
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

00

Distributed Graph Clustering and Sparsification

HE SUN, �e University of Edinburgh

LUCA ZANETTI, �e University of Cambridge

Graph clustering is a fundamental computational problem with a number of applications in algorithm design, machine

learning, data mining, and analysis of social networks. Over the past decades, researchers have proposed a number of

algorithmic design methods for graph clustering. Most of these methods, however, are based on complicated spectral

techniques or convex optimisation, and cannot be directly applied for clustering many networks that occur in practice, whose

information is o�en collected on di�erent sites. Designing a simple and distributed clustering algorithm is of great interest,

and has comprehensive applications for processing big datasets.

In this paper we present a simple and distributed algorithm for graph clustering: for a wide class of graphs that are

characterised by a strong cluster-structure, our algorithm �nishes in a poly-logarithmic number of rounds, and recovers a

partition of the graph close to optimal. One of the main procedures behind our algorithm is a sampling scheme that, given a

dense graph as input, produces a sparse subgraph that provably preserves the cluster-structure of the input. Compared with

previous sparsi�cation algorithms that require Laplacian solvers or involve combinatorial constructions, this procedure is

easy to implement in a distributed se�ing and runs fast in practice.

CCS Concepts: •�eory of computation →Graph algorithms analysis; Distributed algorithms; Random walks and

Markov chains;

Additional Key Words and Phrases: graph clustering, graph sparsi�cation, distributed computing

ACM Reference format:

He Sun and Luca Zane�i. 201x. Distributed Graph Clustering and Sparsi�cation. ACM Trans. Parallel Comput. x, 4, Article 00

(March 201x), 23 pages.

DOI: 0000001.0000001

1 INTRODUCTION
Analysis of large-scale networks has brought signi�cant advances to our understanding of complex systems. One

of the most relevant features of networks occurring in practice is their structure of clusters, i.e., an organisation

of nodes into clusters such that nodes within the same cluster enjoy a higher degree of connectivity in contrast

to nodes from di�erent clusters. Graph clustering is an important research topic in many disciplines, including

computer science, biology, and sociology. For instance, graph clustering is widely used in �nding communities in

social networks, webpages dealing with similar topics, and proteins having the same speci�c function within the

cell in protein-protein interaction networks (Fortunato 2010). However, despite extensive studies on e�cient

methods for graph clustering, many approximation algorithms for this problem require advanced algorithm

design techniques, e.g., spectral methods, or convex optimisation, which make the algorithms di�cult to be

implemented in the distributed se�ing, where graphs are allocated in sites which are physically remote. Designing

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and the full citation on the �rst

page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permi�ed. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speci�c permission and/or a fee. Request permissions from

permissions@acm.org.

© 201x ACM. 1539-9087/201x/3-ART00 $15.00

DOI: 0000001.0000001

ACM Transactions on Parallel Computing, Vol. x, No. 4, Article 00. Publication date: March 201x.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/226941462?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

00:2 • Sun and Zane�i

a simple and distributed algorithm is of important interest in practice, and has received considerable a�ention in

recent years (Chen et al. 2016; Hui et al. 2007; Yang and Xu 2015).

1.1 Structure of clusters
Let G = (V ,E,w) be an undirected graph with n nodes and weight function w : V ×V → R>0. For any set S , let

the conductance of S be

ϕG (S) ,
w(S,V \ S)

vol(S)
,

where w(S,V \ S) ,
∑
u ∈S

∑
v ∈V \S w(u,v) is the total weight of edges between S and V \ S , and vol(S) ,∑

u ∈S
∑
u∼v w(u,v) is the volume of S , where u ∼ v stands for the fact that there is an edge between u and v .

Intuitively, nodes in S form a cluster if there are fewer connections between the nodes of S to the nodes in V \ S ,

i.e., the value of ϕG (S) is small. We call subsets of nodes (i.e. clusters) A1, . . . ,Ak a k-way partition of G if Ai , ∅

for all 1 6 i 6 k , Ai ∩Aj = ∅ for di�erent i and j, and

⋃k
i=1

Ai = V . Moreover, we de�ne the k-way expansion
constant by

ρ(k) , min

partition A1, ...,Ak
max

16i6k
ϕG (Ai).

Computing the exact value of ρ(k) is coNP-hard (Blum et al. 1981), and a sequence of results show that ρ(k) can

be approximated by algebraic quantities relating to the matrices representing G . For instance, Lee et al. (Lee et al.

2014) shows the following high-order Cheeger inequality:

λk
2

6 ρ(k) 6 O
(
k2

) √
λk , (1)

where 0 = λ1 6 · · · 6 λn 6 2 are the eigenvalues of the normalised Laplacian matrix of G. By (1) we know

that a large gap between λk+1 and ρ(k) guarantees (i) existence of a k-way partition S1, . . . Sk with bounded

ϕG (Si) 6 ρ(k), and (ii) any (k + 1)-way partition A1, . . . ,Ak+1 of G contains a subset Ai with much higher

conductance ρ(k + 1) > λk+1/2 compared with ρ(k). Peng et al. (Peng et al. 2015) formalises this observation by

de�ning the parameter

ϒG (k) ,
λk+1

ρ(k)
,

and shows that a suitable lower bound on ϒG (k) implies that G has k well-de�ned clusters.

1.2 Our results
In this paper we study distributed graph clustering, and our algorithm is obtained by combining the following two

results. Our �rst result is a sampling-based algorithm to obtain a sparse graph H that approximately preserves

the cluster-structure of the input graphG . In contrast to previous algorithms for constructing a spectral sparsi�er,

which usually involve complicated sampling processes, our algorithm samples edges based on the degrees of their

two endpoints, and can be implemented in the distributed se�ing. We show that our sampling approximately

preserves the cluster-structure of G. �e approximation guarantees are summarised as follows:

Theorem 1.1. �ere exists an algorithm that, given a graphG = (V ,E,w) with k clusters as input, with probability
greater than 0.99, computes a sparsi�er H = (V , F ⊂ E, w̃) with |F | = O((1/λk+1) · n logn) edges such that the
following holds:

(1) It holds for any 1 6 i 6 k that ϕH (Si) = O(k · ϕG (Si)), where S1, . . . , Sk are the optimal clusters in G that
achieves ρ(k);

(2) ϒH (k) = Ω(ϒG (k)/k).
Moreover, this algorithm can be implemented in O(1) rounds in the distributed se�ing, and the total information
exchanged among all nodes is O((1/λk+1) · n logn) words.

ACM Transactions on Parallel Computing, Vol. x, No. 4, Article 00. Publication date: March 201x.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Distributed Graph Clustering and Sparsification • 00:3

�e �rst property of �eorem 1.1 shows that the conductance of each optimal cluster Si in G is approximately

preserved in H up to a factor of k , therefore Si is a low-conductance subset in H . Notice that these k clusters

S1, . . . , Sk might not form an optimal clustering in H anymore, however this is not an issue since every cluster

with low conductance in H has large overlap with its optimal correspondence. Hence, any algorithm that recovers

a clustering close to the optimal one in H will recover a clustering close to the optimal one in G. �e second

property ϒH (k) = Ω(ϒG (k)/k) of �eorem 1.1 further ensures that the gap in H is preserved as long as ϒG (k) � k .

In addition, since λk+1 represents the inner-connectivity of the clusters (Oveis Gharan and Trevisan 2014), it is

usually quite high: for most interesting cases we can assume λk+1 = Ω (1/poly(logn)), which makes the total

number of sampled edges nearly-linear in the number of nodes in G.

Our second result is a distributed algorithm to partition a graph G that possesses a cluster-structure with

clusters of balanced size. At a high level, the algorithm consists of three steps: the seeding, averaging, and query

steps. (1) In the seeding step, each node becomes active with a certain probability. (2) In the averaging step,

which consists of T rounds, nodes repeatedly update their states based on the states of their neighbours from the

previous round. Alternatively, one can view the seeding step as choosing a subset of nodes to initiate parallel

random walks, and the average step as simulating these parallel random walks for T steps. (3) In the query

step, each node uses the information computed in the averaging step, i.e., the current state of the T -step parallel

random walks started from the active nodes, to determine the label of the cluster it belongs to. �e performance

of our algorithm is summarised as follows.

Theorem 1.2. �ere is a distributed algorithm that, given as input a graph G = (V ,E,w) with n nodes,m edges,
and k optimal clusters S1, . . . , Sk with vol(Si) > β vol(V) for any 1 6 i 6 k and

ϒG (k) = ω

(
k2

log
2

1

β
+ logn · log

1

β

)
, (2)

�nishes in

T , Θ

(
logn

λk+1

)
rounds, and with probability greater than 0.99 the following statements hold:

(1) Each node v receives a label `v such that the total volume of misclassi�ed nodes is o(vol(V)), i.e., under a
possible permutation of the labels σ , it holds that

vol

(
k⋃
i=1

{v |v ∈ Si and `v , σ (i)}

)
= o(vol(V));

(2) �e total information exchanged among these n nodes, i.e., the message complexity, is O
(
T ·m · 1

β log
1

β

)
words.

As a direct application of �eorems 1.1 and 1.2, let us look at a graph G that consists of k = O(1) expander

graphs of almost balanced size connected by sparse cuts. By �rst applying the sparsi�cation algorithm from

�eorem 1.1, we obtain a sparse subgraph H of G that has a similar cluster-structure to G, and this graph H
is obtained with total communication cost O(n · poly logn) words. �en, we apply the distributed clustering

algorithm (�eorem 1.2) on H , which has O(n · poly logn) edges. �e distributed clustering algorithm �nishes in

O(logn) rounds, has total communication cost O(n · poly logn) words, and the volume of the misclassi�ed nodes

is o(vol(V)). Notice that the communication cost of the two algorithms together is O(n · poly logn) words, which

is sublinear inm for a dense input graph.

ACM Transactions on Parallel Computing, Vol. x, No. 4, Article 00. Publication date: March 201x.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

00:4 • Sun and Zane�i

1.3 Related work
�ere is a large amount of literature on graph clustering, and our work is most related to e�cient algorithms

for graph clustering under di�erent formulations of clusters. Oveis Gharan and Trevisan (Oveis Gharan and

Trevisan 2014) formulates the notion of clusters with respect to the inner and outer conductance: a cluster S
should have low outer conductance, and the conductance of the induced subgraph by S should be high. Under

some assumption about the gap between λk+1 and λk , they present a polynomial-time algorithm which �nds a

k-way partition {Ai }
k
i=1

that satis�es the inner and outer conductance condition. Allen-Zhu et al. (Allen-Zhu et al.

2013) studies graph clustering with a gap assumption similar to ours, and presents a local algorithm with be�er

approximation guarantee under the gap assumption. However, the setup of our algorithms di�ers signi�cantly

from most local graph clustering algorithms (Allen-Zhu et al. 2013; Gharan and Trevisan 2012; Spielman and Teng

2013) for the following reasons: (1) One needs to run a local algorithm k times in order to �nd k clusters. However,

as the output of each execution of a local algorithm only returns an approximate cluster, the approximation ratio

of the �nal output cluster might not be guaranteed when the value of k is large. (2) For many instances, our

algorithm requires only a poly-logarithmic number of rounds, while local algorithms run in time proportional to

the volume of the output set. It is unclear how these algorithms could �nish in a poly-logarithmic number of

rounds, even if we were able to implement them in the distributed se�ing.

Becche�i et al. (Becche�i et al. 2017) studies a distributed process to partition an almost-regular graph into

clusters, and their analysis focuses mostly on graphs generated randomly from stochastic block models. In

contrast to ours, their algorithm requires every node to exchange information with all of its neighbours in

each round, which results in signi�cantly higher communication cost. Moreover, the design and analysis of

our algorithm succeeds to overcome their regularity constraint by an alternative averaging rule. More recently,

Becche�i et al. (Becche�i et al. 2018) studies the same problem in the asynchronous se�ing, which is more general

than our synchronous se�ing. �eir algorithm requires, again, the graph to be almost regular and to have a

strong community-structure (this is satis�ed by graphs sampled from the stochastic block model).

We notice that the distributed algorithm presented in Kempe and McSherry (Kempe and McSherry 2004) for

computing the top k eigenvectors of the adjacency matrix of a graph can be applied for graph clustering. However,

their algorithm is more involved than ours. Moreover, for an input graph G of n nodes, the number of rounds

required in their algorithm is proportional to the mixing time of a random walk in G. For a graph consisting of

multiple expanders connected by very few edges, their algorithm requires O(poly(n)) rounds, which is much

higher than O(poly logn) rounds needed for our algorithm.

Another line of research closely related to our work is graph sparsi�cation, including both cut sparsi�ca-

tion (Benczúr and Karger 1996) and spectral sparsi�cation (Batson et al. 2012; Lee and Sun 2015, 2017; Spielman

and Srivastava 2011; Spielman and Teng 2011). �e constructions of both cut and spectral sparsi�ers, however,

are quite complicated or require solving Laplacian systems, while our algorithm is simply based on sampling

and easy to implement. �e idea of using sparsi�cation to reduce the communication complexity for clustering

a graph in the distributed se�ing is �rst proposed by (Chen et al. 2016). �ey assume the graph is distributed

across multiple servers, while our work considers more extreme distributed se�ings: each node of the graph

is a computational unit. Our algorithms, however, work in their distributed model as well. We emphasise that

the sparsi�cation schemes of (Chen et al. 2016) require the computation of e�ective resistances, which is very

expensive in practice, while our scheme is much simpler and faster.

1.4 Organisation
�e remaining part of the paper is organised as follows: Section 2 lists the notations used in the paper. We

present and analyse the sparsi�cation algorithm in Section 3, and prove �eorem 1.1. Section 4 is to present the

ACM Transactions on Parallel Computing, Vol. x, No. 4, Article 00. Publication date: March 201x.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Distributed Graph Clustering and Sparsification • 00:5

distributed algorithm for graph clustering, which corresponds to �eorem 1.2. We report the experimental results

of our sparsi�cation algorithm in Section 5.

2 PRELIMINARIES
Let G = (V ,E,w) be an undirected weighted graph with n nodes and weight function w : E → R>0. For any node

u, the degree du of u is de�ned as du ,
∑
u∼v w(u,v), where we write u ∼ v if {u,v} ∈ E[G]. For any set S ⊆ V ,

the volume of S is de�ned by volG (S) ,
∑
v ∈S dv . �e (normalised) indicator vector of a set S ⊂ V is de�ned by

χS ∈ R
n

, where χS (v) =
√
dv/vol(S) if v ∈ S , and χS (v) = 0 otherwise.

We work with algebraic objects related toG . LetAG be the adjacency matrix ofG de�ned by (AG)u,v = w(u,v) if
{u,v} ∈ E(G), and (AG)u,v = 0 otherwise. �e degree matrixDG ofG is a diagonal matrix de�ned by (DG)u,u = du ,

and the normalised Laplacian ofG is de�ned byLG , I−D−1/2

G AGD
−1/2

G . Alternatively, we can write the normalised

Laplacian with respect to the indicator vectors of nodes: for each node v , we de�ne an indicator vector χv ∈ R
n

by χv (u) = 1/
√
dv if u = v , and χv (u) = 0 otherwise. We further de�ne be , χu − χv for each edge e = {u,v},

where the orientation of e is chosen arbitrarily. �en, we can write LG =
∑

e={u,v }∈E w(u,v) · beb
ᵀ
e . We always

use 0 = λ1 6 · · · 6 λn 6 2 to express the eigenvalues of LG , with the corresponding orthonormal eigenvectors

f1, . . . , fn . With a slight abuse of notation, we use L−1

G for the pseudoinverse of LG , i.e., L−1

G ,
∑n

i=2

1

λi
fi f
ᵀ
i .

When G is connected, it holds that λ2 > 0 and the matrix L−1

G is well-de�ned. Sometimes we drop the subscript

G when it is clear from the context.

Remember that the Euclidean norm of any vector x ∈ Rn is de�ned as ‖x ‖ ,
√∑n

i=1
x2

i , and the spectral norm

of any matrix M ∈ Rn×n is de�ned as

‖M‖ , max

x ∈Rn\{0}

‖Mx ‖

‖x ‖
.

3 CLUSTER-PRESERVING SPARSIFIERS
In this section we present an algorithm for constructing a cluster-preserving sparsi�er that can be easily imple-

mented in the distributed se�ing. Our algorithm is based on sampling edges with respect to the degrees of their

endpoints, which was originally introduced in (Spielman and Teng 2011) as a way to construct spectral sparsi�ers

for graphs with high spectral expansion. To sketch the intuition behind our algorithm, let us look at the following

toy example illustrated in Figure 1, i.e., the graph G consisting of two complete graphs of n nodes connected by a

single edge. It is easy to see that, when we sample O(n logn) edges uniformly at random from G to form a graph

H , with high probability the middle edge will not be sampled and H will consist of two isolated expander graphs,

each of which has constant spectral expansion. Although our sampled graph H does not preserve the spectral

and cut structure of G, it does preserve its cluster-structure: every reasonable clustering algorithm will recover

these two disjoint components of H , which correspond exactly to the two clusters in G. We will show that this

sampling scheme can be generalised, and sampling every edge e = {u,v} with probability depending only on du
and dv su�ces to construct a sparse subgraph that preserves the cluster-structure of the original graph.

3.1 Algorithm description
In our algorithm every node u checks every edge e = {u,v} adjacent to u itself, and samples edge e with

probability

pu (v) , min

{
w(u,v) ·

C · logn

du · λk+1

, 1

}
(3)

for a large enough constant C ∈ R>0. �e algorithm uses a set F to maintain all the sampled edges, where F
is initially set to be empty. Finally, the algorithm returns a weighted graph H = (V , F ,wH), where the weight

ACM Transactions on Parallel Computing, Vol. x, No. 4, Article 00. Publication date: March 201x.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

00:6 • Sun and Zane�i

1 2

3 4

3 4

1 2

3 4

3 4

Fig. 1. The graph G consists of two complete subgraphs of n nodes connected by an edge. It is easy to see that sampling
O(n logn) edges uniformly at random su�ices to construct a subgraph having the same cluster-structure of G.

wH (u,v) of every sampled edge e = {u,v} ∈ F is de�ned as

wH (u,v) ,
w(u,v)

pe
,

and

pe , pu (v) + pv (u) − pu (v) · pv (u)

is the probability that e = {u,v} is sampled by at least one of its endpoints. Notice that our algorithm can be

easily implemented in a distributed se�ing: any node u chooses to retain (or not) an edge u ∼ v independently

from any other node, and communication between u and v is needed only if u ∼ v is sampled by one of its two

endpoints. �erefore, the total communication cost of the algorithm is linear in the number of edges in H .

3.2 Analysis of the algorithm
Now we analyse the algorithm, and prove �eorem 1.1. At a high level, our proof consists of the following two

steps:

(1) We show that the conductance of S1, . . . , Sk are approximated preserved in H , i.e.,

ϕH (Si) = O (k · ϕG (Si)) for any i = 1, . . . ,k . (4)

(2) We analyse the intra-connectivity of the clusters in the returned graph H , and prove that the top n − k
eigenspaces of LG are preserved in LH . �is implies that λk+1(LH) = Ω(λk+1(LG)).

Combining these two steps, we will prove that ϒH (k) = Ω(ϒG (k)/k), which proves the approximation guarantees

of �eorem 1.1. �e total number of edges in H follows by the sampling scheme of our algorithm. We �rst recall

the following concentration inequalities that will be used in our proof.

Lemma 3.1 (Bernstein’s ineqality (Chung and Lu 2006)). Let X1, . . . ,Xn be independent random variables
such that |Xi | 6 M for any i ∈ {1, . . . ,n}. Let X =

∑n
i=1

Xi and let R =
∑n

i=1
E[X 2

i]. �en, it holds that

P [|X − E[X]| > t] 6 2exp

(
−

t2

2(R +Mt/3)

)
.

Lemma 3.2 (Matrix Chernoff Bound, (Tropp 2012)). Consider a �nite sequence {Xi } of independent, random,
PSD matrices of dimension d that satisfy ‖Xi ‖ 6 R. Let µmin , λmin (E [

∑
i Xi]) and µmax , λmax (E [

∑
i Xi]). �en

ACM Transactions on Parallel Computing, Vol. x, No. 4, Article 00. Publication date: March 201x.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Distributed Graph Clustering and Sparsification • 00:7

it holds that

P

[
λmin

(∑
i

Xi

)
6 (1 − δ)µmin

]
6 d ·

(
e
−δ

(1 − δ)1−δ

) µmin/R

for δ ∈ [0, 1], and

P

[
λmax

(∑
i

Xi

)
> (1 + δ)µmax

]
6 d ·

(
e
δ

(1 + δ)1+δ

) µmax/R

for δ > 0.

Proof of Theorem 1.1. We �rst analyse the size of F . Since∑
u ∈V

∑
e={u,v }

w(u,v) ·
C logn

du · λk+1

= O

(
n logn

λk+1

)
,

it holds by Markov inequality that the number of edges e = {u,v} with pu (v) > 1 isO((1/λk+1) ·n logn). Without

loss of generality, we assume that these edges are in F , and in the remaining part of the proof we assume it holds

for any edge u ∼ v that

w(u,v) ·
C · logn

du · λk+1

< 1.

�en, the expected number of edges in H equals to∑
e={u,v }

pe 6
∑

e={u,v }

pu (v) + pv (u) =
∑

e={u,v }

(
w(u,v) ·

C · logn

du · λk+1

+w(u,v) ·
C · logn

dv · λk+1

)
= O

(
n logn

λk+1

)
,

and by Markov inequality it holds with constant probability that |F | = O ((1/λk+1) · n logn). �is implies that

the total information exchanged among all nodes is |F | = O ((1/λk+1) · n logn). �e O(1) rounds needed for the

algorithm is simply by the algorithm description.

Now we will show that the degrees of nodes in H are approximately preserved with high probability. Let u be

an arbitrary node of G. For any edge e = {u,v}, we de�ne random variable Ye by

Ye =

{
w (u,v)
pe

with probability pe ,

0 otherwise.

We further de�ne Zu =
∑

e={u,v } Ye . Hence, it holds that

E[Zu] =
∑

e={u,v }

E[Ye] =
∑

e={u,v }

pe ·
w(u,v)

pe
=

∑
e={u,v }

w(u,v) = du .

For the second moment, we have that

Ru ,
∑

e={u,v }

E
[
Y 2

e
]
=

∑
e={u,v }

pe ·

(
w(u,v)

pe

)
2

=
∑

e={u,v }

(w(u,v))2

pe
. (5)

Since pe = pu (v) + pv (u) − pu (v)pv (u) > pu (v), we can rewrite (5) as

Ru =
∑

e={u,v }

E[Y 2

e] 6
∑

e={u,v }

(w(u,v))2

pu (v)
=

∑
e={u,v }

(w(u,v))2 · du · λk+1

w(u,v) ·C · logn
=
d2

u · λk+1

C · logn
.

On the other hand, we have for any e = {u,v} that

0 6
w(u,v)

pe
6

w(u,v)

pu (v)
=
du · λk+1

C · logn
,

ACM Transactions on Parallel Computing, Vol. x, No. 4, Article 00. Publication date: March 201x.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

00:8 • Sun and Zane�i

by applying Bernstein’s inequality (Lemma 3.1) we have that

P
[
|dH (u) − du | >

1

2

· du

]
= P

[
|Zu − E[Zu]| >

1

2

· E[Zu]
]

6 2 · exp
©«− d2

u/8

d2

u ·λk+1

C logn +
1

6
·
d2

uλk+1

C logn

ª®¬
= 2 · exp

(
−

C logn/8

λk+1 + λk+1/6

)
= o(1/n).

Hence, it holds by the union bound that, with high probability, the degree of all the nodes in H are approximately

preserved up to a constant factor. We assume that this event occurs in the rest of the proof. �is implies that

volH (S) = Θ(volG (S)) for any subset S ⊆ V .

We continue to show that ϕH (Si) = O(k ·ϕG (Si)) for any 1 6 i 6 k , where S1, . . . , Sk form an optimal clustering

in G. By the de�nition of Ye , it holds for any 1 6 i 6 k that

E [wH (Si ,V \ Si)] = E

∑

e={u,v },
u ∈Si ,v<Si

Ye

 =
∑

e={u,v },
u ∈Si ,v<Si

pe ·
w(u,v)

pe
= w(Si ,V \ Si).

Hence, by Markov’s inequality and the union bound, with constant probability it holds for all i = 1, . . . ,k that

wH (Si ,V \ Si) = O (k ·w(Si ,V \ Si)) , (6)

i.e., the cut value between Si and V \ Si is approximately preserved for any 1 6 i 6 k . �erefore, it holds with

constant probability that

ρH (k) 6 max

16i6k
ϕH (Si) = max

16i6k
O (k · ϕG (Si)) = O(k · ρG (k)).

Secondly, we show that the cluster-structure of G is approximately preserved in H . Let LG be the projection

of LG on its top n − k eigenspaces, and LG can be wri�en as

LG =

n∑
i=k+1

λi fi f
ᵀ
i .

With a slight abuse of notation we call L
−1/2

G the square root of the pseudoinverse of LG , i.e.,

L
−1/2

G =

n∑
i=k+1

(λi)
−1/2 fi f

ᵀ
i .

Analogously, we call I the projection on span{ fk+1, . . . , fn}, i.e.,

I =

n∑
i=k+1

fi f
ᵀ
i .

We will prove that the top n − k eigenspaces of LG are preserved, which implies that λk+1(LG) = Θ(λk+1(LH)).

To prove this, we recall that the probability that every edge e = {u,v} is sampled in H is

pe = pu (v) + pv (u) − pu (v) · pv (u),

ACM Transactions on Parallel Computing, Vol. x, No. 4, Article 00. Publication date: March 201x.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Distributed Graph Clustering and Sparsification • 00:9

and it holds that
1

2
(pu (v) + pv (u)) 6 pe 6 pu (v) + pv (u). Now for each edge e = {u,v} of G we de�ne a random

matrix Xe ∈ R
n×n

by

Xe =

{
wH (u,v) · L

−1/2

G beb
ᵀ
e L
−1/2

G if e = {u,v} is sampled by the algorithm,

0 otherwise,

where we recall that be = χu − χv for edge e = {u,v}. Notice that∑
e ∈E[G]

Xe =
∑

sampled edges e={u,v }

wH (u,v) · L
−1/2

G beb
ᵀ
e L
−1/2

G = L
−1/2

G L ′HL
−1/2

G ,

where

L ′H =
∑

sampled edges e={u,v }

wH (u,v) · beb
ᵀ
e

is essentially the Laplacian matrix of H but is normalised with respect to the degrees of the nodes in the original

graph G , i.e., L ′H = D−1

G DH − D
−1/2

G AHD
−1/2

G . We will prove that, with high probability, the top n − k eigenspaces

of L ′H and LG are approximately the same. Later we will show the same holds for LH and L ′H , which implies

that λk+1(L
′
H) = Ω(λk+1(LG)).

We start looking at the �rst moment of the expression above:

E

[∑
e ∈E

Xe

]
=

∑
e={u,v }∈E[G]

pe ·wH (u,v) · L
−1/2

G beb
ᵀ
e L
−1/2

G

=
∑

e={u,v }∈E[G]

pe ·
w(u,v)

pe
· L
−1/2

G beb
ᵀ
e L
−1/2

G

= L
−1/2

G LGL
−1/2

G = I.

Moreover, for any sampled e = {u,v} ∈ E we have that

‖Xe ‖ 6 wH (u,v) · b
ᵀ
e L
−1/2

G L
−1/2

G be =
w(u,v)

pe
· b
ᵀ
e L
−1

G be 6
w(u,v)

pe
·

1

λk+1

· ‖be ‖
2

6
2λk+1

C · logn ·
(

1

du
+ 1

dv

) · 1

λk+1

(
1

du
+

1

dv

)
6

2

C logn
,

where the second inequality follows by the min-max theorem of eigenvalues. Now we apply the matrix Cherno�

bound (Lemma 3.2) to analyse the eigenvalues of

∑
e ∈E Xe , and build a connection between λk+1(L

′
H) and

λk+1(LG). By se�ing the parameters of Lemma 3.2 by µmax = λmax

(
E

[∑
e ∈E[G]Xe

])
= λmax

(
I

)
= 1, R =

2/(C · logn) and δ = 1/2, we have that

P
λmax

©«
∑

e ∈E[G]

Xe
ª®¬ > 3/2

 6 n ·

(
e

1/2

(1 + 1/2)3/2

)C logn/2

= O (1/nc)

for some constant c . �is gives us that

P
λmax

©«
∑

e ∈E[G]

Xe
ª®¬ 6 3/2

 = 1 −O(1/nc). (7)

ACM Transactions on Parallel Computing, Vol. x, No. 4, Article 00. Publication date: March 201x.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

00:10 • Sun and Zane�i

On the other side, since our goal is to analyse λk+1(L
′
H) with respect to λk+1(LG), it su�ces to work with the

top (n − k) eigenspace of LG . Since E [
∑

e ∈E Xe] = I, we can assume without loss of generality that µmin = 1.
1

Hence, by se�ing R = 2/(C · logn) and δ = 1/2, we have that

P
λmin

©«
∑

e ∈E[G]

Xe
ª®¬ 6 1/2

 = n ·
(

e
−1/2

(1/2)1/2

)C logn/2

= O (1/nc)

for some constant c . �is gives us that

P
λmin

©«
∑

e ∈E[G]

Xe
ª®¬ > 1/2

 = 1 −O(1/nc). (8)

Combining (7), (8), and the fact of

∑
e ∈E[G]Xe = L

−1/2

G L ′HL
−1/2

G , with probability 1 −O (1/nc) it holds for any

non-zero x ∈ Rn in the space spanned by fk+1, . . . , fn that

xᵀL
−1/2

G L ′HL
−1/2

G x

xᵀx
∈ (1/2, 3/2) . (9)

By se�ing y = L
−1/2

G x , we can rewrite (9) as

yᵀL ′Hy

yᵀL
1/2

G L
1/2

G y
=
yᵀL ′Hy

yᵀLGy
=
yᵀL ′Hy

yᵀy

yᵀy

yᵀLGy
∈ (1/2, 3/2).

Since dim(span{ fk+1, . . . , fn}) = n − k , we have just proved there exist n − k orthogonal vectors whose Rayleigh

quotient with respect to L ′H is Ω(λk+1(LG)). By the Courant-Fischer �eorem, we have

λk+1(L
′
H) >

1

2

λk+1(LG). (10)

It remains to show that λk+1(LH) = Ω
(
λk+1(L

′
H)

)
, which implies that λk+1(LH) = Ω (λk+1(LG)) by (10). By

the de�nition of L ′H , we have that LH = D−1/2

H D1/2

G L
′
HD

1/2

G D−1/2

H . �erefore, for any x ∈ Rn and y = D1/2

G D−1/2

H x ,

it holds that

xᵀLHx

xᵀx
=
yᵀL ′Hy

xᵀx
>

1

2

·
yᵀL ′Hy

yᵀy
, (11)

where the last equality follows from the fact that the degrees in H and G di�er just by a constant multiplicative

factor, and therefore,

yᵀy =
(
D1/2

G D−1/2

H x
)ᵀ (

D1/2

G D−1/2

H x
)
= xᵀDGD

−1

H x >
1

2

· xᵀx .

Finally, we show that (11) implies that λk+1(LH) > (1/2) · λk+1(L
′
H). To see this, let S1 ⊆ R

n
be a (k + 1)-th

dimensional subspace of Rn such that

λk+1(LH) = max

x ∈S1

xᵀLHx

xᵀx
.

Let S2 =
{
D1/2

G D−1/2

H x : x ∈ S1

}
. Notice that since D1/2

G D−1/2
is full rank, S2 has dimension k + 1. �erefore,

λk+1(L
′
H) = min

S : dim(S)=k+1

max

y∈S

yᵀL ′Hy

yᵀy
6 max

y∈S2

yᵀL ′Hy

yᵀy
6 2 max

x ∈S1

xᵀLHx

xᵀx
= 2λk+1(LH), (12)

1
To understand why this is the case, notice we could have de�ned Xe as an (n − k)-dimensional operator. �en, I would be just the identity

in this (n − k)-dimensional space.

ACM Transactions on Parallel Computing, Vol. x, No. 4, Article 00. Publication date: March 201x.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Distributed Graph Clustering and Sparsification • 00:11

where the last inequality follows by (11). Combining (10) with (12) gives us that λk+1(LH) = Ω(λk+1(G)), which

implies ϒH (k) = Ω(ϒG (k)/k). �

4 DISTRIBUTED GRAPH CLUSTERING
In this section we present and analyse a distributed algorithm to partition a graph G that possesses a cluster-

structure with clusters of balanced size, and prove �eorem 1.2. �roughout the section, we assume that S1, . . . , Sk
are the optimal clusters satisfying vol(Si) > β vol(V) for any 1 6 i 6 k .

4.1 Algorithm description
Our algorithm consists of Seeding, Averaging, and �ery steps, which are described as follows.

�e Seeding step: �e algorithm sets

s̄ = Θ

(
1

β
· log

1

β

)
,

and each node v chooses to be active with probability s̄ · dv/vol(V). For simplicity, we assume that v1, · · · ,vs
are the active nodes, for some s ∈ N. �e algorithm associates each active node with a vector x (0,i) = χvi , and

these vectors x (0,1), . . . ,x (0,s) represent the initial state (round 0) of the graph, where each node v only maintains

the values x (0,1)(v), . . . ,x (0,s)(v). Notice that the information about which nodes are active doesn’t need to be

broadcasted during the seeding step of the algorithm.

�e Averaging step: �is step consists of T rounds, and in each round every node v updates its state based

on the states of its neighbours from the previous round. Namely, for any 1 6 i 6 s , the values x (t,i)(v)maintained

by node v in round t are computed according to

x (t,i)(v) =
1

2

x (t−1,i)(v) +
1

2

∑
{u,v }∈E

w(u,v)
√
dudv

x (t−1,i)(u). (13)

�e �ery step: Every node v computes the label `v of the cluster that it belongs to by the formula

`v = min

{
i | x (T ,i)(v) >

√
dv

2β vol(V)

}
. (14)

Notice that the execution of the algorithm requires each node to know certain parameters about the graph,

including the number of nodes n, the volume of the graph vol(V), a bound β on the size of the clusters, and the

value of T . However, nodes do not need to know the exact values of these parameters, but only a reasonable

approximation. Moreover, although the value of T is application-dependent, for graphs with clusters that have

strong intra-connectivity properties, we can set T ≈ logn in practice.

4.2 Analysis of the algorithm
In this subsection we analyse the distributed clustering algorithm, and prove �eorem 1.2. Recall that we assume

G has an optimal clustering S1, . . . , Sk with vol(Si) > β vol(V) for any 1 6 i 6 k , and G satis�es the following

gap assumption:

ϒG (k) = ω

(
k2

log
2

1

β
+ logn

)
. (15)

Before analysing the algorithm, we �rst describe some intuitions behind the proof. We use x (t,1), . . . ,x (t,s) to

denote the con�guration of the algorithm’s execution in round t , and these vectors are updated according to

(13). For the sake of intuition, we assume that G is regular, and the vector x (t,i) corresponds to the probability

distribution of a t-step lazy random walk in G. It is well-known that, a�er a su�cient number of rounds, the

vectors x (t,i)s are close to the uniform distribution, which would provide no information about the structure

ACM Transactions on Parallel Computing, Vol. x, No. 4, Article 00. Publication date: March 201x.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

00:12 • Sun and Zane�i

of clusters in a graph. However, the time T = Θ (logn/λk+1) can be informally viewed as the local mixing time
of some cluster Si : when a random walk starts with some v ∈ Si and the random walk does not leave Si , the

resulting distribution of thisT -step random walk will be close to the uniform one supported on the node set of Si .
We will formalise the fact by showing that, when picking a starting vertex uniformly at random from Si , with

high probability the probability mass of a T -step random walk will be concentrated on Si . In other words, a�er T
rounds, each vector x (T ,1), . . . ,x (T ,s) is almost uniform on one of the clusters, and close to zero everywhere else.

�is further implies that, once the algorithm ensures that there is at least one active node from every cluster, the

query step will assign the same label to two nodes if and only if they belong to the same cluster. When G is not

regular, the averaging step de�ned in (13) can be viewed as a power iteration method to approximate (k linearly

independent combination of) the bo�om eigenvectors of LG . We will show that these eigenvectors contain all

the information needed to obtain a good partitioning of the graph.

We �rst analyse the properties of a T -step single random walk, and let x (i) be the distribution that the random

walk reaches a speci�c vertex a�er i steps. Let

I =

k∑
i=1

fi f
ᵀ
i

be the projection on the bo�omk eigenspaces. �e following lemma shows that, when x (0) is the initial distribution

of a random walk, a�er T steps the distribution x (T) that the random walk reaches a speci�c node is close to

Ix (0).

Lemma 4.1. For a large constant c > 0, it holdsx (T) − Ix (0) = O (
logn

ϒG (k)
·

Ix (0) + n−c) .
Proof. We introduce the matrix P de�ned by

P =
1

2

· I +
1

2

· D−1/2AD−1/2 = I −
1

2

LG .

Hence, by the description of the averaging step, it holds that x (t) = Px (t−1)
, which implies that x (T) = PTx (0). To

analyse the property of x (T), we study the spectral property of PT , which can be wri�en as

PT =
(
I −

1

2

LG

)T
=

n∑
i=1

(
1 −

λi
2

)T
fi f
ᵀ
i

=

k∑
i=1

(
1 −

λi
2

)T
fi f
ᵀ
i +

n∑
i=k+1

(
1 −

λi
2

)T
fi f
ᵀ
i , (16)

where we recall that λ1 6 . . . 6 λn are the eigenvalues of LG with the corresponding eigenvectors f1, . . . , fn .

We look at the second term in (16) and, by se�ing T = c logn/λk+1, it holds for i > k + 1 that(
1 −

λi
2

)T
6

(
1 −

λk+1

2

)
2c ·logn/λk+1

6 e
−c logn 6 n−c , (17)

where the second inequality holds by the fact that λk+1/2 6 1 and 1 − x 6 e
−x

holds for x ∈ [−1, 1]. Similarly, we

look at the �rst term in (16) and it holds for any 1 6 i 6 k that(
1 −

λi
2

)T
> 1 −

T · λi
2

= 1 −O

(
λi · logn

λk+1

)
= 1 −O

(
logn · λk
λk+1

)
, (18)

ACM Transactions on Parallel Computing, Vol. x, No. 4, Article 00. Publication date: March 201x.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Distributed Graph Clustering and Sparsification • 00:13

where the �rst inequality holds by the fact that (1 + x)r > 1 + rx for any x > −1 and r > 1. Combining (16), (17)

and (18), we upper bound the distance between x (T) and Ix (0) byx (T) − Ix (0)2

=

(PT − I) x (0)2

=

 k∑
i=1

(
1 −

(
1 −

λi
2

)T)
fi f
ᵀ
i x (0) +

n∑
i=k+1

(
1 −

λi
2

)T
fi f
ᵀ
i x (0)

2

=

k∑
i=1

(
1 −

(
1 −

λi
2

)T)
2 〈

fi ,x
(0)

〉
2

+

n∑
i=k+1

(
1 −

λi
2

)
2T 〈

fi ,x
(0)

〉
2

= O

((
logn · λk
λk+1

)
2 k∑
i=1

〈
fi ,x

(0)
〉

2

+ n−2c

)
= O

((
logn · λk
λk+1

·

Ix (0))2

+ n−2c

)
= O

((
logn

ϒG (k)
·

Ix (0))2

+ n−2c

)
,

where the last inequality uses the fact that

λk
λk+1

6
ρ(k)

2λk+1

=
1

2ϒG (k)

by the higher-order Cheeger inequality (Lee et al. 2014). �en, taking the square root on both sides of the equality

above proves the lemma. �

Our algorithm is to recover the structure of clusters based on x (T), and the previous lemma builds a connection

between x (T) and I. Next, we will build a connection between I and the indicator vectors of S1, . . . , Sk . Based on

Lemma 4.2, we will prove in Lemma 4.3 that the bo�om k eigenvectors of LG are close to a linear combination of

the indicator vectors of S1, . . . , Sk , which implies the structure of clusters can be approximately recovered from

x (T).

Lemma 4.2 ((Peng et al. 2015)). Let {Si }ki=1
be a k-way partition of G achieving ρ(k), and let ϒG (k) = Ω

(
k2

)
.

Assume that χ̃i is the projection of fi in the span of {χS1
, . . . , χSk }. �en, it holds for any 1 6 i 6 k that

‖ χ̃i − fi ‖ = O

(√
k

ϒG (k)

)
.

Lemma 4.3. Let ϒG (k) = Ω
(
k2

)
. For any 1 6 i 6 k there exists χ̂i ∈ span{χS1

, . . . , χSk } such that

‖ χ̂i − fi ‖ = O

(√
k

ϒG (k)

)
.

Moreover, { χ̂i }ki=1
form an orthonormal set.

Proof. Since { fi }
k
i=1

is an orthonormal set, it holds by Lemma 4.2 that { χ̃i }
k
i=1

are almost orthonormal. Hence,

our task is to construct an orthonormal set { χ̂i }
k
i=1

based on { χ̃i }
k
i=1

, which can be achieved by applying the

ACM Transactions on Parallel Computing, Vol. x, No. 4, Article 00. Publication date: March 201x.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

00:14 • Sun and Zane�i

Gram-Schmidt orthonormalisation procedure. We start by se�ing

χ̂1 ,
χ̃1

‖ χ̃1‖
.

By Lemma 4.2 and the triangle inequality, it holds that

|‖ χ̃1‖ − 1| = |‖ χ̃1‖ − ‖ f1‖| 6 ‖ χ̃1 − f1‖ = O

(√
k

ϒG (k)

)
,

which implies that

‖ χ̂1 − χ̃1‖ =

 χ̃1

‖ χ̃1‖
− χ̃1

 = ���� 1

‖ χ̃1‖
− 1

���� · ‖ χ̃1‖ = |‖ χ̃1‖ − 1| = O

(√
k

ϒG (k)

)
.

By another application of the triangle inequality, this implies that

‖ χ̂1 − f1‖ 6 ‖ χ̂1 − χ̃1‖ + ‖ χ̃1 − f1‖ = O

(√
k

ϒG (k)

)
.

For any 2 6 i 6 k , we inductively construct χ̂i in the following way:

χ̂i ,
χ̃i −

∑i−1

j=1
〈χ̃i , χ̂j 〉 χ̂jχ̃i −∑i−1

j=1
〈χ̃i , χ̂j 〉 χ̂j

 .
By construction, { χ̂i }

k
i=1

are orthonormal. It remains to bound ‖ χ̂i − fi ‖. Notice that each χ̂i is a linear com-

bination of χ̃1, . . . , χ̃i . Indeed, { χ̂1, . . . , χ̂i−1} is a basis of the space spanned by χ̃1, . . . , χ̃i−1. Let Qi−1 be the

orthogonal projection of the space spanned by χ̃1, . . . , χ̃i−1. We have thatχ̃i − i−1∑
j=1

〈χ̃i , χ̂j 〉 χ̂j − fi

 = ‖ χ̃i −Qi−1 χ̃i − fi ‖ 6 ‖ χ̃i − fi ‖ + ‖Qi−1 χ̃i ‖. (19)

By Lemma 4.2 we know that ‖ χ̃i − fi ‖ = O
(√

k
ϒG (k)

)
. Moreover, it holds that

‖Qi−1 χ̃i ‖ = ‖ χ̃i ‖ − ‖(I −Qi−1)χ̃i ‖ 6 1 − ‖ χ̃i − fi ‖ − |〈χ̃i , fi 〉| = O

(√
k

ϒG (k)

)
, (20)

where the last equality follows again by Lemma 4.2. Combining with (19) and (20), we have thatχ̃i − i−1∑
j=1

〈χ̃i , χ̂j 〉 χ̂j − fi

 = O
(√

k

ϒG (k)

)
. (21)

ACM Transactions on Parallel Computing, Vol. x, No. 4, Article 00. Publication date: March 201x.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Distributed Graph Clustering and Sparsification • 00:15

�is implies that

‖ χ̂i − fi ‖ =

 χ̃i −
∑i−1

j=1
〈χ̃i , χ̂j 〉 χ̂jχ̃i −∑i−1

j=1
〈χ̃i , χ̂j 〉 χ̂j

 − fi

6

 χ̃i −
∑i−1

j=1
〈χ̃i , χ̂j 〉 χ̂jχ̃i −∑i−1

j=1
〈χ̃i , χ̂j 〉 χ̂j

 −
(
χ̃i −

i−1∑
j=1

〈χ̃i , χ̂j 〉 χ̂j

) +

(
χ̃i −

i−1∑
j=1

〈χ̃i , χ̂j 〉 χ̂j

)
− fi

=

����� 1χ̃i −∑i−1

j=1
〈χ̃i , χ̂j 〉 χ̂j

 − 1

����� ·
χ̃i − i−1∑

j=1

〈χ̃i , χ̂j 〉 χ̂j

 +O
(√

k

ϒG (k)

)
=

�����
χ̃i − i−1∑

j=1

〈χ̃i , χ̂j 〉 χ̂j

 − 1

����� +O
(√

k

ϒG (k)

)
=

�����
χ̃i − i−1∑

j=1

〈χ̃i , χ̂j 〉 χ̂j

 − ‖ fi ‖
����� +O

(√
k

ϒG (k)

)
6

χ̃i − i−1∑
j=1

〈χ̃i , χ̂j 〉 χ̂j − fi

 +O
(√

k

ϒG (k)

)
= O

(√
k

ϒG (k)

)
,

where the third line follows from (21), the sixth line follows from the triangle inequality, and the last line follows

from (21). �

Based on Lemma 4.3, we will prove that there is a set A consisting of a su�cient number of “good” nodes such

that, for any random walk starting from v ∈ A ∩ S j for some 1 6 j 6 k , the resulting distribution of a T -step

random walk from v is close to the indicator vector of S j . �is fact is formalised as follows:

Lemma 4.4. �ere is a set A ⊆ V with

vol(A) > vol(V)

(
1 −

β

C log(1/β)

)
for some constant C such that, for any j = 1, . . . ,k and any v ∈ A ∩ S j , se�ing x (0) = χv we have thatx (T) − 1√

vol(S j)
χSj

 = O
(

logn

ϒG (k) ·
√
β vol(V)

+

√
k2

log (1/β)

ϒG (k)β vol(V)

)
.

Proof. Without loss of generality we assumev ∈ S j , and let { χ̂i }
k
i=1

be the set of vectors de�ned in Lemma 4.3.

We show that the projection of χv on span{ χ̂1, . . . , χ̂k } is exactly equal to
1√

vol(Sj)
χSj . To this end, �rst notice

that span{ χ̂1, . . . , χ̂k } = span{χS1
, . . . , χSk }, since each χ̂i is by de�nition a linear combination of vectors in

{χSi }
k
i=1

and

dim (span{ χ̂1, . . . , χ̂k }) = dim

(
span{χS1

, . . . , χSk }
)
= k .

�en,

k∑
i=1

〈χv , χ̂i 〉 χ̂i =
k∑
i=1

〈
χv , χSi

〉
χSi =

〈
χv , χSj

〉
χSj =

1√
vol(S j)

χSj . (22)

ACM Transactions on Parallel Computing, Vol. x, No. 4, Article 00. Publication date: March 201x.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

00:16 • Sun and Zane�i

where the �rst equality holds by the fact that span { χ̂1, . . . , χ̂k } = span {χS1
, . . . , χSk } and the orthonormality of

the two sets of vectors, and the second holds because χv is orthogonal to every χS` with ` , j.
Now we start with analysing the distance between the resulting distribution of a T -step random walk starting

with v ∈ S j and
1√

vol(Sj)
χSj . First of all, we apply the triangle inequality and have thatx (T) − 1√

vol(S j)
χSj

 6 x (T) − Iχv + Iχv − 1√
vol(S j)

χSj

 . (23)

We will analyse the two terms in the right hand size of (23) separately. By Lemma 4.1 we havex (T) − Iχv = O (
logn ·

Iχv
ϒG (k)

+ n−c

)
. (24)

To show that the term above is small, we introduce for any v ∈ V a parameter αv which represents how far the

χ̂i ’s are from the bo�om eigenvectors in the entries corresponding to v , i.e.,

αv ,

√√√
1

dv

k∑
i=1

(fi (v) − χ̂i (v))
2,

and we will prove that Iχv = O (
1√

vol(S j)
+ αv

)
. (25)

By expanding Iχv as a linear combination of f1, . . . , fk we have that

Iχv2

=

k∑
i=1

〈χv , fi 〉
2 =

k∑
i=1

〈χv , χ̂i − (χ̂i − fi)〉
2

=

k∑
i=1

(〈χv , χ̂i 〉 − 〈χv , χ̂i − fi 〉)
2

6
k∑
i=1

2

(
〈χv , χ̂i 〉

2

+ 〈χv , χ̂i − fi 〉
2

)
(26)

=
2

vol(S j)
+ 2

k∑
i=1

〈χv , χ̂i − fi 〉
2

(27)

6
2

vol(S j)
+ 2α2

v (28)

where (26) follows from the inequality (a − b)2 6 2(a2 + b2), (27) follows from (22), and (28) follows from the

de�nition of αv . Hence, (25) holds and the �rst term

x (T) − Iχv in the right hand side of (23) can be upper

bounded by x (T) − Iχv = O (
logn

ϒG (k)
·

(
1√

vol(S j)
+ αv

)
+ n−c

)
. (29)

ACM Transactions on Parallel Computing, Vol. x, No. 4, Article 00. Publication date: March 201x.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Distributed Graph Clustering and Sparsification • 00:17

Now we look at the second term in the right hand side of (23): by (22) and the triangle inequality we have thatIχv − 1√
vol(S j)

χSj

 =
 k∑
i=1

〈χv , fi 〉 fi −
k∑
i=1

〈χv , fi 〉 χ̂i +
k∑
i=1

〈χv , fi 〉 χ̂i −
k∑
i=1

〈χv , χ̂i 〉 χ̂i

6

 k∑
i=1

〈χv , fi 〉 fi −
k∑
i=1

〈χv , fi 〉 χ̂i

 +
 k∑
i=1

〈χv , fi 〉 χ̂i −
k∑
i=1

〈χv , χ̂i 〉 χ̂i

 . (30)

Let’s now analyse the two terms in (30) separately. For the �rst term, it holds that k∑
i=1

〈χv , fi 〉 fi −
k∑
i=1

〈χv , fi 〉 χ̂i

 6 k∑
i=1

|〈χv , fi 〉| ‖ fi − χ̂i ‖

6 O

(√
k

ϒG (k)

)
·

k∑
i=1

|〈χv , fi 〉|

6 O

(√
k

ϒG (k)

)
·

√√√ k∑
i=1

|〈χv , fi 〉|
2 ·
√
k

= O
©«
√

k2

ϒG (k)

ª®¬ ·
Iχv

= O

(√
k2

ϒG (k)β vol(V)
+ αv

)
(31)

where the �rst inequality follows from the triangle inequality, the second by Lemma 4.3, the third one follows by

the Cauchy-Schwarz inequality, and the last inequality follows by (25). For the second term of (30), we have k∑
i=1

(〈χv , fi 〉 − 〈χv , χ̂i 〉) χ̂i

 =
 k∑
i=1

1

√
dv
(fi (v) − χ̂i (v)) χ̂i

 =
√√√ k∑

i=1

1

dv
(fi (v) − χ̂i (v))

2

= αv , (32)

where the second equality follows from the orthonormality of { χ̂i }i . Combining (23), (29), (30), (31) and (32), we

have x (T) − 1√
vol(S j)

χSj

 = O
(

logn

ϒG (k)
·

(
1√

vol(S j)
+ αv

)
+ n−c

)
+O

(√
k2

ϒG (k)β vol(V)
+ αv

)
+ αv

= O

(
logn

ϒG (k) ·
√
β vol(V)

+ n−c +

√
k2

ϒG (k)β vol(V)
+ αv

)
. (33)

Let’s de�ne the set

B ,

{
v |αv >

√
Ck2

log (1/β)

ϒG (k)β vol(V)

}
,

for some constant C . Let us look at vol(B) now. By Lemma 4.3 we know that∑
v ∈V

dvα
2

v =

k∑
i=1

∑
v ∈V

(fi (v) − χ̂i (v))
2

=

k∑
i=1

‖ fi − χ̂i ‖
2 6

k2

ϒG (k)
.

ACM Transactions on Parallel Computing, Vol. x, No. 4, Article 00. Publication date: March 201x.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

00:18 • Sun and Zane�i

By the de�nition of B and the averaging argument, it holds that

vol(B) 6
k2

ϒG (k)
·
ϒG (k)β vol(V)

Ck2
log (1/β)

=
β vol(V)

C log(1/β)
. (34)

By (33) and the de�nition of B, we have that for all v ∈ S j \ B, by se�ing x (0) = χv we have thatx (T) − 1√
vol(S j)

χSj

 = O
(

logn

ϒG (k) ·
√
β vol(V)

+

√
k2

ϒG (k)β vol(V)
+

√
Ck2

log (1/β)

ϒG (k)β vol(V)

)
= O

(
logn

ϒG (k) ·
√
β vol(V)

+

√
k2

log (1/β)

ϒG (k)β vol(V)

)
.

By de�ning A = V \ B, we proved the statement. �

So far we analysed the case of a T -step single random walk: we showed that there is a su�cient number

of “good” nodes and, for any T -step random walk starting from a good node v ∈ S j , in T steps the resulting

distribution x (T) is close to χSj . To identify all the k clusters simultaneously, our designed algorithm runs this

process multiple times in parallel with carefully chosen initial nodes. In particular, as the resulting distribution

x (T) is close to χSj for most random walks starting from v ∈ χSj , we need to ensure that there is a random walk

starting with a good node v ∈ S j for any 1 6 j 6 k . �is is why we introduce the Seeding step: by se�ing the

probability s̄ · dv/vol(V) for every node v to be active, it is easy to see that with constant probability there is at

least an active node in each cluster.

Our analysis for the �ery step is based on the relation between our averaging procedure and lazy random

walks: since any single random walk gets well mixed inside a cluster a�er T steps, we expect that the states

of the nodes inside a cluster are similar. In particular, if the ith random walk starts with a good node in S j , we

expect that x (T ,i)(v) ≈ 1/vol(S j) for most v ∈ S j and x (T ,i)(v) ≈ 0 otherwise. Hence, nodes from the same cluster

will choose the same label based on (14), while nodes from di�erent clusters will have di�erent labels.

Proof of Theorem 1.2. For each node v , the probability that we start an averaging process with initial vector

χv is equal to s̄ · dv/vol(V), where s̄ = Θ
(

1

β log
1

β

)
. Hence, the probability that there exists a j such that no node

from S j is chosen as an initial node is at most∏
v ∈Sj

(
1 −

s̄ · dv
vol(V)

)
6

∏
v ∈Sj

e
−s̄ ·dv /vol(V) = e

−s̄
∑
v∈Sj dv /vol(V)

6
1

200k
,

where we used the inequality 1 − x 6 e
−x

for x 6 1, the assumption on the size of the clusters, i.e., vol(S j) >
β vol(V), and the trivial fact that β 6 1/k . As a consequence, with probability greater than 199/200, for each

cluster S j , at least one node v ∈ S j is chosen as a starting node of the averaging process.

Next, we bound the probability that all the starting nodes belong to the set A de�ned in Lemma 4.4. By the

algorithm description, the actual number of active nodes s satis�es E [s] = s̄ . �erefore, it holds with probability

1 −O(1) that s = O
(

1

β log
1

β

)
. We assume that this event occurs in the rest of the proof. Let v1, . . . ,vs be the

starting nodes. By Lemma 4.4, the probability that there exists a starting node vi not belonging to A is at most

P [there is some starting node vi < A] 6
O(s̄) · (vol(V) − vol(A))

vol(V)
6

O(s̄) · β

C log(1/β)
6

1

200

.

Hence, with probability 1 −O(1) every starting node belongs to A. For the rest of the proof we assume this is the

case. For any node v , let S(v) be the cluster v belongs to. �en, by the de�nition of the set A, it holds for any

ACM Transactions on Parallel Computing, Vol. x, No. 4, Article 00. Publication date: March 201x.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Distributed Graph Clustering and Sparsification • 00:19

starting node vi that x (T ,i) − χS(vi)√
vol(S(vi))

 = O
(√

k2
log (1/β)

ϒG (k)β vol(V)

)
. (35)

On the other side, by the algorithm description we know that node v could be misclassi�ed only if

x (T ,i)(v) =

�����x (T ,i)(v) − χS(vi)(v)√
vol(S(vi))

����� > √
dv

2β vol(V)

for some i satisfying S(vi) , S(v), since χS(vi)(v) = 0 in this case. By studying a weaker condition we know

that node v could be misclassi�ed by the query step (14) only if there is some i such that�����x (T ,i)(v) − χS(vi)(v)√
vol(S(vi))

����� > √
dv

2β vol(V)
,

which is equivalent to �����x (T ,i)(v)√
dv

−
χS(vi)(v)√

dv · vol(S(vi))

�����2 > 1

4β2
vol(V)2

. (36)

By (35) and the averaging argument the total volume of misclassi�ed nodes is at most

O(s̄) ·

x (T ,i) − 1√
vol(S(vi))

χS(vi)

2

· 4β2
vol(V)2

= O

(
1

β
log

1

β
·

(
k2

ϒG (k)
·

log (1/β)

β vol(V)
+

log
2 n

ϒ2

G (k) · β vol(V)

)
· β2

vol(V)2

)
= O

(
k2

ϒG (k)
· log

2
1

β
+

log
2 n

ϒ2

G (k)
· log

1

β

)
vol(V).

Combining this with the assumption (15) proves the �rst statement. �e second statement follows by the fact

that the total communication among all nodes in each round is O(m · (1/β) log(1/β)) words. �

5 EXPERIMENTS
Now we present experimental results for our proposed algorithms. Since our clustering algorithm can be viewed

as a distributed variant of the power method, we replace the distributed clustering algorithm by spectral clustering

in order to evaluate our sparsi�cation algorithm more accurately.

We test our sparsi�cation algorithm on both synthetic and real-world datasets. To report a detailed and

quantitative result, we will compare the clustering results of the following two approaches: (1) apply spectral

clustering on the original input dataset; (2) apply spectral clustering on the graph returned by our sparsi�cation

algorithm. Besides giving the visualised results of our algorithm on various datasets, we use two functions

to measure the quality of the above-mentioned two approaches: (1) For the synthetic datasets for which the

underlying ground-truth clustering is known, the quality of a clustering algorithm is measured by the ratio of

misclassi�ed points, i.e.,

err(A1, . . . ,Ak) ,
1

n
·

k∑
i=1

|{v ∈ Ai : v < Si }|,

ACM Transactions on Parallel Computing, Vol. x, No. 4, Article 00. Publication date: March 201x.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

00:20 • Sun and Zane�i

where {S1, · · · , Sk } is the underlying ground-truth clustering and {A1, . . . ,Ak } is the one returned by the

clustering algorithm. (2) For datasets for which a ground-truth clustering is not well-de�ned, the quality of a

clustering is measured by the normalised cut value de�ned by

ncut(A1, . . . ,Ak) ,
k∑
i=1

w(Ai ,V \Ai)

vol(Ai)
,

which is a standard objective function for spectral clustering algorithms (Shi and Malik 2000; Von Luxburg 2007).

All the experiments are conducted with Matlab and we use an implementation of the classical spectral clustering

algorithm described in (Ng et al. 2001).

5.1 Datasets
We test the algorithms in the following three synthetic and real-world datasets, which are visualised in Figure 2.

• Twomoons: this dataset consists ofn points inR2
, wheren is chosen between 1, 000 and 15, 000. We consider

each point to be a node. For any two nodesu,v , we add an edge with weightw(u,v) = exp(−‖u−v ‖2/2σ 2),

where σ = 0.1.

• Gaussians: this dataset consists of n points in R2
, where n is chosen between 1, 000 and 15, 000. Each

point is sampled from a uniform mixture of 3 isotropic Gaussians of variance 0.04. �e similarity graph

is constructed in the same way as Twomoons, and we set σ = 1 here.

• Sculpture: we use a 73× 160 version of a photo of �e Greek Slave2
where each pixel is viewed as a node.

To construct a similarity graph, we map each pixel to a point in R5
with the form (x ,y, r ,д,b), where the

last three coordinates are the RGB values. For any two nodes u,v , we put an edge between u and v with

weight w(u,v) = exp(−‖u − v ‖2/2σ 2), where σ = 20. �is results in a graph with about 11, 000 nodes

and k = 3 clusters.

�ese datasets are essentially the ones used in (Chen et al. 2016), which studies the e�ects of spectral sparsi�cation

on clustering. �is makes it possible to easily compare our results with the state-of-the-art. �e choice of σ varies

for di�erent datasets, since they have in general di�erent intra-cluster variance. �ere are several heuristics to

choose the “correct” value of σ (see, e.g., the classical reference (Ng et al. 2001)). In our case the value of σ is

chosen so that the spectral gap of the original similarity graph is large. �is ensures that the clusters in the graph

are well-de�ned, and spectral clustering outputs a meaningful clustering.

(a) Twomoons (b) Gaussians (c) Sculpture

Fig. 2. Visualisation of the datasets used in our experiments.

2
h�p://artgallery.yale.edu/collections/objects/14794

ACM Transactions on Parallel Computing, Vol. x, No. 4, Article 00. Publication date: March 201x.

http://artgallery.yale.edu/collections/objects/14794

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Distributed Graph Clustering and Sparsification • 00:21

Table 1. Experimental results for the Twomoons dataset, where τ = C/λk+1
is set to be 0.8. Here err1 and err2 stand for the

error ratios of spectral clustering on the original datasets and our sparsified graphs.

n # edges (%) err1 (%) err2 (%)

1, 000 1.56 0.900 0.600

2, 000 0.86 0.150 0.100

4, 000 0.48 0.150 0.175

8, 000 0.26 0.086 0.088

10, 000 0.22 0.120 0.150

15, 000 0.14 0.080 0.100

Table 2. Experimental results for the Gaussians dataset, where τ = C/λk+1
is set to be 1.6. Here err1 and err2 stand for the

error ratios of spectral clustering on the original datasets and our sparsified graphs.

n # edges (%) err1 (%) err2 (%)

1, 000 3.13 1.700 1.900

2, 000 1.75 1.350 1.650

4, 000 0.96 0.400 0.417

8, 000 0.66 0.128 0.140

10, 000 0.42 0.113 0.119

15, 000 0.29 0.125 0.148

5.2 Results on clustering quality
We test the performance of our algorithm on the three datasets. Notice that the sampling probability of the

edges in our sparsi�cation algorithm involves the factor C/λk+1. To �nd a desired value of C/λk+1, denoted by

τ , we use the following doubling method: starting with τ = 0.1, we double the value of τ each time, until the

spectral gap |λk+1 − λk | of the resulting matrices doesn’t change signi�cantly. Remarkably, for all the datasets

considered in the paper, τ = 1.6 always su�ces for our purposes. Notice that this method will only increase the

time complexity of our algorithm by at most a poly-logarithmic factor of n.

For the Twomoons and Gaussians datasets, for all the tested graphs with size ranging from 1, 000 to 15, 000

points, our sparsi�ed graphs require only about (1.63 ± 1.5)% of the total edges. �e error ratios of spectral

clustering on the original datasets and our sparsi�ed graphs are listed respectively as err1 and err2, and are

always very close. See Table 1 and Table 2 for details.

�e Sculpture dataset corresponds to a similarity graph of n = 11, 680 nodes and 68 million edges. We run

spectral clustering on both the input graph and our sparsi�ed one, and compute the normalised cut values of each

clustering in the original input graph. By se�ing τ = 1.6, our algorithm samples only 0.37% of the edges (320, 000)

from the input graph. �e normalised cut value of spectral clustering on the original dataset is 0.0938, while

the normalised cut value of spectral clustering on our sparsi�ed graph is 0.0935. �e visualisations of the two

clustering results are almost identical, as shown in Figure 3.

ACKNOWLEDGMENTS
We would like to thank Dr. Emanuele Natale and Prof. Luca Trevisan who found a mistake in our paper that

studies the same problem and appeared at SPAA’17. To �x that mistake, in the current paper we designed and

ACM Transactions on Parallel Computing, Vol. x, No. 4, Article 00. Publication date: March 201x.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

00:22 • Sun and Zane�i

Fig. 3. Visualisation of the results on Sculpture. The le�-side picture is the original input dataset, the middle one is the
output of spectral clustering on the original input dataset, while the right-side picture is the output of spectral clustering on
our sparsified graph.

analysed a di�erent algorithm that works for a more general family of graphs. In particular, our algorithm works

for non-regular graphs, while our claimed statement in the �awed SPAA’17 paper requires the underlying graph

to be regular.

�e second-named author wishes to acknowledge �nancial support received from the ERC Starting Grant

(DYNAMIC MARCH).

REFERENCES
Zeyuan Allen-Zhu, Silvio La�anzi, and Vahab S. Mirrokni. 2013. A Local Algorithm for Finding Well-Connected Clusters. In 30th International

Conference on Machine Learning (ICML’13). 396–404.

Joshua Batson, Daniel A. Spielman, and Nikhil Srivastava. 2012. Twice-Ramanujan sparsi�ers. SIAM J. Comput. 41, 6 (2012), 1704–1721.

Luca Becche�i, Andrea Clementi, Emanuele Natale, Francesco Pasquale, and Luca Trevisan. 2017. Find your place: Simple distributed

algorithms for community detection. In 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’17). 940–959.

Luca Becche�i, Andrea E. F. Clementi, Pasin Manurangsi, Emanuele Natale, Francesco Pasquale, Prasad Raghavendra, and Luca Trevisan.

2018. Average Whenever You Meet: Opportunistic Protocols for Community Detection. In 26th Annual European Symposium on Algorithms
(ESA’18). 7:1–7:13.

András A. Benczúr and David R. Karger. 1996. Approximating s-t minimum cuts in Õ (n2) time. In 28 Annual ACM Symposium on �eory of
Computing (STOC’96). 47–55.

Manuel Blum, Richard M. Karp, Oliver Vornberger, Christos H. Papadimitriou, and Mihalis Yannakakis. 1981. �e Complexity of Testing

Whether a Graph is a Superconcentrator. Inf. Process. Le�. 13, 4/5 (1981), 164–167.

Jiecao Chen, He Sun, David P. Woodru�, and Qin Zhang. 2016. Communication-Optimal Distributed Clustering. In 29th Advances in Neural
Information Processing Systems (NIPS’16). 3720–3728.

Fan Chung and Linyuan Lu. 2006. Concentration inequalities and martingale inequalities: a survey. Internet Math. 3, 1 (2006), 79–127.

Santo Fortunato. 2010. Community detection in graphs. Physics Reports 486, 3 (2010), 75–174.

Shayan Oveis Gharan and Luca Trevisan. 2012. Approximating the Expansion Pro�le and Almost Optimal Local Graph Clustering. In 53rd
Annual IEEE Symposium on Foundations of Computer Science (FOCS’12). 187–196.

Pan Hui, Eiko Yoneki, Shu Yan Chan, and Jon Crowcro�. 2007. Distributed community detection in delay tolerant networks. In Proceedings of
2nd ACM/IEEE International Workshop on Mobility in the Evolving Internet Architecture.

David Kempe and Frank McSherry. 2004. A decentralized algorithm for spectral analysis. In 36th Annual ACM Symposium on �eory of
Computing (STOC’04). 561–568.

James R. Lee, Shayan Oveis Gharan, and Luca Trevisan. 2014. Multiway Spectral Partitioning and Higher-Order Cheeger Inequalities. Journal
of the ACM 61, 6 (2014), 37:1–37:30.

Yin Tat Lee and He Sun. 2015. Constructing Linear-Sized Spectral Sparsi�cation in Almost-Linear Time. In 56th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’15). 250–269.

Yin Tat Lee and He Sun. 2017. An SDP-based algorithm for linear-sized spectral sparsi�cation. In 49th Annual ACM Symposium on �eory of
Computing (STOC’17).

Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. 2001. On spectral clustering: Analysis and an algorithm. In 14th Advances in Neural
Information Processing Systems (NIPS’01). 849–856.

ACM Transactions on Parallel Computing, Vol. x, No. 4, Article 00. Publication date: March 201x.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Distributed Graph Clustering and Sparsification • 00:23

Shayan Oveis Gharan and Luca Trevisan. 2014. Partitioning into Expanders. In 25th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’14). 1256–1266.

Richard Peng, He Sun, and Luca Zane�i. 2015. Partitioning Well-Clustered Graphs: Spectral Clustering Works!. In 28th Conference on Learning
�eory (COLT’15). 1423–1455.

Jianbo Shi and Jitendra Malik. 2000. Normalized cuts and image segmentation. IEEE Transactions on pa�ern analysis and machine intelligence
22, 8 (2000), 888–905.

Daniel A. Spielman and Nikhil Srivastava. 2011. Graph Sparsi�cation by E�ective Resistances. SIAM J. Comput. 40, 6 (2011), 1913–1926.

Daniel A. Spielman and Shang-Hua Teng. 2013. A Local Clustering Algorithm for Massive Graphs and Its Application to Nearly Linear Time

Graph Partitioning. SIAM J. Comput. 42, 1 (2013), 1–26.

Daniel A Spielman and Shang-Hua Teng. 2011. Spectral sparsi�cation of graphs. SIAM J. Comput. 40, 4 (2011), 981–1025.

Joel A. Tropp. 2012. User-friendly tail bounds for sums of random matrices. Foundations of computational mathematics 12, 4 (2012), 389–434.

Ulrike Von Luxburg. 2007. A tutorial on spectral clustering. Statistics and computing 17, 4 (2007), 395–416.

Wenzhuo Yang and Huan Xu. 2015. A Divide and Conquer Framework for Distributed Graph Clustering. In 32nd International Conference on
Machine Learning (ICML’15). 504–513.

ACM Transactions on Parallel Computing, Vol. x, No. 4, Article 00. Publication date: March 201x.

	Abstract
	1 Introduction
	1.1 Structure of clusters
	1.2 Our results
	1.3 Related work
	1.4 Organisation

	2 Preliminaries
	3 Cluster-Preserving Sparsifiers
	3.1 Algorithm description
	3.2 Analysis of the algorithm

	4 Distributed Graph Clustering
	4.1 Algorithm description
	4.2 Analysis of the algorithm

	5 Experiments
	5.1 Datasets
	5.2 Results on clustering quality

	Acknowledgments
	References

