimuli.

Spatial localization errors in drowsy periods:

Next, we were interested in identifying the neural mechanisms involved in producing the

localization errors across the left and right side of the space under drowsy conditions.

Left-stimuli:

For the right-handers, when the participant was ’drowsy’ the decoding of responses (cor-

rect, incorrect responses) when left stimuli was presented started from 180 ms after the

stimulus was presented and lasted till 320 ms (reliably significant, p<0.05), again from 390

ms to 450 ms (reliably significant, p<0.05) as shown in Figure 4.1(C). Peak AUC of 0.56 was

achieved at 260 ms. The average AUC between 180-320ms was 0.54 ± 0.002, p<0.05. The

average AUC between 390-450 ms was 0.53 ± 0.001, p<0.05. Correspondingly we also

plotted the coefficients of the classifier patterns in the sensor space which are neurophys-

iologically interpretable for every 40 ms between 180 ms to 500 ms (Figure 4.2(C)). The

topography between 180-220 ms indicates strong response in the frontal electrodes. The

topography of the patterns shifts to more posterior regions (centro-parietal electrodes in

the left side of the scalp) between 220 ms to 260 ms. Further, the topography of the pat-

terns shifts to more parietal and occipital electrodes between 260 ms to 300 ms. Source

localization confirmed that activity in the left SPL regions (300-500 ms), left IPL regions

(500-600 ms), left frontal regions (200-500 ms), right pre-central gyrus (300-600 ms) were

involved in the classifier patterns (Figure 4.3(C)). It is interesting to note that many of these

regions that decode for the error in left stimuli are located in the left hemisphere indicat-

ing that the processing of information has been taken over by the left hemisphere from

the right hemisphere. Areas in the ventral processing stream like right IPL, right STG
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4 Neural dynamics of transitions

which are mainly affected in neglect patients (Mort, Malhotra, et al. 2003; Corbetta, Kin-

cade, et al. 2005) do not show up in the classifier patterns, which clearly indicate the lack

of information present in these right hemispheric regions for processing the stimuli under

conditions of low alertness.

Right-stimuli:

When the right-handers became ’drowsy’, the decoding of responses (correct, incorrect

response) when right stimuli was presented was not reliably significant across any time

point (Figure 4.1(D)). However, we decided to plot the coefficient of the classifier patterns

in the sensor space to explore the electrode locations involved.

For the right-handers, we plotted the coefficients of the classifier patterns in the sensor

space for every 40 ms between 180ms to 500ms (Figure 4.2(D)). The topography between

180-220 ms indicates strong response in the central electrodes. The topography of the

patterns shifts to more posterior regions (centro-parietal electrodes in the left side of

the scalp) between 220 ms to 260 ms. Further, the topography of the patterns shifts to

more parietal and occipital electrodes between 260 ms to 300 ms. To further confirm the

location of the brain regions involved, we decided to project the classifier patterns from

the sensor space to the source space (Figure 4.3(D)). We found that the decoding pattern

was located in temporal cortex (200-600 ms), left and right parietal cortex (300-600 ms),

left and right pre and post-central gyrus (300-600 ms).
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4.6 Results

Figure 4.3: Classifier patterns projected in source space for right-handers. A) Decoding pat-
terns (for target classification of left vs right stimuli) is more prevalent in the right
hemispheric regions. B) Under drowsy conditions the decoding patterns (for left vs
right stimuli) start later only at 400 ms and it more prevalent in the left hemispheric
regions. C) Decoding patterns under drowsy conditions (for left stimuli with target
classification of correct vs incorrect response) is present in left hemispheric regions
like SPL,IPL . D) Decoding patterns under drowsy conditions (for right stimuli with
target classification of correct vs incorrect response) are distributed in a more bilat-
eral fashion across both hemispheres. ** indicates reliably significant time periods.
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4 Neural dynamics of transitions

4.6.2 Connecting behavioural model with neural markers

Next we connected the computational model (drift-diffusion) with the neural data by per-

forming a regression of the model with the Event related potential (ERP) data, which was

z-scored to obtain the regression coefficient. This was performed in the following steps.

First, the ERP data (post trial epochs) were z-scored per electrode per trial. Second, the

ERP data was baseline corrected with pre-trial data from -200 ms to 0 ms. Third, the ERP

data was averaged every 50 ms per electrode per trial to create 20 time points (-200 ms

to 800 ms) per electrode per trial. Fourth, the ERP data was entered into regression with

trial by trial estimate of the drift rate using the model HDDMRegressor from the HDDM

toolbox (Wiecki, Sofer, et al. 2013).

We fitted the Stimulus-coding model (’left’ or ’right’) responses as earlier and estimated

the drift rate (V) as a function of ERP data per trial per electrode per time point.

V∼ β0 + β1(ERP ) (4.1)

The above equation can be written in patsy1form as below.

V∼ ERP : C(state,Treatment(’Alert’ )): C(stim,Treatment(’Right’ )) (4.2)

Where, V represents the drift rate, ERP represents the z-scored ERP data computer per

trial per time point, state represents ’alert’ or ’drowsy’, stim represents ’left’ or ’right’. The

bias point (z) was made to vary with the stimulus as before. This analysis elucidates the

variation of drift rate with the ERP data across stimulus and alertness levels. The difference

in the drift rate between the left and right stimulus in alert and drowsy conditions can then

be plotted per electrode per time point (Figure 4.4). The difference in drift rates indicate

the ability of the particular electrode location to differentiate between different stimuli

(analogous to the MVPA and implies encoding of evidence accumulation rate).

1patsy is a Python package for describing statistical models
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Figure 4.4: Drift rate regression across conditions in righthanders. A) Proportion of overlap
between drift rates across left and right stimuli in right-handers in alert condition
across different time points. B) Proportion of overlap between drift rates across left
and right stimuli in right-handers in drowsy condition across different time points.

We first plotted the difference in drift rate (proportion of overlap in the posterior distri-

bution across stimuli) in the alert condition in time steps of 50 ms. For the right-handers

(Figure 4.4A), the topography of the sensor plot shows that electrodes in the fronto-central

region (150-200 ms) shows higher differences in drift rate (implying the encoding of evi-

dence accumulation rate). Followed by which the topography shifts to central and parietal

electrodes (200-250 ms). Further after 250 ms the topography shifts to more posterior re-

gions in the central and parietal electrodes.

Next we plotted the difference in drift rate in the drowsy condition. For the right-handers,

the topography of the sensor plot shows thatmore frontal and central electrodes showdif-

ferences in drift rate from 150-250 ms (Figure 4.4B). Further the topography shifts to more

central, parietal, right temporal electrodes in 250-300 ms. The topography then moves to

more posterior regions in the parietal and central electrodes from 350 ms onwards.

It is interesting to note that the central-parietal pattern present from 200-250 ms under

alert condition disappears in the drowsy condition and is replaced by more fronto-central

pattern. This clearly indicates difference in activity across sensors in parietal regions (in

sensor space), which encode evidence accumulation rate.
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4.7 Discussion

In this chapter, I decided to investigate the neural dynamics of spatial biases with low

alertness. This follows up on the behavioural dynamics investigated in the previous chap-

ter.

I used multivariate pattern analysis techniques to uncover the regions of the brain that

are different across conditions. The first analysis involved decoding the direction stimuli

(’left’, ’right’) under ’alert’ conditions. This will help understand the brain regions involved

in performing the auditory spatial attention task under baseline conditions. We found that

mainly regions in the right hemisphere were involved. Chiefly regions like right temporal

regions, right inferior parietal regions were involved. This agrees with findings on brain

regions (right temperoparietal) detected by spatial attention task in (Corbetta&Shulman

2002). The concentration of decoding patterns in the right hemispherical regions provides

more evidence for right hemispheric specialization model. The second analysis involved

in decoding the direction of stimuli under ’drowsy’ conditions. This will help us under-

stand how the brain compensates to perform this task under conditions of low alertness.

We found that mainly activity shifts to the left hemisphere. Primarily regions like left tem-

poral, left inferior-parietal regions were involved. This could potentially explain the origin

of the left errors in the drowsy condition. As the left hemisphere is highly active, it directs

attention to the contra-lateral side (right side of space) and hence leads to misclassifica-

tion of left tones as coming from the right. It is interesting to note that invasive studies

performed by (Szczepanski&Kastner 2013) using transcranial magnetic stimulation where

activation of dorsal regions leads to attention being shifted to the ipsilateral side. Po-

tentially further studies involving activation in the ventral regions could possibly provide

evidence for attention being shifted to the contra-lateral side. Also studies (Sturm, de

Simone, et al. 1999) involving the neural correlates of alertness have shown that activ-

ity in the right hemisphere increased under conditions of high alertness, which broadly

agrees with our findings. Further the location of lesions (right hemispherical regions like

TPJ,IPL) present in neglect patients (Mort, Malhotra, et al. 2003) which tends to produce

lack of attention in the left side of space, also broadly agrees with our findings. The third
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analysis involved in decoding the responses (’correct’,’incorrect’) in the drowsy condition

on the presentation of left stimuli. Primarily regions in left superior parietal, left inferior

parietal regions were involved. This is in agreement with regions reported in neglect as

mentioned above (Mort, Malhotra, et al. 2003).

Next, I used trial-by-trial regression to identify regions in the sensor space that have dif-

ferential drift rates across left and right stimuli. In the ’alert’ condition more central and

parietal electrodes were involved which are similar to the classifier patterns in the sen-

sor space (where I decode direction of stimuli presented in the alert condition). While in

the ’drowsy’ condition, the activation was more in the frontal and central electrodes. It is

interesting to note that activity in the parietal electrodes (in sensor space) was less infor-

mative in the drowsy condition, which agrees with neglect studies implicating damage in

the parietal regions (Mort, Malhotra, et al. 2003).

As decoding of stimuli (’left’, ’right’) in the alert condition happens only in the right hemi-

sphere, suggesting that the right hemisphere is activated more by the spatial attention

task. This indicates evidence for the support of right hemisphere dominance model un-

der alert condition. On the other hand, if the decoding were to occur in both hemi-

spheres, this would indicate the activation of both left and right hemispheres. Hence

would provide support a model where attention is dominant in both hemispheres, mainly

inter-hemispheric competition (under the specific case of balance of both hemispheres).

However as only the right hemisphere is activated in the alert condition it provides sup-

port for right hemisphere dominance model of attention.

Under drowsy condition the same decoding (’left’,’right’) shifts to left hemisphere, indi-

cating that the left hemisphere is dominating the spatial attention processing required on

the task (though AUC being low indicates lower efficiency as left hemisphere is not spe-

cialized for this task). This indicates support for the inter-hemispheric competition model

under the specific case where in the balance is tilted in favour of the left hemisphere. This

imbalance pushes the attention to the right side of the space.

Similarly, the decoding of response (’correct’,’incorrect’) for the left stimuli under drowsy
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4 Neural dynamics of transitions

conditions primarily happens in the parietal cortex of the left hemisphere indicating that

information processing has shifted to the left hemisphere again. This again indicates

evidence for the inter-hemispheric competition model where in the left hemisphere now

has taken over the processing of spatial attention.
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5
Handedness aspects of transitions

5.1 Brief introduction

Recent studies (Bareham et al., 2014, 2015) have provided first evidence that handedness

along with variation in alertness levels produces a modulation of behaviour in a auditory

spatial attention task. In these studies, left and right-handed individuals performed an

auditory tone localization task while falling asleep. Both left and right-handers showed a

slight bias (misclassification of tones) originating from the left (more left errors) when they

were fully alert. But when right-handers began to fall asleep they produced more left-

errors. This is similar to a debilitating clinical condition called unilateral spatial neglect

where patients find difficulty in paying attention (detection or discrimination) to informa-

tion coming from the space opposite to the lesion (Corbetta and Shulman, 2011; Karnath

and Fetter, 1995). On the other hand, left-handers begin to fall asleep produced a slight

bias in the opposite direction by producingmore errors in tones originating from the right

direction.

The above mentioned auditory spatial attention task provides an interesting example to

explore the effect of handedness on attention while being modulated by alertness. The
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modulation of alertness levels (by falling asleep) provides an active task wherein the brain

is causally manipulated by the arousal systems that differently affect the corresponding

attention systems based on the handedness of the individual. We advanced this spatial

attention task, by first creating a baseline task (where participants are instructed to stay

alert). Further in the drowsy session (where alertness modulates attention), participants

are allowed to fall asleep while performing this task. By this way we can make a direct

comparison between brain dynamics involved in individual participants while they per-

form this task when under both conditions.

To understand how spatial attention is modulated by alertness while being constrained

by handedness, we investigated with electroencephalography (EEG) the neural mecha-

nisms involved in performing an auditory tone localization task. We first describe the

behavioural dynamics of the processes involved followed by computational modelling of

the behaviour. Next we describe the neural dynamics involved using multivariate pattern

analysis (temporal decoding). Finally, we connect the parameters of the computational

behavioural model with neural dynamics to provide convergent evidence of brain dynam-

ics modulated by alertness and constrained by handedness.

5.2 Declaration of contribution of co-authors

The following paper is in the process of being submitted to a journal for peer-review. The

spatial attention experiment was designed by me along with Dr. Tristan Bekinschtein and

Dr. Corinne Bareham. I collected the data of left-handers on my own and received help

from research assistants for the data collection of right-handers. The data analysis for

both behaviour and neural dynamics was performed by me. I also created the figures and

wrote the initial version of this manuscript which underwent revisions based on comments

by co-authors.

5.3 Manuscript, bioRxiv
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ABSTRACT: 
 
The ability to direct attention to a specific location in space is a fundamental feature of 
cognition and is crucial for an organism to survive in the environment. Spatial attention is 
thought to be right hemisphere specialised. Most of the evidence of this specialisation (both 
in the patient and healthy population) comes from studies involving right-handed 
individuals. However, we know that approximately 10% of the population is left-handed. 
Here, using an auditory spatial attention task, we show that left and right-handers perform 
similarly when they are alert. However, when they become drowsy, right-handers tend to 
show deficits in attention only on the left side of space while left-handers show deficits in 
both the left and right side of space.  To dissect the brain-behavioural dynamics we took a 
multipronged approach. First, we used multilevel modelling and psychophysics to quantify 
the change in behaviour. Second, we used drift-diffusion modelling to analyse the 
computational parameters behind this behaviour.  Third, we used multivariate pattern 
analysis (decoding) to understand the neural dynamics of spatial bias with drowsiness and 
identified key spatial and temporal signatures. Finally, we connected the computational 
parameters generated in the drift-diffusion model with the neural dynamics to provide 
converging evidence for the spatial and temporal signatures. These findings provide 
evidence that key brain networks supporting spatial attention differ across left and right-
handed individuals. 
 

INTRODUCTION: 
 
The ability to direct attention to a specific location in space is a fundamental feature of 
cognition and is crucial for an organism to survive in an external environment. One of the 
models of Spatial attention in humans proposes that the right hemisphere is specialised for 
attention (Bowers and Heilman, 1980; Siman-Tov et al., 2007; Vallar, 1998). Evidence for this 
specialization has come from stroke patients diagnosed with spatial neglect, a condition that 
is characterised by failure to detect and respond to stimuli from the contralateral side of the 
lesion. Left spatial neglect following damage to the right hemisphere is much more 
persistent and difficult to recover (Becker and Karnath, 2007; Bowen et al., 1999; Heilman et 
al., 1985; Ringman et al., 2004) compared to the right spatial neglect (with left hemisphere 
damage). Healthy individuals also display neglect like behaviour referred to as 

113



‘pseudoneglect’. When asked to bisect a straight line, most healthy participants tend to 
locate the centre of the line to the left of the veridical centre, thereby paying more attention 
to the left (Benwell et al., 2013; Bowers and Heilman, 1980; Harvey et al., 2000; Jewell and 
McCourt, 2000; Mesulam, 1999; Schenkenberg et al., 1980; Thiebaut de Schotten et al., 2005) 
 
Two most dominant neuroanatomical models provide explanations for neglect. A) Right 
hemisphere dominance model:  In this model, the right hemisphere can direct attention to 
both sides of the space, whereas the left hemisphere can only direct attention to the right 
side of space (Heilman and Van Den Abell, 1980; Mesulam, 1981). Hence, in case of damage 
to left hemisphere, the intact right hemisphere can still direct attention to both sides of 
space. However any damage to the right hemisphere makes the brain unable to direct 
attention to the left side of space. B) Interhemispheric competition model: In this model, 
attention is directed to the contralateral space through inhibition of the ipsilateral 
hemisphere (Kinsbourne, 1977). This inhibition could be achieved via cortico-cortical 
interactions between the parietal cortex and superior colliculus (Sprague, 1966). Here 
neglect, occurs due to imbalance created by damage to one of the hemispheres thereby 
reducing the ability to direct attention to the contralateral side of space. 
 
In general, in any task that involves allocating attention to a specific location in space a) If it 
activates the right hemispheric regions irrespective of attended location (left or right space), 
would support the right hemisphere dominance model. B) If it activates the left hemispheric 
region on attending right space, right hemispheric region on attending left space; thereby 
producing bilateral activation across both left or right space would support interhemispheric 
competition model. In this context, several studies have provided evidence for right 
hemisphere dominant model (Benwell et al., 2014; Dietz et al., 2014) whereas others for 
interhemispheric competition model (Szczepanski et al., 2010). To explain this discrepancy 
(Corbetta and Shulman, 2011) proposed that attentional system is composed of two parts: a) 
Dorsal attention system composed of the frontal eye fields and intraparietal sulcus is 
involved in voluntary shifts of attention and is activated bilaterally. Whereas the Ventral 
attention system composed of temporoparietal junction and ventral frontal cortex is highly 
right lateralised due to its interaction with the arousal system. Thus the right lateralized 
ventral attention system biases the bilateral dorsal attention system to produce neglect 
(inattention) in the left side of space. 
 
However, all of the above mentioned studies have predominantly used right-handed 
individuals (either patients or healthy participants) or in some cases handedness was not 
reported. Despite handedness being one of the main asymmetries in both human brain 
organisation and associated behaviours, it’s role in attentional networks has not been 
extensively researched. Thus, handedness could potentially serve as a confounding factor in 
identifying models of spatial attention. Evidence for this has come from studies involving 
auditory spatial attention (Bareham et al., 2014, 2015). These studies show that handedness 
along with variation in arousal level produces modulation of spatial attention. In these 
studies, left and right-handed individuals performed an auditory tone localization task while 
falling asleep. Both left and right-handers showed a slight bias (misclassification of tones) 
originating from the left (more left errors) when they were fully alert. When right-handers 
began to fall asleep they produced more left-errors (similar to spatial neglect). On the other 
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hand, left-handers produced a slight bias in the opposite direction (more errors in tones 
originating from the right direction) when falling asleep. 
 
 
These results highlight an important issue that vast majority of cognitive neuroscience 
studies have, which is recruiting participants that are predominantly right-handed. 
Experimenters reason that excluding left-handers tend to make the sample more 
homogeneous, reduce inter-subject variance and increase statistical sensitivity. Recently 
compelling arguments have been put forward by researchers in the domain of language 
studies and embodied cognition to include left-handed individuals (Willems et al., 2014) in 
all studies. They argue to include handedness as an additional factor like gender (which is 
usually balanced at 50/50) and balance the same at 90/10 (right/left handers), which is similar 
to the population level proportions. Further, left-handers could actually be recruited in a 
targeted manner to study cerebral lateralization, which is already practised in domains like 
embodied cognition and language processing. However, studies that did use both left and 
right-handed individuals for comparing the differences in brain dynamics could not connect 
it to differences in behaviour. This is mainly because in majority of those studies (Hauk and 
Pulvermuller, 2011; Willems et al., 2009, 2010), the specific cognitive tasks did not generate 
any differences in behaviour and only generated differences in brain regions being 
activated. In contrast lesion studies (Hécaen et al., 1981; Jackson et al., 1956; Quadfasel and 
Goodglass, 1954) have been influential in proving or disproving theories of cerebral 
lateralization by comparing left and right handed individuals that have been damaged in 
different brain regions while producing similar behavioural deficits.  
 
Hence in order to truly understand how spatial attention is directed and how handedness 
modulates behaviour, we need tasks that can produce differences in behaviour (between left 
and right-handed), which can then be used to compare brain and behavioural dynamics 
across groups. The above mentioned auditory spatial attention task provides such a unique 
window to explore the effect of handedness on models of spatial attention. The modulation 
of alertness levels (by falling asleep) provides an active task wherein the brain is causally 
manipulated by the arousal systems that differently affect the corresponding attention 
systems based on the handedness of the individual.  
 
Here, we advanced the spatial attention task in (Bareham et al., 2014, 2015), by first creating 
a baseline task (where participants are instructed to stay alert). Further in the drowsy session 
(where alertness modulates attention), participants are allowed to fall asleep while 
performing this task. By this way we can make a direct comparison between brain dynamics 
involved in individual participants while they perform this task when under both conditions. 
To understand how spatial attention is modulated by alertness and handedness, we 
investigated with electroencephalography (EEG) the neural mechanisms involved in this task. 
We first describe the behavioural dynamics of the processes involved followed by 
computational modelling of the behaviour. Next we describe the neural dynamics involved 
using multivariate pattern analysis (temporal decoding). Finally, we connect the parameters 
of the computational behavioural model with neural dynamics to provide convergent 
evidence of brain dynamics modulated by alertness and constrained by handedness. 
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RESULTS: 
 
Behavioural Evidence of Alertness modulating spatial attention  
 
Error-proportion modulated by alertness: 

 
We first used multi-level modelling to understand how the proportion of errors made by 
each participant in an auditory tone-localization task (Figure 1A) was influenced by the 
stimulus presented (‘left’ or ‘right’ auditory tone) and the state of the participant (‘alert’ or 
‘drowsy’). For this purpose, we defined 4 different models where the error proportion varied 
with stimulus and alertness levels (see methods section). The winning model (compared with 
log-likelihood) was further analysed for both right and left-handed participants separately.  
 
For the right-handers (Figure 1C) there was a significant effect of state on error-proportion 
with F(1, 95.07) = 14.04, p<0.001. Stimulus type also significantly affected error-proportion 
with F(1,95.07) = 18.80, p<0.001. The interaction between state and stimulus also 
significantly affected error-proportion with F(1,95.07) = 6.88, p<0.05. This indicates that as 
right-handers became drowsy the error proportion of some stimuli was affected more than 
others. Further estimated marginal means were computed for the ‘simple’ contrast of both 
left and right stimuli through which error-proportion across alert and drowsy could be 
compared. This revealed a significant difference between alert and drowsy conditions for left 
stimuli t(98.11) = -4.45, p<0.0001 (mean = -0.13, standard error = 0.03), whereas for the right 
stimuli there was no significant difference across alert and drowsy periods with t(98.68) = -
0.77, p>0.05 (mean = -0.02 ,standard error = 0.03). 
 
For the left-handers (Figure 1B) there was a significant effect of state on error-proportion 
with F(1, 128) = 19.71, p < .001. Stimulus type also significantly affected error-proportion with 
F(1,128) = 8.30, p<0.01. There was no significant interaction between state and stimulus on 
error-proportions with F(1,128) = 1.54, p>0.05. This indicates that as left-handers became 
drowsy the error-proportion of both left and right stimuli was affected equally. Estimated 
marginal means were computed for the ‘simple’ contrast of both left and right stimuli 
through which error-proportion across alert and drowsy could be compared. This revealed a 
significant difference between alert and drowsy conditions for left stimuli with t(99.1) = -3.95, 
p<0.0001 (mean = -0.11, standard error = 0.03) and for the right stimuli there was also a 
significant difference across alert and drowsy periods t(99.1) = -2.24, p<0.05 (mean = -0.06, 
standard error = 0.03). 
 
To summarise, as right-handers become drowsier they tend to make more left errors, while 
left-handers make more errors in the drowsy condition but not in a spatially specific fashion. 

In the next step, to provide more evidence of handedness modulating behaviour, data from 
both right and left-handers were combined and we used the handedness score from each 
participant as a parameter in the model. For this purpose, we defined 5 models (see 
methods section), where the error proportion was varied with state, stimulus and 
handedness score. The state-handedness model emerges as the winning model, indicating 
that error-proportion is affected by state and handedness of the participant. This shows that 
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handedness doesn’t have an overall effect dependent on the stimuli being presented but 
rather has an effect dependent on the alertness level of the participant. 

 
Subjective mid-l ine shifts are modulated by alertness: 
 
Next, we aimed to quantify the change in the subjective mid-line per participant as they 
become drowsier. For this purpose, we decided to fit psychometric functions to the 
responses produced by each participant under alert and drowsy conditions (see methods 
section). The proportion of rightward response under each stimulus condition from -60º to 
+60º was fitted with a cumulative normal function using the generalized linear model.  Bias 
(mean of the function), Sensitivity (inverse of standard deviation) was computed per 
participant per condition. For some participants, the bias point shifted to the left as they 
become drowsier (they started pressing more rightward responses and hence making more 
left errors) (Figure 2A). For some other participants, the bias point shifted to the right as they 
become drowsier (they started pressing more leftward responses and hence making more 
right errors) (Figure 2B).  If the bias point moved leftwards, the participant is called as ‘left-
shifters’, whereas if the bias point moved rightwards, the participant is called as ‘right-
shifters’. 
 

For right-handers, 24 participants were identified as ‘left-shifters’ as their subjective midline 
shifted to the left when they became drowsy. 7 participants were identified as ‘right-shifters’ 
as their subjective midline shifted to the right when they became drowsy (Figure 2D). 1 
participant was ignored from the analysis as their bias point in drowsy condition exceeded 
±30º. This is consistent with analysis from multi-level modelling that most right-handers 
make left errors as they become drowsier. 

For left-handers, 19 participants were identified as ‘left-shifters’ as their subjective midline 
shifted to the left when they became drowsy. 12 participants were identified as ‘right-
shifters’ as their subjective midline shifted to the right when they became drowsy. 1 
participant was ignored from the analysis as their bias point in drowsy condition exceeded 
±30º. This is consistent with the multi-level modelling analysis (where the error proportion 
was significantly different for both left and right stimuli across different levels of alertness) 
that left-handers make both left and right errors as they become drowsier. 

Finally, to understand the effect of drowsiness on the system we performed Pearson’s 
product-moment correlation test between the bias and sensitivity. In the alert condition, 
both the right-handers (r(19)= -0.09, p<0.05) and left-handers (r(18) = -0.34, p<0.05) didn’t 
show a significant relationship between bias and sensitivity. In the drowsy condition, the 
right-handers showed a significant correlation (r(19)= 0.45, p>0.05) between bias and 
sensitivity while the left-handers (r(18) = 0.29, p<0.05) did not have a significant relationship. 
This shows that the drowsiness has systematically altered both bias and sensitivity for right-
handers under drowsy condition.  
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Figure 1: Auditory Spatial attention task: A) Participants had to localize the direction of 
auditory tones coming from left and right side of the midline. B) Average Proportion of errors 
committed by left-handers in alert and drowsy periods across left and right stimuli. Error-proportion 
depends on stimulus type (left,right) and state of participant (alert,drowsy). Estimated marginal means 
indicate that error proportion is significantly different across both left and right stimuli. C) Average 
Proportion of errors committed by right-handers in alert and drowsy periods across left and right 
stimuli. Error-proportion depends on stimulus type (left,right), state of participant (alert,drowsy) and 
interaction between stimulus and state. Estimated marginal means indicate that error proportion is 
significantly different across both left stimuli, but is not significant across left stimuli. *** indicates 
p<0.001, ns indicates not significant, error bars indicate standard error of the mean. 
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Figure 2: Psychometric f its indicating shifts in subjective mid-l ine . Data from two sample 
participants (A,B), where proportion of right responses were fit across stimuli from -60º to +60º in both 
alert and drowsy periods. The mean of the fitted function (‘probit’) indicates the subjective midline 
(‘bias’). A) Bias point shifts towards the left as the participant becomes drowsier. B) Bias point shifts 
towards the right as the participant becomes drowsier. C) Bias points across alert and drowsy periods 
for left-handers. The bias points move both towards the left (more negative) and towards the right 
(more positive) as participants become drowsier. This indicates that left-handers are more 
heterogeneous in terms of shift of bias and hence make both left and right errors as they become 
drowsier. D) Bias points across alert and drowsy periods for right-handers. The bias points move 
predominantly towards the left (more negative) compared to the right (more positive) as participants 
become drowsier. This indicates that right-handers are predominantly left-shifters and hence make 
more left errors as they become drowsier. 
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Figure 3: Drift-diffusion model. Schematic indicating evidence accumulation expressed by drift-
diffusion model. The model accounts for the reaction time distributions of responses across left and 
right stimuli (‘Stimulus Coding’). ‘V(drift)’ indicates the drift rate (evidence accumulation rate), ‘a’ 
indicates the boundary separation across left and right responses, ‘z’ indicates the bias point, usually z 
= 0.5 for unbiased responses. 

 

Computational modell ing of decision making by drift-diffusion process: 
 
Next, we aimed to quantify the different elements of the decision-making process on the 
tone localization task using the drift-diffusion model. The drift-diffusion model captures the 
optimal procedure involved in performing a 2-alternative forced choice (2AFC) task. It 
assumes that the observer accumulates evidence for one or other alternative in every other 
time step, until that integrated evidence reaches a threshold to make a decision (Figure 3). 
This model is known to describe accuracy and reaction time distributions in 2-choice tasks 
(Ratcliff et al., 2016).  The localization of tones to ‘left’ and ‘right’ side of space is in essence a 
2-choice task with the participant always forced to make a decision on the direction of tone 
and hence the usage of the drift-diffusion model here is appropriate. 
 
The drift diffusion model was implemented using a hierarchical Bayesian procedure using 
hierarchical drift diffusion model (HDDM) (See methods section). For the HDDM we fit the 
response of each participant (‘left’ or ‘right’) instead of accuracy (‘correct’ or ‘incorrect’). This 
procedure is referred to as Stimulus-coding and is critical to uncover response bias (de Gee 
et al., 2017) in the decision making process.  

For this purpose, we examined 8 different variants of the DDM where each model varies the 
following: drift-rate (v) depending on state (‘alert’, ‘drowsy) or stimulus (‘left’, ‘right’) or a 
combination of both.  Bias-point (z) was also varied depending on state (‘alert’, ‘drowsy) or 
stimulus (‘left’, ‘right’) or a combination of both. The winning model in each case was chosen 
by the lowest deviance information criterion (DIC).  For both the left and right-handers the 
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winning model composed of: Drift-rate (v) varied according to state (‘alert’,’drowsy’) and stim 
(‘left’,’right’). Bias-point (z) varied according to stim (‘left’,’right’) (See methods section). 

In the next step, the winning model (#8) was analysed for the comparison of posterior 
densities. The traditional way to compare the distribution of population of two groups is 
using hull-hypothesis testing (frequentist methods). However, we used Bayesian estimate 
which is fundamentally more informative and avoids the arbitrary choices like significance 
level and specific statistical tests used by the frequentist based methods (Kruschke, 2013). 

 

For the right-handers it was found that the proportion of posterior overlap (between left and 
right stimuli) in the bias point was 23.8% (Figure 4B). In comparison, for the left-handers it 
was found that the proportion of posterior overlap in the bias point was 9.1% (Figure 4A). 
This indicates that the left-handers have a higher difference in bias point (between left and 
right stimuli) compared to the right-handers. For the right-handers, it was found that the 
proportion of posterior overlap (between left and right stimuli) in the drift rate under alert 
condition was 14.8% this reduces to 3.4% under drowsy condition (Figure 4D,F). This 
indicates a change in drift-rate (evidence accumulation) between left and right stimuli as 
right-handers become drowsier. For the left-handers, it was found that the proportion of 
posterior overlap (between left and right stimuli) in the drift rate under alert condition was 
5.1% this changes to 9.3% under drowsy condition (Figure 4C,F). This indicates a change in 
drift-rate (evidence accumulation) between left and right stimuli as left-handers become 
drowsier. However, it is interesting to note that the change in drift-rate is higher in right-
handers compared to the left-handers and in the opposite direction.  

To summarise, as right-handers become drowsier the difference in rates of evidence 
accumulation between left and right stimuli increases compared to the left-handers. The 
difference in drift-rates provides a potential explanation of why right-handers make more 
left-errors as they become drowsier while left-handers make both left and right-errors as 
they become drowsier. 
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Figure 4: Posterior distr ibutions of drift-diffusion model parameters. A,B) Group-level 
posterior distributions for biaspoint (z) across left and right stimuli  A) In left-handers, the difference of 
traces is plotted on the right indicating proportion of overlap between estimates is 9%. B) In right-
handers, the difference of traces is plotted on the right indicating proportion of overlap between 
estimates is 25%. C,D) Group-level posterior distributions for drift-rate (v) across left and right stimuli 
in in alert trials. C) In left-handers, the difference of the traces is plotted on the right indicating 
proportion of overlap between estimates is 5.1%. D) In right-handers, the difference of the traces is 
plotted on the right indicating proportion of overlap between estimates is 14.8%. E,F) Group-level 
posterior distributions for drift-rate (v) across left and right stimuli in drowsy trials. E) In left-handers, 
the difference of the traces is plotted on the right indicating proportion of overlap between estimates 
is 9.3%. F) In right-handers, the difference of the traces is plotted on the right indicating proportion of 
overlap between estimates is 3.4%. HPD stands for highest posterior density representing credible 
interval for a particular parameter. 
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Neural Evidence of Alertness modulating spatial attention while constrained by 
handedness 
 
Next we employed multivariate pattern analysis (MVPA) techniques to probe the divergent 
patterns in the EEG data across various conditions.  We used decoding techniques to 
uncover the brain activity patterns that differ across experimental conditions. Conventional 
ERP (Event related potentials) analysis rely on using a-priori identified spatial locations or 
temporal segments in the data to measure the differences across conditions. However 
decoding techniques do not rely on a-priori definitions and perform much better in 
detecting differences across experimental conditions (Fahrenfort et al., 2018). We used 
temporal decoding (see methods section) to understand the differences in EEG patterns 
across different conditions.  

Neural mechanisms involved in spatial localization across alert and drowsy 
periods: 

First, we were interested in identifying the neural mechanisms involved in performing the 
spatial attention task during alert conditions and how the mechanisms involved in this task 
are modulated as the participants become drowsy.  

For the right-handers, when the participant was ‘alert’ the decoding of stimuli that was 
presented (‘left’ or ‘right’) started from 160 ms after the stimulus was presented and lasted 
until 720 ms (reliably significant, p<0.05) (Figure 5B). Peak discriminatory power computed 
from area under the curve (AUC) analysis was achieved at 280ms (AUC = 0.61). The average 
AUC between 200-300ms was 0.58 ± 0.007, p<0.05. The average AUC between 300-400ms 
was 0.56 ± 0.002, p<0.05. Correspondingly we also plotted the coefficients of the classifier 
patterns in the sensor space which are neurophysiologically interpretable (Haufe et al., 2014) 
for every 40ms between 180 ms to 500 ms (Figure 6A). The topography between 180-220 ms 
indicates strong response in the fronto-central electrodes. The topography of the patterns 
shifts to more posterior regions (centro-parietal electrodes in the right side of the scalp) 
between 220 ms to 260 ms. Further, the topography of the patterns shifts to more parietal 
and occipital electrodes from 260 ms to 300 ms. 

When the right-handers become drowsier, the decoding of the stimuli (reliably significant, 
p<0.05) only started from 420 ms and lasted until 740 ms (Figure 5D). This is also reflected in 
the slower reaction times in drowsy condition (1181.05 ms in drowsy compared to 695.15 ms 
in alert). Peak AUC of 0.55 was achieved at 590 ms. The average AUC between 400-500 ms 
was 0.53 ± 0.001, p<0.05. The average AUC between 500-600 ms was 0.54 ± 0.003, p<0.05. 
Correspondingly we also plotted the coefficients of the classifier patterns in the sensor 
space for every 40 ms between 180 ms to 500 ms (Figure 6B). The topography between 180-
220 ms indicates the strong response in the frontal electrodes (though not reliably significant 
to decode) compared to the more fronto-central electrodes in the alert condition. 
Interestingly the topography from 220-260 ms shifts again to more frontal electrodes (not 
reliably significant) compared to the central-parietal electrodes in the alert condition. The 
topography of the patterns shifts to more posterior regions (centro-parietal electrodes, 
reliably significant) from 380 ms to 420 ms. Further, the topography of the patterns shifts to 
more parietal and occipital electrodes between 420 ms to 460 ms. 
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To summarise, this indicates that when the right-handed participant becomes drowsy, the 
decoding shifts later (moves from 160 ms in alert to 420 ms in drowsy). Further central-
parietal electrode pattern, which is visible in alert condition, disappears in the drowsy 
condition. In the drowsy condition, the temporal electrodes are activated more in the 260 – 
300 ms compared to the alert condition; as well the temporal electrode patterns last till 500 
ms. It is also interesting to note that the topography from 180-300 ms in the drowsy 
condition is not reliable to decode the stimuli presented and also different compared to the 
alert condition. 

Figure 5:  Classif ier performance across t ime (temporal decoding) indicated by Area 
Under Curve (AUC). A) AUC of left-handers under alert condition, where the classifier was trained 
to discriminate between targets of left and right stimuli. B) AUC of right-handers under alert 
condition, where the classifier was trained to discriminate between targets of left and right stimuli.  C) 
AUC of left-handers under drowsy condition, where the classifier was trained to discriminate between 
targets of left and right stimuli. D) AUC of right-handers under drowsy condition, where the classifier 
was trained to discriminate between targets of left and right stimuli. E) AUC of left-handers under 
drowsy condition when left stimuli were presented, where the classifier was trained to discriminate 
between targets of correct and incorrect responses. F) AUC of right-handers under drowsy condition 
when left stimuli were presented, where the classifier was trained to discriminate between targets of 
correct and incorrect responses. G) AUC of left-handers under drowsy condition when right stimuli 
were presented, where the classifier was trained to discriminate between targets of correct and 
incorrect responses. H) AUC of right-handers under drowsy condition when right stimuli were 
presented, where the classifier was trained to discriminate between targets of correct and incorrect 
responses. 
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To further confirm the location of the brain regions involved, we decided to project the 
classifier patterns from the sensor space to the source space using source reconstruction 
techniques (see methods section). We first found that the decoding pattern under the alert 
condition (target decoding of left vs right stimuli) was mainly predominant in the right 
hemisphere. Between 300-400 ms the right temporal regions were mainly involved 
classifying the stimuli. From 400-500 ms the right inferior parietal regions contribute most to 
the classifier patterns and this continues till 500-600 ms (Figure 7A). Next under the drowsy 
condition, the decoding of left vs right stimuli was predominantly in the left hemisphere. 
Between 300-400 ms the left temporal regions were mainly recruited by the classifier 
patterns. From 400-500 ms the left inferior parietal cortex along with left pre and post-
central cortex regions and left lateral occipital seem to be involved. From 500-600 ms the 
pattern is much more localized in the left inferior parietal cortex regions (Figure 7B). This 
shows that for right-handers the right inferior parietal regions were mostly involved in alert 
condition, whereas the left inferior parietal regions were mostly involved in drowsy condition 
for classifying the left vs right stimuli.  

For the left-handers, when the participant was ‘alert’ the decoding of stimuli that was 
presented (‘left’ or ‘right’) started from 140ms after the stimulus was presented and lasted till 
790ms (reliably significant, p<0.05) (Figure 5A). Peak AUC of 0.64 was achieved at 320ms. 
The average AUC between 200-300 ms was 0.61 ± 0.004, p<0.05. The average AUC between 
300-400 ms was 0.62 ± 0.004, p<0.05. Correspondingly we also plotted the coefficients of 
the classifier patterns in the sensor space, which are neurophysiologically interpretable (as 
above) for every 40 ms between 180 ms to 500 ms (Figure 8A). The topography between 
180-220 ms indicates strong response in the centro-parietal electrodes. The topography of 
the patterns shifts to more posterior regions (parietal electrodes in the right side of the 
scalp) between 220 ms to 260 ms. Further, the topography of the patterns shifts to more 
parietal and occipital electrodes between 260ms to 300ms. 
 
When the left-handers become drowsier, the decoding of the stimuli (reliably significant, 
p<0.05) started from 190 ms (50 ms later compared to alert condition) and lasted until 450 
ms (Figure 5C). This is also reflected in the slower reaction times in drowsy condition (933.33 
ms in drowsy compared to 451.75 ms in alert). Peak AUC of 0.56 was achieved at 320 ms. The 
average AUC between 200-300 ms was 0.53 ± 0.001, p<0.05. The average AUC between 
300-400 ms was 0.54 ± 0.001, p<0.05. Correspondingly we also plotted the coefficients of 
the classifier patterns in the sensor space for every 40 ms between 180 ms to 500 ms (Figure 
8B). The topography between 180-220 ms indicates the strong response in the frontal 
electrodes (reliably significant, p<0.05) compared to the more centro-parietal electrodes in 
the alert condition. Interestingly the topography from 220-260 ms shifts again to more 
frontal electrodes (reliably significant, p<0.05) compared to the central-parietal electrodes in 
the alert condition. The topography of the patterns shifts to more temporal regions 
(tempero-parietal electrodes, reliably significant) between 260 ms to 300 ms. Further, the 
topography of the patterns shifts to more parietal electrodes (on the left side of the scalp) 
between 300 ms to 340 ms. 
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To summarise, this indicates that when the left-handed participant becomes drowsy, the 
decoding shifts later (moves from 140 ms in alert to 190 ms in drowsy). Further central-
parietal electrode pattern, which is visible in alert condition, disappears in the drowsy 
condition. In the drowsy condition, the temporal electrodes are activated more in the 260 – 
300 ms compared to the alert condition. It is also interesting to note that the topography 
from 180-300 ms in the drowsy condition is reliable to decode the stimuli presented and 
even though the topography is different compared to the alert condition. 

Next, we projected the classifier patterns from the sensor space to the source space using 
source reconstruction techniques. We first found that the decoding pattern under the alert 
condition (target decoding of left vs right stimuli) was mainly predominant in the right 
hemisphere. Between 300-400 ms the left temporal regions along with right post-central and 
pre-central regions were mainly involved classifying the stimuli. From 400-500 ms the right 
inferior parietal regions along with right post-central, pre-central regions contribute most to 
the classifier patterns. From 500-600 ms the pattern is much more localized in the pre and 
post-central regions in the right hemisphere (Figure 9A).  

Next under the drowsy condition, the decoding of left vs right stimuli was present in both 
hemispheres. Between 300-400ms the left temporal regions along with right temporal 
regions, right inferior parietal regions were mainly recruited by the classifier patterns. From 
400-500 ms the left temporal cortex along with right temporal regions, right inferior parietal 
regions along with right pre and post-central regions were involved. From 500-600 ms the 
pattern is much more localized in the left inferior parietal cortex regions along with right and 
left temporal cortex regions (Figure 9B). This shows that for left-handers the right inferior 
parietal regions, left temporal regions were mostly involved in alert condition, whereas the 
left inferior parietal regions, right and left temporal regions along with pre and post-central 
regions in the right hemisphere were mostly involved in drowsy condition for classifying the 
left vs right stimuli. 

 
 
Neural mechanisms involved in spatial  localization errors in drowsy periods:  

 
Next, we were interested in identifying the neural mechanisms involved in producing the 
localization error across the left and right side of the space under drowsy conditions. 

Left-stimuli:  

For the right-handers, when the participant was ‘drowsy’ the decoding of responses (correct, 
incorrect responses) when left stimuli was presented started from 180 ms after the stimulus 
was presented and lasted till 320 ms (reliably significant, p<0.05), again from 390 ms to 450 
ms (reliably significant, p<0.05) (Figure 5F). Peak AUC of 0.56 was achieved at 260 ms. The 
average AUC between 180-320 ms was 0.54 ± 0.002, p<0.05. The average AUC between 
390-450 ms was 0.53 ± 0.001, p<0.05. Correspondingly we also plotted the coefficients of 
the classifier patterns in the sensor space for every 40 ms between 180 ms to 500 ms (Figure 
6C). The topography between 180-220 ms indicates strong response in the frontal 
electrodes. The topography of the patterns shifts to more posterior regions (centro-parietal 
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electrodes in the left side of the scalp) between 220 ms to 260 ms. Further, the topography 
of the patterns shifts to more parietal and occipital electrodes between 260 ms to 300 ms. 
Source localization confirmed that activity in the left superior parietal cortex regions (300-500 
ms), left inferior parietal cortex regions (500-600 ms), left frontal regions (200-500 ms), right 
pre-central gyrus (300-600 ms) were involved in the classifier patterns (Figure 7C). 

 
For the left-handers, when the participant was ‘drowsy’ the decoding of responses (correct, 
incorrect responses) when left stimuli was presented started from 160 ms after the stimulus 
was presented and lasted till 260 ms (reliably significant, p<0.05), again from 390 ms to 450 
ms (reliably significant, p<0.05) (Figure 5E). Peak AUC of 0.58 was achieved at 420ms. The 
average AUC between 160-260 ms was 0.55 ± 0.002, p<0.05. The average AUC between 
390-450 ms was 0.56 ± 0.005, p<0.05. Correspondingly we also plotted the coefficients of 
the classifier patterns in the sensor space for every 40 ms between 180ms to 500ms (Figure 
8C). The topography between 180-220 ms indicates strong response in the frontal 
electrodes. The topography of the patterns shifts to more posterior regions (centro-
temporal electrodes in the right side of the scalp) between 220 ms to 260 ms. Further, the 
topography of the patterns shifts to more right parietal and right temporal electrodes 
between 260 ms to 300 ms. Source localization of the classifier patterns confirmed that 
activity in the left temporal cortex (300-400 ms), left inferior parietal cortex (300-600 ms), right 
precentral gyrus (400-600 ms) (Figure 9C). 

 
Right-stimuli:  

When both the right and left-handers became ‘drowsy’, the decoding of responses (correct, 
incorrect response) when right stimuli was presented was not reliably significant across any 
time point (Figure 5H,G). However, we decided to plot the coefficient of the classifier 
patterns in the sensor space to explore the electrode locations involved.  
 
For the right-handers, we plotted the coefficients of the classifier patterns in the sensor 
space for every 40 ms between 180 ms to 500 ms (Figure 6D). The topography between 180-
220 ms indicates strong response in the central electrodes. The topography of the patterns 
shifts to more posterior regions (centro-parietal electrodes in the left side of the scalp) 
between 220 ms to 260 ms. Further, the topography of the patterns shifts to more parietal 
and occipital electrodes between 260 ms to 300 ms. To further confirm the location of the 
brain regions involved, we decided to project the classifier patterns from the sensor space to 
the source space (Figure 7D). We found that the decoding pattern was located in temporal 
cortex (200-600 ms), left and right parietal cortex (300-600 ms), left and right pre and post-
central gyrus (300-600 ms). 
 
For the left-handers, we plotted the coefficients of the classifier patterns in the sensor space 
for every 40 ms between 180 ms to 500 ms (Figure 8D). The topography between 180-220 ms 
indicates strong response in the fronto-central electrodes. The topography of the patterns 
shifts to more posterior regions (fronto-central electrodes) between 220 ms to 260 ms. 
Further, the topography of the patterns shifts to more parietal and occipital electrodes 
between 260 ms to 300 ms. To further confirm the location of the brain regions involved, we 
decided to project the classifier patterns from the sensor space to the source space (Figure 
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9D). We found that the decoding pattern was located in left frontal regions (300-600 ms), left 
inferior parietal regions (400-600 ms), left pre-central gyrus (300 – 600 ms), right parietal 
cortex regions (500 – 600 ms).  

 
 
 
 
 
 

 
Figure 6:  Coefficients of classif ier patterns in r ight-handers. A) Coefficients of classifier 
patterns of right-handers under alert condition, where the classifier was trained to discriminate 
between targets of left and right stimuli. B) Coefficients of classifier patterns of right-handers under 
drowsy condition, where the classifier was trained to discriminate between targets of left and right 
stimuli. C) Coefficients of classifier patterns of right-handers under drowsy condition when left stimuli 
were presented, where the classifier was trained to discriminate between targets of correct and 
incorrect responses. D) Coefficients of classifier patterns of right-handers under drowsy condition 
when right stimuli were presented, where the classifier was trained to discriminate between targets of 
correct and incorrect responses. ** indicates statistically significant time periods, the topographical 
plot was averaged between the time intervals mentioned. 
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Figure 7:  Classif ier patterns projected in source space for r ight-handers. A) Decoding 
patterns (for target classification of left vs right stimuli) starts in the left parietal regions first (280 ms), 
followed by right parietal regions (400 ms). B) Under drowsy conditions the decoding patterns (for left 
vs right stimuli) start later only at 400 ms and it more prevalent in the temporal regions, followed by 
parietal regions at 540-590ms. C) Decoding patterns under drowsy conditions (for left stimuli with 
target classification of correct vs incorrect response) starts in the regions closer to the Inferior frontal 
gyrus from 260ms and lasts till 410 ms. D) Decoding patterns under drowsy conditions (for right stimuli 
with target classification of correct vs incorrect response) starts in the temporal regions from 320 ms 
followed by more parietal and motor regions at 410 ms. ** indicates statistically significant time 
periods. 
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Figure 8:  Coefficients of classif ier patterns in left-handers. A) Coefficients of classifier 
patterns of left-handers under alert condition, where the classifier was trained to discriminate 
between targets of left and right stimuli. B) Coefficients of classifier patterns of left-handers under 
drowsy condition, where the classifier was trained to discriminate between targets of left and right 
stimuli. C) Coefficients of classifier patterns of left-handers under drowsy condition when left stimuli 
were presented, where the classifier was trained to discriminate between targets of correct and 
incorrect responses. D) Coefficients of classifier patterns of left-handers under drowsy condition when 
right stimuli were presented, where the classifier was trained to discriminate between targets of 
correct and incorrect responses. ** indicates statistically significant time periods, the topographical 
plot was averaged between the time intervals mentioned. 
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Figure 9:  Classif ier patterns projected in source space for left-handers. A) Decoding 
patterns (for target classification of left vs right stimuli) starts in the right hemisphere regions first (240 
ms), followed by left temporal regions (350 ms). B) Under drowsy conditions the decoding patterns 
(for left vs right stimuli) start later only at 260 ms and it more prevalent in the left temporal regions, 
followed by right inferior regions at 370 ms. C) Decoding patterns under drowsy conditions (for left 
stimuli with target classification of correct vs incorrect response) starts in the regions closer to the left 
frontal, temporal regions, right parietal regions from 400ms and lasts till 420 ms. D) Decoding 
patterns under drowsy conditions (for right stimuli with target classification of correct vs incorrect 
response) starts in left temporal, left parietal regions from 400 ms followed by more left frontal and 
motor regions at 420 ms. ** indicates statistically significant time periods. 
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Connecting Behaviour with Neural signatures 
 
Next, we were interested in identifying the neural signatures that are related directly to the 
process of evidence accumulation.  Using this analysis, we can compute the sensor locations 
that reliably encode the difference in drift rates (across stimuli and alertness conditions), 
which could further be used to provide evidence to specific sensor location computed with 
the MVPA methods earlier. For this purpose, we used the parameters from the drift diffusion 
model constructed earlier. To summarise from the earlier findings, it was found that the rate 
of evidence accumulation (drift-rate) was different between left and right stimuli in right-
handers as they become drowsy. To assess the trial-by-trial variation of the behavioural 
parameters with the neural signatures we fitted a regression model using the HDDM toolbox 
(Wiecki et al., 2013) 
 
 
We fitted the Stimulus-coding model (‘left’ or ‘right’) responses as earlier and estimated the 
drift rate (v) as a function of ERP data per trial per electrode per time point (See methods 
section) 
 

𝑉 ~ 𝛽! +  𝛽!(𝐸𝑅𝑃)  
 
 
The above equation can be written in patsy form as below. 
 
 

𝑉 ~ 𝐸𝑅𝑃:𝐶 𝑠𝑡𝑎𝑡𝑒,𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 ′𝐴𝑙𝑒𝑟𝑡! :𝐶(𝑠𝑡𝑖𝑚,𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 ′𝑅𝑖𝑔ℎ𝑡! ) 
 
 
Where, V represents the drift rate, ERP represents the z-scored ERP data computer per trial 
per time point, state represents ‘alert’ or ‘drowsy’, stim represents ‘left’ or ‘right’. The bias 
point (z) was made to vary with the stimulus as before. From this analysis we can find out 
how the drift rate varied with the ERP data across stimulus and alertness levels. The 
difference in the drift rate between the left and right stimulus in alert and drowsy conditions 
can then be plotted per electrode per time point (Figure 10). 
 
We first plotted the difference in drift rate (proportion of overlap in the posterior distribution 
across stimuli) in the alert condition in time steps of 50 ms. For the right-handers (Figure 
10A), the topography of the sensor plot shows that electrodes in the fronto-central region 
(150-200 ms) shows higher differences in drift rate (implying the encoding of evidence 
accumulation rate).  Followed by which the topography shifts to central and parietal 
electrodes (200-250 ms). Further after 250 ms the topography shifts to more posterior 
regions in the central and parietal electrodes. For the left-handers, we plotted the difference 
in drift rate in the alert condition in time steps of 50 ms (Figure 10B). The topography of the 
sensor plot shows that electrodes in the fronto-central region (150-200ms) shows higher 
differences in drift rate.  Followed by which the topography shifts to more posterior regions 
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in central and parietal electrodes (200-250 ms). Further after 250 ms the topography shifts to 
more posterior regions in the central and parietal electrodes. 
 
 
Next we plotted the difference in drift rate in the drowsy condition. For the right-handers, 
the topography of the sensor plot shows that more frontal and central electrodes show 
differences in drift rate from 150 – 250 ms (Figure 10C). Further the topography shifts to 
more central, parietal, right temporal electrodes in 250-300 ms. The topography then moves 
to more posterior regions in the parietal and central electrodes from 350 ms onwards. For 
the left-handers, the topography of the sensor plot shows that more frontal and central  
electrodes show differences in drift rate from 150 – 250 ms (Figure 10D). Further the 
topography shifts to more central, parietal, right temporal, right frontal electrodes in 250-300 
ms. The topography then moves to more posterior regions in the parietal and central 
electrodes from 350 ms onwards. 
 
 

 
Figure 10:  Regression of drift  rate across different conditions in r ight and left-
handers. A) Proportion of overlap between drift rates across left and right stimuli in right-handers in 
alert condition across different time points. B) Proportion of overlap between drift rates across left 
and right stimuli in left-handers in alert condition across different time points. C) Proportion of overlap 
between drift rates across left and right stimuli in right-handers in drowsy condition across different 
time points. D) Proportion of overlap between drift rates across left and right stimuli in left-handers in 
drowsy condition across different time points. 
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DISCUSSION: 
 
We investigated how the brain of right and left-handed individuals is differentially affected 
by varying levels of alertness while performing an auditory spatial attention task.   

Our results from behavioural analysis confirm the differences in performance of right and 
left-handed individuals.  

First, multilevel modelling shows that for both right and left-handed individuals the 
proportion of error is dependent on a combination of alertness level (‘alert’ or ‘drowsy’) and 
stimuli (‘left’ or ‘right’) being presented. For right-handers we also observe that the error 
proportion of left stimuli is markedly increased when compared to right stimuli, thereby 
producing a typical neglect-like effect. However, the left-handers do not show any such 
effect and the error proportion of both left and right stimuli increase when left-handers 
become drowsy. The performance of right-handers replicate previous studies (Bareham et 
al., 2014) and further show evidence for left neglect as in (Fink et al., 2001; Jewell and 
McCourt, 2000). While those of left-handers contradict previously published results (Bareham 
et al., 2015). This could be due to more accurate measurement of trial-by-trial alertness 
levels using micro-measures algorithm (Jagannathan et al., 2018), increased trial numbers (as 
well as more uniform sampling of the space from -59.31º to +59.31º) and separate baseline 
‘alert’ session providing more statistical power in the present study. We also further use the 
handedness score of individual participants along with alertness levels to show how they can 
explain the behaviour of both right and left-handed participants. 

Second, we used psychophysics to show how the subjective mid-lines of individual 
participants vary as they become drowsy. We then show how most of the right-handed 
participants have their subjective midlines shifted to the left (thereby making more left 
errors). These results again replicate the error bias metric computed in (Bareham et al., 2014) 
and further show evidence of mid-line shift similar to observation in patient studies (Karnath 
and Fetter, 1995; Vallar, 1998). Comparatively, the left-handers are much more 
heterogeneous with individuals shifting to the left and right as well. We further show in right-
handers; the sensitivity of the system is highly correlated with the mid-line shift as 
participants become drowsier.  In other words, a common factor (alertness) seems to 
modulate both the sensitivity and the midline shift. However, left-handers do not show any 
such correlation, thereby providing further evidence for lack of alertness related modulation 
in behaviour (on one side of space). 

Third, we decided to use a computational model to dissect the various parameters involved 
in the decision making process. We used hierarchical drift-diffusion model to show that as 
right-handers became drowsy the drift-rate (evidence accumulation rate) changes for the left 
stimuli and not for the right stimuli. Using the same model in left-handers reveals that the 
evidence accumulation rate doesn’t change when the participants become drowsier. We 
also show that for both right and left-handed participants the bias point (starting point) of 
the decision making process doesn’t change as they become drowsier. This clearly points to 
the elements of evidence accumulation (and not response bias) in explaining the behaviour 
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as the participants become drowsier. Further it has been shown that trial to trial variation in 
drift rate is directly linked to attentional processes (Nunez et al., 2017), thereby clearly 
establishing the behavioural effect as linked to attention rather than to sensory dysfunction. 

Our results from EEG analysis also confirm the differential processing of information by right 
and left-handed individuals in the tone localization task.  

First, decoding analyses in sensor space from EEG data show that during the alert condition 
the decoding (target: left versus right stimuli) uncovered regions in the brain that are 
involved in performing this task under baseline conditions. For the right-handers, we found 
that mainly putative regions in the right hemisphere were involved. Chiefly regions like right 
temporal cortex, right inferior parietal regions were present in the decoding patterns. These 
regions broadly correspond to findings from (Shulman et al., 2010) implicating right 
temporo-parietal cortex. As mentioned in the introduction, this activation of right 
hemispheric regions adds evidence to right hemisphere dominance model in right-handers 
under alert conditions. For the left-handers, we found regions in right hemisphere were 
involved. Chiefly regions like right inferior parietal regions were present in the decoding 
patterns. This activation adds evidence to right hemispheric dominance model in left-
handers under alert conditions. 

Second, the decoding analysis in sensor space from EEG data shows that during the drowsy 
condition the decoding (target: left versus right stimuli) uncovered the following regions in 
the brain. For the right-handers, we found that activity mainly shifts to the left hemisphere. 
Primarily regions like left temporal, left inferior parietal were involved. This shows that under 
conditions of low alertness, the left hemisphere is highly active in performing this task. 
Under these conditions the left hemisphere pulls attention to the right side of the space, 
thereby explaining neglect like effects. This again adds evidence to the right hemispheric 
dominance model. Further evidence from invasive studies performed by (Szczepanski and 
Kastner, 2013) using transcranial magnetic stimulation of dorsal attention regions leads to 
attention being shifted to the ipsilateral side. Potentially further studies involving activation 
in the ventral regions could possibly provide evidence for attention being shifted to the 
contralateral side. Also studies (Sturm et al., 1999) involving the neural correlates of alertness 
have shown that activity in the right hemisphere increased under conditions of high 
alertness, which broadly agrees with our findings. For the left-handers, we found that activity 
is bilateral in both the right and left hemisphere. Primarily regions like left temporal, left 
inferior parietal, right temporal, right inferior parietal were involved. This shows that under 
conditions of low alertness, both the right and left hemisphere is highly active in performing 
this task, however the locations move more ventral compared to the alert condition. This 
bilateral activation adds evidence to interhemispheric competition model in left-handers 
under drowsy conditions.  

 

Third, the decoding analysis in sensor space from EEG data shows that during the drowsy 
condition on the presentation of left stimuli (target: correct versus incorrect response) 
uncovered the following regions in the brain. For the right-handers, primarily regions in left 
superior parietal, left inferior parietal were involved. These regions broadly agreed with the 
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inferior parietal regions found in (Mort et al., 2003). For the left-handers, primarily regions in 
left superior parietal, left inferior parietal were involved. 

This conclusion of the differential brain regions involved was derived from qualitatively 
comparing the decoding patterns under different conditions. Hence the involvement of the 
above mentioned brain regions should be further confirmed by performing statistical 
analysis either in the source or the sensor space across different conditions. 

Overall, these analyses putatively suggest that when undertaking a spatial attention task: the 
right-handers rely on the right hemisphere (posterior parietal regions) when alert, the left-
handers also show such hemispheric preference in the posterior parietal regions. The right-
handers shift their reliance to the left hemisphere (posterior parietal regions) when drowsy, 
while the left-handers maintain a balanced decoding profile in both hemispheres. These 
findings support the evidence for right hemisphere dominance in right-handers while 
supporting interhemispheric completion model in left-handers. 

These findings call for inclusion of left-handers in spatial experiments in order to provide 
further evidence to evaluate neuroanatomical models of spatial attention. 

 

EXPERIMENTAL PROCEDURES: 
 
Stimuli and Protocol 
 
Right-handers:  
Forty-one healthy self-described right-handers participated in this study. Data from nine 
subjects had to be discarded due to a) technical problems with the headphone amplifier 
(8).  b) Not following instructions (1). Hence data from 32 participants (24.46 ± 3.72 years old, 
14 males) was considered for further analysis. Only self-described easy sleepers were 
recruited, further on the day of the experiment they were administered with the Epworth 
Sleepiness scale (Johns, 1991), Edinburgh Handedness Scale (Oldfield, 1971). 29 participants 
had a sleepiness score >= 7 (easy sleepers) and 3 of them had a sleepiness score >=4. All 
participants had handedness score of above 0 (right-handed) with mean 80.26 ± 23.59.  
 
Left-handers:  
Thirty-five healthy self-described left-handers participated in this study. Data from three 
subjects had to be discarded due to a) technical problems with the headphone (1).  b) Not 
following instructions (2). Hence data from 32 participants (24.40 ± 5.89 years old, 16 males) 
was considered for further analysis. Only self-described easy sleepers were recruited, further 
on the day of the experiment they were administered with the Epworth Sleepiness scale 
(Johns, 1991). 30 participants had a sleepiness score >= 7 (easy sleepers) and 2 of them had 
a sleepiness score >=4. Handedness was assessed using Edinburgh Handedness Scale 
(Oldfield, 1971) with handedness scores of -57.96 ± 29.01 (score of below 0 is considered left 
handed).  
 
All participants had no auditory, neurological, psychiatric abnormalities. They were also 
asked not to consume stimulants like Coffee/Tea on the day of the experiment. Further, they 
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gave written informed consent and were compensated with 30£ for the study. Each 
participant underwent two sessions a) Awake b) Drowsy.  
 
Awake session: 
Participants were presented with 124 complex harmonic tones (created from guitar picks) 
that fell on the left or right of their midline (0º) varying from -59.31º to +59.31º. The tones 
were recorded previously in free-field using in ear microphones (Bareham et al., 2014). Six 
tones from -59.31º to -39.26º were presented two times each; twelve tones from -35.24º to -
1.86º were presented four times each. The same pattern was repeated on the right side with 
twelve tones from 1.86º to 35.24º were presented four times each, six tones from 39.26º to 
59.31º presented two times each. The tones in the midline (0º) were presented four times. 
This resulted in a total of 124 tones. The order of stimulus presentation was randomized per 
participant. Participants were instructed to keep their eyes closed and respond (as quickly 
and as accurately as possible) with a button press (by left/right thumb) indicating the 
direction of the tone (left or right). Each trial began after a random interval of 2-3 seconds 
and if participant did not respond for 5 seconds, the next trial was started. The participants 
were also instructed to stay awake throughout the task.   
 
Drowsy session: 
Participants were presented with 740 complex harmonic tones (as above) that fell on the left 
or right of their midline (0º) varying from -59.31º to +59.31º.  Six tones from -59.31º to -39.26º 
were presented twenty times each; twelve tones from -35.24º to -1.86º were presented 
twenty times each. The same pattern was repeated on the right side with twelve tones from 
1.86º to 35.24º were presented twenty times each, six tones from 39.26º to 59.31º presented 
twenty times each. The tone in the midline (0º) was presented twenty times. This resulted in 
a total of 740 tones. The order of stimulus presentation was randomized per participant as 
above. Participants were instructed to keep their eyes closed and respond (as quickly and as 
accurately as possible) with a button press (by left/right thumb) indicating the direction of 
the tone (left or right). Each trial began after a random interval of 4-5 seconds and if 
participant did not respond for 5 seconds, the next trial was started. The participants were 
allowed to fall asleep (and become drowsy) and were woken up if they didn’t respond to 
more than 3 trials continuously.  
 
Before the awake and drowsy session, the participants were allowed a practise session to 
familiarise with the task.   

Preprocessing 
 
EEG data was acquired using 129 Ag/AgCl electrodes (Electrical Geodesics Inc) with Cz as 
reference. The electrode impedances were kept below 100 KΩ and signal was acquired at a 
sampling rate of 500 Hz. EEG data was pre-processed with custom made scripts in MATLAB 
(MathWorks Inc. Natick, MA, USA) using EEGLAB toolbox (Delorme and Makeig, 2004).    
First, the peripheral channels in the EEG that covered the regions of forehead, cheeks and 
neck were removed to minimise eye and muscle related artifacts, thus retaining only 92 
channels that covered the scalp. Second, the data was bandpass filtered with zero phase 
shift between 1 and 40 Hz using hamming windowed-sinc FIR filter and was then resampled 
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to 250 Hz. Third, pre-trial and post-trial epochs were created as follows. For the pre-trial 
epochs, the data was epoched from -4000ms to 0ms to the onset of the stimuli in the Drowsy 
session. Pre-trial epochs were not created in the Awake session (details below). For the post-
trial epochs, the data was epoched from -200ms to 800ms to the onset of the stimuli for both 
the Awake and Drowsy sessions. Fourth, the trials that exceed the amplitude threshold of 
±250 μV were removed in a semi-automatic fashion. Fifth, the bad channels were detected in 
two steps: a) channels are considered bad if channel variance is below 0.5. b) The normalized 
power spectrum of the remaining channels is computed and any channel that exceeds the 
mean power spectrum by ±3 standard deviations was marked bad. Sixth, Independent 
component analysis (ICA) was performed on the channels not marked as bad in the previous 
step. ICA components that correspond to artifacts (eye-blinks, muscle) were rejected by 
manual inspection. Seventh, the bad channels were now interpolated using spherical 
interpolation. Eighth, the bad trials detection was performed again (amplitude threshold of 
±250 μV) and bad electrodes in such trials interpolated in a trial-by-trial fashion. Ninth, the 
post-trial epochs were re-referenced to the average of all channels (pre-trial epochs were 
maintained with the same Cz reference). 

 
Alertness levels 
 
The first step in the analysis involved classifying periods of the experimental session into 
‘awake’ and ‘drowsy’.  The pre-trial period before each tone was used in classifying the 
corresponding trial as awake or drowsy. However, in the awake session all participants were 
explicitly asked to stay awake. Hence the pre-trial epochs were not computed in the awake 
session and all 124 trials in the awake session in each participant were classified as ‘awake’.  
In the drowsy session, the participants were allowed to fall asleep and hence in some trials 
they would be alert and in some they would be drowsy. Pre-trial epochs in the drowsy 
session (computed from the previous section) were analysed using the micro-measures 
algorithm (Jagannathan et al., 2018) and each trial was classified was ‘alert’, ‘drowsy(mild)’, 
‘drowsy(severe)’. Only trials that were classified as ‘drowsy(mild)’ were used as ‘drowsy’ trials. 
The other trials were ignored because usually participants don’t respond when under 
‘drowsy(severe)’ trials and we also wanted to compare the drowsy trials of the drowsy session 
to the alert session, so we ignored the ‘alert’ trials in the drowsy session. 

 
Behavioural analysis 
 
Multi- level modell ing: 
 
We first computed the proportion of errors made by each subject under each condition 
(‘awake’, ‘drowsy’) under each stimulus (‘left’, ‘right’ to the midline). If the number of trials for 
any participant under a particular condition is less than 5 then the corresponding error 
proportion is ignored in the analysis. Next we investigated whether the proportion of error is 
influenced by state of the participant (‘awake’ or ‘drowsy’), stimulus (‘left’ or ‘right’) or an 
interaction of both. For this purpose, we defined 4 models. In the null model, the error 
proportion depends only on its mean (fixed effect) and the individual participant (participant 
id is used a random effect). In the second model (state model), the error proportion 
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depends only on the state of the participant (‘awake’ or ‘drowsy’ as fixed effect) and 
individual participant (participant id is used as random effect). In the third model (stimulus 
model), the error proportion depends only on the stimulus being presented (‘left’ or ‘right’ 
as fixed effect) and individual participant (participant id is used as random effect). In the 
fourth model (state-stimulus model), the error proportion depends on a combination of state 
of participant (‘awake’ or ‘drowsy’) and the stimulus being presented (‘left’ or ‘right’), both 
used as fixed effects and individual participant (participant id is used as random effect). 
These 4 models are fit separately for left and right-handers using the ‘lmer’ function in R 
(Bates et al., 2015b, 2015a) and the winning model is identified as the one with the highest 
log-likelihood by comparing it with the null model and performing a likelihood ratio chi-
square test (χ2). Finally the top two winning models are compared against each other using 
‘anova’ function in R (Fox and Weisberg, 2011), to validate whether the winning model (if it is 
more complex) is actually better than the loosing model (if it is simpler). 
The models for left and right-handers along with log-likelihood values are shown below. In 
both cases the state-stimulus model was the winning model. 

Right-handers: 

Model Parameters Log-l ikelihood Pr(>χ2) 
Null  Fixed: mean, Random: subject id 61.24 - 
State  Fixed: state, Random: subject id 66.62 <0.001 
Stimulus  Fixed: stimulus, Random: subject id 68.45 <0.001 
State-Stimulus  Fixed: state*stimulus, Random: subject id 77.98 <0.001 
 

Left-handers: 

Model Parameters Log-l ikelihood Pr(>χ2) 
Null  Fixed: mean, Random: subject id 78.12 - 
State  Fixed: state, Random: subject id 86.68 <0.001 
Stimulus  Fixed: stimulus, Random: subject id 81.59 <0.01 
State-Stimulus  Fixed: state*stimulus, Random: subject id 91.42 <0.001 
 

The winning model of state-stimulus was further analysed with the ‘anova’ function to 
quantify the relationship between error-proportion and state and stimulus. Estimated 
marginal means were computed using ‘emmeans’ package in R. 

In the next step to provide more evidence of handedness modulating behaviour, data from 
both right and left-handers were combined and we used the handedness score from 
Edinburgh Handedness Scale as a parameter in the model.  

For this purpose, we defined 5 models. In the null model, the error proportion depends only 
on its mean (fixed effect) and the individual participant (participant id is used a random 
effect). In the second model (state model), the error proportion depends only on the state of 
the participant (‘awake’ or ‘drowsy’ as fixed effect) and individual participant (participant id is 
used as random effect). In the third model (stimulus model), the error proportion depends 
only on the stimulus being presented (‘left’ or ‘right’ as fixed effect) and individual 
participant (participant id is used as random effect). In the fourth model (state-handedness 
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model), the error proportion depends on a combination of state of participant (‘awake’ or 
‘drowsy’ as fixed effect) and the handedness score of the participant (as random effect – 
slope) and individual participant (participant id is used as random effect - intercept). In the 
fifth model (stimulus-handedness model), the error proportion depends on a combination of 
stimulus being presented (‘left’ or ‘right’ as fixed effect) and the handedness score of the 
participant (as random effect – slope) and individual participant (participant id is used as 
random effect - intercept). The interaction effect was avoided because of two reasons. First, 
the handedness score is not a binary value but a continuous value from -100 to +100 and 
hence it is difficult to interpret the interaction effect (if any). Second, left-handers showed no 
interaction while the right-handers showed interaction between stimulus and state in the 
previous analysis and hence only factors that showed effect for left and right-handers were 
chosen. 

The models for handedness score along with log-likelihood values are shown below. The 
state-handedness model emerges as the winning model.  

Model Parameters Log-l ikelihood Pr(>χ2) 
Null  Fixed: mean, Random: id 138 - 
State  Fixed: state, Random: id 150.94 <0.001 
Stimulus  Fixed: stimulus, Random: id 148.07 <0.001 
State-handedness  Fixed: state, Random: handedness, id 152.77 <0.001 
Stimulus-
handedness  

Fixed: stimulus, Random: handedness, 
id 

149.47 <0.001 

 
Psychometric function f its:  
 
The change in subjective midline was quantified by fitting psychometric functions to the 
responses produced by each participant under alert and drowsy conditions. The proportion 
of rightward response under each stimulus condition from -60º to +60º was fitted with a 
cumulative normal function using the generalized linear model ‘glm’ function in R. The link 
function used for the fit was 'probit' which asymptotes to 0 (Knoblauch, 2014). The mean of 
the cumulative normal function (the point where the curve cross 0.5 in the y-axis) is referred 
to as the subjective midline (‘bias’). This is because the subjective midline is the stimulus 
where the participant performs at chance (0.5). The Bias was calculated separately per 
participant per condition (alert, drowsy).  The standard deviation of the curve (slope or 
steepness of the curve) represents the ‘sensitivity’ of the system. Increase in standard 
deviation reduces the sensitivity of the system. Participants that had a bias point (mean) of 
more than 60º were ignored in the drowsy condition (this is because overall stimulus angle 
varied from -60º to +60º).  

 
Drift  diffusion model:  
 

Next, we aimed to quantify the different elements of decision-making process using the 
drift-diffusion model. The primary elements of this model include i) drift-rate - ‘v’ which is the 
evidence accumulation rate ii) bias point - ‘z’ indicating the starting point of the decision 
making process iii) boundary separation distance – ‘a’ which is the distance between the two 
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decision boundaries. iv) non-decision time –‘Ter’ usually accounting for processes like 
stimulus encoding (prior to evidence accumulation), time for response execution (after 
evidence accumulation). We decided to use the hierarchical drift diffusion model (HDDM) to 
provide for a hierarchical Bayesian procedure to estimate the model parameters involved in 
our task (Wiecki et al., 2013) (version 0.6.0). It is important to note that different participants 
would have differing levels of alertness, this would mean that we have varying number of 
trials per condition per participant. Hence it is crucial to use an approach that would provide 
a robust estimation of model parameters with the limited amount of trials available (Zhang 
et al., 2016).  

For the HDDM we fit the response of each participant (‘left’ or ‘right’) instead of accuracy 
(‘correct’ or ‘incorrect’). This procedure is referred to as Stimulus-coding. For this purpose, 
we examined 8 different variants of the DDM (see below).  

For individual models, we created 15000 samples from the posterior distribution of the 
model parameters using Markov chain Monte Carlo methods. Further 5000 samples were 
discarded as burn-in to reduce the effect of initial values on the estimation of the posterior.  

The winning model in each case was chosen by the lowest deviance information criterion 
(DIC). The DIC provides a measure for the accuracy of the model, while penalising for model 
complexity (Spiegelhalter et al., 2002). To check the convergence of the winning model, 
Gelman-Rubin statistic was compared for 5 model runs and the winning model was found to 
have values close to 1 and not larger than 1.2 thus indicating convergence (Gelman, 2013).  

The DIC scores along with model specifications are given below for right and left-handers 
separately. 

Right-handers: 
 

Model# Drift-rate(v) Bias-point(z)  DIC score 
1 'state' 'state' 22515.22 
2 'state' 'stim' 22474.04 
3 'state' 'state', 'stim' 22274.47 
4 'stim' 'state' 24057.05 
5  'stim' 'stim' 23903.25 
6 'stim' 'state', 'stim' 22112.33 
7  'state', 'stim' 'state' 21712.48 
8  'state',  'st im' 'st im' 21698.74 

 
Left-handers: 
 

Model# Drift-rate(v)  Bias-point(z)  DIC score 
1 'state' 'state' 15312.62 
2 'state' 'stim' 15282.13 
3 'state' 'state', 'stim' 15004.32 
4 'stim' 'state' 18059.01 
5  'stim' 'stim' 17778.83 
6 'stim' 'state', 'stim' 15120.32 
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7  'state', 'stim' 'state' 14425.01 
8  'state',  'st im' 'st im' 14303.69 

 

 
 

Decoding 
Next we employed multivariate pattern analysis (MVPA) techniques to probe the divergent 
patterns in the EEG data across various conditions.  Decoding is considered to be a form of 
backward model where the goal is to extract latent factors (hidden variables) from the 
observed data (EEG) (Haufe et al., 2014).  Thus, decoding is the method of analysing 
patterns of brain activity in order to predict the experimental condition (or stimuli) 
responsible for generating that pattern. This is in contrast to encoding which is a form of 
forward model wherein arbitrary values of experimental variables (or conditions) can be used 
to predict patterns of brain activity (Fahrenfort et al., 2018). Conventional ERP (Event related 
potentials) analysis rely on using a-priori identified spatial locations or temporal segments in 
the data to measure the differences across conditions. However decoding techniques do 
not rely on a-priori definitions and perform much better in detecting differences across 
experimental conditions (Fahrenfort et al., 2018). 

 
Temporal decoding: 

Temporal decoding involves using EEG data  𝑋  composed of size: [Electrodes x Time 
points x Trials] to predict the experimental condition 𝑌  . The experimental condition for 
e.g. could be the stimuli presented (for e.g. left or right stimuli).  The first step in the 
decoding analysis consists of fitting an estimator 𝑤  to a subset of the data 𝑋  called 𝑋!"#$% 
to predict a subset of the experimental condition 𝑌  called 𝑌!"#$%. The second step involves 
using this trained estimator on another subset of the data 𝑋  called 𝑋!"#! to predict subset 
of the experimental condition 𝑌  called 𝑌!"#!. The third step involves evaluating the 
performance of this estimator using a measure (e.g. accuracy) by comparing the prediction 
𝑌!"#! with the actual label 𝑌!"#!. 

Estimator construction: 

Before fitting the estimator 𝑤  to the data 𝑋 , it needs to be standardised. Firstly, the EEG 
data is subjected to a standard scaler (using StandardScaler() from scikit-learn) that removes 
the mean of the data and scales it by its variance. This procedure is useful for normalising 
data, which is a standard requirement for many machine-learning estimators. Secondly, we 
used the logistic regression to estimate the model parameters for finding the hyperplane 
that can maximally separate categories in the experimental condition 𝑌 . Thirdly, we 
implemented the temporal decoding by using the sliding estimator (SlidingEstimator() from 
scikit-learn) to fit the logistic regression model per time-point. 

Cross-validation: 

Next, the EEG data was down sampled to 100 Hz. Further to which we defined the 
categories to classify (classes in 𝑌). For example, we can classify the stimuli that were 
presented (‘left’ or ‘right’) when the participant was ‘alert’ (to further refine this, we can only 
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choose trials where the participant made the correct decision). In this case, the binary 
classification was performed between these two conditions (‘left’ and ’right’). Additionally, 
the classification was only run if the participant had at least 25 trials under each condition. 
This ensured that only participants that had a sufficient number of trials were used for 
classification. Further n-fold cross validation was performed such that (n-1)/n th  of the trials 
were used as training set and 1/n th  of  the trials were used as testing set. Usually the number 
of folds ’n’ was set to 5 unless mentioned otherwise. 

Validation measure: 

Next, the classifier performance was evaluated using the Area Under the Curve (AUC) of the 
receiver-operating characteristic (ROC). It is implemented using ‘roc_auc’ in the sliding 
estimator function in scikit-learn. The ROC curve is obtained by plotting the true-positive 
rate against the false-positive rate. The AUC of this curve represents the degree of 
separability of the various classes. When AUC is about 0.5 the classifier performs at chance, 
while the AUC score of 1 has a very good separability across classes. In our case, we 
computed the AUC-ROC score per participant as the average of the score across all the 
cross-validation folds. 

Group statistics: 

Next, we performed a cluster permutation test on the AUC score of each participant 
(dimensions of Participants x Time points) using MNE (spatio_temporal_cluster_1samp_test) 
(Gramfort et al., 2013). This produces p-values per time point at the group level, from which 
we can identify the time points where the AUC score is significantly different from chance 
(0.5) at the group level. 

Coefficients of patterns: 

Next, we need to identify the patterns in the data that is being used by the estimator to 
produce reliable classifier performance. The parameters of the decoding model are not 
neurophysiologically interpretable in a straightforward way (Haufe et al., 2014). Hence it is 
necessary to produce a transformation that changes the backward model parameters into 
forward model. This is done by obtaining the coefficients of the estimator model per 
participant using ‘get_coef’ function from MNE(‘_patterns’).  Further, the coefficients are 
averaged at the group level to obtain the EEG patterns in the data that help discriminate 
between conditions. 

Source reconstruction of patterns: 

Finally, the coefficients (patterns) created from the estimator model are projected in the 
source space as follows. Source reconstruction was done primarily using Freesurfer (Fischl, 
2012) and MNE (Gramfort et al., 2013). Firstly, we used the default ICBM152 template for the 
structural magnetic resonance image (MRIs). We reconstructed the surface using ‘recon-all’ 
from Freesurfer. We then created the Boundary element model (BEM) using 
‘make_watershed_bem’ from MNE. Next, we created scalp surfaces for the different element 
boundaries using ‘make_scalp_surface’ from MNE. Secondly, we performed the registration 
of the scalp surface (generated in the previous step) with the default EEG channel locations 
manually using ‘coregistration’ from MNE with the help of fiducials. Thirdly, forward solution 
was computed using ‘make_bem_model’ from MNE with conductivity = [0.3, 0.006, 0.3]. In 

143



order to test if the source reconstruction of the sensor data is accurate we projected the ERP 
data of a sample participant into source space and analysed data from different regions of 
interest to confirm its validity (See Supplementary information). 

The classifier patterns (coefficients created above) of each participant (32) were used for 
projecting into source space. Fourthly, we computed the noise covariance using the 
baseline data from -0.2 to 0 ms. Fifthly, we used the forward solution (8196 vertices) and the 
noise covariance to create inverse operator using ‘minimum_norm.make_inverse_operator’ 
from MNE (loose=0.2). Sixthly, we used the individual classifier pattern per subject and 
applied the inverse operator on it (method = dSPM, SNR = 5, lambda2 = 0.08) to produce 
the source reconstruction of the classifier patterns per subject. Seventhly, we average the 
source-reconstructed patterns per subject to produce the average pattern in the source 
space. 

Regression of Drift diffusion parameters with Neural Dynamics 
 
Next we used the model parameters generated by the drift diffusion model and regressed 
the same with the ERP data, which was z-scored to obtain the regression coefficient. This 
was performed in the following steps. First, the ERP data (post trial epochs) were z-scored 
per electrode per trial. Second, the ERP data was baseline corrected with pre-trial data from 
-200ms to 0ms. Third, the ERP data was averaged every 50ms per electrode per trial to 
create 20 time points (-200ms to 800ms) per electrode per trial. Fourth, the ERP data was 
entered into regression with trial by trial estimate of the drift rate using the model 
HDDMRegressor from the HDDM toolbox (Wiecki et al., 2013). The Stimulus-coding model 
(‘left’ or ‘right’ responses) was used as earlier and the drift rate was allowed to vary per trial 
based on the ERP data per state (‘alert’ or ‘drowsy’) per stimuli (‘left’ or ‘right’). Fifth, the 
traces were computed per condition (state and stimuli combination). Sixth, the differences in 
drift rate (between ‘left’ and ‘right’ stimuli) per time point per electrode were computed in 
both ‘alert’ and ‘drowsy’ condition. 
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SUPPLEMENTAL INFORMATION: 
 
Verification of source reconstruction: 
 
In order to verify the source localization procedure, we performed the following steps. First, 
We used the EEG data from a sample participant and computed the noise covariance from -
0.2sec to 0sec using the ‘shrunk’ method. Further the covariance was regularized.  Second, 
the forward solution was computed using the transformation file, source space, beamformer 
solution computed earlier. Third, the inverse operator was computed by using the noise 
covariance and the forward solution. Fourth, the inverse operator was applied on the data 
from the sample participant (snr = 3,  lambda2 = 1.0 / snr 2, method = 'MNE'). The MNE 
method was used instead of the dSPM used earlier as we wanted to have positive and 
negative amplitude for the source signals and only normal orientations were picked further. 
Fifth, we used the labels from the left hemisphere in the regions of auditory, occipital, 
middle temporal and frontal pole regions to extract signals from these ROIs using the mode 
of ‘mean_flip’. Sixth, we compute the mean across these ROIs to extract a single time course 
per ROIs in the left hemisphere which is plotted in Figure s1. It is evident from the figure that 
N100 amplitude is highly localized in the auditory regions compared to other regions which 
serves to validate the source localization used. 
 
 
 

 
Figure s1:  Source localization performed in a sample participant in specif ic left 
hemisphere ROIs. N100 amplitude is clearly visible in the auditory regions, whereas it is diminished 
in the other regions clearly indicating the validity of the source localization procedure. 
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6
Transitions in a Model system

Figure 6.1: Drosophila Melanogaster1

6.1 Brief introduction

In this chapter, I investigate the alertness transitions in the fruit fly (Drosophila

melanogaster). Specifically, I explore the neural and behavioural dynamics in spon-

taneous sleep using local field potentials (LFP) recorded from the fly brain. For this

1By Joana Carvalho (http://thelifeofmaro.tumblr.com/)
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6 Transitions in a Model system

purpose, I first introduce the experimental set ups for recording two-channel differential

and multi channel local field potentials. Next, I provide a data driven approach of identi-

fying changes in spectral patterns in the LFP (two-channel differential) data using support

vector machines. Thereby establishing the ability of the LFP to differentiate across awake

and sleep conditions in a systematic manner. Further, I probe the period of transition to

sleep to understand its dynamics. Next, to identify the spatial locations in the brain that

track alertness fluctuations, I collect LFP recordings from multi channel probes inserted

half way into the fly brain. Further, I identify regions in the fly brain that differ across

awake and sleep periods using changes in the power spectrum. Finally, I show evidence

from induced sleep (thermogenetic manipulation of dorsal fan shaped body dFSB) to

provide converging evidence for the spatial regions identified in the previous step.

6.2 Shortcomings

As mentioned in the introduction chapter, a fly is considered to be asleep if it does not

move for more than 5minutes. In this context, recent studies (van Alphen, Yap, et al. 2013;

Yap, Grabowska, et al. 2017) have shown using LFP recorded from the fly brain, that flies

possibly sleep in different stages associated with distinct electrophysiological patterns

and different arousal thresholds.

Though these studies were pioneering in many ways, they however ignored interesting

aspects in the dynamics of transition to sleep. First, the transition to sleep (period from

0 minute to 5th minute) was not investigated. The transitory period is one of the prime

focus of this dissertation. Second, the sleep in flies (Yap, Grabowska, et al. 2017) was

categorized based on the time of sleep induction (day or night). However it is well known

that the depth of the sleep (sleep duration) modulates arousal threshold (Huber, Hill, et

al. 2004) and hence it would be interesting to dissect the changes in frequency patterns

across sleep of different depths. Third, the changes in frequency spectrum across awake

and sleep periods were not characterised to identify important elements in the spectrum

that can generalize the findings to a new fly (this could be done by building classifiers
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6.3 Research Question

based on frequency spectrum to identify ’awake’ and ’sleep’ periods). Fourth, the data

(two channel differential LFP) from flies falling asleep in a spontaneous manner, is not able

to provide spatial information on howdistinct regions in the brain differ across ’awake’ and

’sleep’ periods.

6.3 Research Question

This sets us up for the fourth research question to understand the process of transition to

spontaneous sleep in fruit flies.

(a) Can we build a data driven approach based on elements of the frequency spec-

trum (as done in micro-measures algorithm) to differentiate between ’awake’ and

’sleep’ patterns. For example this could be a classifier (with features like frequency

spectrum) based on SVM. Could such a classifier generalise to new data and identify

’awake’ and ’sleep’ periods independent of movement data?

(b) What happens to the frequency spectrum elements (or classifier patterns) when the

fly is transitioning into sleep (period from 0 to 5 minutes)?

(c) How do the classifier patterns depend on the sleep depth, does longer sleep dura-

tion (deep sleep) differ from smaller sleep duration (light sleep)?

(d) What regions of the fly brain change (and in what frequency bands) across awake

and sleep periods?. This could be uncovered using multichannel recordings as in

(Paulk, Zhou, et al. 2013).

(e) How does the spontaneous sleep measured with multichannel recordings differ

from artificially inducing sleep. For example thermogenetically activating the dFSB

as in (Yap, Grabowska, et al. 2017)?
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6.4 Methods

6.4.1 Experimental Set-up

In the next section, I briefly describe the experimental set-up and description of flies that I

have used for studying spontaneous sleep and its corresponding transition at the individ-

ual level (fly on tethered ball as described in Introduction). I also provide a brief overview

of the preparation needed to set up the fly on the tethered ball.

6.4.1.1 Animals

Female flies (Drosophila melanogaster) used for this study were reared in an incubator

maintained under a 12-hour light and 12-hour dark cycle while being fed on a standard

yeast-based medium. The temperature in the incubator was maintained at 22-24◦C and

humidity at 40-60% tomimic the daily variation in the experimental rig. Wild-type Canton-

S (CS) flies which were at most 7 days post-eclosion of the were used for the recordings.

6.4.1.2 Preparation

The preparation of the flies in the tethered ball set-up consists of the following steps (van

Alphen, Yap, et al. 2013; Paulk, Zhou, et al. 2013). First, flies were anesthetized using a

thermoelectric-cooled block (1-2 ◦C). Second, the dorsal surface of the thorax of the fly

was attached to a tungsten rod using dental cement (ColteneWhaledent Synergy D6 Flow

A3.5/ B3). The cement was then cured by exposing it to high intensity blue light (Radii

Plus, Henry Scheinn Dental). Finally, the head of the fly was also attached to the thorax

and cured with blue light as before. This is mainly to make sure that the head of the fly

does not get dislodged during electrode insertion (as the neck of the fly is fragile)
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6.4 Methods

6.4.1.3 Two channel differential LFP

Author Contributions

This dataset was acquired as a part of the study (Yap, Grabowska, et al. 2017) by Melvyn

H.W. Yap. I analysed the data with advice from Bruno van Swinderen and developed

classifiers based on LFP patterns which was presented in (Jagannathan, Jeans, et al.

2018).

Electrode holder preparation

The electrode holders used for measuring LFPs in this set-up consisted of pulled borosil-

icate micro-pipettes. The micro-pipettes were first cut out leaving only the tip (about

6mm in length with ∼ 3MΩ resistance), which was further filled with extracellular fluid

(ECF) containing electrolytes like Sodium chloride, glucose, sucrose etc. Then, the cut

micro-pipettes were inserted into each brain hemisphere to a depth of about 100µm

through the dorsal eye rim using a mechanical micro manipulator. Finally, the implanted

micro-pipettes were secured using dental cement.

Electrode insertion

Fine tungsten wires (which were used as electrodes) were then inserted into each micro-

pipette and then sealed with electrical insulators. The prepared files were then carefully

placed on the air-supported ball as shown in Figure 6.2.

Local field potential recordings

Local field potentials (LFPs) were recorded after 1-2 hour post the electrode insertion

procedure. Field-effect transistors (FETs) (NB Labs, Denison, TX) were used for recording

the electrical potentials. LFP signal was recorded as a differential of the voltage from

the two glass electrodes at a sampling rate of 291 Hz and amplified with a differential

amplifier (gain = 10,000) to increase the signal to noise ratio. The entire electrophysiology

rig was placed in a light-shielded enclosure that mimicked the 12-h light and 12-h dark

cycle as in the incubator.

Behavioural recordings
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Infra-red LEDs were used for illumination (as this would not disturb the natural circa-

dian rhythm of the fly unlike visible light). The behaviour of the fly on the ball was

recorded using an infra-red enabled web camera with a frame rate of 3 frames per sec-

ond. The video recorded by this set-up was essentially composed of monochromatic

low-resolution images (27x34 pixels), thus well suited for long recordings.

Further details of this set-up and step by step instructions are available at (Yap,

Grabowska, et al. 2017).

Figure 6.2: Two channel differential recording 2. Here LFPs were recorded in-vivo for 24 hours.
The locomotion activity of the fly was recorded with a web camera under infra red
lighting conditions. The entire set-up was housed in a shielded box with 12-hour
light and 12-hour dark cycle.

6.4.1.4 Multi channel

This dataset was acquired by Rhiannon Jeans and me as part of the study (Jagannathan,

Jeans, et al. In prep). The data for 8 flies was acquired by Rhiannon Jeans, while I designed

the calibration procedure, developed tools for collecting hourly LFP, video data (for about

12 hours per fly) and collected data from 2 flies. Data analysis was primarily performed by

2adapted from (Yap, Grabowska, et al. 2017)
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me with code for LFP data extraction provided by Rhiannon Jeans. The entire study was

designed by me and Rhiannon Jeans along with Bruno van Swinderen.

Electrode insertion

To record from multiple locations in the fly brain, we used a 16-channel electrode ar-

ray. This was composed of a linear silicon probe (model no. A1 x 16-3 mm50-177) made

by NeuroNexus Technologies.

The prepared flies (see section 6.4.2) were first inserted with a sharpened, fine tungsten

wire (0.25mm; A-M systems) superficially in the thorax. This tungsten wire served as the

reference electrode in the recording. The flies were then carefully placed on the air-

supported ball. The electrodes were then inserted laterally into the eyes, perpendicu-

lar to the eye’s curvature using a micro manipulator (Merzhauser, Wetzlar, Germany) as

shown in Figure 6.3. The location of the inserted electrodes was then verified with a cal-

ibration procedure (see below) to make sure that each fly had the electrodes inserted in

approximately the same location. The electrodes were only inserted in one hemisphere

of the fly brain and hence this recording is also referred to as half-brain probe.

Figure 6.3: Multi channel LFP recording 3. The electrode contacts (not to scale) are represented
by white dots.

3adapted from (Cohen, Zalucki, et al. 2016)
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An example fly with the reference electrode along with the tethering rod and reference

electrode is shown in Figure 6.4.

Figure 6.4: Example fly in the multichannel set-up. The dark spot visible in the eye of the fly
was the location in which the electrode was inserted. The reference electrode can
be seen here inserted in the thorax of the fly.

Local field potential recordings

Electrophysiological recordings were made using equipment from Tucker-Davis Tech-

nologies. The data was acquired at a sampling rate of 25 kHz using a RZ5 Bioamp

processor and RP2.1 enhanced real-time processor.

Calibration procedure

Before explaining the calibration procedure, it would be prudent to understand the

motivation behind this procedure. The previous recordings made using multichannel

probes (Paulk, Zhou, et al. 2013) inserted electrodes in an arbitrary manner especially in

the dorsal-ventral axis. Those studies relied on evoked potentials (with higher signal to

noise ratio) based on visual stimuli, and hence any deviation in electrode locations can

be tolerated. However as we aim to measure spontaneous activity for the first time with

multi channel set up, we need to have consistency in the location of electrode insertion.

This would ensure lower variances among flies and hence a robust group analysis can

then be performed. To achieve this objective, we designed a calibration procedure in the
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following steps. First, we inserted the electrode step by step (in steps of 2 electrodes)

using the micro manipulator. Second, we use flickering blue lights (spectral peak at 470

nm with 30 mn half-peak width, square wave with 50% duty cycle) to trigger a steady

state visual evoked potential (SSVEP). Third, the SSVEP is monitored at each channel as

the electrode is inserted in steps. Fourth, in some channels the SSVEP is positive while

in some other the SSVEP is negative in the leading edge of the square wave as shown in

Figure 6.5. The exact location of this reversal of polarity depends on the angle, insertion

depth of the electrodes. Fifth, we stop the electrode insertion when the reversal of

polarity happens between channels 10-13. This makes sure that the insertion depth and

insertion angle are consistent across flies, as any change in one of them would cause no

polarity reversal in the SSVEPs. The calibration procedure for an example fly is shown in

Figure 6.5.

Figure 6.5: .Calibration procedure for multichannel recordings.The SSVEP values are displayed
in µV, it can be seen here that the polarity reversal happens in the 12th electrode.

159



6 Transitions in a Model system

Behavioural recordings

The movement of the fly on the ball was recorded with DCM130 microscope CMOS

camera at 30 frames/s and Infra-red LEDs were used for illumination (as before). The

video recorded by this set-up composed of high-resolution colour images (640x480 pix-

els) recorded 30 times a second. Example screen shot of the video capture with this set

up is shown in Figure 6.6

Figure 6.6: Screen grab of video recorded in multichannel recording. Apart from the video, we
also captured time stamps and frame numbers of video in separate files for further
analysis.

6.5 Results

6.5.1 Behavioural & Neural dynamics

6.5.1.1 Two channel differential LFP

Selection of flies

10 flies survived the 24-hour period and hence only data from those flies was consid-

ered for further analysis in the two channel differential recordings.

Movement analysis

The main goal of the behavioural analysis is to define periods of ’sleep’ and ’awake’

based on the immobility periods. As mentioned before more than 5 minutes of im-

mobility is considered as sleep. To achieve this goal, index of movement needs to be
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computed from the video recordings. For this, we used the pixel subtraction technique

to quantify the movement across frames (van Alphen, Yap, et al. 2013). Here the change

in pixel value between subsequent frames was quantified by subtracting the adjacent

frames in a video to create a difference image (∆ pixels) across time (Figure 6.7). The

change in pixels is then summed to create a movement value. The fly is said to have

moved only if this movement value exceeds a certain threshold (which was determined

manually for each recording based on noise levels in the image).

Figure 6.7: Pixel subtraction for movement detection 4. The difference of images between con-
secutive frames provides a proxy for movement.

Using the pixel subtraction technique we can identify time segments with more than 5

minutes or more of inactivity (sleep is counted as starting from the +5th minute onwards).

Thus the period from +5th minute to the start of locomotion activity again is considered

as ’sleep’, while the period from 0 to +5 minutes is considered as ’transition’ and every

other period is considered as ’awake’.

Local field potential analysis

Themain goal of this LFP analysis is to understand how the changes in behaviour (’awake’,

’sleep’ as computed above) is reflected in the power spectrum. First, we computed the

morlet wavelet transformation on the LFP data using the function ’ft_specest_wavelet’

from the Fieldtrip toolbox (Oostenveld, Fries, et al. 2011). We set the width of the wavelet

at 30 and the standard deviations as 3 (gwidth). Second, we computed the absolute value

of the wavelets computed in the previous step. Third, we time-matched the LFP data

to the behaviour data (which consists of periods in time reflecting immobility). Fourth,

we computed the ’awake’, ’sleep’ periods from the immobility periods and plotted the

power spectrum for the entire period. Figure 6.8 shows an example data from a fly

4adapted from (van Alphen, Yap, et al. 2013)
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recorded with two channel differential set up for a period of 24 hours. The red dots in the

figure indicate periods of time where the fly was immobile for more than 5 minutes and

hence considered as sleep. From the figure it is clear that power in the low frequency

bands (<10 Hz) changes when the fly falls asleep. This led us to ask if we can design a

automated method to track the changes in the power spectrum and thereby track the

changes in the alertness levels from the LFP data.

Figure 6.8: Two channel differential LFP recordings. The red dots indicate periods of time
where the fly was immobile for more than 5 minutes, the green dots represent other
periods of immobility (less than 5 minutes). The activity in the frequency bands (<10
Hz) are clearly modulated depending on whether the fly was ’awake’ or ’sleep’.

6.5.1.2 Tracking wakefulness with machine learning

From the previous section it is clear that information in the frequency spectrum of the LFP

is potentially sufficient to categorize the data into ’awake’ or ’sleep’. Hence we need an

objective method to track the alertness levels based on the frequency spectrum of LFP

data. This problem is conceptually similar to the one encountered in Chapter 2, wherein

I developed the micro-measures algorithm to track trial-by-trial alertness levels with EEG

data. Hence I decided to follow a similar approach to design a classifier based on a class

of supervised learning algorithms called Support Vector Machines (SVM).

Support Vector Machine
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Before we decide to use SVMs to build our classifier a brief overview on the concept

of the SVMs would be useful (for detailed overview refer to Chapter 2). The main aim of

the SVMs is to build a hyperplane or set of hyperplanes capable of separating two classes

(in our case ’awake’, ’sleep’) based on features in the data (in our case LFP frequency

spectrum). The SVMs aim to maximise the distance of separation between the closest

data point (in training set) of any class (which is referred to as the functional margin). The

idea behind this is that once the optimal choice of such a functional margin is found it

would also produce lower generalization error (in the testing set). The main reason to

map the data onto higher dimension is driven by the fact that at lower dimensions most

classes are inseparable. Such a mapping onto higher dimensional space is achieved by

using a kernel function k(x, y). As in the micro-measures method we choose the radial

basis function (RBF) as our kernel function.

Gold standard labels

First, we define the gold standard labels (or ground truth labels) that the classifier can

learn and be tested on. For this purpose we use the behavioural classification based on

video data (see previous section onmovement analysis using pixel subtraction technique)

to classify segments of data into ’awake’ or ’sleep’. Thus the main goal of the classifier

is to perform binary classification of the LFP data into ’awake’ or ’sleep’. Second, we

segmented the LFP data based on these ground truth labels. The segmented data were

then binned into 1 minute segments and further down sampled to 250 Hz. The length

of the LFP data into 1 minute segments was based on changes observable in power

spectrum based on 1 minute bins in previous studies (van Alphen, Yap, et al. 2013; Yap,

Grabowska, et al. 2017). Third, we computed the continuous wavelet transform based

on the morlet wavelet from the ’cwt’ function in MATLAB. We further extract the wavelet

coefficients only from frequencies 1 to 40 Hz. Fourth, we then normalized the wavelet

amplitude by its power and compute the mean of the coefficients across the entire 1

minute period. This results in 131 coefficients per 1 minute bin which will be used as

features for the SVM.

Parameter selection

The process of training the SVM could be considered as the process of identifying
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the optimal value of the hyper-parameters (γ, C). Here γ controls the curvature of the

hyperplane and C represents the penalty parameter for the soft-margin. Parameter

selection for the SVM was achieved by performing a grid search in (γ, C) in the space

(2−1,25) and (2−1,225) respectively.

Parameter optimization

Next, we will use the features computed per 1 minute bin and feed it into the SVM

for classifying the data segments (similar procedures to micro-measures algorithm in

Chapter 2). For this purpose we perform the following steps. First, the data from all flies

was collated and divided into 5 disjoint subsamples, chosen randomly but with equal size.

This process was achieved using the ’cvpartition’ function in MATLAB. Each subsample

consists of four folds grouped into a train set and the fifth fold considered as the test

set. Each of the folds within a subsample was made using stratified sampling such that

the overall representation of subclasses remained similar in each fold. This will avoid the

problems of over-representation prevalent while using random-sampling. In the second

step, one of the subsamples is selected. In the third step, half of the trails were randomly

chosen from the train set of this subsample and these trials are used for parameter op-

timization. In the third step, half of the trails were randomly chosen from the train set of

this subsample and these trials are used for parameter optimization. In the fourth step,

we performed a 3-fold nested cross-validation for choosing the optimal parameters from

the grid space. Nested cross-validation ensures that parameter selection and validation

are independent, thus preventing the over fit of tuning the parameters to the train set. In

the fifth step, the best parameter pair is now used and the best model is trained based

on the train set. Further a five-fold cross validation is used for estimating the validation

metrics for the train set and the best model is used on the test set to produce validation

metrics on the same. In the sixth step, the same procedures from the second to the fifth

step are repeated on the next subsample. Thus, 5 different subsamples yield 5 separate

test and train set validation metrics.

Validation metrics

The definition of the validation metrics used for evaluating the performance of the

classifier are as follows:
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(a) Sensitivity: This refers to the ability of a classifier to correctly detect the true class

among the classifications made. It is obtained by the (TP/TP + FN). It is also known

as recall. TP: True Positives, FN: False Negatives.

(b) Specificity: This refers to the ability of a classifier to correctly ignore the classes

that don’t belong to the true condition. It is obtained by (TN/TN + FP). TN: True

Negatives, FP: False Positives.

(c) F1-score: This is the harmonic mean between precision and recall. Precision refers

to measure of exactness of classifier. It is obtained by (TP/TP + FP). Recall refers to

the sensitivity of the classifier

Validation

The validation metrics for the different classes (’awake’, ’sleep’) are shown in Fig-

ures 6.9, 6.10. These metrics (>0.8) indicate that the classifier reliably detects awake/sleep

periods in train sets and generalizes to new test sets.

Figure 6.9: Classifier performance metrics for ’awake’ class.

Figure 6.10: Classifier performance metrics for ’sleep’ class.

Thus we have designed a classifier based on LFP data for detecting wakefulness levels

which can now be used independent of movement (behavioural) parameters.

Predicting transition to Sleep

Next, we were interested in understanding the transition to sleep and thus predict-
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ing the occurrence of transition to sleep itself. As mentioned in the previous section, LFP

data from 0 to +5minutes is regarded as transition to sleep (where 0 minute is the period

when the fly actually stops moving). Usually the LFP data in these segments is ignored.

We decided to train the classifier as in the previous section, but this time we considered

the time segments from -2 minutes to +5 minutes as transition (with 0 minute being the

actual time when the fly stopped moving) and the classifier considered the remaining

periods as ’awake’ or ’sleep’ correspondingly. Next we decided to convert the classifier

output from binary prediction (’awake’ or ’sleep) into a probabilistic prediction where 0

means highly probable to be ’sleep’ and 1 means highly probable to ’awake’. Further we

also decided to divide the transition into two types based on the depth of the sleep after

the +5minute period. If the fly sleeps only for 5 more minutes or less i.e. if it still sleeps

till +10minutes or less, then it is considered as ’light sleep’. Whereas if the fly sleeps for

15 more minutes or more i.e. if it sleeps till +20minutes or above, then it is considered

to be ’deep sleep’. This classification is based on (van Alphen, Yap, et al. 2013). For the

control analysis, we also took contiguous 7 minutes of data where in the fly was ’awake’

and provided the same to the probabilistic classifier. The Figure 6.11, shows that the

’awake’ data were all classified well above 0.8 (meaning highly probable to be ’awake’).

Further we can see that in the transition, both the ’light sleep’ and ’deep sleep’ start to

move toward 0 (beginning to drift towards the ’sleep’ class). Interestingly we can find

that at -2 minutes (when the fly is behaviourally active) we can detect that the fly would

begin to fall asleep using the classifier. Furthermore we can also detect the depth of the

sleep at -2 minutes from the probabilistic classifier.
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Figure 6.11: Probabilistic classifier predicting sleep and its depth 5. Transition to sleep in flies
can be predicted at 2 minutes before the cessation of movement itself.

6.5.1.3 Multi channel

Selection of flies

As the multichannel experiments were much more invasive (due to insertion of refer-

ence electrode and deeper brain probe) we analysed only flies that survived for more

than 12 hours in this experiment. 10 flies again survived the 12-hour period and we

considered them for further analysis.

Movement analysis

The main goal of this behavioural analysis again was to define periods of ’sleep’ and

’awake’ based on the immobility periods. As the video output in this experiment (640x480

5(Jagannathan, Jeans, et al. 2018)
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pixels) was of much higher quality than the previous two channel differential LFP exper-

iment (27x34 pixels), we decided to not use the pixel subtraction technique. Instead we

decided to use the computer vision toolbox OpenCV for quantifying movement from

frame to frame. The frame movement detection algorithm consists of the following

steps. First, the colour frames were converted to grey scale values. Second, a part of

the main scene with the fly at its centre was cropped and used for further analysis. Third,

absolute difference was computed between this frame and the previous frame. Fourth,

if the difference in each pixel is above a certain threshold value, then the pixel value is

set to 255. Fifth, the thresholded image is dilated to fill in the holes in the image. Sixth,

contours were detected in the dilated image of the previous step. Seventh, the area oc-

cupied by each contour was computed and only if they exceeded a certain threshold then

movement is detected. Figure 6.12(A) shows a frame capture used for motion detection,

Figure 6.12(B) shows the same frame with green boxes indicating where movement has

happened with respect to the previous frame.

As before, fly sleep is defined as immobility of more than 5 minutes. Using the above

method we can identify time segments with more than 5 mins or more of inactivity (sleep

is counted as starting from the +5th minute onwards). Thus the period from +5th minute

to the start of activity again is considered as ’sleep’, while the period from 0 to +5 minutes

is considered as ’transition’ and every other period is considered as ’awake’.

Figure 6.12: Computer vision for movement detection. (A) represents input to the move-
ment detection algorithm. (B) green boxes represent regions where movement
is deemed to have taken place when compared to the previous frame.

LFP data
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The preprocessing of the LFP data consisted of the following steps. First, raw LFP

data in tucker-davis format (tank files) was down sampled to 250 Hz. Second, data was

filtered with zero phase shift between 0.5 and 40 Hz using hamming windowed-sinc FIR

filter. Third, the timing data in real world format was also added along with the LFP

data to make it easier for comparison with the movement analysis. Fourth, the move-

ment data (’1’ representing moved, ’0’ representing not moved) from the analysis in the

above section was time-matched and added to each LFP segment. Fifth, LFP data was

re-referenced to a neutral electrode among the 16 electrodes. The neutral electrode

was chosen using the Calibration procedure from the previous sections. The electrode in

which the polarity reversal of the SSVEP occurs is considered to be the neutral electrode

for that fly (usually it is electrode #10 or #11).

6.5.1.4 Power spectrum analysis

The main goal of this power spectrum analysis is to understand how different regions

of the fly brain change across ’awake’ and ’sleep’ periods. The power spectrum of in-

dividual flies across different conditions (’awake’,’sleep’) is computed as follows. First,

data was epoched into segments of 1 minute duration. Second, data was filtered with

zero phase shift between 5 and 40 Hz using hamming windowed-sinc FIR filter. Third, the

power spectrumwas computed per 1 minute bin using the ’spectopo’ function in EEGLAB

toolbox (Delorme&Makeig 2004) (which computes the mean log spectrum). Fourth, the

mean power spectrum per state (’awake’, ’sleep’) was computed per fly. Sixth, the dif-

ference between the states was computed separately per fly. Seventh, we conducted

a one sample t-test on this difference (to find if it is statistically different from zero) us-

ing the function ’stats.ttest_1sam’ from the MNE toolbox (Gramfort, Luessi, et al. 2013).

Eighth, the p-value from the previous test was corrected for multiple comparison using

the False Discovery rate (FDR) method . The correction was performed using the func-

tion ’fdr_correction’ from the MNE toolbox. The median differences across ’awake’ and

’sleep’ states at the group level is plotted in Figure 6.13(A). Further the negative logarithm

of the uncorrected p-values are shown in Figure 6.13(B). Further, Figure 6.13(C) shows the
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negative logarithm of the p-values corrected by the FDRmethod where values above 1.30

indicate statistically significant (p<0.05)

Figure 6.13: Differences in Power spectrum across awake and sleep states. It can be seen from
the figure that at central and middle channels. the frequency spectrum changes
dependent on the state (’awake’, ’sleep’) of the fly.

From figure 6.13(C), it is clear that spectral changes in the central channels(#1,#2,#3) are

the most prominent when the fly falls asleep. While some middle channels (#6) also show

changes between ’awake’ and ’sleep’ patterns. These changes indicate putative regions

in the fly brain that show significant differences in electrophysiology across ’awake’ and

’sleep’ states.

Thermogenetically induced sleep

The next logical step would be to validate our findings from spontaneous sleep. In

this context, we considered data from previously published studies (Yap, Grabowska, et

al. 2017) on multi channel recordings. In this study, sleep was induced by thermogenet-

ically manipulating the fly brain. Thermogenetics is the process of activating a group of

neurons using heat-activated cation channels from the transient receptor potential (TRP)

family (Bernstein, Garrity, et al. 2012). Thermogenetic manipulation were made to induce

sleep in flies by activating a group of neurons in the dorsal Fan shaped body (dFSB). The

dFSB forms a part of the core network of neurons involved in regulating and triggering

sleep in flies (mentioned in detail in the Introduction chapter). In this study, while the

flies fell asleep using thermally activated methods, the LFP data was recorded for the

whole of the brain using multi-channel recordings (referred to as full-brain probe that
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extend to both hemispheres). It was found that activity in the central channels (possibly

near the dFSB) increased as the fly fell asleep. Figure 6.14(A) shows the location of the

electrodes in the full-brain probe set-up, while Figure 6.14(B) shows the change in power

spectrum in the central channels in the range from 2-40 Hz at the group level (n = 7 flies).

This causal manipulation indeed validates our findings from the multichannel recordings

where the flies were made to fall asleep in a spontaneous manner.

Figure 6.14: Sleep induction through thermogenetics 6. (A) represents the dorsal view of the
electrode insertion, followed by the frontal view of putative locations in the fly
brain targeted by the channel array. (B,C) shows that the central channels in the
fly brain show the most changes in the frequency spectrum (2-40 Hz) when sleep
is triggered by activating the dFSB with thermogenetic methods.

6.6 Summary

In this chapter, we first established a method to track the fly sleep using machine learning

methods based on LFP data from the two channel differential set-up. The classifier based

on the LFP power spectrum was shown to detect fly sleep in test datasets independent of

any behavioural measure (like fly locomotion). This represents an important advancement

in the field of drosophila sleep, as it moves the sleepmeasures from the current behaviour

based technique (immobility ofmore than 5minutes) tomore brain relatedmeasures. This

has the chance to create an impact much like the EEG studies in the early 1960s (of Recht-

shaffen and Kales) that established the presence of different sleep stages in humans. The
6adapted from (Yap, Grabowska, et al. 2017)
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ability to predict sleep before the occurrence of any behavioural change (no movement

start) using probabilistic classifiers points to mechanisms in the brain (possibly related to

homoeostatic pressure) that are already present even when the fly is completely active.

Also the ability of the classifier to predict sleep depth indicates that fly sleep may not

be homogeneous and adds further evidence of different sleep stages indicated by other

studies (van Alphen, Yap, et al. 2013; Yap, Grabowska, et al. 2017).

Next, we used multi-channel recordings to understand the contribution of different areas

in the fly brain in the ’awake’ and ’sleep’ periods. We showed that the central regions

(channels) of the fly brain displayed significant differences in the LFP power spectrum

across ’awake’ and ’sleep’ periods. Further we validated our findings in spontaneous

sleep recordings with data from another study (Yap, Grabowska, et al. 2017). In (Yap,

Grabowska, et al. 2017) multi-channel recordings (full brain probes) were used to record

LFP data across the fly brain while sleep was triggered by activating the dFSB using ther-

mogenetics. We could potentially infer that the central channels in our study were mea-

suring LFPs from the regions around dFSB. Thus providing direct validation and evidence

of spontaneous sleep in our data. However in the future, we could use dyes in electrodes

and perform dissections of the brain (post insertion) to identify the locations of individ-

ual electrodes. Currently, we are in the process of refining this dye based method which

could provide direct evidence of the regions from where the LFPs are measured. Also the

development of a calibration procedure would enable easier replication of studies with

multi channel recordings.
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Every 24-hours we undergo a remarkable transformation and slip into a state of inactivity

and become unaware of our surroundings. This process of behavioural quiescence is

commonly referred to as sleep. About a third of us will be affected by sleep disorders at

some point in our lives1. These disorders could range from relatively common problems

like insomnia 2 to severely debilitating ones like narcolepsy3. Economic costs associated

with sleepdeprivation in theUK alone are estimated at £40 billion a year4. Further, people

that sleep less than six hours a day are also 13% more likely to die earlier than their well

sleeping counterparts. Thus sleep is an important public health issue that needs utmost

attention. Most of the research in sleep has targeted processes that occur after the onset

of sleep stage N2. However, we are aware that most of the issues in sleep are also closely

related to the process of falling asleep itself and thus the transition from wakefulness to

N2 could provide useful insights into sleep disorders.

Tangentially, understanding how the brain loses consciousness in a reversiblemanner dur-

ing general anaesthesia is a major challenge in neuroscience. Every year millions of pa-

1https://www.sleepassociation.org/sleep-disorders/
2Refers to inability to falling or staying asleep
3Refers to uncontrollable or excessive tendency to sleep
4https://www.rand.org/randeurope/research/projects/the-value-of-the-sleep-economy.html
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tients around the world undergo surgery with general anaesthesia. About 1% of patients

wake up during surgery or are able to recollect events that occurred during surgery which

is commonly referred to as anaesthesia with recall (AWR) (Errando, Sigl, et al. 2008). This

experience could be particularly traumatic if pain was experienced by the patient but

was not detected by doctors during the operation. Though the risk factors associated

with AWR are known (drug or alcohol usage etc), the exact mechanisms through which

such wakefulness periods occur during general anaesthesia are not fully known. This is

mainly because the neural dynamics during induction and recovery from general anaes-

thesia have not been fully characterised. Recently researchers have shown using mutant

flies (Kottler, Bao, et al. 2013) that resistance to anaesthetics like isoflurane are linked with

the sleep duration. This further adds evidence to the hypothesis that anaesthetics work

through activating the endogenous sleep pathways like dorsal fan shaped body (dFSB).

Thus the process of induction to sleep could help us understand the process of induction

to anaesthesia and therefore understand the process of AWR.

Both the aforementioned problems, motivated us to understand the process of falling

asleep i.e. to understand the behavioural and neural dynamics of transitions of alert-

ness.

7.1 Micro measures algorithm

We first developed a method (micro-measures algorithm) for objectively measuring alert-

ness using EEG in a trial-by-trial manner. Our approach to this problem has been to use

machine learning algorithms (SVM) to identify features in the data that can help classify

states of alertness. Though this approach is not new in EEG based studies (Tagliazuc-

chi, von Wegner, et al. 2012; Crisler, Morrissey, et al. 2008; Stein 2007), For example,

(Tagliazucchi, von Wegner, et al. 2012) implemented a method for tracking alertness fluc-

tuations with a temporal resolution of 30 seconds. While (Crisler, Morrissey, et al. 2008)

have implemented similar measures in animals using sleep scoring techniques with tem-

poral resolution similar to 30 seconds. Other methods with temporal resolutions as low
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as 1 second have validated their algorithm (Stein 2007) against measures like heart-rate

variability (which are indirect measures of drowsiness). This is the first time alertness lev-

els have been measured with a automated technique in temporal resolution as low as 4

seconds and have been directly validated against a well established scale of drowsiness

(Hori scale).

The following are the strengths and limitations of our approach in the development of

micro-measures algorithm.

7.1.1 Strengths

One of the main advantages of our method is that it has been validated against a reliable

system like Hori. Though Hori scoring in practise depends on the expertise of the individ-

ual scorer, it has been shown to systematically correlate with behavioural measures like

variation in reaction times, cessation of responses etc. Second, the ability of the algorithm

to also provide with features like spindle detection, vertex sharp waves, K-complex de-

tection is bound to be useful to sleep researchers. Particularly in closed loop experiments

wherein specific stimulus could be delivered based on the sleep state of the participant.

Using this approach can extend those experiments to specific graphical features (spindles

etc). Third, the ability of the algorithm to track alertness fluctuations in a scale as low as 4-

seconds is much more suitable to investigate the dynamic nature of the transitions in the

human brain. Fourth, the ability of the algorithm to generalise to independent datasets

is most useful to the general neuroscience community, who could use this as a tool to

control for alertness in their experiments.

7.1.2 Limitations

The main limitations of this method arise from the usage of Hori scale itself. First, there is

a proportion of participants that do not show alpha like patterns in the EEG and in those

participants the algorithm could perform poorly. Second, the training dataset for the al-

gorithm is composed of very few trials in certain conditions like Hori level 4 (which is an
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intermediate stage, not known to occur in all participants), hence the algorithm will be

biased against classifying those trials in the proper category. Third, we have validated

the algorithm only against 3 sub classes, however interesting behavioural changes also

happen at individual levels in the Hori scale and hence this algorithm would not be sen-

sitive enough to capture those changes. Fourth, the algorithm so far has only been de-

veloped for eyes-closed condition however it is well known that participants can sleep

or become drowsy even with active tasks like driving. Fifth, the validation metric for the

drowsy(severe) class was low, this is mainly because in our dataset, we didn’t have enough

participants falling asleep with k-complex and spindles etc.

7.2 Mechanisms of alertness induced spatial bias

Spatial attention is considered to be a right hemisphere specialised function (Vallar 1998;

Bowers&Heilman 1980; Siman-Tov, Mendelsohn, et al. 2007). Evidence for this specializa-

tion has mainly come from studies with stroke patients displaying inattention to the left

hemi-field (neglect) (Driver&Mattingley 1998; Halligan, Fink, et al. 2003; Harvey&Rossit

2012; Mort, Malhotra, et al. 2003; Vallar 1998; Karnath 1997). Healthy populations have

also been reported to consistently favour the left hemi-field in line bisections tasks, where

participants bisect a straight line to the left of the veridical centre (pseudoneglect) (Jew-

ell&McCourt 2000; Bowers&Heilman 1980; Voyer, Voyer, et al. 2012). The most common

model accounting for such biases is the right hemisphere dominance model (Mesulam

1981). In this model, spatial attention is lateralised in the right hemisphere and hence

right hemisphere is highly dominant under base-line conditions which explains the bias

towards the contra-lateral side (left visual field) in the line bisection tasks. Patients that

have lesions in the right hemisphere lose such dominance resulting in inattention of the

left hemi-field.

Several studies in the past have also reported shift in the bias (due to time-on-task effect) in

such line bisection tasks, wherein at the beginning of the task participants display a bias to

the left hemi-field which shifts to the right hemi-field over a prolonged duration (Benwell,
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Thut, et al. 2013; Manly, Cornish, et al. 2005; Dufour, Touzalin, et al. 2007). Also a minority

of participants have a rightward bias and shift in the opposite direction. These findings

have led to the suggestion that differences in bias (at baseline) and shift direction is only

meaningful, if they underlie genuine observer subtypes (a reliable and stable trait within

individuals). Evidence from (Benwell, Thut, et al. 2013) has suggested with line bisection

task that indeed such traits (both left and right bias) are reliable (even when tested after

days) and hence represent a subtype rather than those that occur due to variation in the

sampling process in selecting participants from a homogeneous group (those with right

hemisphere dominance). However the same study (Benwell, Thut, et al. 2013) did not find

any effect of vigilance or arousal in bias shift across participants using subjective alertness

ratings. Thus raising questions over the validity of the right hemisphere dominancemodel

in pseudoneglect.

For the first time using a auditory spatial attention task, we have established the exis-

tence of genuine observer subtypes using a baseline session (where participants are alert)

followed by a drowsy session (where arousal is modulated). Also we have established

the main modulator of the observer subtype as handedness, using not only behavioural

measures like multi-level modelling but also with a direct evaluation of bias (with mid-

line shift) using psychophysical techniques. Furthermore, we also used a computational

model of decision making in the form of drift diffusion process and showed the difference

in drift rates (indicating attentional processes) between left and right-handers to further

strengthen handedness as a main modulator of this observer subtype.

Neural mechanisms of bias in visuo-spatial attention has been evaluated by studies

(O’Connell, Schneider, et al. 2011; Benwell, Harvey, et al. 2014) with line bisection tasks.

Using EEG, they found an increased engagement of right hemispheric regions (specifically

ventral attention network). TPJ is shown to be the pivot point in this task that connects

the dorsal and ventral attention systems and is shown to be reliably activated in the right

hemisphere. Further, using increased perceptual load to bias the attentional system they

show that activity in the right TPJ is attenuated resulting in shift of spatial bias in the line

bisection task. Finally, several studies (Foxe, McCourt, et al. 2003; Benwell, Harvey, et al.

2014) have also reported the existence of a two stage processing model using ERP anal-
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ysis, wherein early activity is localised in the right TPJ, while the later activity located in

the right SPL. The initial processing has been isolated to N1005which is associated with

accumulation of sensory evidence. While the later stages were associated with memory

rehearsal or decisional stages.

However, in our study we used MVPA methods for model-free estimation of spatial and

temporal signatures and identified the putative neural correlates involved in the gener-

ation of alertness induced spatial bias. Using right-handers (under ’alert’ conditions) we

showed that the direction of stimuli can be reliably decoded from the right hemispheric

regions (mainly right parietal, right tempero-parietal). Thus providing more evidence to

the right hemispheric model of spatial attention (Mesulam 1981). The spatial locations

are also in broad agreement with (Foxe, McCourt, et al. 2003; Benwell, Harvey, et al.

2014). Under drowsy conditions though, the decoding shifts to the left hemisphere. This

provides direct evidence of arousal modulated shift in spatial attention which was not

found in studies investigating time on task effect on line bisection task (Benwell, Harvey,

et al. 2014). Furthermore, our shift in decoding areas provides support for the model

of interaction between spatial and non-spatial aspects of attention proposed by (Cor-

betta&Shulman 2011). Here the dorsal fronto-parietal network responsible for deploy-

ment of attention is bilaterally distributed in both hemispheres, while the ventral network

responsible for arousal in right lateralised. Under conditions of low alertness, the right

hemisphere gets attenuated resulting in bias towards the left side of space. Using left-

handers (under ’alert’ conditions) we showed that the direction of stimuli can be reliably

decoded from the right hemispheric regions. However under drowsy conditions, the de-

coding of the direction of stimuli is much more bilateral involving regions like both left

and right inferior parietal, left and right temporal regions. This provides evidence for

the inter-hemispheric competition model of spatial attention (Kinsbourne 1970). Here at-

tention is shifted towards the contra-lateral hemi-field through inhibition of the ipsilateral

hemisphere. Under ’alert’ conditions, the right hemisphere holds a slight advantage com-

pared to the left hemisphere and hence pulls (biases) the attention towards the right hemi

5N100 is a negative deflection in event related potential (ERP) recorded with EEG, which occurs around 100
ms of stimulus presentation.
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field. Under ’drowsy’ conditions, the balance is tilted in favour of the left hemisphere,

though the right hemisphere is still active and hence the decoding profile is balanced.

As mentioned earlier, the conclusion of the differential brain regions involved was derived

from qualitatively comparing the decoding patterns under different conditions. Hence

the involvement of the above mentioned brain regions should be further confirmed by

performing statistical analysis either in the source or the sensor space across different

conditions.

The following are the strengths and limitations of our approach to understand the be-

havioural dynamics of alertness induced spatial bias.

7.2.1 Behavioural dynamics of alertness induced spatial bias

7.2.1.1 Strengths

One of the main strengths of this study is the usage of the multilevel modelling to es-

timate the relationship between error proportion and alertness levels. This is because

traditional regression techniques (like rmANOVA) treat every participant in the sameman-

ner. However it is well known that in our study different participants fell asleep in different

ways, thus producing different number of trials per condition. Hence using such amethod

that estimates parameters at both the subject and group level helps to produce a bet-

ter estimation of model parameters. Second, in previous studies (Bareham, Manly, et al.

2014; Bareham, Bekinschtein, et al. 2015) bias shift was quantified by using measures like

(lefterrors−righterrors/totalerrors), this ignores variability produced by the direction

of the stimuli from -59.31◦ to +59.31◦. Using a psychophysical method to approach this

problem produces a much more systematic measure of bias (mean of the pscyhometric

function). Third, previous studies (Bareham, Bekinschtein, et al. 2015) have used signal

detection theory (SDT) to estimate the sensitivity of the observer performing this task. In

SDT observer makes a decision based on a single sample of information available. How-

ever, the decision making process in a drift diffusion model is much more dynamic and
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is drawn from a sequence of samples. Further, the SDT only considers correct and in-

correct responses, whereas drift diffusion model considers the shape of the reaction time

distributions apart from the response proportion itself. Finally, in drift diffusion model the

criteria (boundary separation etc.) is disentangled from the ability (sensitivity).

7.2.1.2 Limitations

In the multilevel models in the study, I made multiple assumptions like assigning a ran-

dom intercept to the participant id (meaning participants are chosen at random), and

assigning a fixed effect to the stimulus type. This could bias the findings because for ex-

ample, the categorization of the stimuli as ’left’, ’right’ is arbitrary as the stimulus varies

from -59.31◦ to +59.31◦ and hence it could also be assigned to the random intercept type.

However this is an inherent defect associated with multilevel models. Second the choice

of the psychometric function could actually bias the estimates of the mean thereby bias-

ing the estimate the of the subjective mid-line itself. I chose the ’probit’ function based

on previous studies involving a 2-choice task. However a better approach would be to sys-

tematically choose a link function based on the fit to a group of subjects (like goodness

of fit measure etc). Third, I have ignored the ’alert’ trials in the drowsy session to system-

atically to compare across the two extremes (comparing alert session versus drowsy(mild)

in drowsy session). This could potentially bias the findings and additional analysis needs

to be done to make sure that the difference in the ’alert’ trials across sessions are mini-

mal. Fourth, the Deviance information criterion (DIC) is used as a measure to choose the

best model in the HDDM, however DIC is known to be biased towards more complex

models.

The following are the strengths and limitations of our approach to understand the neural

dynamics of alertness induced spatial bias.
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7.2.2 Neural dynamics of alertness induced spatial bias

7.2.2.1 Strengths

One of the main advantages of using decoding to understand the neural mechanisms is

that we do not impose a-priori definitions of temporal or spatial signatures involved in

this task. This allows for a model-free approach where the differences across conditions

is obtained by the patterns that can discriminate across conditions in a reliable manner.

Second, the AUC (as classifier performance measure) can be thought of as a proxy for

effect size, and a higher AUC indicates greater discriminability and possibly larger effect

size. Third, the electrodes that differ in drift rates, when regressed against trial by trial

variation in ERP value concurs with the locations produced by the classifier patterns. This

connects the computational model of decisionmaking developed in the previous chapter

with the neural markers (identified with decoding) thus providing convergent evidence.

7.2.2.2 Limitations

One of the main limitations in this study is that when right stimuli was presented to

right-handers under ’drowsy’ conditions, the decoding of responses (correct, incorrect

response) was not reliably significant across any time point. This could be due to less

number of subjects (10) satisfying the criteria to perform classification. Second the HD-

DMregression model (for regressing drift diffusion with ERP data) can only produce one

regression coefficients per time point at the group level in the sensor space. However to

move to source space we needmultiple such coefficients, and if we have a higher number

of subjects (>60) we could have partitioned the subjects into sub-groups to produce sep-

arate regression coefficient per group and further perform source localization. Third, the

source localization of patterns was performed without the use of structural information

(MRIs) from individual subjects which make the source space interpretations less reliable.

Fourth, as the participants were asked to respond as accurately and as quickly as possible,

the reaction times are very variable in the drowsy condition, thus motor regions are invari-

ably involved in multiple time points (in decoding) which could confound the analysis.
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Fifth, though the neural markers were assessed using the decoding on the sensor data,

connectivity measures would be much more useful in directly measuring the information

exchange between frontal and parietal regions which are known to change as participants

become drowsy (Noreika, Kamke, et al. 2017; Goupil&Bekinschtein 2012).

The following are the strengths and limitations of our approach to understand the dynam-

ics of alertness induced spatial bias modulated by handedness.

7.2.3 Alertness induced spatial bias modulated by handedness

7.2.3.1 Strengths

First, we included left-handers and performed a direct comparison between left and right-

handers in terms of behaviour as well as decoding patterns. Second, most studies investi-

gating the effect of handedness do not show any differences in behaviour and only show

differences in activation patterns in the brain (for example language studies). Thus claim-

ing different mechanisms for left and right-handers in the brain. However in our study, we

have a clear dissociation of behaviour between left and right-handers under drowsy con-

dition. Thus providing us with clinching evidence of the effect of handedness on alertness

induced spatial bias.

7.2.3.2 Limitations

Themain disadvantage with using left-handers is that they are very heterogeneous (hand-

edness score); as observed from the mid-line shifts wherein nearly equal number of par-

ticipants shift to the left side and nearly equal number shift to the right side. This makes

group analysis of neural patterns more noisy due to divergent patterns being produced

by different participants in the same group.
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7.3 Transitions in fruit-flies

Evidence for sleep in invertebrates has been far and few in between (van Alphen, Yap, et

al. 2013; Eban-Rothschild&Bloch 2008). The initial excitement when fly sleep was discov-

ered about 20 years ago (Hendricks, Finn, et al. 2000; Shaw, Cirelli, et al. 2000) has mainly

faded away. This is mainly because the initial expectation was that with the diverse and

powerful genetic tools available for Drosophila, it would be possible to map the circuits

responsible for generating sleep. Further, it was expected that we can identify functional

roles of specific kinds of sleep based on the neuroanatomy and specific electrophysiolog-

ical signatures associated with them. This was mainly driven from possible functions as-

sociated with sleep like synaptic homoeostasis (Tononi&Cirelli 2003; Tononi&Cirelli 2006).

According to the hypothesis of synaptic homoeostasis(Tononi&Cirelli 2006), sleep essen-

tially serves to downscale synaptic strengths proportionally across the different regions

of the brain. This is essential to decrease energy consumption while the rescaling pre-

serves learning and plasticity. It was further proposed that slow wave sleep (0.5- 4 Hz) in

mammals may serve this functional purpose. However these expectations of uncovering

functional roles have fallen short mainly because researchers have been unable to identify

sleep in flies with such slow wave signatures (van Swinderen 2007). This led to the belief

that sleep in flies is homogeneous and essentially bimodal in nature.

These views of bimodal sleep started to change when a study (van Alphen, Yap, et al.

2013) discovered that flies indeed sleep in stages. They concluded that duration of sleep

in flies does not necessarily equate with the intensity of fly sleep (which is directly mea-

sured by levels of arousal threshold). They further hypothesised that sleep in the range of

11-40 Hz would be the most suitable candidate signature that could possibly be associ-

ated with synaptic downscaling. Our results with two-channel differential LFP differs from

them in several ways. First, we show using probabilistic classifiers designed with support

vector machines that sleep duration (sleep depth as per our definition) already has an

effect on the transition period (from 0 to 5 minutes), further we show that the sleep depth

again can be captured at 2 minutes prior to initiation of no movement activity. These

findings indicate that sleep depth is in essence a modulator of sleep intensity and that
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sleep of different durations have distinct electrophysiological signatures. It is interesting

to note that in the study of (van Alphen, Yap, et al. 2013) arousal threshold experiments

were done separately from electrophysiological experiments which could explain the dis-

crepancies.

Further another study (Yap, Grabowska, et al. 2017) decided to compare spontaneous

sleep with sleep induction by artificial ways. They primarily activated the so-called sleep

switch (dFSB) in the fly brain (Pimentel, Donlea, et al. 2016; Donlea, Thimgan, et al. 2011)

by using thermogenetic techniques which produced an increase in 2-40 Hz oscillation. As

the two-channel differential LFP in the same study resulted in modulations of frequencies

in the range of 1-100 Hz, they concluded that the fly sleep associated with dFSB may be

unique and different from the spontaneous sleep. One of the main criticisms of this con-

clusion is that in the recording set up of the dFSB activated sleep, electrodes covered

the full regions of the fly brain (full-brain probe). Hence, they cannot be directly com-

pared to the data from two-channel differential LFP setup. We overcame this limitation

and conducted a spontaneous sleep study for the first time with multi-channel recordings

(albeit half brain probe). We found that spontaneous sleep was associated with change

in frequencies in the range of 2-40 Hz in the central and middle channels. Currently fly

dissection protocols are being performed to idenfity the actual target locations in the fly

brain. But from previous studies we are confident that the region of the central channels

is actually the dFSB in the central complex in the fly brain. This contradicts findings from

(Yap, Grabowska, et al. 2017) as we show that indeed spontaneous sleep has spatial and

temporal signatures similar to the dFSB based artificial sleep induction.

The following are the strengths and limitations of our approach to understand the dynam-

ics of sleep in Drosophila.

7.3.1 Strengths

First, one of the main advantages of using fruit flies is the ability to causally manipulate

putative circuits to show how sleep is triggered. I used multichannel spontaneous sleep
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recordings to show that central channels (possibly located near the dorsal fan shaped

body) differ across ’awake’ and ’sleep’ conditions. Second, the fruit fly as a sleep model

has a distinct advantage of being able to record data for long hours (12-24 hrs) which is

difficult with other species.

7.3.2 Limitations

First, the location of multichannel electrodes has not been verified in the current study.

They need to be verified with dissection using a dye on the electrode tip to reliably iden-

tify the locations being measured. These locations can then be compared with known fly

atlases to identify the circuits involved. Second, the arousal threshold in the multichannel

sleep settings has not been verified by using a periodic stimuli that disturbs the sleep of

the animal. This is crucial as this determines if the fly actually displays increased arousal

threshold (one of the hallmarks of sleep) under this set up. Third, the location of elec-

trodes (insertion depth, location) in the two channel differential set up may not be same

across flies. This can produce a systematic noise in the recordings which could contribute

to noise in very specific frequencies. Fourth, so far we have studied only flies that were

alive for atleast 12 hours on the ball (multichannel), however the flies that survived 12 hours

could be starving and hence lack of movement that is attributed to sleep could actually

be due to tiredness or hunger.
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8
Future directions

8.1 Tracking alertness transitions

The micro-measures algorithm could be improved in many ways. First, in the current

study the only kernel that was evaluated with the SVM was the Radial Basis function (RBF),

we could potentially evaluate other kernels like polynomial functions to make the optimal

choice. Second, the algorithm should be checkedwith varyingmeasures of signal to noise

ratio. As EEG data collection methods are highly variable this can cause problems if the

algorithm was run with different quality data. Though in our study we only performed

minimal preprocessing to ensure that the specifics of preprocessing pipeline does not

bias the algorithm. Third, the current epoch duration in the algorithm has been fixed at 4

seconds, however there could be fast paced tasks that lack graphical elements (spindles,

k-complex etc.) as participants don’t dwell into deeper levels of drowsiness and hence

it is important to modify the algorithm for such needs. Fourth, the algorithm needs to

be developed for eyes-open condition, this can make it widely applicable in many areas

including the industry wherein applications that can track the alertness levels of users

(for example truck drivers) are in great demand. Fifth, the algorithm could be trained

on large datasets that have large number of individual hori ratings that are verified by
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multiple scorers resulting in a large sample of gold standard ratings that can improve the

reliability of the algorithm.

8.2 Behavioural dynamics of alertness transitions

The auditory spatial attention task used tomeasure the behavioural dynamics of transition

could be improved in several ways. First, the range of the stimuli can be expanded to

include the full spectrum of -90◦ to +90◦ to observe the full range of the behavioural

effects. Though this can lead to a possible ceiling effect it would be highly informative

in the estimate of subjective mid-line with psychometric fits (possibly helpful in choosing

the optimal link function). Second, auditory task can be expanded to a visual modality

task wherein the participants are made to perform a line bisection task a) while being

alert, b) while falling asleep, this could confirm if the spatial bias across sessions also

change in a different modality. Third, this task could be modified to include a warning

cue which produces temporary improvements in alertness, this can help us understand

how phasic alertness impacts the spatial bias. Fourth, the next step in this procedure is to

perform this spatial attention task on patients that show typical neglect-like effects and

see if a temporary amelioration of alertness using warning cues (like above) improves the

performance in this task, thereby confirming neglect as primarily a deficit of alertness that

in turn causes deficits in attention. Fifth, we can identify putative regions in the brain (like

right superior parietal cortex etc.) and target them with invasive techniques like TMS to

study this phenomenon in a causal manner.

8.3 Neural dynamics of alertness transitions

The analysis of neural dynamics in alertness transition can be improved in several ways

First, the decoding could be applied on connectivity measures like weighted phase lag

index, weighted symbolic mutual information etc. which can reveal how the connectiv-

ity patterns help differentiate across different behavioural conditions. Second, following
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the previous point we can further connect the trial-by-trial drift rate regression with the

change in connectivity values instead of the ERP data. This can show how information

flow between regions can be connected to parameters in the computational model.

8.4 Handedness aspects of transitions

First, The analysis of the neural dynamics of both right and left-handers could be tagged

to responses (instead of the current way of tagging to stimuli). This could make the re-

sponse related process uniform across trials and possibly highlight mechanisms which

are responsible for generating errors in the right sided stimuli. Second, the trial-by-trial

connectivity parameters could be computed that can be correlated with trial-by-trial drift

parameters. Further in this model we can again explain the correlation with a continuous

parameter (handedness score). This could highlight that handedness is not a binary vari-

able but a continuous variable that reflects on the neural patterns in this spatial attention

task in a systematic manner.

8.5 Transitions in fruit-flies

First, the data in the multichannel recordings have so far only been analysed for the elec-

trophysiological correlates of sleep and wake states. However the fly performs a range

of activity on the ball like grooming, proboscis extension etc. If the video data was anno-

tated by automated software like DeeplabCut (Mathis, Mamidanna, et al. 2018). Further

this dataset could be used for investigating the electrophysiological correlates of such

natural behaviour, which could further open doors to other questions. Second, the ex-

periment to study spontaneous sleep could be adapted and instead of LFP we can record

calcium signals (tagged with GFP) from the whole brain of the fruit-flies. This can provide

us with detailed information on connectivity between different structures in the fly brain

in different depths of sleep. Furthermore, the recording with calcium imaging is compar-
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atively less invasive and hence we can eliminate the higher rate of fly deaths associated

with LFP experiments.
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Concluding remarks

In summary, this research investigated the neural and behavioural dynamics of alertness

transitions across humans and fruit flies. I developed a novel method that can track alert-

ness levels across human participants with EEG in a trial-by-trial manner. Next, I used be-

havioural tools like multilevel modelling, psychophysics and computational model of the

decision making process (drift-diffusion model) to quantify and track these behavioural

changes. I next used machine learning tools like decoding to identify temporal and spa-

tial signatures that can drive the differences in behaviour in the previous step. Further,

I use handedness as an element of variability to show how different neural signatures

can produce differences in behaviour across alertness levels. Finally, I ventured into the

fruit fly model to develop classifier that can track sleep and further showed evidence of

spontaneous sleep in flies.
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A
Appendix - I

A.1 Verification of Source Localisation

In order to verify the source localisation procedure, we performed the following steps.

First, We used the EEG data from a sample participant and computed the noise covari-

ance from 0.2 seconds to 0 seconds using the ’shrunk’ method. Further the covariance

was regularised. Second, the forward solution was computed using the transformation

file, source space, beamformer solution computed earlier. Third, the inverse operator

was computed by using the noise covariance and the forward solution. Fourth, the in-

verse operator was applied on the data from the sample participant (snr = 3, lambda2

= 1.0 / snr 2, method = ’MNE’). The MNE method was used instead of the dSPM used

earlier as we wanted to have positive and negative amplitude for the source signals and

only normal orientations were picked further.
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Figure A.1: Source localisation performed in a sample participant in specific left hemisphere
regions of interest (ROI). N100 amplitude is clearly visible in the auditory regions,
whereas it is diminished in the other regions clearly indicating the validity of the
source localisation procedure.

Fifth, we used the labels from the left hemisphere in the regions of auditory, occipital,

middle temporal and frontal pole regions to extract signals from these ROIs using the

mode of ’mean_flip’. Sixth, we compute the mean across these ROIs to extract a single

time course per ROIs in the left hemisphere which is plotted in Figure A.1. It is evident

from the figure that N100 amplitude is highly localised in the auditory regions compared

to other regions which serves to validate the source localisation used.
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