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ABSTRACT 

Rationale: Stable isotopic analyses are increasingly used to study the diets of past and 

present human populations. Yet, the carbon and nitrogen isotopic data of modern human diets 

collected so far are biased towards Europe and North America. Here, we address this gap by 

reporting on the dietary isotopic signatures of six tropical African communities: El Molo, 

Turkana (Kerio), Luhya (Webuye), Luhya (Port Victoria), and Luo (Port Victoria) from 

Kenya, and Baka from Cameroon; representing four subsistence strategies: fishing, 

pastoralism, agriculturalism, and hunter-gatherer. 

Methods: We used EA-CF-IRMS to measure the carbon and nitrogen isotopic ratios of hair 

(n = 134) and nail (n = 80), and the carbon isotopic ratios of breath (n = 184) from these 

communities, as well as the carbon and nitrogen isotopic ratios of some food samples from 

the Kenyan communities. 

Results: We expand on the known range of δ13C values in human hair through the hunter-

gatherer Baka, with a diet based on C3 plants, and through the agriculturalist 

Luhya (Webuye), with a diet based on C4 plants. In addition, we found that the consumption 

of fish from East African lakes is difficult to detect isotopically due to the combined effects 

of high nitrogen isotopic ratios of plants and the low nitrogen isotopic ratios of fish. Finally, 

we found that some of the communities studied are markedly changing their diets through 

increasing sedentism and urbanization. 

Conclusion: Our findings contribute substantially to the understanding of the environmental, 

demographic and economic dynamics that affect the dietary landscape of different tropical 

populations of Africa. These results highlight the importance of studying a broader sample of 

human populations and their diet, with a focus on their precise context – both from an 

isotopic and more general anthropological perspectives. 

 

Keywords food transitions; stable isotopic analysis; East Africa; Central Africa; subsistence 

strategies 
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INTRODUCTION 

Africa is central to both prehistoric and contemporary human evolution and biology. As the 

place where humans evolved, it is the cornerstone to research on who we are and how we 

came to be. Today, Africa continues to be a place of great change due to ongoing political, 

economic, social, and environmental shifts in the continent 1,2. However, we still lack focused 

research on the biology of human activities in both time frames. For instance, there is a 

surprising lack of fossil and chronologically-controlled archaeological evidence of the events 

that took place in Africa between the appearance of Homo sapiens, 200 000 years ago (200 

Ka), and the present day 3. At the same time, a significant portion of research into current 

human behaviours relies on sampling of WEIRD populations (Western, educated, 

industrialized, rich, and democratic) 4. 

As a component of the ecological niche that people occupy, diet is a useful lens when 

studying both present and past human populations. Dietary assessment allows for a 

comprehensive grasp of human social structures, mobility patterns, activities, and overall 

health 5–8. The methods most often used for the assessment of present diets still rely on 

dietary reporting (e.g. food frequency questionnaires and 24-hour recalls), although recent 

developments have led to the emergence of biomarkers as dietary trackers (e.g. analyses of 

double labelled water, stable isotope ratios, and gut microbiota) 9. Methods for assessing past 

diets are numerous – they include the study of craniomandibular biomechanics, of dental 

macro- and microwear, of coprolites, of microfossils, of stable isotope ratios, of parasite 

relationships, of gut microbiota, and of genomic adaptations reviewed in 7. Clearly, dietary 

assessment in either of these time frames presents its own set of challenges: present 

populations are rarely accurate when reporting diet and biochemical approaches can be 

invasive or laborious, whereas the diet of past populations can only be inferred from proxies, 

all of which have their limitations. In this context, one of the few methods that has been used 

to great effect to assess both present and past diets is stable isotope analysis. For instance, in 

present populations, stable isotope analyses have been successfully used to study associations 

between diet and diseases e.g. 10,11 and to track food transitions for a review, see 12. In past 

populations, stable isotope analyses were first applied to detect the consumption of maize 

among prehistoric North American groups 13, and have since provided ample evidence for 

specific dietary adaptations, such as the high meat consumption among Neanderthals 14, or 

the consumption of C4 foods by some species of Australopithecus 15. 
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Here, we investigate the degree to which we can use carbon and nitrogen isotopic data to 

inform us about the diet of different groups living in different environments in Central and 

East Africa today. We compare the isotopic data from different samples, to see if: 

1. we can observe carbon and nitrogen isotopic differences between groups that are 

known to have different diets; 

2. we can identify dietary factors that result in carbon and nitrogen isotopic changes in 

hair, nail and breath. 

Through this work, we aim to further validate the use of stable isotope analysis as a tool of 

dietary assessment, to expand our knowledge on the isotopic landscape of present diets, and 

to contribute to the interpretation of past events in tropical Africa. 

 

SCIENTIFIC BACKGROUND 

Stable isotope analysis is one of the few scientific methods that directly quantifies aspects of 

the diet that an organism consumes throughout its life. This approach is based on the 

principle that ‘we are what we eat’, i.e. that the chemical components of ingested food find 

their way into an organism’s tissues in a measurable fashion 16–18. Although other factors, 

such as metabolism and environment, also influence stable isotopic signatures, the correlation 

between certain stable isotope signatures and diet has been well established 19–21. The most 

common elements used in diet assessment are carbon and nitrogen. In simple terms, carbon 

isotope analyses distinguish between the types of plants (C3 or C4) that are at the base of the 

food chain, while nitrogen isotope analyses track an organism’s position in the food chain 22–

25. Within archaeology, stable isotope studies are more often performed on bone collagen and 

bioapatite. However, the technique is applicable to other tissues containing carbon and 

nitrogen, including hair, nails, skin, and muscle 26,27. 

Stable isotope ratios have been validated for use as dietary biomarkers based on three types 

of work. First, controlled feeding studies, mostly conducted in animals 28, but in some cases 

also in humans 29,30; second, observational studies in free-living populations 10,31–34, and 

finally, large-scale global surveys 35,36. Nevertheless, additional validation studies are 

necessary if stable isotope biomarkers are to reach their full potential. On the one hand, new 

controlled feeding studies in humans may clarify aspects of the isotopic metabolism, such as 

diet-tissue fractionation, and macronutrient routing. On the other hand, observational studies 

in diverse populations could evaluate the effect of different diets on isotopic ratios, and 
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contribute to our understanding of global variation in the chemical uptake of different 

elements in different human groups 12. 

Only a handful of studies have investigated the carbon and nitrogen isotopic ratios of modern 

groups in Africa 35. Among these, we find different types of work: (1) forensic studies using 

isotopic data to assign geographical origin to unknown individuals, with very few samples of 

African origin 37,38, (2) archaeological studies investigating the diets of historic and 

prehistoric populations in East and South Africa 39–42, and (3) one observational study that 

analysed three living populations in the eastern margin of Lake Turkana 43, one of which 

(El Molo) overlaps with the present study. This paper contributes to our knowledge of the 

dietary isotopic signature of present-day African populations by targeting groups who have 

had traditionally different diets, all of whom are undergoing marked changes in subsistence 

strategy, and focusing on inter-, rather than intra-population dietary changes. 

 

EXPERIMENTAL 

ETHNIC GROUPS, SUBJECTS, AND SAMPLES 

The subjects sampled for this study come from six communities and five ethnic groups with 

different traditional diets and living in different environmental settings across tropical Africa 

(Table 1, and Section S1.1, Supporting Information). These groups were chosen because each 

maintains relatively traditional subsistence strategies that, combined, represent a high dietary 

diversity – agriculturalists, pastoralists, hunter gatherers, and fishers. The communities 

studied include: (1) the El Molo fishers from the south-eastern margin of Lake Turkana, 

Kenya; (2) the Turkana pastoralists from the Kerio Valley, Turkana County, Kenya; (3) the 

Luhya agriculturalists from Webuye, Kenya; (4) the Luhya fishers from Lake Victoria, 

Kenya; (5) the Luo fishers from the northern margin of Lake Victoria, Kenya; and (6) the 

Baka hunter gatherers from the south-eastern rainforest of Cameroon. 
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Fieldwork took place between April and September 2015. Samples were collected in as non-

invasive manner as possible. Hair and nail were collected to characterise the protein part of 

the diet, while breath was collected to characterise the overall diet 17,18,44–47. 

The participants recruited were in general good health, and did not suffer from any of the 

diseases known to lead to isotopic fractionation (e.g. liver cirrhosis) 19. Sampling aimed at a 

balanced female/male ratio of adult participants, but this was not always possible (Table S1, 

Supporting Information). Breath was sampled around 11 am each morning, or at least three 

hours after an individual’s last meal in order to minimise any diurnal variation or post-

prandial effects 45,48. Plant and fish foods were also sampled in the field to provide baseline 

isotopic data against which to compare participants’ data. 

 

FIELDWORK AND LABORATORY METHODOLOGY 

The protocols used were based on standard methods of stable isotope ratio measurements for 

each type of sample for hair  46, 49, breath 50  and  fish collagen 51. Furthermore, two of the fish 

samples (Dagaa and Ofulu) were whole fish, and not just bone. Therefore, these samples 

were analysed twice: whole, and just bone (post-dissection).  

 

SAMPLE COLLECTION 

For hair collection, 20-30 hairs of at least 2 cm length were cut at the nape of the head 49. Nail 

samples were collected by clipping the distal edge of a fingernail 46. Breath was sampled by 

having the subject blow through a straw into a 12-mL evacuated Exetainer vial (Labco, High 

Wycombe, UK) 50. For food samples, each item was placed in a 50-mL plastic container, with 

silica gel added to fish samples for better preservation. 

 

SAMPLE PREPARATION 

Each hair sample was cleaned by two successive immersions in a 2:1 mixture of methanol 

and chloroform (MeOH:CHCl3) for 30 minutes (min) each, followed by two 30 min rinses in 

distilled water. After being freeze-dried, 0.8 ± 0.1 mg of sample was weighed into tin 

capsules for analysis. Each nail sample was cleaned by sandblasting, followed by one 30 min 

rinse in distilled water, one 30 min immersion in 2:1 mixture of MeOH:CHCl3, and another 

30 min rinse in distilled water, with all three steps taking place in an ultra-sonic bath. The 
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samples were then freeze dried and 0.8 ± 0.1 mg aliquots were weighed into tin capsules. 

Breath samples required no preparation prior to analysis. 

Extraction of collagen from fish bone was carried out in four steps: defatting; 

demineralisation; gelatinisation; and freeze-drying 51. For defatting, fish bones were soaked 

in 200 mL of 2:1 MeOH:CHCl3 for 30 min in an ultra-sonic bath, and then left standing 

overnight in the fume hood. If any fat was left, the samples were soaked in new solution, and 

the procedure was repeated. Once fat was removed, the samples were cleaned by two 30 min 

rinse in distilled water in an ultra-sonic bath. They were then placed in 8 mL of 0.5 M HCl at 

4 °C for several days for demineralisation. During this period, the samples were shaken twice 

a day and acid was replaced every two to four days. Once demineralised, samples were rinsed 

three times in distilled water and gelatinised in acidic water (pH 3.0) at 75°C for 48 hours. 

The solution was then filtered into tubes using an Ezee filter (45 to 90 μm, Elkay products, 

Basingstoke, UK) and freeze-dried. Finally, 0.8 ± 0.1 mg of the resulting collagen was 

weighed into tin capsules for analysis. 

The plant samples were dried, ground until homogeneous using a mortar and pestle, and then 

weighed into tin capsules for analysis. 

 

ISOTOPIC ANALYSIS 

The isotopic analyses of hair, nail, fish collagen, and plant samples were carried out at the 

Godwin Laboratory, Department of Earth Sciences, University of Cambridge (Cambridge, 

UK), using a Costech (Valencia, CA, USA) elemental analyser (EA) coupled in continuous-

flow mode to a ThermoFinnigan (Bremen, Germany) Delta V isotope ratio mass 

spectrometer. Hair and nail samples were analysed in triplicate, with carbon and nitrogen 

isotopic ratios measured on each run. The carbon and nitrogen results are reported as δ values 

relative to international standards, VPDB and AIR respectively. Due to the high and variable 

C/N ratio of plant samples, their carbon isotopic ratios were measured on a first run using a 

sample mass of 1 ± 0.1 mg, then again using a mass calculated from the C/N ratio that was 

obtained in the first analysis to measure δ15N values. Repeated measurements using 

international and in-house standards showed that the analytical error was less than 0.2‰ for 

both elements. The international isotopic standard used was caffeine (δ13C: −27.5‰; δ15N: 

+1.0‰, IAEA-600, IAEA, Vienna, Austria), whereas the in-house standards were nylon (size 

standard, Nylon 6, Sigma-Aldrich, Gillingham, UK), alanine (δ13C: −26.9‰; δ15N: −1.4‰, 
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L-alanine, Honeywell Fluka, Bucharest, Romania), protein 2 (δ13C: −27.0‰; δ15N: +6.0‰, 

Protein standard OAS, Elemental Microanalysis, Okehampton, UK) and again caffeine (δ13C: 

−35.9‰; δ15N: −2.6‰, Elemental Microanalysis). 

Isotopic analyses of breath were carried out at Iso-Analytical Limited (Crewe, UK) using gas 

chromatography (GC) coupled in continuous flow with a Europa Scientific (Crewe. UK) 

Hydra 20-20 mass spectrometer. These analyses were measured relative to a reference gas 

(δ13C: −34.56‰, IA-R060, traceable to NBS-19, which is distributed by the IAEA diluted to 

3.3% CO2, and were based on replicate analysis of in-house standards. The analytical errors 

were less than 0.2‰ for carbon. 

 

STATISTICAL ANALYSIS 

Statistical analyses and figure drawing were performed on the R platform (version 3.3.1) 52. 

The normality of the data was checked graphically using histograms or quantile-quantile 

plots, and formally using Shapiro-Wilk tests, while the equality of variances was tested using 

Levene’s test. Inferential tests were adapted to the specific statistical question but, as a rule, 

when the assumptions of the test were not met, robust versions of the tests were used. 

Whenever possible, we report the effect sizes of the tests 53(p57). 

 

ETHICS 

Fieldwork data collection in Kenya was carried out under the IN-AFRICA Project permit 

granted to Prof. Marta Mirazón Lahr by the Government of the Republic of Kenya 

(NACOSTI/P/15/2669/4758), and an exploration and excavation licence from the National 

Museums of Kenya that specifically includes the present work. During fieldwork, all Kenyan 

participants signed a consent form or, if illiterate, had the consent form read out to them in 

their language, and a thumb print was taken instead. Fieldwork in Cameroon was approved 

by the Centre National de la Recherche Scientifique (CNRS), Agence National de la 

Recherche (ANR) and Institut de Recherche et Développement (IRD) and was carried out as 

part of the international agreement between the IRD and the Ministry of Scientific Research 

and Technology of Cameroon. Consent from participants in Cameroon was obtained orally. 
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RESULTS 

ASSESSMENT OF QUALITY OF RESULTS 

A total of 134 hair samples and 82 nail samples produced reliable results on the basis of a 

C/N ratio in the range of 3.0 to 3.8 46,49 and low replicate measurement errors (<0.3‰ for 

δ13C values and <0.4‰ for δ15N values). Similarly, a total of 184 breath samples was 

considered reliable on the basis of CO2 concentrations greater than 3%. Assessment of the 

quality of fish (collagen) samples was based on a C/N ratio in the range of 2.9 to 3.6 54 and 

the same replicate measurement errors as those of hair and nail (Section S2.1, Supporting 

Information). 

 

COMPARISON WITHIN AND BETWEEN POPULATIONS 

Variation in the isotopic ratios of all body pools within populations was explored in terms of 

the potential effects of sex and age. No statistically significant associations with age and sex 

were observed, nor with pregnancy or breastfeeding (Section S2.2 and Tables S4-6, 

Supporting Information). 

Variation in the isotopic ratios of carbon and nitrogen between the sampled populations was 

explored separately in each of the sample body pools. The statistical results obtained for 

between-group variation in δ13C and δ15N for each body pool are presented below. Figure 1 

and Table 2 illustrate and summarise the human isotopic results for all body pools. 

 

 

HAIR DATA 

Robust analysis of variance (rANOVA) found a significant effect of population on both hair 

δ13C, Ft = 481.5, p < 0.001, ξ = 0.95, and hair δ15N, Ft = 42.8, p < 0.001, ξ = 0.79 

(Section S2.2, Supporting Information). Based on the subsequent post hoc tests (Table 3(A)), 

the hair isotopic results show that the Baka hunter gatherers have the lowest carbon and the 

highest nitrogen isotopic ratios, and are thus, the most distinct group. Among the Kenyan 

populations, the Webuye Luhya agriculturalists have the highest carbon isotopic ratio, while 

the remaining four groups overlap considerably in both carbon and nitrogen isotopic ratio. 

Among these latter four groups, the Turkana (Kerio) pastoralists have the lowest carbon 
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isotopic ratio and the widest nitrogen isotopic range. The three remaining groups (the Luo, 

Lake Victoria Luhya and the El Molo) are all fishers and expected to share a dietary isotopic 

signature, although they do not present the expected 15N enrichment associated with a high 

trophic position 17. Nevertheless, the hair isotopic results of the El Molo are closer to those of 

the Turkana (Kerio) than to the two fishing groups from Port Victoria. 

 

NAIL DATA 

A standard ANOVA found a significant effect of population on nail δ13C values, 

F(4, 77) = 38.5, p < 0.001, ω2 = 0.65, as did the robust ANOVA on nail δ15N values, 

Ft = 7.48, p < 0.01, ξ = 0.50 (Section S2.2, Supporting Information). Based on subsequent 

post hoc tests (Table 3(B)), the nail carbon isotopic results show a similar pattern to those of 

hair data, where the Turkana (Kerio) and the El Molo are more depleted in 13C, followed by 

the Luo and Luhya from Port Victoria (although these two groups are only significantly 

different from the Turkana, and not from the El Molo), and finally by the Luhya (Webuye), 

more enriched in 13C. The post hoc analyses of nail found fewer significant comparisons than 

those of hair, possibly because of the lower sample size available for nail statistical tests. 

Contrary to the carbon isotopic results, the nitrogen isotopic pattern of nail differs from that 

of hair. The Luhya (Webuye) are more depleted in 15N than all other groups, who have 

similar values. Therefore, while the hair nitrogen isotope ratios fail to discriminate the Luhya 

(Webuye) from both the El Molo and the Turkana (Kerio), the δ15N values on nail do. This 

discrepancy in hair and nail δ15N values could indicate a metabolic difference between the 

two tissues 46, as discussed in the section Comparison between Body Pools. 

  



 

 
This article is protected by copyright. All rights reserved. 

BREATH DATA 

Before examining inter-population differences in breath δ13C values, an analysis of 

covariance (ANCOVA) with time of collection as covariate was performed to test for 

potential residual effects of diurnal variation. The results show that time of collection was not 

significantly related to breath δ13C values, F(1, 176) = 0.46, p = 0.5, partial ω2 = 0.00, 

suggesting that the collection standard (sampling around 11 am) was kept to an adequate 

level. Hence, a standard ANOVA was applied instead, which found a significant effect of 

population on breath δ13C values, F(5, 178) = 71.5, p < 0.001, ω2 = 0.66. 

Based on the post hoc tests that followed (Table 3(C)), the breath carbon isotopic results find 

three groups: one significantly depleted in 13C represented by the Baka; a second group, also 

depleted in 13C but to a lesser extent than the Baka, which includes the three fishing 

populations (El Molo, the Luo, and the Luhya from Port Victoria) and the Turkana (Kerio); 

and a group comparatively enriched in 13C, the Luhya farmers from Webuye. 

The breath δ13C values varies more within groups than either the nail or hair δ13C values 

(Table 2), so that fewer statistically significant differences among groups were observed, and 

the differences found overlapped with observations already made for δ13C values in hair and 

nail. The body isotope pools act as buffers against the effects of short-term fluctuations in 

diet on the δ13C values of hair and nail. These buffering mechanisms do not include breath, 

which therefore, shows a faster isotopic response to dietary changes that results in greater 

variation in breath δ13C values among individuals 56,57. 

 

FOOD DATA 

Although this work includes a relatively small portion of the range of plants and animals 

consumed as food by the groups being studied, a few compelling patterns are observed in 

their isotopic data (Figure 2, Table 4). 
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Carbon isotopic ratios clearly distinguish between the three food categories: C3 foods, C4 

foods, and fish. For plants, these isotopic ratios fall within the expected ranges 25, while the 

ratios of the fish samples that we tested span the entire isotopic range between the C3 and C4 

foods analysed, probably tracing the plant diet at the base of the food chain 18,58. 

The plant δ15N values varied more than is suggested for either leguminous or non-leguminous 

plants in the literature 17,59. This finding is understandable since many factors affect the δ15N 

values of plants 60. In particular, high nitrification rates in soil, within a wet agriculture 

context 60,61, use of animal-derived fertilisers21,35,62 and low precipitation and high 

temperatures20,21,35 could explain the high δ15N values observed. In addition, although the 

overall dispersion of nitrogen isotopic ratios observed in fish is smaller than that of plants, we 

observe two clusters among fish analysed, one around +5‰ and one around +10‰, which 

may correspond to a trophic level difference (Section S2.2, Supporting Information). No clear 

trophic shift is detectable between the fish foods and the plants analysed. Different and not 

mutually exclusive effects may contribute to this: it could be that the analysed plants are 

enriched in 15N, as discussed before, that the food chains in these lakes are short, and that the 

base of the food chain in the two lakes (Turkana and Victoria) is depleted in 15N 63. 

Finally, we also observe that food samples from Webuye have relatively low nitrogen 

isotopic ratios. Given the very small sample size, this finding is tentative; nevertheless, it may 

explain the lower nitrogen isotopic ratios of the Luhya (Webuye). 

 

COMPARISON BETWEEN BODY POOLS 

The present work also considered how the different body pools relate to each other 

isotopically (Section S2.3, Supporting Information). Here, we must consider the different 

time scale of growth and sampling for each body pool: 1 cm of hair represents one month’s 

growth64, 1 cm of nail represents three months’ growth65, and breath will signal a diet change 

after only three hours, simply associated with digestion time56, whereas hair sampling is 

much closer to the time of formation than nail sampling. Therefore, it is possible that a 

changing diet associated with seasonality could explain the differences between the sampled 

body pools. However, none of the participants reported substantial changes in diet in the 

months prior to sampling, suggesting other factors may play a role. In fact, seasonality in this 
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area is expressed in terms of variation in rainfall, which, for these populations, mostly affects 

the amount, rather than the type, of food consumed. 

We found that hair is slightly enriched in 13C relative to nail, but this enrichment is 

negligible, as previously suggested 46. This slight enrichment may be explained by 

differences in the amino acid composition of the two tissues – hair is richer in cysteine and 

serine than nail 46 – combined with the enrichment in 13C observed in cysteine and serine 66. 

We found that hair is depleted in 15N relative to nail, which is also consistent with previous 

studies 35,46. However, we believe that this relationship cannot be modelled with a simple 

fixed offset 46. It is possible that the intracellular turnover of amino acids differs between the 

hair follicle and the nail matrix 46. This explanation is untested but it is supported by the 

stronger effect of metabolism on the nitrogen isotope composition (through the de- and 

transamination of amino acids) 29,49,67, and by the lack of constant offset between the δ15N 

values of different tissues and their corresponding pools of free amino acids 68. Finally, we 

found that it was not possible to model accurately the isotopic relationship between breath 

δ13C values and hair or nail δ13C values, because the breath δ13C value is extremely variable 

due to the rapid response of this body pool to dietary intake, and because hair and nail record 

diet differently from breath – hair and nail record the protein part of the diet preferentially, 

while breath records the overall diet. Thus, this relationship will depend on the type of 

protein source that the populations consume (e.g. C3/C4-based or marine) 69,70. Indeed, the 

best fitting model was obtained when considering each diet separately. When dealing with 

mixed diets and complex systems, a simple model fails to explain the relationship between 

the isotopic ratios of different tissues. 

 

DISCUSSION 

The results of this study show that stable isotope analyses distinguish between traditional 

diets in tropical Africa, although not always in the way expected. Our results can be grouped 

into those that reveal isotopic patterns that are particular to the tropical African environment, 

those that uncover recent changes to traditional diets, and (to a lesser extent) those that hint at 

the complex innerworkings of the human isotope metabolism. These results will be discussed 

separately, and in order to frame them in the wider context of isotopic research in modern 

diets, the discussion compares our findings with other isotopic studies on human hair and 

nail. 
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ISOTOPIC PATTERNS OF THE TROPICAL AFRICAN ENVIRONMENT 

Our study found that the inclusion of freshwater fish in the diets of tropical African groups is 

difficult to detect through the analysis of nitrogen isotopic results, since we detected no 

signals of a clear trophic shift between fisher (El Molo, Luhya and Luo from Port Victoria) 

and non-fisher populations (Turkana from Kerio, Luhya from Webuye, and Baka). This 

observation is likely to result from the combined effects of high nitrogen isotopic ratios in 

local plants and the low nitrogen isotopic ratios in the lacustrine fish sampled. As discussed 

earlier, a wet agriculture context 60,61, use of animal-derived fertilisers21,35,62, and low 

precipitation and high temperatures 20,21,35 could explain the high δ15N values observed in 

plants, whereas the low δ15N values of fish could result from short food chains in these lakes 

or from a 15N-depleted baseline 63,71. The last two explanations are not mutually exclusive, as 

there is evidence that food chains in Lake Victoria are short 72, but also that nitrogen-fixing 

cyanobacteria contribute to 15N depletion at the baseline in both lakes 24,43,71,73–75. It is worth 

noting that the nitrogen isotopic ratios of fish obtained in this study are close to those found 

by other isotopic studies on the aquatic fauna of these two lakes (Lake Turkana and Lake 

Victoria) 43,63,72. As such, these findings suggest that lake fish consumption is hard to detect 

in an East African context, which could be relevant to the interpretation of archaeological 

isotopic events. However, one must consider that shortening of food webs and proliferation 

of cyanobacteria in Lake Turkana and Lake Victoria are at least partially the result of recent 

human activity through the introduction of invasive species (e.g. Nile Perch in Lake Victoria) 

and pollution 63,72,74. 

The hunter-gatherer Baka have a very distinct isotopic signature characterised by low carbon 

and high nitrogen isotopic ratios. On the one hand, the forest environment where they live, 

dominated by C3 plants, easily clarifies the first result, although the “canopy effect” might 

also contribute to the lowering of carbon isotopic ratios 76. On the other hand, the high 

nitrogen isotopic ratios cannot be easily explained by high meat or fish consumption, or by 

any of the factors that may explain the high nitrogen isotopic ratios of plants in Kenya (wet 

agriculture context, use of animal-derived fertilisers, combined low precipitation and high 

temperatures), since none of these factors are present in the forest environment where this 

foraging population lives. Instead, the 15N enrichment might result from the complex 

pathways of nitrogen isotopic fixation in tropical forests. This explanation is supported by 
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isotopic analyses of primate hair in West African forests, which also report relatively high 

δ15N values77–79. 

 

RECENT CHANGES TO TRADITIONAL DIETS 

The agriculturalists Luhya in Webuye have the highest carbon isotopic ratios, which probably 

derives from a high consumption of C4 plant foods. In fact, the carbon isotopic ratio of hair 

and nail among the Luhya (Webuye) is very close to those obtained for C4 plant foods in that 

region, suggesting that the protein component of this group’s diet is entirely based on C4 

plants. Therefore, the lower nitrogen isotopic ratio of this group might arise from 15N-

depleted staples (Figure 2), and not from a lower consumption of animal and fish foods. It is 

also relevant that the Luhya from Webuye are known to have traditionally supplemented their 

diet with termites 80. However, almost all participants in this study declared they did not eat 

termites or consumed them in negligible quantities. Furthermore, previous studies 81,82 did not 

find that insects had particularly high nitrogen isotopic ratios. 

The Turkana were chosen as a representative of traditional pastoralists of Kenya. However, 

the isotopic analyses indicate that the particular community of Turkana from the Kerio Valley 

has replaced animal foods with C4 plant foods, probably due to an ongoing sedentarisation 

process 83,84. Notwithstanding this change, this was the population with the wider variability 

in nitrogen isotopic ratios, which indicates that individuals with very different diets might be 

present within the group. The effects of recent changes in diet are also visible to some extent 

in the other Kenyan groups, most notably in the Luhya (Webuye). Although some reliance on 

C4 plants is expected given the global distribution of such staples, the very high carbon 

isotopic ratios detected in this study indicate an over-reliance on these foods. This is not 

consistent with traditional diets – instead, it concurs with famine relief programmes in the 

case of the Turkana, which often supply maize as nutritional support to populations, and 

through the increasing participation in market economies in the case of the Luhya (Webuye) 

85–89. 

 

ISOTOPIC DIFFERENCES BETWEEN HUMAN BODY POOLS 

Isotopic differences between sampled body pools may represent a changing diet recorded by 

the different time scales of growth and sampling for each body pool, with nail representing 

the longest time span and breath the shortest. However, we found no strong indication this is 
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the case in this study. Instead, this study confirmed that hair is slightly 13C-enriched relative 

to nail, possibly due to disparate amino acid compositions, but that this difference is not 

significant35,46. We also found that a simple offset did not accurately model the relationship 

of the nitrogen isotopic ratios of hair and nail, which can be explained by differences in the 

intracellular turnover of amino acids. Similarly, it was not possible to model accurately the 

isotopic relationship between breath δ13C values and hair or nail δ13C values, possibly due to 

the high variability in breath δ13C values, which itself is a result of the rapid response of this 

body pool to dietary intake, but also to the complex relationship between these body pools in 

the context of mixed diets. 

 

COMPARATIVE FRAMEWORK 

When comparing these results with 16 previous isotopic studies on contemporary human hair 

and nail, totalling over 2000 individual hair and nail samples (Section S3, Supporting 

Information), we find that both the highest and the lowest carbon isotopic ratios recorded 

were obtained by the present study – the Luhya (Webuye) and the Baka, respectively. 

Regarding nitrogen isotopic information, our results are consistent with previous studies that 

have shown that samples of African origin have higher nitrogen isotopic ratios than European 

ones, although they originate from populations with a relatively lower consumption of meat 

and fish. This outcome has been explained by the 15N enrichment observed in hot and arid 

environments 35. However, this relationship between rainfall/humidity and δ15N values has 

been shown to derive from denitrification processes in the soil that directly affect plants 20,90, 

rather than through physiological responses at the consumer level, as previously suggested 91–

94. Our results are consistent with the plant denitrification hypothesis – variation in the δ15N 

values of the human populations roughly tracks the values of plant staples, i.e. most plant 

staples are 15N-enriched as are most of the populations, while the staples from Webuye have 

lower δ15N values, just like the corresponding human group. 

Two earlier isotopic studies included one of the populations sampled in our work, so that we 

can directly compare the results. The first is that of Kiura43, who compared multiple aspects 

of the diet of three populations of northern Kenya who live along the eastern shores of Lake 

Turkana – two pastoralist groups (Dassanech and Gabra), and the El Molo fishers, who were 

also included in the present study. Kiura determined the carbon and nitrogen isotopic ratios of 

eight human hair samples, as well as of the staples consumed directly and indirectly. She 

reported higher δ13C values (−14.3 ± 0.7 ‰) and lower δ15N values (+8.0 ± 0.6 ‰) in the El 
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Molo than the present work (δ13C: −16.8 ± 1 ‰; δ15N: +9.0 ± 0.8 ‰) 43(pp312-313). Several 

factors may contribute to the differences between the two studies, including sample size and 

constitution, and short-term differences in diet. The latter may reflect the fact that there was a 

severe drought in the area during 1999-2001 followed by erratic rains in 2002, which elicited 

emergency food aid rich in C4 foods 95,96, and that the population has since reduced its 

consumption of C4 foods and increased its consumption of animal foods. In addition, Kiura 

found that the agropastoralists Dassanech had higher nitrogen isotopic ratios than the Gabra 

pastoralists, who in turn had higher nitrogen isotopic ratios than those of the Turkana people 

in the present study. Kiura attributes the higher Dassanech nitrogen isotopic ratios to the 

combined consumption of animal and plant products with high δ15N vakues (e.g. sorghum) 

43(p381). This interpretation is consistent with the high nitrogen isotopic ratios obtained here for 

the plant samples, but also with the hypothesis that the low nitrogen isotopic ratios of the 

Turkana communities of the Kerio Valley included in this study reflect a sedentarisation 

process and decreased consumption of animal products. 

The second study is that of Ambrose and DeNiro39, who studied the isotopic ratios from the 

bone collagen of 97 archaeological humans from South and East Africa. Relevant to the 

present work, they found that 7 bone samples from historic Turkana and Dassanech 

(combined) had lower δ13C values (−14.6 ± 2.9 ‰) and higher δ15N values (+13.8 ± 1.3 ‰) 

than those reported here for either hair and nail samples among 27 contemporary Turkana 39. 

This further endorses the view that there has been a significant recent change in the diet of 

the Turkana communities living along the Kerio Valley; the differences may also partly 

reflect the fact that the data for the two populations (Turkana and Dassanech) in this study 

was combined, as suggested by the comparatively much larger standard deviations of the 

reported mean values. 

The changes in diet detected in these two studies highlight the variation observed not only 

horizontally within a population, but also vertically through time, which emphasizes the 

ability of individuals to adjust to new conditions and environments. This is consistent with 

the differences we observed between the declared diets of the individuals who participated in 

our study and those traditionally attributed to their communities on a historical basis. For 

example, not only do different Luhya communities focus on different staple diets in Webuye 

and Port Victoria, but many individuals from the Webuye community can no longer be 

described as traditional farmers since they take full part in the regional market economy. 

Similarly, while traditional nomadic pastoralism was the main subsistence strategy amongst 
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most Turkana communities historically, most groups today, including those from the Kerio 

Valley who participated in our study, have become largely sedentary, increasingly depending 

on a maize-based diet83,84,97. 

Overall, this work provides novel data on the isotopic signatures of tropical African 

populations. It extends the known range of δ13C values in human hair by providing evidence 

on the strongly C3 plant-based diet of the hunter gatherer Baka, and on the strongly C4 plant-

based diet of the agriculturalist Luhya (Webuye). It also shows that, within an East African 

context, the consumption of lacustrine fish might be difficult to detect isotopically due to the 

high nitrogen isotopic ratios of plants and the low nitrogen isotopic ratios of fish. 

Furthermore, among the ethnic groups for whom dietary information is available at different 

points during the last 50 years – the El Molo, and the Turkana – we find evidence of 

relatively recent changes in diet. Taken together, these findings reinforce the view that the 

dietary diversity of different populations today remains poorly understood, and that stable 

isotopic analyses are a useful tool for tracking the dynamics of food transitions, such as those 

associated with urbanisation or with food aid interventions. Finally, this work corroborates 

the approach that in order to achieve a more complete picture of the isotopic signature of a 

targeted organism, we should include different types of body pools and all components of the 

food web in the analyses. 

 

CONCLUSION 

We found that the hunter gatherer Baka have low carbon and high nitrogen isotopic ratios, 

consistent with the tropical forest environment they inhabit. In contrast, the Luhya from 

Webuye and the Turkana have high carbon and relatively low nitrogen isotopic ratios, 

indicating they have diverged from a traditional agriculturalist and pastoralist diet, 

respectively. We also found that the consumption of fish from Lake Victoria and Lake 

Turkana does not lead to a trophic shift between fisher (El Molo, Luhya and Luo from Port 

Victoria) and non-fisher populations (Turkana from Kerio, Luhya from Webuye, and Baka). 

Finally, we confirmed that hair is very slightly 13C-enriched relative to nail, but that the 

relationship between the δ15N values of hair and nail is more complex, as is the one between 

breath δ13C values and hair or nail δ13C values. Thus, this study addresses a gap in our 

knowledge of the isotopic signatures of tropical African populations with well-known 
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traditional diets, which in some cases are rapidly changing through increasing sedentism and 

inclusion in market economies. 

This study also highlights the need of more information at both population and individual 

levels. At the population level, it is necessary to collect more data on the isotopic variation of 

traditional diets across the world. As Western diets or even famine relief foods expand their 

reach, much of the diversity of human diet is being lost and, with it, the opportunity to 

understand the significance of such subsistence strategies in a past and present context. At the 

individual level, it is necessary to better understand the processes that determine isotopic 

ratios through controlled studies on the isotopic metabolism of the individual. We believe that 

such knowledge will enable a more effective use of isotopic analyses to track dietary 

changes, allowing us to better design dietary interventions and to preserve dietary diversity. 
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Table 1. Summary of main characteristics of the ethnic groups studied: ecology, livelihood, and main staples of the traditional diet. 

 

 El Molo Turkana Luhya Luo Baka 

Field site 

Layeni 
02°49’36’’N, 36°41’50’’E  

Komote 
02°51’19’’N, 36°41’33’’E 

Nakurio 
02°52’23’’N, 36°08’30’’E 

Lotukomo 
02°46’57’’N, 36°12’17’’E 

Webuye 
0°35’57’’N, 34°46’47’’E 

Port Victoria 
0°5’47’’N, 33°58’42’’E 

Port Victoria 
0°5’47’’N, 33°58’42’’E 

Moangé-Le-Bosquet 
3°4’34’’N, 13°31’47’’E 

Population size ~ 600 ~ 900 000 >5 000 000 >4 000 000 >30 000 

Ecology 

Temperature 

Rainfall 

semi-arid 

28°C 

<200 mm 

semi-arid 

29°C 

~200 mm 

sub-humid 

20°C 

>1600 mm 

sub-humid 

22°C 

700-1300 mm 

humid 

23°C 

>1600 mm 

Traditional 

livelihood 

fishers pastoralists agriculturalists fishers and 

agriculturalists 

hunter 

gatherers 

Main staples 

described in 

the literature 

lake fish, goat, chicken 

and other lake birds; 

maize, rice, beans, tea, 

sugar88 

milk and blood, meat on 

special occasions; 

sorghum, maize, wild 

plants (e.g. doum palm 

fruit)98 

chicken, sheep, goats, 

beef, fish if close to 

water bodies; 

maize, beans, finger 

millet, sweet potatoes, 

bananas 85,86,99 

fish, beef, chicken, 

sheep, and goats; 

maize, sorghum, and 

beans, but also cassava 

and sweet potatoes87,99 

small fish, wild game, 

and insects; 

wild yam, mushrooms, 

crops like cassava, 

plantain, taro, and 

okra100,101 
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Table 2. Summary measures of carbon and nitrogen isotopic results, by body pool and by 

population. 

 

 HAIR  NAIL  BREATH 

POPULATION N δ13C/‰ δ15N/‰  N δ13C/‰ δ15N/‰  N δ13C/‰ 

El Molo 
27 

-16.8 

(1.0) 

+9.0 

(0.9) 
 9 

-16.6 

(0.5) 

+10.2 

(0.9) 
 29 

-19.8 

(1.9) 

Turkana 
21 

-17.5 

(1.0) 

+8.9 

(1.3) 
 20 

-17.5 

(1.1) 
+10.4 

(1.1) 
 32 

-18.9 

(2.5) 

Luhya (Webuye) 
17 

-13.6 

(1.0) 

+8.5 

(0.5) 
 15 

-13.1 

(1.2) 
+9.5 (0.5)  32 

-15.5 

(2.2) 

Luhya (Port 

Victoria) 
18 

-16.1 

(1.8) 

+9.7 

(0.8) 
 17 

-15.7 

(0.9) 

+10.6 

(0.9) 
 30 

-19.1 

(2.5) 

Luo (Port Victoria) 
18 

-15.6 

(1.2) 

+9.7 

(0.6) 
 21 

-15.8 

(1.2) 

+10.3 

(0.4) 
 29 

-19.3 

(1.8) 

Baka 
33 

-23.1 

(0.6) 

11.4 

(0.9) 
 — — —  32 

-25.5 

(1.6) 

Note. Values are mean (standard deviation). Robust measures of central tendency and 

dispersion are found in Table S2 (Supporting Information). Values in bold indicate a 

sampling distribution that deviates significantly from normality (Shapiro Wilk test, p < 0.05, 

Table S3, Supporting Information). 
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Table 3. Post hoc results for all body pools: (A) Hair: robust post hoc results for both δ13C and 

δ15N values (with 20% trimmed means, 5000 bootstrap samples, and an FDR correction); (B) 

Nail: standard post hoc tests for δ13C values and robust for δ15N values; (C) Breath: standard 

post hoc tests for δ13C values. The cells above the diagonal represent the pairwise comparisons 

between groups for hair δ15N, whereas the cells below the diagonal represent the pairwise 

comparisons between groups for hair δ13C values. Values in each cell are the standard (r) or 

robust effect size (ξ) for each pairwise comparison. Shaded cells are significant comparisons 

(p < 0.05). 

 

(A)  El Molo Turkana 
Luhya 

(Webuye) 

Luhya 

(Port Vict.) 

Luo 

(Port Vict.) 
Baka 

H
A

IR
 δ

1
3
C

 

El Molo — 0.2 0.4 0.5 0.6 0.9 

Turkana 0.5 — 0.1 0.5 0.6 0.9 

Luhya 

(Webuye) 
1.0 1.0 — 0.9 0.9 1.0 

Luhya 

(Port Vict.) 
0.4 0.6 0.8 — 0.1 0.9 

Luo 

(Port Vict.) 
0.7 0.9 0.9 0.3 — 0.9 

Baka 0.9 0.9 0.9 1.0 1.0 — 

(B)  — 0.2 0.7 0.4 0.1 
N/A 

N
A

IL
 δ

1
3
C

 

El Molo 0.4 — 0.7 0.1 0.4 
N/A 

Luhya 

(Webuye) 
0.9 0.9 — 0.9 0.9 

N/A 

Luhya 

(Port Vict.) 
0.5 0.7 0.8 — 0.4 

N/A 

Luo 

(Port Vict.) 
0.3 0.6 0.7 0.1 — 

N/A 

(C) El Molo —      

B
R

E
A

T
H

 δ
1

3
C

 

Turkana 0.2 —     

Luhya 

(Webuye) 
0.7 0.6     

Luhya 

(Port Vict.) 
0.2 0.0 0.6 —   

Luo 

(Port Vict.) 
0.2 0.1 0.7 0.1 —  
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Baka 0.8 0.8 0.9 0.8 0.9 — 

Note. Interpretation of r: small = 0.10, medium = 0.30, and large = 0.50 53(p58); 

          Interpretation of ξ: small = 0.15, medium = 0.35, and large = 0.50 102(p169). 
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Table 4. Carbon and nitrogen isotope ratios for individual food samples. 

Location 

(Ethnic Group) 
Sample δ13C/‰ n δ15N/‰ n 

Layeni 

(El Molo) 

Sorghum (Sorghum bicolor) −12.1 2 +3.6 2 

Maize (Zea mays) −11.3 (0.1) 3 +4.8 (0.1) 3 

Tilapia (Oreochromis niloticus) −13.1 (0.0) 3 +3.8 (0.0) 3 

Golefish (Hydrocynus forskahlii) −16.4 (0.0) 3 +9.3 (0.1) 3 

Flatfish (Barbus turkanae) −24.0 (0.1) 3 +4.9 (0.1) 3 

Catfish (Bagrus sp.) −21.9 (0.1) 3 +9.7 (0.1) 3 

Mudfish (Clarias sp.) −12.9 (0.0) 3 +3.9 (0.1) 3 

Nakurio 

(Turkana) 

Doum palm fruit (Hyphaene ventricosa) −25.9 (0.2) 3 +4.0 2 

Sorghum (Sorghum bicolor) −12.1 (0.8) 3 +7.4 2 

Webuye 

(Luhya) 

Beans (Phaseolus vulgaris) −30.5 (0.1) 3 +5.2 2 

Cow peas (Vigna unguiculata) −27.6 (0.3) 3 +2.4 2 

Maize (Zea mays) −12.0 (0.4) 3 +1.1 2 

Port Victoria 

(Luhya 

and Luo) 

Soya beans (Glycine max) −28.8 (0.3) 3 +13.2 2 

Beans (Phaseolus vulgaris) −26.6 2 +7.2 (1.5) 3 

Cassava (Manihot esculenta) −24.1 (0.1) 3 — — 

Rice (Oryza sativa) −28.5 (0.1) 3 +15.7 2 

Cow peas (Vigna unguiculata) −27.5 (0.3) 3 +10.2 2 

Green peas (Pisum sativum) −26.5 (0.2) 3 +2.9 (1.0) 3 

Sorghum (Sorghum bicolor) −12.2 2 +9.1 (1.2) 3 

Finger millet (Eleusine coracana) −13.0 (0.1) 3 +7.7 2 

Yellow maize (Zea mays) −11.9 (0.3) 3 +5.9 2 

Dagaa (Rastrineobola argentea) −18.4 2 +9.4 2 

Dagaa (whole) −19.4 (0.1) 3 +11.0 (0.1) 3 

Ofulu (Haplochromis sp.) −17.7 (0.1) 3 +9.1 (0.1) 3 

Ofulu (whole) −19.6 (0.0) 3 +9.8 (0.1) 3 

Nile perch (Lates nilotius) −15.9 (0.1) 3 +8.8 (0.0) 3 

Helicopter fish (Protopterus sp.) −18.2 (0.1) 3 +7.0 (0.0) 3 

Esebu (Clarias sp.) −20.9 (0.0) 3 +5.6 (0.1) 3 

Tilapia (Oreochromis niloticus) −16.1 (0.1) 3 +4.9 (0.1) 3 
Notes. Values are mean (standard deviation) n = number of replicates. 
a Isotopic analysis to determine the δ15N values of cassava failed consistently, possibly as a result of its low nitrogen 

content. Consequently, this datum point is not plotted in Figure 2. 
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Figure 1. Stable isotopic results of the body pools analysed, by livelihood and population: (A) 

carbon and nitrogen isotopic ratios of hair; (B) carbon and nitrogen isotopic ratios of nail 

(shaded areas in the hair and nail plots represent the ‘bag’ that encloses 50% of the points 

around the depth median in a bagplot or bivariate boxplot55); (C) carbon isotopic ratios of 

breath according to time of collection (in hours). 
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Figure 2. Carbon and nitrogen isotope ratios for individual food samples. 

 


